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Abstract
The accurate modelling of fundamental frequency, or F0, in
HMM-based speech synthesis is a critical factor in achieving
high quality speech. However, it is also difficult because F0
values are normally considered to depend on a binary voicing
decision such that they are continuous in voiced regions and un-
defined in unvoiced regions. A widely used solution is to use a
multi-space probability distribution HMM (MSDHMM), which
directly models discontinuous F0 observations. An alternative
solution, continuous F0 modelling, has been recently proposed
and shown to be more effective in achieving natural synthesised
speech. Here, continuous F0 observations are assumed to al-
ways exist and hence they can be modelled by standard HMMs.

This paper describes a general mathematical framework for
discontinuous F0 modelling, of which MSDHMM is a special
case, and compares it to continuous F0 modelling. Various as-
pects associated with continuous F0 modelling, the use of a
single F0 stream, globally tied distributions (GTD) and the as-
sumption of a continuous unvoiced F0, are discussed in the-
ory and examined in experiments. Both objective measures and
subjective listening tests demonstrate that the introduction of
continuous unvoiced F0 is vital for achieving speech quality im-
provement.
Index Terms: F0 modelling, MSDHMM, globally tied distri-
bution, HMM based speech synthesis.

1. Introduction
HMM-based statistical speech synthesis has recently attracted
much interest due to its compact and flexible representation of
voice characteristics [1]. Based on the source-filter model as-
sumption, phonetic and prosodic information are assumed to be
conveyed primarily by the spectral envelope, fundamental fre-
quency (also referred to as F0) and the duration of individual
phones. A unified HMM framework may then be used to si-
multaneously model these features, where the spectrum and F0
are typically modelled in separate streams due to their differ-
ent characteristics and time scales. During the synthesis stage,
given a phone context sequence generated from text analysis,
the corresponding sequence of HMMs are concatenated and
spectral parameters and F0 are generated. These speech param-
eters are then converted to a waveform using synthesis filters.

The modelling of fundamental frequency, or F0, in HMM-
based speech synthesis is a critical factor in delivering speech
which is both natural and accurately conveys all of the many
nuances of the message. However, F0 modelling is difficult
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due to the differing nature of F0 observations within voiced and
unvoiced speech regions. In voiced speech regions, F0 values
can be effectively estimated over a relatively short-time period.
These F0 observations are continuous and normally range from
60Hz to 300Hz for human speech [2]. In unvoiced speech re-
gions, the long term spectrum of turbulent airflow tends to be
a weak function of frequency [3], which means that the identi-
fication of a single reliable F0 value is not possible. However,
in most F0 modelling approaches, F0 is assumed to be observ-
able for all time instances1. Hence, any practical F0 modelling
approach must be capable of dealing with two issues:

• Classifying each speech frame as voiced or unvoiced;

• Modelling F0 observations, especially those in unvoiced
speech regions.

A widely accepted assumption for F0 values in unvoiced speech
regions is that they are undefined and must be denoted by a
discrete unvoiced symbol. Consequently, F0 is a time-varying
variable whose domain is partly continuous and partly discrete.
This is referred to as a discontinuous variable in this paper2.
Due to the mixed data types of the variable domain, discontinu-
ous F0 values are not readily modelled by standard HMMs.

One solution is to directly model the discontinuous F0 ob-
servation and the multi-space probability distribution HMM
(MSDHMM) was proposed for this purpose [5]. In [6], this dis-
continuous F0 distribution is interpreted as a mixture of two dis-
tributions for continuous and discrete values respectively. There
is no explicit analysis of the relationship between voicing labels
and discontinuous F0 observations. This interpretation using
“a mixture of two distributions” can lead to the misunderstand-
ing that the MSDHMM is a Gaussian mixture model (GMM).
In this paper, a formal general mathematical framework is pro-
vided for discontinuous F0 HMM (DF-HMM) and the treatment
of voicing labels is discussed explicitly. MSDHMM is shown
to be a special case of DF-HMM. The state output distribution
of MSDHMM is a joint distribution of observable voicing label
and discontinuous F0 observation. The conditional probabil-
ity of discontinuous F0 is then defined as a discrete probability
within unvoiced regions, and a continuous density within voiced
regions. Within the general DF-HMM framework, extensions of
traditional MSDHMM are also discussed.

With a multi-space state-output distribution for discontinu-
ous F0, HMM training can be efficiently performed and good

1Unobservable unvoiced F0 has also been investigated in [4].This is
out of the scope of both discontinuous and continuous F0 frameworks,
hence not discussed in this paper.

2Note that the “discontinuous” F0 in this paper does not just mean
the lack of smoothness when viewed as a function of time. Real-value
function can also be discontinuous in that sense. In this paper, the do-
main with mixed types of values is the essential property for being “dis-
continuous”.



performance can be achieved [6]. However, there is still signifi-
cant scope for improving F0 modelling accuracy. An alternative
solution to discontinuous F0 modelling is to assume that con-
tinuous F0 observations also exist in unvoiced regions and use
standard GMMs to model them. In [7], unvoiced F0 values are
randomly generated and a two-component GMM with a glob-
ally tied distribution is then used to model the continuous F0
observations. Explicit voicing label modelling was added in [8]
to form a complete continuous F0 HMM (CF-HMM) frame-
work. Compared to MSDHMM, CF-HMM has shown to be
able to achieve better F0 trajectory modelling and significant
improvement in the quality of synthesised speech [8, 7]. Be-
sides generating continuous unvoiced F0 values, there are sev-
eral techniques involved in CF-HMM which may contribute to
the improved F0 modelling. They include the use of a single
F0 stream to improve correlation modelling between static and
dynamic F0 features, and the use of globally tied distribution
(GTD) to absorb F0 extraction errors. As these techniques can
also be applied to discontinuous F0 observations, it is then in-
teresting to investigate them within the discontinuous F0 mod-
elling framework. In this paper, theoretical and experimental
comparisons between discontinuous and continuous F0 mod-
elling are given in detail. Various techniques used in CF-HMM
are discussed within the discontinuous F0 framework. Both ob-
jective and subjective tests showed that the introduction of con-
tinuous unvoiced F0 values is essential for achieving improved
F0 modelling.

The rest of the paper is arranged as follows. Section 2 in-
troduces a general framework of discontinuous F0 modelling,
of which MSDHMM is a special case. The theoretical com-
parison between MSDHMM and CF-HMM, as well as using
single-stream F0 and GTD for discontinuous F0 modelling, are
discussed in section 3. Section 4 presents the results of both
objective and subjective tests. Conclusions then follow. Finally,
a derivation of the discontinuous F0 distribution is given in the
appendix.

2. Discontinuous F0 modelling
As indicated in section 1, a common assumption is that F0 is
observable for all time instances and it is a real value in voiced
regions while undefined in unvoiced regions. Since F0 values
are always considered as observable, a specific form of repre-
sentation needs to be chosen for the observations in unvoiced
regions. A natural representation is to use a discrete symbol. F0
is therefore a discontinuous variable, whose domain is partly
discrete and partly continuous, which will be denoted as f+ in
this paper:

f+ ∈ {NULL} ∪ (−∞,∞) (1)

where NULL is the discrete symbol representing the observed F0
value in unvoiced regions. It is worth noting that NULL is not a
voicing label, it is an F0 observation value which must be intro-
duced to satisfy the assumption that F0 is observable. Though
it is normally determined by the voicing label output from a
F0 extractor, it is different from a voicing label because it is a
singleton only used for denoting an unvoiced F0 observation.

Having introduced f+, it is necessary to define a proper dis-
tribution for it. Though the domain of f+ is a mixture of a dis-
crete symbol and real values, a distribution can still be defined
using measure theory, as shown in the appendix. The distribu-

tion in this case is defined via the probability of events, Af+ :

P (Af+) = λd δ(f+, NULL) + λc
∫
f+=f∈Af+

N (f) df (2)

where f ∈ (−∞,+∞) denotes a real number,N (·) is a Gaus-
sian density of f , δ(·, ·) is a discrete delta function defined as

δ(a, b) =

{
1 a = b
0 a 6= b

λd + λc = 1 are prior probabilities of f+ being discrete or
continuous respectively and Af+ is the event defined as:

Af+ =

{
NULL f+ = NULL
(f, f + ∆) f+ = f ∈ (−∞,+∞)

where ∆ is a small interval. Equation (2) is a valid probability
mass function. It is also possible to use a density-like form
of equation (2) for the state output distribution in an HMM as
follows

p(f+) = λd δ(f+, NULL) + λcN (f)
(
1− δ(f+, NULL)

)
(3)

The use of the density form, equation (3), is equivalent to using
the probability form, equation (2), during HMM training. Refer
to the appendix for a more detailed explanation.

2.1. General form of discontinuous F0 HMM

As discussed above, the discrete symbol NULL is different from
a voicing label which in this paper will be denoted explicitly as

l ∈ {U, V} (4)

The issue here is that a typical F0 extractor which gener-
ates the observations used for model training makes both a
voiced/unvoiced (V/U) decision represented as NULL and an es-
timate of real F0 values in voiced regions. However, there will
be errors in the V/U decision and hence the true underlying
voicing label must be regarded as being hidden. The output
distribution of f+ for state s should therefore be expressed as

p(f+|s) = P (U|s)pu(f+|s) + P (V|s)pv(f+|s) (5)

= (csuλ
d
u + csvλ

d
v )δ(f+, NULL) +

(
csuλ

c
uN (f |s, U) +

csvλ
c
vN (f |s, V)

)(
1− δ(f+, NULL)

)
(6)

where P (U|s) = csu and P (V|s) = csv are state dependent voic-
ing probabilities subject to csu + csv = 1, pu(f+|s) and pv(f+|s)
are conditional distributions of f+, which take the form of equa-
tion (3) and lead to the form of equation (6).

By definition, csuλcuN (f |s, U) is the likelihood contribution
of the real F0 values detected within unvoiced regions. This
term arises because the observed NULL symbol does not corre-
spond exactly with the underlying voicing label l. It can be re-
garded as modelling erroneous voiced F0 values arising from a
voicing classification error in the F0 extractor. Similarly, csvλdv
accounts for the error in misclassifying voiced speech as un-
voiced. Therefore, equation (6) offers a complete framework
for modelling both voicing classification and discontinuous F0
values. An HMM with equation (6) as its state output distri-
bution is referred to as a discontinuous F0 HMM (DF-HMM).
Once DF-HMMs are trained, they can be used for classifying
the voicing condition of each state and generating voiced F0



parameters during synthesis. The state voicing classification
can be naturally made by comparing csvλcv to a predetermined
threshold. Then, the voiced F0 parameters can be generated
from N (f |s, V). One problem with this general form of DF-
HMM is that voicing labels are hidden, hence the distinction
between N (f |s, U) and N (f |s, V) relies solely on the differ-
ence in statistical properties between the erroneous F0 values
and the correct F0 values, which could be hard to capture. This
problem will be further discussed later.

2.2. Multi-space probability distribution HMM

The Multi-space probability distribution HMM (MSDHMM) is
a special case of the DF-HMM in which voicing labels are as-
sumed to be observable and the F0 extractor is assumed to be
perfect. Therefore, the observation stream for the MSDHMM
also includes the voicing label l and all terms modelling F0 ex-
traction error will be zero

λcu = λdv = P (NULL|V) = 0 (7)

λcv = λdu = P (NULL|U) = 1 (8)

Equation (6) then becomes3

p(l, f+|s) = P (l)p(f+|l, s)

=

{
csu l = U
csv N (f |s, V) l = V

(9)

where csu + csv = 1 are the prior voicing probabilities. In [6],
equation (9) is interpreted as using different forms of distribu-
tions for discrete and continuous space respectively, which re-
sults in the name multi-space distribution. Though a GMM-like
form is used in [6], it is worth noting that the state output distri-
bution of the MSDHMM is not a mixture of expert model. From
equation (9), it is clear that it is a joint distribution of voicing
label and discontinuous F0 values, where due to the assump-
tion of perfect F0 extraction, there will not be any cross-space
terms. This approximation is convenient for both HMM train-
ing and voicing classification during synthesis. Hence, it has
been widely used.

3. Comparison to continuous F0 modelling
Although the MSDHMM has achieved good performance, the
use of discontinuous F0 has a number of limitations. Due to the
discontinuity at the boundary between voiced and unvoiced re-
gions, dynamic features can not be easily calculated and hence
separate streams are normally used to model static and dynamic
features [9]. This results in redundant voicing probability pa-
rameters which may not only limit the number of clustered
states, but also weaken the correlation modelling between static
and dynamic features. The latter would then limit the model’s
ability to accurately capture F0 trajectories. In addition, since
all continuous F0 values are modelled by a single continuous
density, parameter estimation is sensitive to voicing classifica-
tion and F0 estimation errors. Furthermore, due to the nature of
the discontinuous F0 assumption, one observation can only be
either voiced or unvoiced, but not both at the same time. Con-
sequently, during the forward-backward calculation in training,
the state posterior occupancy will always be wholly assigned to
one of the two components depending on the voicing condition

3Strictly speaking, δ(·, ·) should appear in equation (9) to denote
that, under the MSDHMM assumption, it is not possible to observe
(U, f) or (V, NULL). This is omitted for clarity.

of the observation. This hard assignment limits the possibility
of the unvoiced component to learn from voiced data and vice
versa. Also, it forces the voiced component to be updated us-
ing all voiced observations making the system sensitive to F0
extraction errors.

To address these limitations, an alternative solution in the
form of the continuous F0 HMM (CF-HMM), has been pro-
posed [7, 8], where continuous F0 observations are assumed to
also exist in unvoiced regions. In [7], voicing labels are as-
sumed to be hidden, while in [8], observable voicing labels are
used as in the MSDHMM.
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o
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Figure 1: Dynamic Bayesian network comparison between MS-
DHMM and CF-HMM.

The dynamic Bayesian network comparison between MS-
DHMM and CF-HMM is shown in figure 1. In both cases, the
observation includes the voicing label and the F0 values. In the
MSDHMM, the voicing label and discontinuous F0 values are
dependent, while in the CF-HMM, they are assumed to be in-
dependent since a separate stream is used to model the voicing
classification [8]. The state output distribution of the CF-HMM
is defined as

p(l, f |s) = p(f |s)γfP (l|s)γl (10)

where p(f |s) and P (l|s) are the distributions for the continu-
ous F0 and voicing label streams respectively, and γf and γl are
stream weights. In [8], γf is set to be 1 and γl is set to be a very
small positive value ε. During synthesis stage, the voicing con-
dition is determined using the voicing label stream. Since there
is no discontinuity in the continuous F0, it is possible to use any
continuous density for p(f |s). A two-component GMM, one
state dependent and the other globally tied was used in [8].

Although the CF-HMM has been shown to yield significant
improvement in speech quality compared to the MSDHMM [7,
8], it is not clear which aspects of the CF-HMM contribute most
to the improvements. It is therefore useful to investigate the
individual techniques used in the CF-HMM in more detail. The
specific points of difference between the MSDHMM and the
CF-HMM are:

1. A single F0 stream is used for both static and dynamic F0
features to provide a consistent voicing label probability
and strong temporal correlation modelling.

2. A globally tied distribution (GTD) is used to yield robust
unvoiced F0 estimation.

3. The continuous F0 assumption avoids the problem of
modelling a discontinuity at V/UV boundaries. This al-
lows a single F0 stream to be used and it also avoids the
hard assignment of state posterior during HMM training.



It is interesting to note that only the continuous F0 assumption
is an inherent property of CF-HMM. A single F0 stream can
also be obtained for MSDHMM by constructing dynamic F0
features at unvoiced/voiced boundaries. For example, in [10],
the boundary dynamic F0 features are calculated from the near-
est voiced F0 observations across the unvoiced segment. It is
then possible to use a single stream for both static and dynamic
F0 features as they have the same voicing boundary. GTD is
also not intrinsic to the CF-HMM. From the general DF-HMM,
equation (6), GTD can be easily introduced. Assuming the F0
extraction error is independent of states and combining the prior
weights together, equation (6) becomes

p(f+|s) = cs1δ(f+, NULL) +
(
cs2N (f |U) + (11)

cs3N (f |s, V)
)

(1− δ(f+, NULL))

and cs1 = csuλ
d
u +csvλ

d
v , cs2 = csuλ

c
u, cs3 = csvλ

c
v, cs1+cs2+cs3 = 1.

Given that a single F0 stream and GTD can both be imple-
mented within the DF-HMM framework, the MSDHMM can
be extended to include these and thereby allow a direct com-
parison with the CF-HMM. To use a single F0 stream, SPLINE
interpolation is first performed for all unvoiced segments and
dynamic real-valued F0 features are then constructed at the un-
voiced/voiced boundaries. Consequently, a single F0 stream
can be used to model the discontinuous F0 vectors, which
are partly discrete NULL symbols and partly three-dimensional
real-valued vectors (here only first and second derivatives are
used). Furthermore, the GTD technique can be applied to the
single stream MSDHMM. A globally tied Gaussian component
is used as N (f |U) in equation (11) and cs1, cs2, cs3 are updated
independently given the sum-to-one constraint. The GTD com-
ponent is initialized using all voiced F0 values and is never up-
dated during HMM training4. During synthesis, cs1 is compared
to a pre-determined threshold (0.5 in this paper) to determine
the voicing classification for each synthesis frame.

4. Experiment
The comparison between the extended MSDHMM and the CF-
HMM has been made using two CMU ARCTIC speech synthe-
sis data sets [11]: the U.S. female English speaker slt, and the
Canadian male speaker, jmk. Each data set contains record-
ings of the same 1132 phonetically balanced sentences totalling
about 0.95 hours of speech per speaker. All systems were built
using a modified version of the HTS HMM speech synthesis
toolkit version 2.0.1 [12]. The feature set includes 24 spectral
coefficients, log F0 and 5 aperiodic component features. Min-
imum description length (MDL) based state clustering, single
Gaussian duration modelling, mixed excitation and global vari-
ance for synthesis were used. More details of this experimental
set-up can be found in [8]. In this paper, the CF-HMM used ex-
plicit voicing condition modelling, where an extra data stream
was used for voicing labels. To make a fair comparison, during
state-clustering, the MDL scaling factors were tuned so that all
systems have similar numbers of clustered F0 states.

4Additional experiments showed that updating the GTD component
will lead to worse performance. This is because the parameters of the
GTD will be heavily affected by the dominant voiced F0 data during
training. Consequently, the updated GTD component will have a small
variance although globally tied. This GTD will then fail to model out-
liers of voiced F0 and will adversely affect the training and state clus-
tering process.

4.1. Objective comparison

To quantitatively compare discontinuous and continuous F0
modelling, the root mean square error (RMSE) of F0 observa-
tions and the voicing classification error (VCE) were calculated
for each of the extended MSDHMM systems and the CF-HMM
system. To obtain these objective measures, 1000 sentences
from each data set were randomly selected for the training set,
and the remainder were used to form a test set. To reduce the
effect of the duration model when comparing the generated F0
trajectories, state level durations were first obtained by force-
aligning the known natural speech from the test set. Then, given
the natural speech durations, a voicing classification was per-
formed for each state, followed by F0 value generation within
the voiced regions. By this mechanism, natural speech and syn-
thesised speech were aligned and could be compared frame by
frame to give a root mean square error defined as

RMSE =

√∑
t∈V (f(t)− fr(t))2

#V (12)

where fr(t) is the extracted F0 observation of the natural speech
at time t, f(t) is the synthesized F0 value at time t, V = {t :
l(t) = lr(t) = V} denotes the time indices when both natural
speech and synthesized speech are voiced, #V is the total num-
ber of voiced frames in the set. The voicing classification error
is defined as the percentage of mismatched voicing labels

VCE = 100

∑
t=1,T

(
1− δ

(
l(t), lr(t)

))
T

(13)

where δ(l, lr) is defined in equation (3), and T is the total
number of frames. From table 1, it can be seen that com-

Data HMM Female Male
Set RMSE VCE (%) RMSE VCE (%)

train

MSD 16.14 4.48 12.00 4.90
+ 1str 15.94 5.76 11.53 6.68

+ GTD 21.19 5.44 19.09 6.51
CF 11.33 7.01 9.18 8.09

test

MSD 16.76 5.85 13.34 6.90
+ 1str 15.77 6.85 12.79 8.26

+ GTD 23.44 7.06 20.25 8.10
CF 12.58 7.29 11.90 8.43

Table 1: Objective comparison between MSDHMM extensions
and CF-HMM

pared to the standard MSDHMM, the single stream MSDHMM
(MSD+1str) can slightly reduce the average F0 synthesis er-
rors (RMSE) in both training and test sets presumably due to
better temporal correlation modelling. However, it is still less
accurate than the CF-HMM. The use of the GTD technique
in the MSDHMM led to the worst RMSE performance. This
shows that the GTD component cannot accurately capture F0
extraction errors. Instead, it will spoil the estimation of the
other voiced Gaussian component because it can absorb mass
from real-valued F0 observations in voiced regions. In contrast
to the MSDHMM, the CF-HMM has randomly generated un-
voiced F0 values which provide a strong statistical constraint
(especially in the dynamic features) which prevents the GTD
component from subsuming the correctly estimated voiced F0
observations. Hence, although the GTD can absorb F0 outliers



and yield robust F0 estimation in the CF-HMM, it cannot do
the same for the MSDHMM[8]. It is worth noting that from
the definition of RMSE in this paper, equation (12), only the F0
values well inside voiced regions are considered. This implies
that GTD with the continuous F0 assumption does not only ap-
ply to boundary observations, it also effectively applies to nor-
mal voiced speech regions. In terms of voicing classification
error, all discontinuous F0 HMM approaches obtained better
results than the CF-HMM. This is expected since the CF-HMM
assumes independence between voicing label and F0 observa-
tions, hence the voicing label modelling is weaker. In partic-
ular, MSDHMM yielded the best VCE performance because it
not only assumes observable voicing labels, but also assumes
dependency between F0 observations and voicing labels.

4.2. Subjective listening tests

The previous objective measures show useful comparison infor-
mation. This section will give the results of subjective listening
tests to properly measure the effective performance of the dif-
ferent synthesis models.

The subjective evaluation consisted of a pair-wise prefer-
ence test. For the test material, 30 sentences from a tourist in-
formation enquiry application were used. These sentences have
quite different text patterns compared to the CMU ARCTIC text
corpus and they therefore provide a useful test of the generaliza-
tion capability of the systems. Two wave files were synthesised
for each sentence and each speaker, one from the CF-HMM sys-
tem and the other from the MSDHMM system. Five sentences
were then randomly selected to make up a test set for each lis-
tener, leading to 10 wave file pairs (5 male, 5 female). To re-
duce the noise introduced by forced choices, the 10 wave file
pairs were duplicated and the order of the two systems were
swapped. The final 20 waves were then shuffled and presented
to the listeners in random order. Each listener was asked to se-
lect the more natural utterance from each wave file pair.

57.5% 42.5%Male

MSD+1str

50.5% 49.5%

0% 25% 50% 75% 100%

Female

MSD+1str

MSD

41.5% 58.5%Male

MSD+1str+GTD

25.5% 74.5%

0% 25% 50% 75% 100%

Female

MSD+1str+GTD

MSD

Figure 2: MSDHMM v.s. extended MSDHMM. Confidence
Interval of 95% is shown.

Figure 2 shows the comparison between the two extended
MSDHMM systems and the traditional MSDHMM. 8 native
and 12 non-native listeners conducted the tests. As can be seen,
the results are largely consistent with the objective measures.
Using a single F0 stream improved the temporal correlation
modelling and resulted in better synthesised speech. It can be
observed that the effect on the male speaker is much stronger
than the female speaker. Statistical significance tests show that
the improvement on the quality of the male speech is signifi-

cant at a 95% confidence level. For the female voice, there is
almost no difference when using a single F0 stream. In con-
trast, adding GTD to the single F0 stream MSD system sig-
nificantly degraded the quality of synthesised speech for both
voices. This shows that GTD alone is not directly useful within
the MSDHMM framework.

51.7% 48.3%Male

CF-HMM

68.3% 31.7%

0% 25% 50% 75% 100%

Female

CF-HMM

MSD+1str

Figure 3: CF-HMM v.s. MSDHMM with single F0 stream.
Confidence Interval of 95% is shown.

Figure 3 shows the comparison between CF-HMM and MS-
DHMM with a single F0 stream, which outperformed the tradi-
tional MSDHMM. 8 native and 10 non-native listeners partici-
pated in the test. As can be seen, the CF-HMM outperformed
the MSDHMM with a single F0 stream. The improvement for
the female voice is significant while insignificant for the male
voice. This is expected since the single F0 stream MSDHMM
achieved a significant improvement for the male voice com-
pared to the standard MSDHMM. The only difference between
the two systems in figure 3 is that the CF-HMM uses GTD with
continuous F0 values, whilst the MSDHMM uses discontinu-
ous F0 values. This shows that the continuous F0 assumption is
an important factor in enabling the CF-HMM to achieve perfor-
mance improvements.

5. Conclusion
F0 modelling in HMM-based speech synthesis is important.
Due to the nature of undefined F0 in unvoiced regions, F0 is
normally considered as a discontinuous variable, which is partly
continuous and partly discrete. This paper describes a mathe-
matical framework for modelling discontinuous F0 in HMM-
based statistical speech synthesis (DF-HMM). The multi-space
probability distribution HMM (MSDHMM) is then shown to be
a special case of the DF-HMM.

The DF-HMM is then compared to the continuous F0
HMM (CF-HMM) framework, where real-valued F0 observa-
tions are assumed to exist in unvoiced regions. Since in ad-
dition to the inherent continuous F0 assumption, a single F0
stream and a globally tied distribution (GTD) are also used in
CF-HMM, the MSDHMM is extended with both of these to al-
low it to be compared directly with the CF-HMM. Both objec-
tive measures and subjective listening tests showed that using a
single F0 stream can improve F0 modelling, while the contin-
uous F0 assumption is critical to the ability of the GTD tech-
nique to work effectively and achieve an overall improvement
compared to the MSDHMM.
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7. Appendix
The definition of p(f+) follows the standard approach for distri-
butions of mixed type (discrete and continuous). [13] provides
discussions on the use of mixed distributions. A short discus-
sion is included below for completeness. All terms used in this
appendix are discussed in [14].

To define the probability distribution via measure theory,
one must first define the collection of measurable events, called
the σ-algebra. In the case discussed here the σ-algebra is the
smallest σ-algebra containing the open intervals and also con-
taining the singleton NULL (This exists by Theorem 1.10 of
[14]). The probability measure, P , is defined in terms of the
events, A. For values a, b ∈ R, a < b, the probability function
is defined as:

P (A) =

{
λd A = {NULL}
λc
∫
f∈(a,b)

N (f) df A = (a, b)
,

where λd + λc = 1. Note that the probability function has
only been defined in terms of open intervals and the {NULL}
singleton. This is sufficient because the σ-algebra used is the
smallest σ-algebra containing these sets.

Despite the use of a mixed distribution, a probability den-
sity function may still be defined by using Lebesque integration.
The corresponding probability function is defined as a function
of f+ ∈ {NULL} ∪ (−∞,∞) by:

p(f+) = λd δ(f+, NULL) + λcN (f)(1− δ(f+, NULL)). (14)

This form of density function can be used in likelihood calcu-
lations during HMM training as if it were a standard density
function.

To formalize the use of this function, one requires a mea-
sure to integrate over. Let the measure µ be defined as follows
(with a, b ∈ R, a < b):

µ({NULL}) = 1, (15)
µ((a, b)) = (b− a). (16)

Using Lebesgue integration [14] of the probability density
p, equation (14), with respect to this measure gives that:

P (A) =

∫
A

p dµ. (17)

Substituting in for the event A, the above formula in terms
of traditional integration becomes (with a, b ∈ R, a < b):

P ({NULL}) = p(NULL) = λd, (18)

P ((a, b)) =

∫
f∈(a,b)

p(f)df, (19)

= λc
∫
f∈(a,b)

N(f)df. (20)


