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ABSTRACT

Partially observable Markov decision processes (POMDRs)ige
a principled mathematical framework for modelling the utaiaty
inherent in spoken dialog systems. However, conventioOBPs
scale poorly with the size of state and observation spacé gdx
per describes a variation of the classic POMDP called thelétid
Information State (HIS) model in which belief distribut®are rep-
resented efficiently by grouping states together into fians and
policy optimisation is made tractable by using a master toraary
space mapping. An implementation of the HIS model is desdrib
for a Tourist Information application and aspects of itsnirsg and
operation are illustrated.

Index Terms— statistical dialog modelling; partially observable
Markov decision processes (POMDPS)

1. INTRODUCTION

Conventional spoken dialog systems operate by finding thet mo
likely interpretation of each user input, updating somerinal rep-
resentation of the dialog state and then outputting an gpiate re-
sponse. Error tolerance depends on using confidence thilesirud
where they fail, the dialog manager must resort to quite derp
recovery procedures. Attempts have been made to optimitbénwi
this framework using MDPs [1, 2]. However, the lack of an &ipl
model for representing the inherent uncertainty in thesiisgut and

its subsequent interpretation severely limits what candbéesied.
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Fig. 1. Abstract view of a POMDP-based spoken dialog system

a POMDP policy is a mapping from partitions in n-dimensiobed
lief space to actions. Not surprisingly these are extrerdificult to
construct and whilst exact solution algorithms do exist fiigy do
not scale to problems with more than a few states/actions.
This paper describes a form of POMDP which can be scaled

to support practical dialog systems. It is inspired by thiorma-
tion State (IS) update approach to dialog system implertient§8]
in which the IS itself is hidden. Hence it is called the Hidden
formation State (HIS) model. The practical implementatidrihe
HIS system depends on two key ideas. Firstly, a belief thstion
over an extremely large state space can be representedmffidiy
grouping states together into partitions and then spijtpartitions
on demand as the dialog evolves. Secondly, efficient polatiro-

Rather than MDPs, Partially Observable MDPs (POMDPs) po-sation can be achieved by mapping between the full statespat

tentially provide a much more powerful framework for modglidi-
alog systems since they provide an explicit representionnakr-
tainty [3, 4]. The structure of a POMDP-based dialog system i
outlined in Fig 1. It is assumed that the machine’s intereake-
sentation of the dialog state must capture the user’s lpst tlialog
act a,,, the user’s goak,, and some record of the dialog history
sq. Sinces,, can never be known with certainty, the dialog man-
ager maintains a distribution over all possible valuesedcadibelief

a much smaller and more tractable summary space.

2. THE HIDDEN INFORMATION STATE MODEL
2.1. POMDP Basics

Formally, a Partially Observable MDP is defined as a tuple
{Sm,Am,T, R,0, Z,\, by} whereS,, is a set of machine states;
A,, is a set of machine actions]” is a transition probability
P(si|sm,am); R defines the expected (immediate, real-valued)

stateb(sn). This belief state is updated every turn and its Valuerewardr(sm,am); O is a set of observationsZ is an observa-

is input to a policy which determines the next machine actign
By associating rewards with states and actions, this paay be
optimised to achieve the desired design criteria. Sincedifl®g
manager is maintaining a distribution over all possibldatjstates,
it is straightforward to accommodate not just the most \ikaeter-
pretation ofa,, but a distribution over many possiblg,. Thus, the
POMDP formalism provides a complete and principled franméwo
for modelling the inherent uncertainty in a spoken dialogtsgn and
optimising its performance. Furthermore, it naturally@oeodates
N-best recognition outputs and associated confidence§60&.

tion probability P(o'|s),,am); A is a geometric discount factor
0 < X < 1; andbyg is an initial belief state.

A POMDP operates as follows. At each time-step, the machine
is in some unobserved statg, € S,,. Sinces,, is not known
exactly, a distribution over states is maintained calle@léebstate
such that the probability of being in statg, given belief staté is
b(sm). Based on the current belief stdiethe machine selects an
actiona,, € An, receives a reward(sm, an), and transitions to
a new (unobserved) staté,, wheres,,, depends only om,, and
am. The machine then receives an observatibre O which is

The use of POMDPs for any practical system is, however, fagependent or/,, anda,.. Finally, the belief distributio is updated

from straightforward. Firstly, in common with MDPs, thetstapace
of a practical SDS is very large and if represented direittiypuld
be intractable. Secondly, a POMDP with state space caityina}-1
is equivalent to an MDP with a continuous state sgaeeR™. Thus,

based o’ anda,, as follows:

b (sm)

k- P(0|smyam) Y Plsmlam; sm)b(sm)(2)

SmE€Sm,



wherek is a normalisation constant[7]. The first term on the RHS ofrestriction on the possible refinement of partitions frone ¢urn to

(1) is called theobservation modednd the term inside the summa-
tion is called thetransition model Maintaining this belief state as
the dialog evolves is callddelief monitoring

At each time step, the machine receives a rewarth:, anm. +)
based on the current belief stéteand the selected actian,,;. The
cumulative, infinite horizon, discounted reward is callbd return
and it is given by:

R = i)\tr(bt,am t = Z
t=0 t=0

Each actiona,, : is determined by a policyr(b;) and building a
POMDP system involves finding the poliay which maximises the
return.

Z bt Sm

SmE€Sm

@

(Smy m,t)-

2.2. HIS Belief Monitoring

In a spoken dialog system, the observatiois the estimate of the
user dialog act output by the speech understanding compoien
the general case, this will be an N-best list of hypothesised acts,
each with an associated probability, i.e.

(©)

As indicated in the introduction, the machine statg in a spo-
ken dialog system can be factored into three components=
[Su, au, sq]. Substituting this factored form into the first term in (1)
and making reasonable independence assumptions gives

P(o'|a)

o = [(ak,p1),(ad,p2),...,(a,pN)]

P(Ollsi‘naa’m) = P(Olls;a a;asilaa’m) = (4)

the next.

Given that user goal space is partitioned in this way, belieh
be computed based on partitions$f rather than on the individual
states of5,,. Initially the belief state is judio (po) = 1. Whenever a
partitionp is split, its belief mass is reallocated as,

b(p') = P(p'|p)b(p) and b(p —p') = P(p'lp)b(p)  (7)

Note that this splitting of belief mass is simply a reallécatof ex-
isting mass, it is not a belief update, rather ib&ief refinement

Substituting (4), (5), (6), into (1) and summing over péotis
leads to the update equation for the HIS model [9]

(1-

V(p'au,sa) = k- P(lay)  Playlp’,am)
N—— N————
observation  user action
model model

- Plsalp’ al,sa,am)  P(p/|p)b(p,sa)  (8)
dialog;model belief r(‘arfinement

wherep is the parent op’.

As shown by the labelling in (8), the probability distribwrtifor
a,, is called theuser action modellt allows the observation proba-
bility that is conditioned o, to be scaled by the probability that the
user would speak, given the goak,, and the last system prompt
am- In the current implementation of the HIS system, user dialo
acts take the formct(a = v) whereact is the dialog typeq is an
attribute andv is its value [for examplerequest(food=chinesg)the
user action model is then approximated by

P(ay|p’, am) = P(T(a3)|T (am))P(M(au)lp’)  (9)

This is the HIS observation model and it can be approximated ayhere 7(-) denotes theype of the dialog act and\i(-) denotes

P(olay,) = p; wherea,, = d’, in the N-best list. To guard against
very poor recognition causing the correct value:pfto be dropped
from the observation altogethernall action is always included rep-
resenting all of the user acts not in the N-best list.

Substituting the factored form af,, into the transition model
and making reasonable independence assumptions yields

P(S:n|5m7am) = P(S;7a'lu7sii|5u7au7sd7a’m)

(S;'S;, 0,;“ Sd, G,m) (5)

= P(sulsu, am)P(ay|s,, am)P
In the HIS model, a user goal is deemed to be the specific e¢htity
the user has in mind. For example, in a tourist informatiosteay,
the user might be wishing to find “a moderately priced restaur
near the theatre”. The user would interact with the systdface
tively refining his or her query until an appropriate eststimnent
was found. The duration of a dialog is therefore defined asgatkie
interaction needed to satisfy a single goal. Hence by digfinithe
transition function fos,, in (5) simplifies trivially to a delta function,
i.e.

(6)

To further simplify belief updating, the HIS model assuntest t
at any timet, the space of all user goals, can be divided into a
number of equivalence classes where the members of eashackas
tied together and are indistinguishable. These equivaletasses
are calledpartitions Initially, all statess, € S, are in a sin-

P(sulsu; am) = 8(su, su).

gle partitionpg. As the dialog progresses, this root partition is re-

peatedly split into smaller partitions. This splitting igéary i.e.
p — {p’,p — p'} with probability P(p’|p). Since multiple splits
can occur at each time step, this binary split assumptioceplao

whether or not the dialog actatcheshe current partitionn’. The
first term on the RHS of (9) is estimated from a dialog corphs, t
second term is set tbif the act matches and zero otherwise.

The dialog model is a deterministic encoding based on a simpl
grounding model. It yields probability one when the updadést
log hypothesis (ie a specific combination gf a.,, sq anda.,) is
consistent with the history and zero otherwise.

2.3. Summary Space Mapping and Optimisation

Although the use of state partitioning makes belief moiritgpr
tractable for practical dialog systems, the state spae# itsust be
reduced to make policy optimisation tractable. The sofutmthis
lies in the observation that most reasonable system respomidi
focus on just the most likely states. This suggests maiinigitwo
coupled state spaces: the full space calledrbster state spacnd
a much simpler space called themmary state spafi]. The sum-
mary state space consists of the top 1 or 2 user goal stafeg¢m
master space and a simplified encoding of the user aatiand di-
alog historys,. The summary action space consists of a list of high
level abstractions of possible machine responses. A dialogthen
consists of first updating the belief state by evaluatingiri@nas-
ter space. The updated belief statis then mapped into a summary
stateb where an optimised dialog policy is applied to compute a new
summary machine actiaf,,. The summary machine action is then
mapped back into master space where it is converted to afispeci
machine dialog act,, and a response is output to the user.

Policy optimisation in the HIS model utilises a grid-basés d
cretisation of summary belief space and on-line batgheedy pol-
icy iteration. Given an existing policy, dialogs are executed and



entity —  venue(name,type,area) 1.0 mass of 1.0 and this is redistributed according to the pricthe
type  —  bar(drinks,music) 0.4 corresponding ontology rule, 0.4 to the new partition aidr@mains
type  — restaurant(food,pricerange) 0.3 with the original. If the user subsequently mentioned agotjipe
area = (centraéasjwest...) of venue, this remaining mass of 0.6 would be split again.

food = (ltaliariChinesg. . .)

'

Table 1. Example Ontology Rules

machine actions generated according texcept that with probabil-

ity e a random action is generated. The system maintains a set of
belief points{b;}. At each turn in training, the nearest stored belief
point by to b is located using a distance measure. If the distance is
greater than some threshoigis added to the set of stored points and
b, = b. The sequence of points, traversed in each dialog is stored

in a list. Associated with each; is a functionQ (b, a.) whose
value is the expected total reward obtained by choosing samnm
actiona,, from stateb;. At the end of each dialog, the total reward

is calculated and added to an accumulator for each poingitigh
discounted by\ at each step. On_ completion of a batch of dialogs,3 5 The Dialog Cycle

the @ values are updated according to the accumulated rewards, an

the policy updated by choosing the action which maximiseh € The overall operation of the prototype HIS system is sumsearin
value. The whole process is then repeated until the poladyiliges.  Fig 3. Each user utterance is decoded into an N-best listabbgli
Since even the summary state space is very large, aflirdialogs ~ acts. Each incoming act plus the previous system act arehetitc
are required for policy convergence and learning usingusats is  against the forest of user goals and partitions are spliteesied.

Fig. 2. lllustration of Partition Splitting

not practical. Hence, a user simulator is used for training. Each user act., is then duplicated and bound to each partitipn
Each partition will also have a set of dialog historigsassociated
3. AN IMPLEMENTATION with it. The combination of each, a,, and updated, forms a new

To demonstrate the practical application of the HIS modeipm- dialog hypothesié; whose beliefs are evaluated using (8).

plete working system has been built for the Tourist Infoiprat
Domain which can supply information about hotels, restaisia

bars and amenities in a (fictitious) town. Inputs and outgats

the dialog manager are in the form of dialog acts which con- {er
sist of an act type such as “inform”, “request’,etc. and ome o
more attribute value pairs. For example, an utterance ssi¢tida

like to find a Chinese restaurant on the east side of town” voul ~ Jii an—
get mapped by the semantic decoder into the user dialog ect “r
guest(restaurant,food=Chinese,area=east)".

. Ontology Rules Application Database
Observation I

Belief
State

I Summary Space

|
3.1. Partition Splitting ‘ e 3, —% : y—
The space of all user goals is described by a set of simpléogital Speaic 1| eorste) | Svaege | POy || “space”
rules of the form illustrated in Table 1. These rules desctie e heter !
hierarchical structure of the data and the specific valuesw¢den - = = — = = = — — — — — — — — ‘
be assigne_d tc_J terminal nodesSince non_—terminal r_10d_es can be Fig. 3. Overview of Prototype HIS Dialog Manager
expanded in different ways, node expansion rules (indichye—)
have an associated prior probability corresponding to #rétmn Once all dialog hypotheses have been evaluated and any du-
split probability P(p’|p) described above. plicates merged, the master belief stats mapped into summary

Partitions of user goal space are represented by a forestesf t spacef) and the nearest policy belief point is found. The associated
where each tree represents a single partition. This fofesees  summary space machine actiop, is then mapped back to master
is stored in such a way that no partition is duplicated andstire  space and the machine’s actual respomgeis output. The cycle
of the probability of all partitions is always unity. At théast of a  then repeats until the user’s goal is satisfied.
dialog, there is just one partition represented by a singb¢ mode .
with belief mass unity. Each incoming user act is matchednaga S-3: raining _ o
each partition in turn. If there is no match, the ontologyesuare  1raining follows the Q-learning approach described inisecg.3.
consulted and the system attempts to create a match by érgand Each policy iteration uses a batch size of 5000 dialogs, iwodnt
the tree. This expansion will result in partitions beingjtsmhd their ~ factor is0.95 andepsilon is held constant &.1. The reward func-
belief mass redistributed between the original partitiod the new  ion returns—1 per system turn anet20 if the system recommends a
partition as in equation (7). This is illustrated in Fig 2 ilish a  Venue that matches all the constraints in the user's goail trases,
partition representing a generic “venue” is split as theiltesf the the initial policy is random. A user simulator is used to gabe re-

user requesting a “bar”. The original “type” node had a phility sponses to system actions. It has two m_ain componem_seaGoaI
and aUser AgendaAt the start of each dialog, the goal is randomly

"

11t should be noted that apart from the database itself, tisene other  initialised with requests such as “name”, “addr”, “phoneitlacon-
application dependent data or code in the dialog manager. straints such as “type=restaurant”, “food=Chinese”, €t®e agenda
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4. CONCLUSIONS

This paper has outlined a new Hidden Information State (l|S)
proach to statistical dialog management which adapts thd B
formalism in order to scale to real world problems. The HIS ap
proach provides a number of potential advantages. It ritunge-
grates N-best recognition hypotheses and confidence nesasith-
out setting thresholds or requiring explicit strategiesdgploring
options. It is robust to recognition errors and because intams
multiple recognition hypotheses, it does not require efateodialog
strategies to recover from errors. For database enquigy/applica-
tions it is entirely application independent. Finally, lmgbing con-
versations and retraining the internal models, it shoulddpable of

Fig. 4. Average return for various user act error rates vs number chdaptively improving over time.

training dialogs

stores the dialog acts needed to ellicit this informatioa stack-like
structure which enables it to temporarily store actionsmdueother
action of higher priority needs to be issued first. This eeslthe
simulator to refer to previous dialog turns at a later poitgener-
ate a wide spread of realistic dialogs, the simulator reabesrever
possible with varying levels of patience and arbitrariness
Speech understanding errors are simulated at the dialégvatt
The user action is fed throughStramblemwhich uses a set of con-
fusion matrices to generate an N-best list of parsed retiogrtiy-
potheses with associated confidence scores at a given ateor r

3.4. Results

Fig. 4 shows the average return achieved by the HIS systeiif at d
fering user act error rates when tested against the usefegonas a
function of the number of dialogs used for training. As carséen
learning increases rapidly at first and then asymptotes. igften
error rates, learning is slower and the asymptotic retuwlnces. A
typical dialog containing a number of recognition errorshiswn in
Fig. 5. Initially, the system wrongly believes that the uselook-
ing for a hotel. Around turn 4, the systems belief in the seeged
for a hotel vs a restaurant is similar, it therefore asks ther tio
choose. However, the user’s decoded response is again @onbkig
so the system confirms again before proceeding. Meanwlile, ¢
fidence in “Russian food” has been accumulating and by tura 6,
request for an expensive restaurant serving Russian fabd tlom-
inant top-ranked hypothesis. So the system proceeds to aed@
ommendation.

S1 Hello, how can | help you?

Ul I'mlooking for a restaurant.

S2  You want a hotel? Whereabouts?
U2 | want arestaurant.

S3 Do you want a hotel?

U3 | want a restaurant.

S4 Do you want a hotel or a restaurant?
U4 A restaurant with Russian food.

S5 You want a restaurant?

U5 Yes, with Russian food.

S6  You want a restaurant serving Russian food?
U6 Yes, somewhere nice and expensive.
S7 The Siberian Tiger is very good.

U7 Ok, whereisit?

S7 It's on West Loop.

U7 Ok, thank you goodbye.

Fig. 5. Example Dialog (User Act Err Rate 15%)

A working prototype system has been implemented, traineld an
evaluated using a simulator and through informal live tegtiStart-
ing from a random policy, the system can learn a competitirag-s
egy without any manual intervention. Furthermore, theesysac-
cumulates evidence for each possible user goal over timkinma
it resilient to errors without explicit programming of ra@sy pro-
cedures. A user trial is planned for the fall as part of the ELkT
Project. The system will then be benchmarked against a beafted
system and an MDP-based system. We look forward to repdtiag
results of this trial in a future paper.
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