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Code Breaking for ASR

A divide-and-conquer approach.

Attempt to find and fix weaknesses of a baseline speech recognizer.

It involves:

An initial decoding pass to produce a search space of hypotheses.

Identification of “difficult” regions in the hypothesis space.

Resolving these confusions with specialized models.
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Motivation

We will improve upon the performance of a state-of-the-art HMM system.

Framework for trying out novel ASR techniques without losing the benefits of

HMMs.

Allows the use of simple and powerful classifiers that would otherwise have not

been appropriate, e.g., Support Vector Machines.

Different word recognition problems require different types of decoders.

DOG

Analysis

Lattice

BOG

DOG

WATCH

BOG

Code Breaking for Automatic Speech Recognition 3 |35)



< > - +

New Framework

We propose using

HMMs as our first-pass system

Lattice cutting techniques as a means to identify regions of confusion.

Both HMMs and Support Vector Machines (SVMs) as specialized models to

resolve the remaining confusion.

Related Prior Work:

Speech Recognition as Code Breaking [F. Jelinek, ’95]

ACID-HNN [J. Fritsch et al, ’96]

Consensus Decoding [L. Mangu et. al, ’99, G. Evermann et al, ’01]

Corrective Training [L. Bahl, et al, ’93]

Boosting [Schapire et al, ’95]

Confusion Sets [Fine et al, ’01]
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Statistical Speech Recognition

Goal: Determine the word string Ŵ that was spoken based on acoustics A.

Maximum A Posteriori (MAP) Recognizer formulation:

Ŵ = argmax
W

P (W |A). (1)

Applying Bayes Rule,

P (W |A) =
P (A|W )P (W )

P (A)
.

Since the search in Eqn. 1 is independent of A, we have

Ŵ = argmax
W

P (A|W )P (W ).

P (A|W ) is estimated using an acoustic model, usually an HMM. P (W ) is

estimated using a language model.
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Notations

Evaluation Criterion: Word Error Rate (WER)= string-edit distance between

hypothesis and the truth

Lattice: A compact representation of most likely hypotheses, with associated

acoustic segments.
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Lattice Word Error Rate=the WER of the lattice hypothesis with lowest WER.
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Lattice Cutting [V. Goel et al, ’04]

Identifying ASR sub-problems in an unsupervised manner:
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Key Aspects of Lattice Cutting

- Lattice Error Rate preserved throughout the process.

- Posteriors estimates on the collapsed segments can be obtained.

- Regions of high and low confidence.

In summary:

Reduces ASR to a sequence of independent, smaller decision problems.

Isolates and characterizes smaller decision problems as regions of high and low

confidence, consistently and reliably.

Consistency: identifies regions of similar confusion in both train and test

data [Doumpiotis et. al, 03].

Reliability: low posterior probability estimate on the MAP path usually implies a

recognition error.
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Pruning to obtain binary segment sets

9 V:5

B:5

A:7

8:7

ASIL SIL

J:17

OH:23

4:23

A:17

#1 #2 #3 #4 #5 #6 #7 #8

Pinched and pruned lattices:

Starting form the path with lowest posterior, paths are successively pruned to

obtain binary confusions.

eplsion paths are discarded

Confusion-pair specific decoder for the ith segment (Wi = {w−1, w+1}),

Ŵi = argmax
wj∈{w−1,w+1}

p(wj |O; θ)

Note that acoustics need not be segmented.
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SVMs

Hyperplane

margin
width

Inherently binary classifier

Maximum margin hyperplane

Linearly non-separable data

Kernels

Cost function:

1

2

X

i,j

αiyiK(xi,xj)yjαj −
X

i

αi

subject to
P

i yiαi = 0.

Testing: y = sgn(
P

i yiαiK(x,xi)) + b
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SVMs

Hyperplane

margin
width

Inherently binary classifier

Maximum margin hyperplane

Linearly non-separable data

Kernels

Cost function:

1

2

X

i,j

αiyiK(xi,xj)yjαj −
X

i

αi

subject to
P

i yiαi = 0, 0 ≤ αi ≤ C.

Testing: y = sgn(
P

i yiαiK(x,xi)) + b

C = SVM trade-off parameter
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SVMs for Continuous Speech Recognition

Lattice cutting and pruning circumvents most problems.

Sequence Classification task.

Multi-class task.

Variable length observations.

Need to map variable length utterances into fixed dimension vectors.

Likelihood-ratio Score-Space [Smith et. al ’01, Jaakkola et. al ’99]:

ϕθ(O) =

"

1

∇θ

#

ln

„
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«

=
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3

7
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where O is a T -length observation sequence, θi are the parameters of the ith HMM and

θ = [θ⊤−1θ⊤+1]⊤.
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Mean Score-Spaces

We are deriving these fixed dimension vectors from HMMs themselves.

Each component of a score is the sensitivity of the log-likelihood-ratio of the

observed sequence to a parameter of the generative model.

Mean Score-Space:

The gradient w.r.to µi,s,j , the mean of the Gaussian observation density of the jth

component of the sth state of the ith HMM is given by,

∇µi,s,j
ln p(O|θi) =

T
X

t=1

γi,s,j(t)
h

(ot − µi,s,j)
⊤Σ−1

i,s,j

i⊤
,

where γi,s,j is the posterior occupation probability of component (i, s, j) and Σi,s,j is

the variance.

Note that the observation sequence O is not segmented.
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Score-Space Normalization

Mean/Variance Normalization [Smith et. al]:

ϕ̄θ(O) = Σ̂
−1/2
sc [ϕθ(O) − µ̂sc],

where Σ̂sc =
R

ϕθ(O)′ϕθ(O)P (O|θ)dO and µ̂sc =
R

ϕθ(O)P (O|θ)dO.

µ̂sc and Σ̂sc are not HMM parameters.

µ̂sc and Σ̂sc are approximated over the training data.

Σ̂sc =
1

N − 1

X

(ϕθ(O) − µ̂sc)
⊤(ϕθ(O) − µ̂sc)

µ̂sc =
1

N

X

ϕθ(O)

and N is the number of training samples for the SVM.

Diagonal approximation for Σsc.

Sequence length normalization (for the utterance length T ):

ϕ̄T
θ (O) =

1

T
ϕ̄θ(O)
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Previous Work: SVMs for Speech Tasks

A sample of the previous work:

Ganapathiraju et al..

Forced every sequence to have same length.

Smith et al.

Used Score-Spaces for handling Variable length observations.

Only isolated binary classification.

Chakrabartty et al. developed Forward Decoding Kernel Machines and the

giniSVM.

Mainly motivated for producing sparse SVM solutions.

We used giniSVMs in our experiments.

Fine et al. used Score-Spaces for Speaker Identification.
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Small Vocabulary Experiments

OGI AlphaDigits Corpus:

Vocabulary of 37 words (26 letters and 11 numbers)

Training set ≈ 50K utterances, each utterance having 6 words.

Test set has 3112 utterances, also having 6 words each.

Word loop grammar (any word can follow any word).

Baseline HMM System:

Each word is modeled by a left-to-right 20 state HMM, 12 mixtures per state.

39 dimensional feature vectors, at a 10msec period.

WER of MMI-HMM systems is around 9%.
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SVM Training

Cut Train and Test set lattices.

50 most frequently observed confusion pairs e.g., [B,V], [TWO,U].

≈ 120,000 instances in the training set.

≈ 8,000 instances in the test set.

Lattice Word Error Rate increased from 1.7% to 4.1%.

Log-likelihood ratio scores were generated.

Global SVM trade-off parameter (C) set at 1.0 for all confusion pairs.

Used tanh kernels.
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Results

WERs for HMM and SVM systems:

Training HMM SVM System

Criterion Combination

ML 10.7 8.6 8.2

MMI 9.1 8.1 7.7

Classifier Combination:

Error patterns are uncorrelated between HMM and SVM based systems.

For HMM and SVM systems at 8% WER the difference was 4%.

Ideal for system combination.

p+(wi) =
ph(wi) + ps(wi)

2

ph(wi) is the HMM posterior estimate obtained from the pinched lattice

ps(wi) is the SVM posterior estimate
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Outline

Statistical Speech Recognition

Identification of Confusions

Posterior Distributions from GiniSVMs

Validation on a Small Vocabulary task

Feasibility on a Large Vocabulary task

Identify small number of sub-problems and show performance

improvements in these sub-problems.

Requires huge test sets to validate, i.e., to obtain statistically significant

improvements.

Improvements will be modest by design!

Conclusions and Future Work
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System Description

MALACH spontaneous Czech conversational domain:

Train:

65 hours of acoustic training data

39 dimensional MFCCs, delta and acceleration coefficients

HMMs trained HTK style

Speaker independent continuous mixture density, tied state, cross-word,

gender-independent, triphone HMMs.

80K Vocabulary; Bigram LM interpolated with out-of-domain data.

Lattices generated using the AT&T decoder.

Lattice-based MMIE was performed.

Test:

Test set is 8400 utterances (≈ 25 hours) from 10 heldout speakers

Unsupervised MLLR transforms were estimated on a 1000 utterance subset.

WER of MAP is 45.6%WER. Lattice Error Rate (LER) is 13.5%.
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Challenges faced

Sparsity - LER with frequently occuring confusion pairs is practically the WER.

Language Models. Homonym confusion pairs: Words with different semantics but

with similar phonetic sequences.

A

TAK
(t a k)

PAK
(p a k)

BYLI

(b i l i)

BILI
(b i l i)

CHODILITOHO

Possible to train specialized language models.

Identifying segment sets where MAP is erroneous.

Identifying segment sets containing truth.

Posteriors of the MAP path can indicate if erroneous.

Study lattice cutting as we prune paths based on their posteriors.
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Studying Segment Set Pruning

Towards studying the ability of lattice pinching in

(a) identifying regions where the MAP hypothesis is in error and,

(b) identifying the correct alternative.

Effect of pruning links based on their posteriors:

Pruning LER Avg. # Hyps./

Threshold Segment Set

0.00 27.3 11.65

0.05 35.3 2.82

0.10 37.9 2.35

0.20 41.1 2.06

0.30 43.2 2.00

0.40 44.7 2.00

0.50 45.6 -

Pruning paths based on their posteriors removes more incorrect paths than correct ones.

Focus only on binary confusion problems that occur at least 100 times in the test set.
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Characterization of Segment Sets

#2#1

9 V:5

B:5

A:7

8:7

ASIL SIL

J:17

OH 9 BASIL SILK A

OH:23

4:23
truth:

A:17

pinched lattices with confusion pairs:

#5 #8#6#3 #4 #7

Confusion Pair Oracle Correct (CPOC) vs. Confusion Pair Oracle Error (CPOE)

MAP Correct (MAPCOR) vs. MAP Error (MAPERR)

MAPERR 

CPOECPOC

MAPCOR

#2 #6, #7 #3 

Want to have as large a green region as possible.
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Choosing the Code Breaking Set
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Choose threshold=0.10 to balance #CPOC/#CPOE, #MAPERR/#MAPCOR and sparsity.

Code Breaking for Automatic Speech Recognition 27 |35)



< > - +

Choosing the Code Breaking Set (contd.)

RECAP:

1. Pinch test set lattices.

2. Prune from collapsed segment sets, any path with posterior < 0.10.

3. Only keep confusion pairs, i.e., binary problems alone.

4. Only confusion pairs that occur at least a 100 times.

5. Homonym confusion pairs are pruned back to the MAP.

Our final code-breaking set: 21 confusion pairs with 2991 total segment sets.

Of these around 1200 are MAPERR ⇒ utmost 0.8% WER improvement.

Identified confusion pairs involved function words,

e.g., [PAK,TAK], [TAM,TO] and [SE,SEM].

Code Breaking for Automatic Speech Recognition 28 |35)



< > - +

Training Specialized HMMs and SVMs

Need to train word-level HMM models to obtain scores.

Let [PAK, TAK] be uniquely indexed by 7.

Initialize word level models, PAK and TAK, by concatenating monophone models.

Re-estimate the word models using EM.

Clone these models as PAK:7 and TAK:7.

Create a [PAK, TAK]-specific training set that contains all instances of PAK and

TAK from the acoustic training set.

Train PAK:7 and TAK:7 using MMI.

Repeat for all confusion pairs.

SVMs:

Obtain Scores from the MMI word level HMMs.

Train GiniSVMs for each confusion pair.
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Testing - HMM+SVM system combination

Testing: For each instance of a confusion pair,

1. Obtain log-likelihood ratio Scores from the MMI word HMMs.

2. Obtain posterior probability estimates.

3. Perform system combination with HMM posteriors from the pinched lattice.

pλ(wi) = λph(wi) + (1 − λ)ps(wi), 0 ≤ λ ≤ 1

ph(wi) is the HMM posterior estimate obtained from the pinched lattice,

ps(wi) is the SVM posterior estimate.

RESULTS:

Error Counts decrease in 18 of 21 confusion pairs for the MAP+SVM system.

Statistically significant improvements (0.1% WER) obtained for

λ = 0.4, 0.5, 0.6, and 0.7.
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Conclusions & Contributions

New framework to evaluate novel techniques in ASR.

Identify regions of weakness of a state-of-the-art HMM decoder.

Train specialized decoders for each kind of confusion.

Resolve confusions with these decoders.

Developed the framework to gainfully use SVMs in continuous speech

recognition.

Showed Posterior distribution estimated by GiniSVMs can be used favorably in

system combination.

Validated the use of SVMs on a small vocabulary task.

Studied the effects of pruning on lattice cutting on an LVCSR task.

Demonstrated the feasibility of the framework on an LVCSR task; showed small

but statistically significant gains.
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Future Work

Future Work:

Further gains on MALACH.

Can cluster confusion pairs if the source of confusion is similar.

e.g., (TA, TO) and (NA, NO).

Provides more instances of confusion pairs.

Will use phone level HMMs to obtain scores.

Multi-class classifiers.

Language Model code-breaking.

Bias will be an issue. LMs tend to learn the training data more.

Study of confusions.

What kinds of confusions are tougher to resolve?

Publications:

- V. Venkataramani, S. Chakrabartty and W. Byrne, SVMs for Segmental Minimum Bayes

Risk Decoding of Continuous Speech, ASRU ’03.

- V. Venkataramani, W. Byrne, Lattice Segmentation and SVMs for LVCSR, ICASSP ’05.

- V. Venkataramani, S. Chakrabartty and W. Byrne, GiniSVMs for Segmental Minimum

Bayes Risk Decoding of Continuous Speech, Submitted CSL.
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