Bitext Alignment for Statistical Machine Translation

Yonggang Deng
Advisor: Prof. William Byrne
Thesis Committee: Prof. William Byrne, Prof. Trac Tran
Prof. Jerry Prince and Prof. Gerard Meyer

Center for Language and Speech Processing
The Johns Hopkins University
Baltimore, MD 21218
20th December 2005

Bitext and Bitext Alignment

－Bitext：a collection of text in two languages
－Bitext Alignment：finding translation equivalence within bitext

要做好河湖清障工作，对各种 It is necessary to resolutely remove obstacles in河 湖 障碍，坚决 予以清除。 rivers and lakes．

4 ．It is necessary to strengthen monitoring and
四 ，加强 监测 预报，科学 调度。 forecast work and scientifically dispatch people and materials ．

要采取有效措施，千方百计提高预 It is necessary to take effective measures and try by报精度。

汛 前 要 抓紧 修订 洪水 预报 方案，
有 针对性 地 开展工作。 every possible means to provide precision forecast．

Before the flood season comes，it is necessary to seize the time to formulate plans for forecasting floods and to carry out work with clear

Chinese
English

Bitext and Bitext Alignment

－Bitext：a collection of text in two languages
－Bitext Alignment：finding translation equivalence within bitext

$$
\begin{aligned}
& \text { 要 做 好 河 湖 清 障工作, 对 各种 } \\
& \text { It is necessary to resolutely remove obstacles in } \\
& \text { rivers and lakes. }
\end{aligned}
$$

4 ．It is necessary to strengthen monitoring and
四，加强 监测 预报，科学 调度 ．forecast work and scientifically dispatch people and materials ．

Chinese
English

Bitext and Bitext Alignment

- Bitext: a collection of text in two languages
- Bitext Alignment: finding translation equivalence within bitext

Why automatic bitext alignment?

- Critical and beneficial in many multilingual NLP tasks
- provides basic ingredients in building a Machine Translation system
- Hand alignment is expensive for large corpora
- Desired properties
- language independent: Chinese, Arabic, Spanish, French ...
- no linguistic knowledge: from scratch, unsupervised, statistical
- huge amount of data: effectiveness and efficiency

Statistical Machine Translation (SMT)

Source \longrightarrow Channel \longrightarrow Target Source Decoding
$E \quad P(F \mid E) \quad F \quad \hat{E}=\operatorname{argmax}_{E} P(E) P(F \mid E)$
Translation Model $P(F \mid E)$ needs BITEXTs

Outline

(1) Bitext Chunk Alignment

- Chunk Alignment
- Chunking Algorithms
- Sentence Alignment Results
(2) Bitext Word Alignment
- Introduction/Motivation
- Word-to-Phrase HMM Model
- Parameter Estimation
- Word Alignment Results
(3) Bitext Phrase Alignment
- Inducing from Word Alignments
- Model-based Phrase Pair Posterior
- Translation Results
(4) Conclusions

Outline

(1) Bitext Chunk Alignment

- Chunk Alignment

- Sentence Alignment Results

- Word-to-Phrase HMM Mode.
- Parameter Estimation

- Wode-based Phrase Pall Posteriod
- r ranslation Resulta

Chunk Alignment

- Problem: sentences are not translated 1-to-1 in sequence
- 1-to-n, n-to-1, m-to-n, order changes, real data challenge
- A Statistical Generative Chunk Alignment Model (Deng et al, '04)
- introduce a hidden chunk alignment variable
- document generating: fill in the blank
- two alignment algorithms are derived in a straightforward manor

$$
e=e_{1}^{5} \quad \frac{\boldsymbol{w}_{1} \cdot \boldsymbol{w}_{s}}{e_{1}} \frac{\#}{\boldsymbol{w}_{9} \cdot \boldsymbol{w}_{20}}{ }_{e_{2}}^{\#} \frac{\boldsymbol{w}_{21} \cdot \boldsymbol{w}_{30}}{e_{3}} \frac{\#}{\boldsymbol{w}_{31} \cdot \boldsymbol{w}_{38}}{ }_{e_{4}}^{\#} \frac{\boldsymbol{w}_{39} \overleftarrow{\boldsymbol{w}}_{50}}{e_{5}} \text { Boundary marks }
$$

$$
e=e_{1}^{m}
$$

Chunk Alignment

- Problem: sentences are not translated 1-to-1 in sequence
- 1-to-n, n-to-1, m-to-n, order changes, real data challenge
- A Statistical Generative Chunk Alignment Model (Deng et al, '04)
- introduce a hidden chunk alignment variable
- document generating: fill in the blank
- two alignment algorithms are derived in a straightforward manor

$$
e=e_{1}^{5} \quad \frac{\boldsymbol{w}_{1} \cdot \boldsymbol{w}_{s}}{e_{1}} \frac{\#}{\boldsymbol{w}_{9} \cdot \boldsymbol{w}_{20}}{ }_{e_{2}}^{\#} \frac{\boldsymbol{w}_{21} \cdot \boldsymbol{w}_{30}}{e_{3}} \frac{\#}{\boldsymbol{w}_{31} \cdot \boldsymbol{w}_{38}}{ }^{e_{4}} \frac{\boldsymbol{w}_{39} \cdot \overleftarrow{\boldsymbol{w}}_{50}}{e_{5}} \text { Boundary marks }
$$

$$
\underline{f_{1}} \xrightarrow{f_{2}} \xrightarrow{f_{3}} \xrightarrow{f_{4}}
$$

$$
e=e_{1}^{m} \longrightarrow n
$$

$$
\alpha(n \mid m)
$$

Ioms Hopmins
$\square \square \square \square \mathbf{\square}$

Chunk Alignment

- Problem: sentences are not translated 1-to-1 in sequence
- 1-to-n, n-to-1, m-to-n, order changes, real data challenge
- A Statistical Generative Chunk Alignment Model (Deng et al, '04)
- introduce a hidden chunk alignment variable
- document generating: fill in the blank
- two alignment algorithms are derived in a straightforward manor

$$
e=e_{1}^{5} \quad \frac{\boldsymbol{w}_{1} \cdot \boldsymbol{w}_{s}}{e_{1}} \frac{\#}{\boldsymbol{w}_{9} \cdot \boldsymbol{w}_{20}}{ }_{e_{2}}^{\#} \frac{\boldsymbol{w}_{21} \cdot \boldsymbol{w}_{30}}{e_{3}} \frac{\#}{\boldsymbol{w}_{31} \cdot \boldsymbol{w}_{38}}{ }_{e_{4}}^{\#} \frac{\boldsymbol{w}_{39} \overleftarrow{\boldsymbol{w}}_{50}}{e_{5}} \text { Boundary marks }
$$

Chunk Alignment

- Problem: sentences are not translated 1-to-1 in sequence
- 1-to-n, n-to-1, m-to-n, order changes, real data challenge
- A Statistical Generative Chunk Alignment Model (Deng et al, '04)
- introduce a hidden chunk alignment variable
- document generating: fill in the blank
- two alignment algorithms are derived in a straightforward manor

Chunk Alignment

- Problem: sentences are not translated 1-to-1 in sequence
- 1-to-n, n-to-1, m-to-n, order changes, real data challenge
- A Statistical Generative Chunk Alignment Model (Deng et al, '04)
- introduce a hidden chunk alignment variable
- document generating: fill in the blank
- two alignment algorithms are derived in a straightforward manor

Outline

(1) Bitext Chunk Alignment

- Chunk Alignment
- Chunking Algorithms

- Word-to-Phrase HMM Mode.
- Parameter Estimation

Word Alignment Results

- rranslation Results

Dynamic Programming (DP)

- Monotone chunk alignment
- Global optimum

Divisive Clustering（DC）

divide and conquer，iterative binary parallel splitting，reorder

自从朝鲜半岛被分裂成两个国家以来，韩国在背靠美国这棵大树以求自安的同时，还小心翼翼但却坚持不解地向美国寻求先进武器，以抗衡朝鲜。
据汉城的消息灵通人士 向《华盛顿邮报》透露，今年 早些时候，美国已秘而不宣地同意韩国＂可以扩展它现有导弹的射程＂，使之能够直捣朝鲜首都平壤。
这本应是韩国感到欣喜的事儿，可眼下半岛局势有了重大变化，朝韩首脑面对面地会了晤，并签署了联合声明。韩国怎么办？只好把到嘴的＂肥肉＂先吐出来，揢置自己的＂导弹射程扩展计划＂。
一名韩国知情人士道出了实情：
＂因为有了首脑会谈，所以我们已掏置了自己的导弹计划，如果我们再那么干，就会弄糟首脑峰会开创的良好局面。

Since the Korean Peninsula was split into two countries， the Republic of Korea has ，while leaning its back on the big tree＂of the United States for security，carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People＇s Republic of Korea
An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to＂extend its existing missile range＂to strike Pyongyang direct
This should have elated South Korea．But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement， what should South Korea do now？It has no choice but spit back the＂greasy meat＂from its mouth and put the＂ missile expansion plan＂on the back burner
A knowledgeable South Korean speaks the truth
＂Because of the summit meeting，we have shelved our own missile plan．If we go ahead with it ，it will spoil the excellent situation opened up by the summit meeting ．＂

Divisive Clustering（DC）

divide and conquer，iterative binary parallel splitting，reorder

自从朝鲜半岛被分裂成两个国家以来，韩国在背靠美国这棵大树以求自安的同时，还小心翼翼但却坚持不解地 向美国寻求先进武器，以抗衡朝鲜。 据汉城的消息灵通人士 向 《华盛顿邮报》透露，今年 早些时候，美国已秘而不宣地同意韩国＂可以扩展它现有导弹的射程＂，使之能够直捣朝鲜首都平壤。 这本应是韩国感到欣喜的事儿，可眼下半岛局势有了重大变化，朝韩首脑面对面地会了晤，并签署了联合声明。韩国怎么办？只好把到嘴的＂肥肉＂先吐出来，搁置自己的＂导弹射程扩展计划＂。一名韩国知情人士道出了实情：	Since the Korean Peninsula was split into two countries， the Republic of Korea has ，while leaning its back on the＂ big tree＂of the United States for security，carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People＇s Republic of Korea ． An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to＂extend its existing missile range＂to strike Pyongyang direct ． This should have elated South Korea ．But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement， what should South Korea do now？It has no choice but spit back the＂greasy meat＂from its mouth and put the＂ missile expansion plan＂on the back burner ． A knowledgeable South Korean speaks the truth ：
＂因为有了首脑会谈，所以我们已搁置了自己的导弹计划，如果我们再那么干，就会弄糟首脑峰会开创的良好局面。＂	＂Because of the summit meeting，we have shelved our own missile plan．If we go ahead with it ，it will spoil the excellent situation opened up by the summit meeting．＂

$\square \square \square \mathrm{m}$

Divisive Clustering（DC）

divide and conquer，iterative binary parallel splitting，reorder

自从朝鲜半岛被分裂成两个国家以来，韩国在背靠美国这棵大树以求自安的同时，还小心翼翼但却坚持不解地向美国寻求先进武器，以抗衡朝鲜。
据汉城的消息灵通人士 向 《华盛顿邮报》透露，今年 早些时候，美国已秘而不宣地同意韩国＂可以扩展它现有导弹的射程＂，使之能够直捣朝鲜首都平壤。
这本应是韩国感到欣喜的事儿，可眼下半岛局势有了重大变化，朝韩首脑面对面地会了晤，并签署了联合声明。韩国怎么办？只好把到嘴的＂肥肉＂先 吐 出来，搁置自己的＂导弹射程扩展计划＂。
\qquad
一名韩国知情人士道出了实情：
2

Since the Korean Peninsula was split into two countries， the Republic of Korea has ，while leaning its back on the＂ big tree＂of the United States for security，carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People＇s Republic of Korea
An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to＂extend its existing missile range＂to strike Pyongyang direct
This should have elated South Korea．But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement ， what should South Korea do now？It has no choice but spit back the＂greasy meat＂from its mouth and put the＂ missile expansion plan＂on the back burner

A knowledgeable South Korean speaks the truth ：
＂因为有了首脑会谈，所以我们已掏置了自己的导弹计划，如果我们再那么干，就会弄糟首脑峰会开创的良好局面。
＂Because of the summit meeting，we have shelved our own missile plan．If we go ahead with it，it will spoil the excellent situation opened up by the summit meeting ．＂ JOHNS HOPKINS

Divisive Clustering（DC）

divide and conquer，iterative binary parallel splitting，reorder

自从朝鲜半岛被分裂成两个国家以来，韩国在背靠美国这棵大树以求自安的同时，还小心翼翼但却坚持不解地向美国寻求 先进武器，以抗衡朝鲜。

Since the Korean Peninsula was split into two countries the Republic of Korea has ，while leaning its back on the＂ big tree＂of the United States for security ，carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People＇s Republic of Korea

An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to＂extend its existing missile range＂to strike Pyongyang direct

This should have elated South Korea ．But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement ， what should South Korea do now？

It has no choice but spit back the＂greasy meat＂from its mouth and put the＂missile expansion plan＂on the back burner

据汉城的消息灵通人士向《华盛顿邮报》透露，今年早些时候，美国已秘而不宣地同意韩国＂可以扩展它现有导弹的射程＂，使之能够直捣朝鲜首都平壤。	An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to＂extend its existing missile range＂to strike Pyongyang direct．
这本应是韩国感到欣喜的事儿，可眼下半岛局势有了重大变化，朝韩首脑面对面地会了晤，并签署了联合声明。韩国怎么办？	This should have elated South Korea．But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement， what should South Korea do now？
只好把到嘴的＂肥肉＂先吐出来，挤置自己的＂导弹射程扩展计划＂。	It has no choice but spit back the＂greasy meat＂from its mouth and put the＂missile expansion plan＂on the back burner．

[^0]＂因为有了首脑会谈，所以我们已掏置了自己的导弹计划，如果我们再那么干，就会弄糟首脑峰会开创的良好局面。
＂Because of the summit meeting，we have shelved our own missile plan．If we go ahead with it ，it will spoil the excellent situation opened up by the summit meeting ．＂

A hierarchical chunking scheme

- DP+DC
- DP at sentence level followed by DC at sub-sentence level
- from coarse to fine, deriving short chunk pairs
- Advantage
- significantly reduce machine training time
- 21 hrs vs. 8 hrs
- make most of bitext usable for machine training
- 78% vs. 98%
- "There is no data like more data" (Robert Mercer, 1988)
- improve system performance by higher coverage

Outline

(1) Bitext Chunk Alignment

- Chunk Alignment
- Chunking Algorithms
- Sentence Alignment Results

- Parameter Estimation
- Word Alignment Results

- rranslation Results

$\square \square \square \square$

Unsupervised Sentence Alignment

- 122 Chinese/English document pairs selected from FBIS corpus
- sentence aligned by humans, $\sim 2,200$ sentence pairs
- unsupervised from scratch, measured by Pre/Rec

$\square \square \square \square$

Outline

(2) Bitext Word Alignment

- Introduction/Motivation
- Vord-to-Phrase HMM Mode
- Parameter Estimation
- Word Alignment Results

- nducing from Word Alignments.
- Model-based Phrase Pair Posterior
- Translation Results

Word Alignment

－Fundamental problem in Machine Translation
－Basis for phrase／syntax models
－Model relations from source $\mathbf{s}=s_{1}^{\prime}$ to target $\mathbf{t}=t_{1}^{J}$
－Word alignment $\mathbf{a}=a_{1}^{J}: s_{a_{j}} \rightarrow t_{j}, j=1,2, \cdots, J \Longleftarrow$ hidden r．v．
－Conditional likelihood $P(\mathbf{t}, \mathbf{a} \mid \mathbf{s}) \Longleftarrow$ complete data
－Sentence translation $P(\mathbf{t} \mid \mathbf{s})=\sum_{\mathbf{a}} P(\mathbf{t}, \mathbf{a} \mid \mathbf{s}) \Longleftarrow$ incomplete data

s_{0}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$
NULL	中国	早日	加入	世贸组织

State of the Art

- IBM Model-4 generated by GIZA++ Toolkit (Och \& Ney, '03)
- The state of the art word alignments especially on large bitexts
- But
- Exact-EM is problematic, sub-optimal estimation algorithms used
- Difficult to compute statistics under the model
- Applications limited by word alignments only
- GOAL: improve word alignments of bitexts for better translation
- Comparable performance to Model-4
- Fast efficient training, with controlled memory usage
- Use the model, not just the alignments

IBM Model－4 Word Alignments（Brown et al，＇93）

s_{0}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$
NULL	中国	早日	加入	世贸组织

－What makes the model powerful also makes computation comprex
－Typical training procedure：Model－1，HMM，Model－4
－Can we do something to HMM？

IBM Model-4 Word Alignments (Brown et al, '93)

Create a tablet for each source word

What makes the model powerful also makes computation comp (ex
Typical training procedure: Model-1, HMM, Model-4

- Can we do something to HMM?
$\square \square \square$

IBM Model-4 Word Alignments (Brown et al, '93)

Table lookup to decide fertility: \# of target words connected

IBM Model-4 Word Alignments (Brown et al, '93)

Sample target words from translation table i.i.d.

What makes the model powerful also makes computation compr (ex
Typical training procedure: Model-1, HMM, Model-4

IBM Model-4 Word Alignments (Brown et al, '93)

- What makes the model powerful also makes computation complex
- Typical training procedure: Model-1, HMM, Model-4
- Can we do something to HMM?
$\square \square \square \square$

HMM WtoW Model（Vogel et al，＇96；Och \＆Ney，＇03）

S_{1}
S_{2}
S_{3}
S_{4}

中国
早日
加入
世贸组织

china	＇s	accession to	the	world	trade organization	at	an early	date			
t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	t_{12}

－State sequences \Longleftrightarrow word to word alignments

HMM WtoW Model (Vogel et al, '96; Och \& Ney, '03)

china	' s	accession to	the	world	trade organization	at	an early	date			
t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	t_{12}

- State sequences \Longleftrightarrow word to word alignments

HMM WtoW Model (Vogel et al, '96; Och \& Ney, '03)

- State sequences \Longleftrightarrow word to word alignments
- Words are generated one by one, one transition emits one target word

Make HMM More Powerful in Generating Observations

china 's accession to the world trade organization at an early date $\begin{array}{llllllllllll}t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8} & t_{9} & t_{10} & t_{11} & t_{12}\end{array}$

Make HMM More Powerful in Generating Observations

- Target phrases rather than words are emitted after jumping into a state
- State sequences \Longleftrightarrow word to phrase alignments

Outline

(2) Bitext Word Alignment

Introduction/Motivation

- Word-to-Phrase HMM Model
- Parameter Estimation
- Word Alignment Results

- rranslation Results

$\square \square \square$

Word-to-Phrase HMM Alignment Models

- Target sentence segmented into K phrases
- Phrase length sequence $\phi_{1}^{K}, \mathbf{t}=\mathbf{v}_{1}^{K}$
- Phrase alignment sequence a_{1}^{K}
- NULL: h_{1}^{K} is a Bernoulli process, $d\left(h_{k}=1\right)=1-p_{0}, d\left(h_{k}=0\right)=p_{0}$
- $h_{k}=1 \Rightarrow s_{a_{k}} \rightarrow \mathbf{v}_{k}$
- $h_{k}=0 \Rightarrow$ NULL $\rightarrow \mathbf{v}_{k}$
- Hidden random variable: Word-to-phrase alignment $\mathbf{a}=\left(K, a_{1}^{K}, \phi_{1}^{K}, h_{1}^{K}\right)$

$$
P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})=P\left(\mathbf{v}_{1}^{K}, K, a_{1}^{K}, h_{1}^{K}, \phi_{1}^{K} \mid \mathbf{s}\right)
$$

Word-to-Phrase HMM Alignment Models

- Target sentence segmented into K phrases
- Phrase length sequence $\phi_{1}^{K}, \mathbf{t}=\mathbf{v}_{1}^{K}$
- Phrase alignment sequence a_{1}^{K}
- NULL: h_{1}^{K} is a Bernoulli process, $d\left(h_{k}=1\right)=1-p_{0}, d\left(h_{k}=0\right)=p_{0}$
- $h_{k}=1 \Rightarrow s_{a_{k}} \rightarrow \mathbf{v}_{k}$
- $h_{k}=0 \Rightarrow$ NULL $\rightarrow \mathbf{v}_{k}$
- Hidden random variable: Word-to-phrase alignment $\mathbf{a}=\left(K, a_{1}^{K}, \phi_{1}^{K}, h_{1}^{K}\right)$

$$
\begin{aligned}
P(\mathbf{t}, \mathbf{a} \mid \mathbf{s}) & =P\left(\mathbf{v}_{1}^{K}, K, a_{1}^{K}, h_{1}^{K}, \phi_{1}^{K} \mid \mathbf{s}\right) \\
& =P(K \mid J, \mathbf{s}) \times P\left(a_{1}^{K}, \phi_{1}^{K}, h_{1}^{K} \mid K, J, \mathbf{s}\right) \times P\left(\mathbf{v}_{1}^{K} \mid a_{1}^{K}, h_{1}^{K}, \phi_{1}^{K}, K, J, \mathbf{s}\right)
\end{aligned}
$$

Word-to-Phrase HMM Alignment Models

- Target sentence segmented into K phrases
- Phrase length sequence $\phi_{1}^{K}, \mathbf{t}=\mathbf{v}_{1}^{K}$
- Phrase alignment sequence a_{1}^{K}
- NULL: h_{1}^{K} is a Bernoulli process, $d\left(h_{k}=1\right)=1-p_{0}, d\left(h_{k}=0\right)=p_{0}$
- $h_{k}=1 \Rightarrow s_{a_{k}} \rightarrow \mathbf{v}_{k}$
- $h_{k}=0 \Rightarrow$ NULL $\rightarrow \mathbf{v}_{k}$
- Hidden random variable: Word-to-phrase alignment $\mathbf{a}=\left(K, a_{1}^{K}, \phi_{1}^{K}, h_{1}^{K}\right)$

$$
\begin{aligned}
P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})= & P\left(\mathbf{v}_{1}^{K}, K, a_{1}^{K}, h_{1}^{K}, \phi_{1}^{K} \mid \mathbf{s}\right) \\
= & P(K \mid J, \mathbf{s}) \times P\left(a_{1}^{K}, \phi_{1}^{K}, h_{1}^{K} \mid K, J, \mathbf{s}\right) \times P\left(\mathbf{v}_{1}^{K} \mid a_{1}^{K}, h_{1}^{K}, \phi_{1}^{K}, K, J, \mathbf{s}\right) \\
= & P(K \mid J, I) \Longleftarrow \text { Phrase Count } \propto \eta^{K} \\
& \times \prod_{k=1}^{K} p\left(a_{k} \mid a_{k-1}, h_{k} ; I\right) \cdot d\left(h_{k}\right) \cdot n\left(\phi_{k} ; h_{k} \cdot S_{a_{k}}\right) \Longleftarrow \text { Markov, Phrase Length } \\
& \times \prod_{k=1}^{K} P\left(\mathbf{v}_{k} \mid h_{k} \cdot s_{a_{k}}\right) \Longleftarrow \text { Word-to-Phrase Translation }
\end{aligned}
$$

Word－to－Phrase Translation Probabilities

－Replace weak i．i．d．word－for－word translation
－$P($ world trade organization $\mid f=$ 世贸组织； 3$)=$ ？
－$=t($ world $\mid \mathrm{f}) \cdot t($ trade $\mid \mathrm{f}) \cdot t($ organization $\mid \mathrm{f}) \Longleftarrow$ i．i．d．
－$=t($ world $\mid \mathrm{f}) \cdot t_{2}(\operatorname{trade} \mid$ world, f$) \cdot t_{2}($ organization \mid trade, f$) \Longleftarrow$ bigram

Model	i．i．d．	bigram
$P($ world｜世贸组织	0.06	0.06
$P($ trade \mid world，世贸组织）	0.06	0.99
$P($ organization \mid trade,$世$ 贸组织 $)$	0.06	0.99
$P($ world trade organization｜世贸组织，3）	0.0002	0.0588

－Assigns higher probability to correct translation than i．i．d
－Incorporates context without losing algorithmic efficiency：DP
－Use same estimation techniques as used for bigram LMs
－Data sparseness，Witten－Bell smoothing

Comparing Word-to-Phrase HMM to ...

- Segmental Hidden Markov Models (Ostendorf et al, '96)
- states emit observation sequences
- WtoW HMM (Vogel et al, '96; Och \& Ney, '03)
- $N=1$
- Extensions to WtoW HMM (Toutanova et al, '02)
- $P($ stay $\mid s)$ vs. $P($ stay $=\phi \mid s)$ in modeling state durations
- IBM Model-4
- fertility vs. phrase length

Outline

(2) Bitext Word Alignment

Introduction/Motivation

- Word-to-Phrase HMMM Mode
- Parameter Estimation

- rranslation Results

Forward-backward Algorithm

State space $S=\{(i, \phi, h): 1 \leq i \leq I, 1 \leq \phi \leq N, h=0$ or 1$\}$ Grid $2 N I \times J$

$$
\begin{aligned}
& \mathrm{S}_{1} \quad \cdots \cdots \cdot \mathrm{~S}_{\mathrm{i}} \quad \cdots \cdots \cdot \mathrm{~S}_{\mathrm{I}} \\
& \alpha_{j}(i, \phi, h)=\left\{\sum_{i^{\prime}, \phi^{\prime}, h^{\prime}} \alpha_{j-\phi}\left(i^{\prime}, \phi^{\prime}, h^{\prime}\right) p\left(i \mid i^{\prime}, h ; l\right)\right\} \cdot \eta \cdot n\left(\phi ; h \cdot s_{i}\right) \cdot P\left(t_{j-\phi+1}^{j} \mid h \cdot s_{i}, \phi\right) \\
& \beta_{j}(i, \phi, h)=\sum_{i^{\prime}, \phi^{\prime}, h^{\prime}} \beta_{j+\phi^{\prime}}\left(i^{\prime}, \phi^{\prime}, h^{\prime}\right) p\left(i^{\prime} \mid i, h^{\prime} ; l\right) \cdot \eta \cdot n\left(\phi^{\prime} ; h^{\prime} \cdot s_{i^{\prime}}\right) \cdot P\left(t_{j+1}^{j+\phi^{\prime}} \mid h^{\prime} \cdot s_{i^{\prime}}, \phi^{\prime}\right) \\
& \gamma_{j}(i, \phi, h)=P\left(h \cdot s_{i} \rightarrow v=t_{j-\phi+1}^{j} \mid \theta, \mathbf{s}, \mathbf{t}\right)=\frac{\alpha_{j}(i, \phi, h) \beta_{j}(i, \phi, h)}{\sum_{i^{\prime}, h^{\prime}, \phi^{\prime}} \alpha_{J}\left(i^{\prime}, \phi^{\prime}, h^{\prime}\right)}
\end{aligned}
$$

Embedded Estimation of Word-to-Phrase HMM

- Unsupervised training from scratch
- Model-1, 10 its (initial t-table)
- Model-2, 5 its (better t-table)
- WtoW HMM, 5 its (initial Markov model)
- WtoP HMM N=2, 3, .., each 5 its (Markov model, phrase length) (experience from ASR)
- WtoP HMM with bigram t-table, 5 its (bigram t-table)
- Parallel Implementation
- Partitioning training bitext
- E-step: Collect counts from each partition parallel
- M-step: Merge counts to update model parameters
- Memory efficient, virtually no limitation on training bitext size

Embedded Estimation of Word-to-Phrase HMM

- Unsupervised training from scratch
- Model-1, 10 its (initial t-table)
- Model-2, 5 its (better t-table)
- WtoW HMM, 5 its (initial Markov model)
- WtoP HMM N=2, 3, .., each 5 its (Markov model, phrase length) (experience from ASR)
- WtoP HMM with bigram t-table, 5 its (bigram t-table)
- Parallel Implementation
- Partitioning training bitext
- E-step: Collect counts from each partition parallel
- M-step: Merge counts to update model parameters
- Memory efficient, virtually no limitation on training bitext size

Outline

(2) Bitext Word Alignment

Introduction/Motivation

- Word-to-Phrase HMM Mode
- Parameter Estimation
- Word Alignment Results

- rranslation Results

Bitext Alignment Results

- Test: NIST 2001 MT-eval set, 124 sentence pairs w/ manual word alignments
- Comparable performance to Model-4 on FBIS training bitext
- Increasing max phrase length N improves quality in $C \rightarrow E$ direction
- Bigram translation probability improves word-to-phrase links
- A good balance between 1-1 and 1-N distribution can be achieved

- Comparable performance when extending to large scale bitexts

Outline

(3) Bitext Phrase Alignment

- Inducing from Word Alignments
- rranslation Results

Statistical Phrase Translation Models

- Phrase-based SMT performs better than word-based SMT
- Phrases Pair Inventory (PPI) extracted from word aligned bitext (Och et al, '99)

$\square \square \square \square$

But word alignments are imperfect ．．．

There is no gang and money linked politics in hong kong and there will not be such politics in future either

香港 今日没有 黑金 政治，今后 亦 不会 有 黑金 政治
－Relying on the one－best word alignment may exclude some valid phrase pairs
－Goal is to define a probability distribution over phrase pairs
－Allows more control over generation of phrase pairs

But word alignments are imperfect ．．．

There is no gang and money linked politics in hong kong and there will not be such politics in future either

香港 今日 没有 黑金 政治，今后 亦 不会 有 黑金 政治
－Relying on the one－best word alignment may exclude some valid phrase pairs
－Goal is to define a probability distribution over phrase pairs
－Allows more control over generation of phrase pairs

But word alignments are imperfect ...

There is no gang and money linked politics in hong kong and there will not be such politics in future either

- Relying on the one-best word alignment may exclude some valid phrase pairs
- Goal is to define a probability distribution over phrase pairs
- Allows more control over generation of phrase pairs

Outline

- Chunk Alignment

- Sentence Alignment Results
\square
- Word-to-Phrase HMM Mode
- Parameter Estimation
- Word Alignment Results
(3) Bitext Phrase Alignment
- Inducing from Word Alignments.
- Model-based Phrase Pair Posterior
- Translation Results

Model-based Phrase Pair Posterior

- Doesn't rely on a single alignment

- Define a set of alignments that align words to words in phrases $A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)=\left\{a_{1}^{m}: a_{j} \in\left[i_{1}, i_{2}\right]\right.$ iff $\left.j \in\left[j_{1}, j_{2}\right]\right\}$
- Calculate the likelihood of the source phrase producing the target phrase $P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right)=\sum_{\mathrm{a}: a_{1}^{m} \in A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)} P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})$
- Obtain phrase pair posterior $P\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{t}, \mathbf{s}\right)=P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathrm{s}\right) / P(\mathrm{t} \mid \mathrm{s})$
- Efficient DP-based implementation for WtoP HMM, Difficult for Model-4

Model-based Phrase Pair Posterior

- Doesn't rely on a single alignment

- Define a set of alignments that align words to words in phrases $A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)=\left\{a_{1}^{m}: a_{j} \in\left[i_{1}, i_{2}\right]\right.$ iff $\left.j \in\left[j_{1}, j_{2}\right]\right\}$
- Calculate the likelihood of the source phrase producing the target phrase $P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right)=\sum_{\mathbf{a}: a_{1}^{m} \in A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)} P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})$
- Obtain nhrase nair nosterior $P\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{t}, \mathbf{s}\right)=P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right) / P(\mathbf{t} \mid \mathbf{s})$
- Efficient DP-based implementation for WtoP HMM, Difficult for Model-4

Model-based Phrase Pair Posterior

- Doesn't rely on a single alignment

- Define a set of alignments that align words to words in phrases $A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)=\left\{a_{1}^{m}: a_{j} \in\left[i_{1}, i_{2}\right]\right.$ iff $\left.j \in\left[j_{1}, j_{2}\right]\right\}$
- Calculate the likelihood of the source phrase producing the target phrase $P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right)=\sum_{\mathbf{a}: a_{1}^{m} \in A\left(i_{1}, i_{2}, j_{1}, j_{2}\right)} P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})$
- Obtain phrase pair posterior $P\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{t}, \mathbf{s}\right)=P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right) / P(\mathbf{t} \mid \mathbf{s})$
- Efficient DP-based implementation for WtoP HMM, Difficult for Model-4

Model-based Phrase Pair Posterior

- Doesn't rely on a single alignment

- Define a set of alignments that align words to words in phrases $A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)=\left\{a_{1}^{m}: a_{j} \in\left[i_{1}, i_{2}\right]\right.$ iff $\left.j \in\left[j_{1}, j_{2}\right]\right\}$
- Calculate the likelihood of the source phrase producing the target phrase $P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right)=\sum_{\mathbf{a}: a_{1}^{m} \in A\left(i_{1}, i_{2}, j_{1}, j_{2}\right)} P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})$
- Obtain phrase pair posterior
$P\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{t}, \mathbf{s}\right)=P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right) / P(\mathbf{t} \mid \mathbf{s})$

Model-based Phrase Pair Posterior

- Doesn't rely on a single alignment

- Define a set of alignments that align words to words in phrases $A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)=\left\{a_{1}^{m}: a_{j} \in\left[i_{1}, i_{2}\right]\right.$ iff $\left.j \in\left[j_{1}, j_{2}\right]\right\}$
- Calculate the likelihood of the source phrase producing the target phrase $P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right)=\sum_{\mathbf{a}: a_{1}^{m} \in A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)} P(\mathbf{t}, \mathbf{a} \mid \mathbf{s})$
- Obtain phrase pair posterior
$P\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{t}, \mathbf{s}\right)=P\left(\mathbf{t}, A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid \mathbf{s}\right) / P(\mathbf{t} \mid \mathbf{s})$
- Efficient DP-based implementation for WtoP HMM, Difficult for Model-4

Augmented PPI for a Better Coverage

- Baseline PPI
- extracted from 1-best alignments using establishing techniques (Och et al., '99)
- GOAL: add phrase pairs to improve test set coverage
- For each foreign phrase \mathbf{v} in test set not covered by the baseline
- for each sentence pair containing \mathbf{v}
- find the English phrase \mathbf{u} that maximizes the phrase pair posterior

$$
\begin{gathered}
f\left(i_{1}, i_{2}\right)=P_{F \rightarrow E}\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid e_{1}^{\prime}, f_{1}^{m}\right) \\
b\left(i_{1}, i_{2}\right)=P_{E \rightarrow F}\left(A\left(i_{1}, i_{2} ; j_{1}, j_{2}\right) \mid e_{1}^{\prime}, f_{1}^{m}\right) \\
g\left(i_{1}, i_{2}\right)=\sqrt{f\left(1_{1}, i_{2}\right) b\left(i_{1}, i_{2}\right)} \\
\left(\hat{i}_{1}, \hat{i}_{2}\right)=\underset{1 \leq i_{1}, i_{2} \leq 1}{\operatorname{argmax}} g\left(i_{1}, i_{2}\right), \text { and set } u=e_{\hat{i}_{1}}^{\hat{i}_{2}}
\end{gathered}
$$

- add (\mathbf{u}, \mathbf{v}) to the baseline PPI if posterior exceeds a threshold value

Outline

(3) Bitext Phrase Alignment

- Translation Results

Transduce Translation Model (Kumar et al, '05)

- TTM Decoder - WFST implementation with monotone order

	GRAIN EXPORTS ARE PROJECTED TO FALL BY 25%	Source Language Source Phrase Segmentation
Shrase		
Insertion		

Automatic Machine Translation Evaluation

- hard problem!
- BLEU (Papeneni et al, '01) - an automatic MT metric
- correlated well with human judgements
- geomantic mean of n-gram precisions weighted by brevity penalty Reference : mr. speaker, in absolutely no way . Hypothesis : in absolutely no way, mr. chairman .

BLEU computation

Sub-string-Matches(Truth,Hyp)			
$\left(\frac{7}{8} \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5}\right)^{\frac{1}{4}}=0.3976$			
	2-word	3-word	4-word
$7 / 8$	$3 / 7$	$2 / 6$	$1 / 5$

Translation Results: Small Systems

- Relaxing threshold in PPI augmenting improves coverage and BLEU score
- Balance coverage against phrase translation quality

Translation Results: Large Systems

- Used all parallel corpora available from LDC
- C-E: 200M En. words (FBIS, Xinhua, HK News, ..., all UN bitex (s)
- A-E: 130M En. words (news, all UN bitexts)

Conclusions

- A hierarchial bitext chunking approach
- language independent, no linguistic knowledge required
- derived short chunk pairs, retain more of the available bitext
- The word-to-phrase HMM alignment model
- produces good quality word alignments over very large bitexts
- has efficient training algorithm with parallel implementation
- a powerful framework
- Model-based phrase pair distribution enables
- an improved phrase pair extraction strategy
- controlled balance coverage vs. quality
- WtoP HMM performs better than IBM Model-4 on large systems

Machine Translation Toolkit (MTTK)

Solutions for MT training, Used for JHU-CU 2005 NIST MT Eval Systems

Thank you very much ! any question ?

[^0]: 一名韩国知情人士道出了实情：
 A knowledgeable South Korean speaks the truth

