Bitext Alignment for
Statistical Machine Translation

Yonggang Deng
Advisor: Prof. William Byrne
Thesis Committee: Prof. William Byrne, Prof. Trac Tran
Prof. Jerry Prince and Prof. Gerard Meyer

Center for Language and Speech Processing
The Johns Hopkins University
Baltimore, MD 21218

20th December 2005 Q“

O (T 1]

Y. Deng (Johns Hopkins) 1/42



-
Bitext and Bitext Alignment

° : a collection of text in two languages
: finding translation equivalence within bitext

B B W W B AR, X & AP It is necessary to resolutely remove obstacles in

O RER Wk TR R rivers and lakes .
4 . Tt is necessary to strengthen monitoring and
P s SR PR, BRE R forecast work and scientifically dispatch people and
materials .

BRI AR e, TU5 A $2&% T It is necessary to take effective measures and try by
w R every possible means to provide precision forecast .

WO OB A BT UK TR % Before the flood season comes , it is necessary to

e e seize the time to formulate plans for forecasting
A7 FERHE S JPRETAE floods and to carry out work with clear

Chinese English

O (T 1]

Y. Deng (Johns Hopkins) 2/42



-
Bitext and Bitext Alignment

° : a collection of text in two languages
: finding translation equivalence within bitext

B B W W B AR, X & AP It is necessary to resolutely remove obstacles in

PR 37 i G rivers and lakes .
4 . Tt is necessary to strengthen monitoring and
P s SR PR, BRE R forecast work and scientifically dispatch people and
materials .

BRI AR e, TU5 A $2&% T It is necessary to take effective measures and try by
w R every possible means to provide precision forecast .

WO OB A BT UK TR % B§foreklthe Aﬂood se?son <l:omesl, it lfS nefcessaryA to
H R W IR TR seize the time to formulate plans for forecasting
: floods and to carry out work with clear

Chinese English

O (T 1]

Y. Deng (Johns Hopkins) 2/42



-
Bitext and Bitext Alignment

° : a collection of text in two languages
: finding translation equivalence within bitext

B A W W B TAE X %ﬁr lt_\ls nece‘ssary to resolutely remove obstacles in
DI 2 TS -7 i D 1 S rivers and lakes™s
1:"/ 4 . It is necessary tmstrengthen monitoring and

AV 1 A S U - S S ifr’:}/ﬁf';,:"\;(fforecast work and scientifically dispatch people and
el " materials .

BORE AR E@*',\‘T"/‘J‘]’ﬂ%‘l”%% T It is }isgessary to take effective measures and try by
wOREE A R every possible means o provide precision forecast .

T R S DR /J\\ e B§forek1the Aﬂood se?son <l:omesl, it lfS nefcessaryA to
ORI M TR T N seize the time to formulate plans for forecasting
< : goods and to carry 07ut work with clear
AN P 7

Chinese . English

O (T 1]

Y. Deng (Johns Hopkins) 2/42



|
Why automatic bitext alignment?

@ Critical and beneficial in many multilingual NLP tasks

e provides basic ingredients in building a Machine Translation system
@ Hand alignment is expensive for large corpora
@ Desired properties

e language independent: Chinese, Arabic, Spanish, French ...
@ no linguistic knowledge: from scratch, unsupervised, statistical
e huge amount of data: effectiveness and efficiency
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-
Statistical Machine Translation (SMT)

Source — Channel —  Target

E P(F|E) F E

Source Decoding

= argmaxg P(E)

Translation Model P(F|E) needs

w1

Documents

Sentence/Chunk

Word/Phrase

Y. Deng (Johns Hopkins)
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s
Chunk Alignment

@ Problem: sentences are not translated 1-to-1 in sequence
e 1-to-n, n-to-1, m-to-n, order changes, real data challenge
° (Deng et al, '04)
@ introduce a hidden chunk alignment variable
o document generating: fill in the blank
e two alignment algorithms are derived in a straightforward manor

# # # <«———Boundary marks
Wi -Wg Wy Wy Wy Wz Wi Wig Wi -Ws

5
e=g¢ € € € €y €s

e=e¢
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Chunk Alignment

@ Problem: sentences are not translated 1-to-1 in sequence
e 1-to-n, n-to-1, m-to-n, order changes, real data challenge
° (Deng et al, '04)
@ introduce a hidden chunk alignment variable
o document generating: fill in the blank
e two alignment algorithms are derived in a straightforward manor
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Outline
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Al
Dynamic Programming (DP)

p(1,1P(ESleSy o

K p(2,2)P(12,f3le3,64)

f1

<

el e2 e3 e4 e5
p(1,2)P(fllel,e2)

@ Monotone chunk alignment L
@ Global optimum 4w
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Mgorithms
Divisive Clustering (DC)

divide and conquer, iterative binary parallel splitting, reorder

2 B A N Since the Korean Peninsula was split into two countries ,
g N EH 5 D)ok P

YR P T LM\ , the Republic of Korea has , while leaning its back on the
XK Bk A big tree " of the United States for security , carefully and

ELNE
wh[H 75 75

[FIN, 3 Nl L(H H RFEAYE |nj % consistently sought advanced weapons from the United
B Sk gk >y e ERARE States in a bid to confront the Democratic People 's
[ 3k Seitut LI pU i . P

U 10 LR gy RoPebeorKor .
B, AE U“?H‘] f\}' ) )‘\| IR AR o An informed source in Seoul revealed to the Washington
i . 4 “' . f e Post that the United States had secretly agreed to the

o 1) B ol B3R B AT S 4 request of South Korea earlier this year to " extend its
LMl 2 e HAY ‘:’) fif AR ST . existing mis: e " to strike Pyongyang dire

i& AN whIE K E) ik ) FE)L, WARF This should have elated South Korea . But since the

"

le ra

SISk 7T /J\< G| ;" 5 i T situation surrounding the peninsula has changed

Py R A T R J BRI g the p ¢

Wit 2 T ”Il:] I A (v,' T A EN] . hE dramatically and the two heads of state of the two Koreas
Eadr 2 R I B WER < IR S nk have met with each other and signed a joint statement ,
B L

what should South Korea do now ? It has no choice but

K. JHE E O 5 JF'JJ Jig vl
E R N e :
“EHAH T EmW Sk, Ll kA O fEE T Aknowledgeable South Korean speaks the truth :

spit back the " greasy meat " from its mouth and put the "
missile expansion plan " on the back burner

HAm Sae -, Wi 34T BA T+ " Because of the summit meeting , we have shelved our
BE 4 TER RN g 2 JTEN I R R . own missile plan . If we go ahead with it , it will spoil the

excellent situation opened up by the summit meeting .

Deng (Johns Hopkins)
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Bitext Chunk Alignment Algorithms

Divisive Clustering

(DC)

divide and conquer, iterative binary parallel splitting, reorder
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Since the Korean Peninsula was split into two countries ,
the l{qml)lic of Korea has , while leaning its back on the "
big \xu, " of the United security , carefully and
ntly sought advanced weapons from the United
States in a bid to confront the Democratic People 's
Republic of Korea .

con:

An informed source in Seoul revealed to the Washington
Post that the United States had secretly agreed to the
request of South Korea earlier this year to " extend its
existing missile range " to strike Pyongyang direct

This should have elated South Korea . But since the
situation surrounding the peninsula has changed
dramatically and the two heads of state of the two Koreas
have met with each other and signed a joint statement ,
what should South Korea do now ? It has no choice but
spit back the " greasy meat " from its mouth and put the "
missile expansion plan " on the back burner .

E ST RN R
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A knowledgeable South Korean speaks the truth :

B2 SRR E
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" Because of the summit meeting , we have shelved our
own missile plan . If we go ahead with it , it will spoil the

excellent situation opened up by the summit meeting .

Deng (Johns Hopkins)
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Algorithms
A hierarchical chunking scheme

e DP+DC
o DP at sentence level followed by DC at sub-sentence level
e from coarse to fine, deriving short chunk pairs
@ Advantage
@ significantly reduce machine training time
@ 21 hrsvs. 8 hrs
o make most of bitext usable for machine training
@ 78% vs. 98%
" " (Robert Mercer, 1988)
e improve system performance by higher coverage

O CITTITIIOTIT 0T 7
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Results
Outline

@ [Bitext Chunk Alignment]
|

@ (Sentence Alignment Results|
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ize s
Unsupervised Sentence Alignment

@ 122 Chinese/English document pairs selected from FBIS corpus

@ sentence aligned by humans, ~ 2,200 sentence pairs

@ unsupervised from scratch, measured by Pre/Rec

Precision at each lteration

Recall at each Iteration

.
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E 4 :4 & g 54

o v v v v

v
07f v o o
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06 0.6) -
5 = I
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& o « 077
0.4 04
O A:DP w/ uniform P(x,y) .
x B: DP w/biased P(x,y) -

0.3 V¥ C:DC 0.3 -
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02l - E: DP+DC w/ biased P(xy) 02l ¢ -g- C:DC i

’ F: DP+DC w/ uniform P(x,y) seeded from E lte. 0 D: DP+DC wi uniform P(xy)
o I> G: DC seeded from E lte. 0 . S E: DP+DG wi biased P(xy)
- ! F: DP+DC w/ uniform P(x,y) seeded from E lte. 0
$> G: DC seeded from E Ite. 0
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Iteration Iteration
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Introduction/Motivation
Outline
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Q |Bitext Word Alignment|
@ [Introduction/Motivation
[ |
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Bitext Word Alignment Introduction/Motivation

Word Alignment

@ Fundamental problem in Machine Translation
@ Basis for phrase/syntax models
@ Model relations from source s = s} to target t = t;

e Word alignmenta = aj: sy — tj,j =1,2,--- ,J <= hidden r.v.
o Conditional likelihood P (t,a|s) < complete data

e Sentence translation P(t|s) = >, P(t,a|s) <= incomplete data

So S Sy S3 S4
NULL o L A [H 57 41 21

» v & » £y &

> ¥

A A Ta >

china ‘s accession to the world trade organization at an early date

t t t3 ty ts t6 t tg to  to th to
1 1 3 3 0 4 4 4

2 2 2 2
15/42
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Introduction/Motivation
State of the Art

° generated by (Och & Ney, '03)
o The state of the art word alignments especially on large bitexts
@ But

o Exact-EM is problematic, sub-optimal estimation algorithms used
o Difficult to compute statistics under the model
e Applications limited by word alignments only

@ GOAL: improve word alignments of bitexts for better translation

o Comparable performance to Model-4
o Fast efficient training, with controlled memory usage
o Use the model, not just the alignments

O (T 1]
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Introduction/Movation
IBM Model-4 Word Alignments (Brown et al, '93)

So S| S S3 S4
NULL i HLH JIIIPN [t 5720 41

JOHNS HOPKINS
Y. Deng (Johns Hopkins) 171742



Introduction/Movation
IBM Model-4 Word Alignments (Brown et al, '93)

So Sy S S3 S4
NULL T FH A it 57 21 21

00000

Create a tablet for each source word

Y. Deng (Johns Hopkins)



Introduction/Movation
IBM Model-4 Word Alignments (Brown et al, '93)

So Sy S S3 S4
NULL T FH A it 57 21 21

00806

Table lookup to decide fertility: # of target words connected

Y. Deng (Johns Hopkins) 171742



Introduction/Movation
IBM Model-4 Word Alignments (Brown et al, '93)

So Sy S2 S3 S4
NULL T FH A it 57 21 21

world
trade
organizatio

Sample target words from translation table i.i.d.

Y. Deng (Johns Hopkins)



Introduction/Movation
IBM Model-4 Word Alignments (Brown et al, '93)

So Sy Sz S3 S4
NULL i FH PN it 57 21 21

world

trade

\-organizatio

" Distortion
] Model

¥ ¥ « PR & x e NN T T
china ‘s accession to the world trade organization at an early date

4 t ts ty ts t6 t t3 o tp tn ti

@ What makes the model powerful also makes computation com

@ Typical training procedure: Model-1, HMM, Model-4
@ Can we do something to HMM?

b

O (T 1]
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Introduction/Motivation
HMM WtoW Model (Vogel et al, ’96; Och & Ney, '03)

Si S2 S3 S4
h A PN THEZLR

china ‘s accession to the world trade organization at an early date
4 t t3 ty s te t7 tg ottt

JOHN
Y. Deng (Johns Hopkins) 18742
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Bitext Word Alignment Introduction/Motivation

HMM WtoW Model (Vogel et al, ’96; Och & Ney, '03)

v v e » ¥ o » ¥y T e T e
china ‘s accession to the world trade organization at an early date

ty th t3 ty ts te t; tg to  to tin tp

@ State sequences < word to word alignments

@ Words are generated one by one, one transition emits one target word

Y. Deng (Johns Hopkins)

ext Alignment for




Introduction/Motivation
Make HMM More in Generating Observations

china ‘s accession to the world trade organization at an early date
t b t3 th L5 te t7 tg to  tio tn t
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Introduction/Motivation
Make HMM More in Generating Observations

v » 4 » s
—

china ‘s accession to the world trade organization at an early date

4 t t ty ts t6 t tg o to tin to

7
(

@ Target phrases rather than words are emitted after jumping into a state d

@ State sequences <= word to phrase alignments

@ Word-to-Phrase (WtoP) HMM (Deng & Byrne, '05) O D]]]]]]E]IED




WtoP HMM Model
Outline

| |
@ [Bitext Word Alignment]
[ |
o [Word-fo-Phrase HMM Model
[ |

O O T 1]
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WioP HMM Model
Word-to-Phrase HMM Alignment Models

@ Target sentence segmented into K phrases
@ Phrase length sequence ¢, t = vf
@ Phrase alignment sequence aff
@ NULL: h¥ is a Bernoulli process, d(hy = 1) = 1 — po,d(hx = 0) = po
o hy =1 = Sa, — Vk
@ hy =0= NULL — vy
@ Hidden random variable: Word-to-phrase alignment a = (K, af, ¢, h)

P(taals) = P(v{,K,af,h{, ¢s)

O (T 1]
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WioP HMM Model
Word-to-Phrase HMM Alignment Models

@ Target sentence segmented into K phrases
@ Phrase length sequence ¢, t = vf
@ Phrase alignment sequence aff
@ NULL: h¥ is a Bernoulli process, d(hy = 1) = 1 — po,d(hx = 0) = po
o hy =1 = Sa, — Vk
@ hy =0= NULL — vy
@ Hidden random variable: Word-to-phrase alignment a = (K, af, ¢, h)

P(taals) = P(v{,K,af,h{, ¢s)
P(K[J,8) x P(af, ¢f, hi|K,J,8) x P(Vf[af, hi, ¢, K,J,8)
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WioP HMM Model
Word-to-Phrase HMM Alignment Models

@ Target sentence segmented into K phrases
@ Phrase length sequence ¢, t = vf
@ Phrase alignment sequence aff
@ NULL: h¥ is a Bernoulli process, d(hy = 1) = 1 — po,d(hx = 0) = po
e hy =1 = Sa, — Vk
(4] hk=0:> NULL — vy
@ Hidden random variable: Word-to-phrase alignment a = (K, af, ¢, h)

P(tals) = P(Vi,K,af, h{, ¢}s)

= P(K|J,s) x P(al, ¢l h|K,J,8) x P(VS[af,hf, ¢f K, J,s)
P(K|J,1) <= Phrase Count o n

K
<] d(hy) - p- ,
k=1

K
X H P (Vi |hk - Sa, ) <= Word-to-Phrase Translation

k=1 .

Y. Deng (Johns Hopkins) 21/42




WtoP HMM Model
Word-to-Phrase Translation Probabilities

@ Replace weak i.i.d. word-for-word translation
@ P(world trade organization|f = tHH4HZH; 3) =7

o = t(world|f) - t(trade|f) - t(organization|f) < i.i.d.
o = t(world|f) - to(trade|world, f) - to(organization|trade, f) <= bigram

Model i.i.d. bigram
P (world| tHE FHZHZT) 0.06 0.06
P (trade|world, tHF12H2R) 0.06 0.99
P (organization|trade, Tﬂ‘%éﬂm) 0.06 0.99

P (world trade organization|t {4424, 3) | 0.0002 | 0.0588

@ Assigns higher probability to correct translation than i.i.d

@ Incorporates context without losing algorithmic efficiency: DP
@ Use same estimation techniques as used for bigram LMs

@ Data sparseness, Witten-Bell smoothing

Y. Deng (Johns Hopkins) 22/42



WioP HMM Model
Comparing Word-to-Phrase HMM to ...

@ Segmental Hidden Markov Models (Ostendorf et al, '96)
o states emit observation sequences
o WtoW HMM (Vogel et al, ’96; Och & Ney, '03)
o N=1
@ Extensions to WtoW HMM (Toutanova et al, '02)
o P(stay|s) vs. P(stay = ¢|s) in modeling state durations
o IBM Model-4
o fertility vs. phrase length

O (T 1]
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Parameter Estimation
Outline

| |
@ [Bitext Word Alignment]
[ |
| |
© [Parameter Estimation|
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vy (25
Forward-backward Algorithm

State space S = {(i,¢,h) : 1 <i <1,1 < ¢ <N,h=00r1} Grid 2NI x J

Si Si e S
t oo g G e [ S TS R A
¢
Oéj(i,(ﬁ,h) = { Z ai—¢(il7¢/ah/)p(i|i/,h;I)}'n'n(¢;h'Si)'P(tjj7¢+1|h'sia¢)
il,¢l,hl
ﬂ](|7¢7h) = Z ﬁj+¢’(i/7¢/7h,)p(i/|i»h,;|)'77'n(¢,;h/'5i')' (tjjif |h S/ 7¢)
il,¢/,hl

(i _ N al(|7¢7h)m(|7¢7h) ‘/‘/ 3

'YJ(I7¢7h) = P(h Si \ —t ¢+1‘9 S t) Ei’,h’,d)’ aJ(i/,¢’,h’) Q/\?

O (T 1]
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Parameter Estimation
Embedded Estimation of Word-to-Phrase HMM

@ Unsupervised training from scratch

Model-1, 10 its (initial t-table)

Model-2, 5 its (better t-table)

WtoW HMM, 5 its (initial Markov model)

WtoP HMM N=2, 3, .., each 5 its (Markov model, phrase length)

( )
o WitoP HMM with bigram t-table, 5 its (bigram t-table)
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Parameter Estimation
Embedded Estimation of Word-to-Phrase HMM

@ Unsupervised training from scratch

Model-1, 10 its (initial t-table)

Model-2, 5 its (better t-table)

WtoW HMM, 5 its (initial Markov model)

WtoP HMM N=2, 3, .., each 5 its (Markov model, phrase length)

( )
o WitoP HMM with bigram t-table, 5 its (bigram t-table)

@ Parallel Implementation

o Partitioning training bitext

o E-step: Collect counts from each partition parallel

o M-step: Merge counts to update model parameters

o Memory efficient, virtually no limitation on training bitext size
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Word Alignment Results
Outline
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@ [Bitext Word Alignment]
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U A e
Bitext Alignment Results

Test: NIST 2001 MT-eval set, 124 sentence pairs w/ manual word alignments
Comparable performance to Model-4 on FBIS training bitext

Increasing max phrase length N improves quality in C — E direction

Bigram translation probability improves word-to-phrase links

A good balance between 1-1 and 1-N distribution can be achieved

®© 6 6 6 ¢

4300 T—J 1-1 Links 42
B 1-N Links

3950

|
N
o

=+ Overall AER
3600

3250

2900

2550

2200

1850 e,
(

1500 126 @

@ Comparable performance when extending to large scale bitexts
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Inducing from Word Alignments
Outline

Q |Bitext Phrase Alignment|

@ (Inducing from Word Alignments
[ |
[ |

[Conclusiond] ﬁ
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Inducing from Word Alignments
Statistical Phrase Translation Models

@ Phrase-based SMT performs better than word-based SMT
@ Phrases Pair Inventory (PPI) extracted from word aligned bitext (Och et al, ’99)

achievements . .
economic .

marked

cities .

border .
open .
14 HBE

's

SE+E 4 BEFE ET SF RiE AE BE

China . d‘//
)
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Inducing from Word Allgnments
But word alignments are

There is no politics in hong kong and there will not be such politics in future either
\ u
ik AH BH B AN A A O BE BUA
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Inducing from Word Allgnments
But word alignments are

.S
There is no\

.\ .
ik A H AN Eﬁuﬁ\ Ala I8 A fOBE BeA
@ Relying on the one-best word alignment may exclude some valid phrase pairs

@ Goal is to define a probability distribution over phrase pairs
@ Allows more control over generation of phrase pairs
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Model-based Phrase Pair Posterior
Outline

© [Bitext Phrase Alignment]
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o [Model-based Phrase Pair Posteriod
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Model-based Phrase Pair Posterior
Model-based Phrase Pair Posterior

@ Doesn't rely on a single alignment

i i
S \
N .
'~ \
. |
il A H B Bify, AR K A H BE A
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Model-based Phrase Pair Posterior

@ Doesn't rely on a single alignment
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@ Define a set of alignments that align words to words in phrases
Ain,iz;j1,j2) = {af « g € [ir, i) iff j € [ir, jo]}
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Model-based Phrase Pair Posterior

@ Doesn't rely on a single alignment

I 12
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N .
N \

N "
il A H B Bify, AR K A H BE A

@ Define a set of alignments that align words to words in phrases
Ain,iz;j1,j2) = {af « g € [ir, i) iff j € [ir, jo]}

@ Calculate the likelihood of the source phrase producing the target phrase
P(t, A(iv,i2ij1,02) |8) = Za;aq‘eA(ihiz;jhjz) P(t,als)

Y. Deng (Johns Hopkins)



Model-based Phrase Pair Posterior
Model-based Phrase Pair Posterior

@ Doesn't rely on a single alignment

I 12

S, \
N .
N \

N |
il A H B Bify, AR K A H BE A

@ Define a set of alignments that align words to words in phrases
Ain,iz;j1,j2) = {af « g € [ir, i) iff j € [ir, jo]}

@ Calculate the likelihood of the source phrase producing the target phrase
P(t, A(ir,iz2;j1,2) [8) = ZHZBTGA(iMz;Jhiz) P(t,als)

@ Obtain phrase pair posterior
P(A(ir,i2;j1,2) It, 8) = P(t, A(ir, iz j1,]2) | ) /P(t[s)
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Model-based Phrase Pair Posterior
Model-based Phrase Pair Posterior

@ Doesn't rely on a single alignment

I 12
S, "
N .
N .

N |
il A H B Bify, AR K A H BE A

@ Define a set of alignments that align words to words in phrases
Ain,iz;j1,j2) = {af « g € [ir, i) iff j € [ir, jo]}

@ Calculate the likelihood of the source phrase producing the target phrase
P(t, A(in,i2;j1,j2) [ 8) = Za:aTeA(i1,i2;j1,j2) P(t,als)

@ Obtain phrase pair posterior
P(A(i1, i2;J1,]2) [t, 8) = P(t, A(ir, i2;J1,]2) [ 8)/P(tls)

@ Efficient DP-based implementation for WtoP HMM, Difficult for Model-4
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Model-based Phrase Pair Posterior
Augmented PPI for a Better Coverage

@ Baseline PPI

e extracted from 1-best alignments using establishing techniques
(Och et al., '99)

@ GOAL: add phrase pairs to improve test set coverage
@ For each foreign phrase v in test set

o for each sentence pair containing v
o find the English phrase u that maximizes the phrase pair posterior

f(i1ai2) = PFHE(A(i‘IaiZ;j‘hjZ) | e|17f1m)
b(i1,i2) = Pe ¢ (A(i1, i2;j1,)2) | €}, ™)
a(i1,i2) = /f(11,i2) b(i1,i2)

(i1,i2) = argmax g(is,i2) , and setu = eiiz
1<iy,i2 <1 !

e add (u, v) to the baseline PPI if posterior exceeds a threshold value
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Translation Results
Outline

© [Bitext Phrase Alignment]
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Bitext Phrase Alignment Translation Results

Transduce Translation Model (Kumar et al, '05)

@ TTM Decoder - WFST implementation with monotone order

GRAIN EXPORTS ARE PROJECTED TO FALL BY 25 %
Source Phrase
Segmentation
GRAIN EXPORTS ARE_PROJECTED_TO FALL BY_25_%
Phrase
Insertion
1 GRAINS 1 EXPORTS ARE_PROJECTED_TO FALL BY_25 %

Phrase
Translation

DE GRAINS LES EXPORTATIONS DOIVENT FLECHIR DE 25 %
Target Phrase
Segmentation

DE GRAINS LES EXPORTATIONS DOIVENT FLECHIR DE 25 %

Y. Deng (Johns Hopkins)

Source Language
Sentence

Source Phrases

Placement of
Target Phrase
Insertion Markers

Target Phrases

Target Language
Sentence




Translation Results
Automatic Machine Translation Evaluation

° problem !
@ BLEU (Papeneni et al, '01) — an automatic MT metric

o correlated well with human judgements
e geomantic mean of n-gram precisions weighted by brevity penalty

Reference  :  mr. speaker , in absolutely no way .
Hypothesis : in absolutely no way , mr. chairman .

BLEU computation

BLEU

1word 2word 3word 4word | (x 3 x 2x L) =03076
78 3/7 26 15
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Translation Results: Small Systems

25, @ 252 27, o 405,
) o
25 26 el
24 o 40 S
® - ©---0 x a - :;}.’ 5
. 24.8| ? 25 205
23] F o 5}
24.6| i 24) o
. ] 39
22| !
24.4] ! 23] o
o o o 3 38.4]
g o 2 ! g x 2
% 21 =] ﬁ 24.2] ,I % 22| o * 2
o K -0 5} 38|
24 - a° 21
B g D - © Ho=mm
Psg s x 37.5
23.8 Lol x 20|
19) g B===0---0
EE 19) a7 }
S : @

18] O evalo2 234k, © evalo2 18] O evald2 365F O evalo2
O evalo3 f’ £+ eval03 0O evalo3 . £ eval03
x_eval0d *-_evalo4 x:_evalo4 p *-_evalo4

1 — 23.. 1 — —

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 4 5
Chinese-English Arabic-English

{

7
@ Relaxing threshold in PPl augmenting improves coverage and BLEU score ¢
@ Balance coverage against phrase translation quality ‘
@ WtoP model can even be applied to augment Model-4 PPI
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Translation Results: Large Systems

28.5 43
28 M Model-4 Baseline | 42 | MModel-4 Baseline  fooeeeen
0 WioP HMM Baseline "l OWtoP HMM Baseline | |
275 I B M WioP HMM Augmented | B WitoP HMM Augmented
40
27
39
26.5 38
26 37
25.5 36
eval02 eval03 eval04(news) eval02 eval03 eval04(news)
Chinese-English Arabic-English

@ Used all parallel corpora available from LDC

o C-E:200M En. words (FBIS, Xinhua, HK News, ..., all UN bitex@)a

o A-E: 130M En. words (news, all UN bitexts) ...’
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Conclusions

@ A hierarchial bitext chunking approach

e language independent, no linguistic knowledge required
o derived short chunk pairs, retain more of the available bitext

@ The word-to-phrase HMM alignment model
e produces good quality word alignments over very large bitexts
o has efficient training algorithm with parallel implementation
o a powerful framework
@ Model-based phrase pair distribution enables
e an improved phrase pair extraction strategy
e controlled balance coverage vs. quality

° performs better than IBM Model-4 on large systems;
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Machine Translation Toolkit (MTTK)

Document Alignments
Length Statistics

~<— {t(fle) } <=— |Model-1 Tr 2

Chunk Alignments —»

Bitext Chunking

—> High Quality Pairs

Model-1 Training

~— {t(fle), adiljlm)} ———

WtW HMM Training

IV PIOM

~—— {t(fle), PGl } ——

siuWUSITY dseIyq

WtP HMM Training N=2,3...

<~—— {t(fle), P(jli’;]), n(phise) } ——>

(WiP HMM Training w/ Bigram t—table )

<— {t(fle), P(ili’;1), n(phise), 22(fif*,e) } —

Y. Deng (Johns Hopkins)




Conclusions

Thank you very much | any question ¢
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