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ABSTRACT

Fundamental frequency, or F0 is critical for high quality speech syn-
thesis in HMM based speech synthesis. Traditionally, F0 values are
considered to depend on a binary voicing decision such that they
are continuous in voiced regions and undefined in unvoiced regions.
Multi-space distribution HMM (MSDHMM) has been used for mod-
elling the discontinuous F0. Recently, a continuous F0 modelling
framework has been proposed and shown to be effective, where con-
tinuous F0 observations are assumed to always exist and voicing la-
bels are explicitly modelled by an independent stream. In this paper,
a refined continuous F0 modelling approach is proposed. Here, F0
values are assumed to be dependent on voicing labels and both are
jointly modelled in a single stream. Due to the enforced dependency,
the new method can effectively reduce the voicing classification er-
ror. Subjective listening tests also demonstrate that the new approach
can yield significant improvements on the naturalness of the synthe-
sised speech. A dynamic random unvoiced F0 generation method is
also investigated. Experiments show that it has significant effect on
the quality of synthesised speech.

Index Terms— HMM based speech synthesis, continuous F0
modelling, voicing classification

1. INTRODUCTION

In HMM based speech synthesis, the modelling of Fundamental fre-
quency (F0) is difficult due to the discontinuity of F0 values. F0 is an
inherent property of periodic signals and can represent the perceived
pitch of human speech. During voiced speech, it is the periodic air-
flow modulation that serves as the excitation for the vocal tract. As
there exists strong periodicity, F0 values can be effectively estimated
from the waveform [1]. However, unvoiced speech is produced when
the airflow is forced through a vocal-tract constriction with sufficient
velocity to generate significant turbulence. The long term spectrum
of turbulent airflow tends to be a weak function of frequency [2] and
hence the estimation is not reliable. Therefore, traditionally, F0 val-
ues during unvoiced region are assumed to be undefined, which leads
to a discontinuous F0 observation stream. One widely used solution
to directly model the discontinuous F0 observation is the multi-space
probability distribution HMM (MSDHMM) [3]. Essentially, it uses
a joint distribution of voicing label and discontinuous F0 observation
as the state output distribution. Using the distribution of discontin-
uous F0 [4], HMM training can be performed efficiently and good
performance can be achieved [5].
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Recently, an alternative model, continuous F0, has been inves-
tigated within the HMM based speech synthesis framework. Here,
continuous F0 is assumed to exist in unvoiced regions and there have
been a number of modelling approaches along this line. In [6], ran-
dom F0 values are used in unvoiced regions and voicing labels are
assumed to be hidden. A Gaussian mixture model (GMM) is em-
ployed, where unvoiced Gaussian components are globally tied so
that the statistical difference between voiced and unvoiced regions
can be modelled. In [7], voicing labels are assumed to be observable
and modelled in an independent stream. As the voicing labels are
explicitly modelled, global tying as defined in [6] is no longer a re-
quirement for distinguishing voiced regions from unvoiced regions.
Both approaches have shown significant improvement in the natural-
ness of synthesised speech compared to the traditional MSDHMM
approach. This improvement is mainly due to the continuous F0 as-
sumption [4] which leads to better modelling of the F0 trajectory.
However, objective experiments have shown that the voicing classi-
fication performance of the proposed continuous F0 model are much
worse than MSDHMM, which may potentially limit possible gains.

In this paper, a refined continuous F0 modelling approach is pro-
posed. Here, continuous F0 is assumed to be dependent on observ-
able voicing labels and they are modelled in the same stream. By
enforcing the dependency, voicing classification performance can
be improved. Experiments also show that this further improves the
naturalness of the synthesised speech. One important issue in the
continuous F0 framework is how to generate unvoiced F0 values.
Though it has been shown that different unvoiced F0 generation ap-
proaches do not make much performance difference, a dynamic ran-
dom generation approach is investigated in this paper. Experiments
suggest that the unvoiced F0 generation approach can have signifi-
cant effect on the synthesised speech quality.

The rest of the paper is arranged as follows. Section 2 com-
pares different F0 modelling approaches. Section 3 describes the
update formula of the proposed approach and some implementation
issues. Objective and subjective experiments are presented in section
4, which is followed by conclusion.

2. COMPARISON OF F0 MODELLING APPROACHES FOR
HMM BASED SPEECH SYNTHESIS

As described in section 1, there are two different fundamental as-
sumptions regarding the F0 observations:

• Discontinuous F0 assumes that the F0 observation is a real
value in voiced regions but is a discrete symbol in unvoiced
regions, referred to as f+ in this paper:

f+ ∈ {NULL} ∪ (−∞,∞) (1)



where NULL is the discrete symbol representing the observed
F0 value in unvoiced regions. It is worth noting that NULL is
not a voicing label, it is an F0 observation value.

• Continuous F0 assumes real F0 value for all regions, referred
to as f ∈ (−∞,∞). Then the unvoiced F0 values have to
be generated. They can be the 1-Best candidates from an
F0 extractor, random samples or interpolated values between
neighboring voiced regions [7].

Another important issue in F0 modelling is the modelling of the voic-
ing label, referred to as l ∈ {U, V}, where U means unvoiced and V
voiced. Different F0 modelling approaches can be compared ac-
cording to the different assumptions and modelling of F0 values and
voicing labels. Figure 1 shows the dynamic Bayesian networks 1 of
the previously used approaches and the proposed method.
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Fig. 1. DBN comparison between F0 modelling approaches.

A widely used F0 modelling approach is the multi-space proba-
bility distribution HMM (MSDHMM). It assumes discontinuous F0
(DF) and observable voicing labels, referred to as DF-MSD in figure
1(a). It can be shown that the state output distribution of MSDHMM
can be written as [5, 4]:

p(o|s) = p(l, f+|s) =


P (U|s) l = U
P (V|s)N (f+|s, V) l = V

(2)

where the observation o = [f l], N (·) is a Gaussian distribution.
Due to the discontinuity, it is not convenient to calculate dynamic
features of F0 at the boundary between voiced and unvoiced regions.
Though there are some exceptions [8, 4], the most widely used
method is to model static and dynamic features in separate streams
[9]. This common implementation limits the power of HMMs to
model the F0 trajectory.

1A DBN is a graph that shows the statistical dependencies of random vari-
ables. In a DBN, a circle represents a continuous variable, a square represents
a discrete variable, unshaded variables are hidden, and shaded variables are
observed. The lack of an arrow from A to B indicates that B is condition-
ally independent of A. Note that for convenience the notation of continuous
random variables is also used here for the discontinuous f+.

Continuous F0 modelling is proposed to improve F0 trajectory
modelling. By generating real F0 values for unvoiced regions and as-
suming hidden voicing labels, the Continuous F0 model with Glob-
ally Tied Distribution [6], CF-GTD in figure 1(b), is obtained. The
state output distribution can be expressed as

p(o|s) = p(f |s) = P (V|s)N (f |s, V) + P (U|s)N (f |U) (3)

With continuous F0 values, it is easy to model static and dynamic
features in a single stream. Experiments have shown that it can
greatly reduce the F0 trajectory modelling error, and consequently
improve the naturalness of the synthesised speech [6, 7]. However,
due to hidden voicing labels, voicing classification only relies on the
statistical difference between the globally tied unvoiced component
and the state specific voiced component. This leads to significantly
degraded voicing classification accuracy compared to MSDHMM.

To improve the voicing classification performance, voicing la-
bels are assumed to be observable [7]. Here, an independent data
stream is introduced to explicitly model voicing labels, referred to
as Continuous F0 modelling with Independent Voicing label and F0
value, CF-IVF in 1(c). The corresponding state output distribution
can be written as

p(o|s) = p(l, f |s) = P (l|s)γl p(f |s)γf (4)

where p(f |s) and P (l|s) are the distributions for the continuous F0
and voicing label streams respectively. p(f |s) can be a single Gaus-
sian or any other distribution such as a GMM. Dynamic features are
only calculated for the continuous F0 values, not for voicing labels.
γf and γl are stream weights. In practice, γf is set to be 1 and γl
is set to be almost 0. This means, during HMM training, voicing la-
bels do not contribute to the forward-backward state alignment stage
but the model parameters are updated once the state alignment has
been determined. In CF-IVF, the two streams share the same state
clustering structure. During synthesis, state voicing status is only
determined by the voicing label stream.

Though using observable voicing labels can improve voicing
classification performance, it is still weak compared to MSDHMM
due to the weak correlation between the two streams. In this paper,
a refined approach is proposed, where only one stream is used to si-
multaneously model both observable voicing labels and continuous
F0 values, referred to as Continuous F0 modelling with Joint Voic-
ing label and F0 value, CF-JVF in 1(d). The state output distribution
is

p(o|s) = p(l, f |s) = P (l|s) p(f |s, l) (5)

Compared to CF-IVF, CF-JVF introduces correlation between voic-
ing labels and continuous F0 values and allows voicing labels to af-
fect the forward-backward state alignment process. This will natu-
rally strengthen the voicing label modelling. The DBN of CF-JVF
is the same as MSDHMM. However, the observation definition is
different. In MSDHMM, each observation dimension is a discontin-
uous variable as defined in equation (1). In contrast, CF-JVF uses
different data types for different dimensions. Each dimension is ei-
ther discrete or continuous, but not mixed. Only the continuous F0
dimensions require calculation of dynamic features.

3. JOINT MODELLING OF VOICING LABEL AND
CONTINUOUS F0

The previous section introduces the motivation for jointly modelling
voicing labels and continuous F0. This section will discuss the pa-
rameter update formula and implementation issues.



With equation (5) as the state output distribution, the auxiliary
function for the parameters of voiced regions can be written as (ir-
relevant constants are ignored):

Q(MV) =
X
s

X
t

γs(t)δ(lt, V)
“

log p(ft|s, V) + logP (V|s)
”

(6)

whereMV denotes the set of model parameters for the voiced part,
f = [f ∆f ∆2f ] denotes the continuous F0 vector consisting of
static and dynamic features, l denotes voicing label, s denotes state
and γs(t) is the posterior probability of state s being at time t,
δ(lt, V) is a discrete delta function, whose value is 1 if lt = V and
0, otherwise. From equation (6), the update formula for the param-
eters of p(ft|s, V) is the same as the standard ML update formula
except for using γs(t)δ(lt, V) instead of γs(t). In this paper, a single
Gaussian is used as p(ft|s, l), which leads to the following update
formula

µs,V =

P
t γs(t)δ(lt, V)ftP
t γs(t)δ(lt, V)

(7)

Σs,V =

P
t γs(t)δ(lt, V)(ft − µs,V)P

t γs(t)δ(lt, V)
(8)

The update formula for p(ft|s, U) is similar. In this paper, all un-
voiced distributions are tied as it is believed that the statistical prop-
erties of unvoiced F0 values should not be dependent on individual
states. The probability of the voicing label l ∈ {U, V} can be derived
as

P (l|s) =

P
t γs(t)δ(lt, l)P

t γs(t)
(9)

Although the observation of CF-JVF consists of voicing label
and continuous F0 value, during decision tree based state cluster-
ing, only the continuous F0 Gaussian is considered for convenience.
With this approximation, the clustering process remains unchanged.
During the synthesis stage, each state of the HMMs is classified as
voiced or unvoiced state by comparing P (l|s) to a predefined thresh-
old (0.5 in this paper). In addition to CF-JVF, in this paper, a new
unvoiced F0 generation method is also investigated. Here, samples
from a pre-defined Gaussian distribution with large variance are gen-
erated as unvoiced F0 values. However, instead of one-off genera-
tion, those unvoiced F0 values are re-generated after each parameter
estimation iteration. By introducing these dynamic random values
for unvoiced regions, it is expected that the randomness of unvoiced
F0 is better represented.

4. EXPERIMENTS

The performance of CF-JVF has been evaluated on two CMU ARC-
TIC speech synthesis data sets[10]. A U.S. female English speaker,
slt, and a Canadian male speaker, jmk, were used. Each data set
contains 1132 phonetically balanced sentences totalling about 0.95
hours of speech per speaker. To obtain objective performance mea-
sures, 1000 sentences from each data set were randomly selected for
the training set, and the remainder were used to form a test set.

All systems were built using a modified version of the HTS
toolkit [11]. Mixed excitation using STRAIGHT was employed [12].
The speech features used were 24 Mel-Cepstral spectral coefficients,
the logarithm of F0, and aperiodic components in five frequency
bands (0 to 1, 1 to 2, 2 to 4, 4 to 6 and 6 to 8 KHz). Spectral, F0
and aperiodic component features were modelled in separate streams

during context-dependent HMM training. MDL-based state cluster-
ing [13] was performed for each stream to group the parameters of
the context-dependent HMMs at state level. The MDL factor for
MSDHMM is tuned so that it has a similar number of parameters as
the continuous F0 modelling techniques. The same MDL factor is
used for comparing CF-IVF and CF-JVF.

4.1. Objective comparison

To quantitatively compare discontinuous and continuous F0 mod-
elling, the root mean square error (RMSE) of F0 observations and
the voicing classification error (VCE) were calculated. The defini-
tion of RMSE and VCE can be found in [7].

Data HMM Female Male
Set RMSE VCE (%) RMSE VCE (%)

train

MSD 16.39 4.71 12.32 5.16
CF-GTD 11.98 17.74 8.52 18.84
CF-IVF 11.33 7.01 9.18 8.09
CF-JVF 10.56 6.49 8.09 6.81

test

MSD 16.65 5.85 13.37 7.17
CF-GTD 14.67 18.36 11.12 19.49
CF-IVF 12.58 7.29 11.90 8.43
CF-JVF 12.87 7.12 11.13 8.13

Table 1. Objective comparisons between F0 modelling approaches

From table 1, it can be observed that all continuous F0 ap-
proaches obtain significantly better RMSE on both training and
test dataset than MSDHMM. However, VCE performance becomes
worse when continuous F0 assumption is used. CF-GTD has the
worst performance due to weak modelling of voicing labels. By
explicitly modelling observable voicing labels, CF-IVF obtains sig-
nificant improvement. The proposed CF-JVF approach can achieve
further improvement on VCE due to the strengthened correlation
between voicing label and continuous F0 values whilst retaining
similar or better RMSE performance.

4.2. Subjective comparison

To confirm the results from objective experiments, a number of pair-
wise preference listening tests were conducted. As the comparison
between continuous F0 modelling and MSDHMM has been given in
[7], in this paper, the proposed CF-JVF approach is only compared
to the previously best model, CF-IVF.

For the test material 30 sentences from a tourist information en-
quiry application were used. Two wave files were synthesised for
each sentence and each speaker from the systems to be compared.
Five sentences were then randomly selected to make up a test set for
each listener, leading to 10 wave file pairs (5 male, 5 female). To
reduce the noise introduced by forced choices, the 10 wave file pairs
were duplicated and the order of the two systems were swapped.
The final 20 wave file pairs were then shuffled and provided to the
listeners in random order. Each listener was asked to select the more
natural utterance from each wave file pair. Amazon mechanical turk
is used to recruit listeners. Altogether 39 listeners, 25 native and 14
non-native, participated in the test. The result is shown in figure 2:

Statistical significance tests were performed for the result as-
suming a binomial distribution for each choice. The preference for
CF-JVF was shown to be significant at 95% confidence level (p-
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Fig. 2. Comparison between CF-IVF and CF-JVF on a forced choice
preference test. Confidence interval of 95% is shown.

values: 0.03 for female and 0.0002 for male). This is consistent with
the objective measures.

In the previous experiment, the 1-Best F0 candidate from the
STRAIGHT F0 extractor was used as the unvoiced F0 value. Al-
though different unvoiced F0 value generation approaches have in
the past been shown to give similar performance [6, 7], all methods
have been static. To reflect the randomness property of unvoiced
F0, the dynamic random generation approach described above was
investigated.
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Fig. 3. Comparison between 1-best selection and random generation
of unvoiced F0 values. Confidence interval of 95% is shown.

Figure 3 shows the comparison between the 1-Best selection ap-
proach and two random unvoiced F0 generation approaches. 26 lis-
teners, 16 native and 10 non-native, participated in the first test, and
30 listeners, 18 native and 12 non-native participated in the second
one. It can be observed that the speech quality of both speakers did
not change much with static random F0 generation. Although the
male speaker got degraded performance, it is not significant accord-
ing to statistical significance test (p-value is 0.18). In contrast, dy-
namic random F0 generation showed enlarged difference. The male
speaker was degraded while the female speaker was improved. Both
were significant (p-value: 0.01 for female and 0.02 for male). This
shows that different unvoiced F0 generation approaches do have an
effect on the naturalness of the synthesised speech. However, the
trend is different for the male and the female speaker. This is still to
be investigated in future work.

5. CONCLUSION

This paper proposed a new continuous F0 modelling approach to
strengthen the correlation between voicing labels and continuous F0
values. Continuous F0 values are dependent on the voicing labels

and both are modelled in the same stream. Both objective measure
and subjective listening tests showed that the proposed approach
can achieve further improvement in the naturalness of synthesised
speech, compared to the previous best continuous F0 modelling ap-
proach. A dynamic random unvoiced F0 generation method is also
tested within the new framework. It is shown that unvoiced F0 gener-
ation can significantly affect the speech quality. However, the trend
is not consistent. This will be a topic for future investigation.
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