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Abstract

In a spoken dialog system, determining which action a machine should take in a given situation is a difficult problem
because automatic speech recognition is unreliable and hence the state of the conversation can never be known with cer-
tainty. Much of the research in spoken dialog systems centres on mitigating this uncertainty and recent work has focussed
on three largely disparate techniques: parallel dialog state hypotheses, local use of confidence scores, and automated plan-
ning. While in isolation each of these approaches can improve action selection, taken together they currently lack a unified
statistical framework that admits global optimization. In this paper we cast a spoken dialog system as a partially obser-
vable Markov decision process (POMDP). We show how this formulation unifies and extends existing techniques to form a
single principled framework. A number of illustrations are used to show qualitatively the potential benefits of POMDPs
compared to existing techniques, and empirical results from dialog simulations are presented which demonstrate significant
quantitative gains. Finally, some of the key challenges to advancing this method – in particular scalability – are briefly
outlined.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Spoken dialog systems (SDS) help people accomplish a task using spoken language. For example, a person
might use an SDS to buy a train ticket over the phone, to direct a robot to clean a bedroom, or to control a
music player in an automobile. Building SDSs is a challenging engineering problem in large part because auto-
matic speech recognition (ASR) and understanding technology are error-prone. More specifically, speech rec-
ognition accuracy is relatively good for constrained speech limited to, for example, digits, place-names, or
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short commands, but accuracy degrades rapidly as the domain language becomes less constrained. Further-
more, as spoken dialog systems become more complex, not only do the demands on the speech recognition
and understanding components increase, but also user behaviour becomes less predictable. Thus, as task com-
plexity increases, overall there is a rapid increase in uncertainty, and principled methods of dealing with this
uncertainty are needed in order to make progress in this research area.

As an illustration of the effects of speech recognition errors, consider the example conversation shown in
Table 1, taken from (Bohus and Rudnicky, 2002). The system shown here allows the user to take control
of the conversation wherever reasonably possible. In turn 3, the machine asks ‘‘What’s your full name?’’
and in turn 4, the user replies with their name, but is misrecognized as saying ‘‘Athens in Akron’’. Since
the machine does not insist on knowing the user’s name, it infers that the user is taking control of the conver-
sation and is asking about a flight. Hence, the system interprets ‘‘Athens in Akron’’ as the starting point of a
flight booking dialog. This choice of interpretation causes the whole conversation to go off track and it is not
until turn 13, nine turns later, that the conversation is progressing again.

This interaction illustrates the motivation for the three main approaches that have been developed in order
to minimize the effects of errors and uncertainty in a spoken dialog system.

First, systems can attempt to identify errors locally using a confidence score: when a recognition hypothesis
has a low confidence score, it can be ignored to reduce the risk of entering bad information into the dialog
state. In the example above, if ‘‘Athens in Akron’’ were associated with a poor confidence score, then it could
have been identified as an error and the system might have recovered sooner.

Second, accepting that misrecognitions will occur, their consequences can be difficult for human designers
to anticipate. Thus systems can perform automated planning to explore the effects of misrecognitions and
determine which sequence of actions are most useful in the long run. Consider turn 5 in the example above:
the handcrafted dialog manager chose to disambiguate ‘‘Athens’’, but automated planning might have
revealed that it was better in the long term to first confirm that the user really did say ‘‘Athens’’, even though
in the short term this might waste a turn.

Finally, accepting that some bad information will be entered into the dialog state maintained by the system,
it seems unwise to maintain just one hypothesis for the current dialog state. A more robust approach would
maintain parallel state hypotheses at each time-step. In turn 4 in the example above, the system could have
maintained a second hypothesis for the current state – for example, in which the user said their name but
was not understood. The system could have later exploited this information when a non-understanding hap-
pened in turn 7.

These three methods of coping with speech recognition errors – local use of confidence scores, automated
planning, and parallel dialog hypotheses – can lead to improved performance, and confidence scores in par-
ticular are now routinely used in deployed systems. However, these existing methods typically focus on just a
Table 1
Sample conversation with a spoken dialog system affected by misunderstandings in the CMU Communicator spoken dialog system, taken
from Bohus and Rudnicky (2002)

1 M Are you a registered user ?
2 U No I’m not. No [NO I’M NOT NO]
3 M What is your full name ?
4 U User Name [ATHENS IN AKRON]
5 M There is an Athens in Georgia and in Greece. Which destination did you want ?
6 U Neither [NEITHER]
7 M I’m sorry, I did not catch that. There is an Athens in Georgia and in Greece. Which destination did you want ?
8 U Georgia [GEORGIA]
9 M A flight from Athens . . . Where do you want to go ?

10 U Start over [START OVER]
11 M Do you really want to start over ?
12 U Yes [YES]
13 M What city are you leaving from ?
14 U Hamilton, Ontario [HILTON ONTARIO]
15 M . . .

U indicates a user turn and M indicates a machine turn. In turn 4 the user says their name (omitted for privacy reasons) but they are
misrecognized as saying ‘‘Athens in Akron’’. This single error then leads to a complete misalignment between the user and system.
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small part of the system and rely on the use of ad hoc parameter setting (for example, hand-tuned parameter
thresholds) and pre-programmed heuristics. Most seriously, when these techniques are combined in modern
systems, there is a lack of an overall statistical framework which can support global optimization and on-line
adaptation.

In this paper, we will argue that a partially observable Markov decision process (POMDP2) provides such a
framework. We will explain how a POMDP can be developed to encompass a complete dialog system, how a
POMDP serves as a basis for optimization, and how a POMDP can integrate uncertainty in the form of sta-
tistical distributions with heuristics in the form of manually specified rules. To illustrate the power of the
POMDP formalism, we will show how each of the three approaches above represents a special case of the
more general POMDP model. Further, we provide evidence of the potential benefits of POMDPs through
experimental results obtained from simulated dialogs. Finally, we address scalability and argue that whilst
the computational issues are certainly demanding, tractable implementations of POMDP-based dialog sys-
tems are feasible.

The paper is organized as follows. Section 2 begins by reviewing POMDPs and then shows how the state
space of a POMDP can be factored to represent a spoken dialog system in a way which explicitly represents
the major sources of uncertainty. Next Section 3 shows how each of the three techniques mentioned above –
parallel dialog hypotheses, local confidence scoring, and automated planning – are naturally subsumed by the
POMDP architecture. Section 4 discusses the advantages of POMDPs using a combination of illustrative dia-
logs and experimental simulation, including simulations with user models estimated from real dialog data.
Finally, Section 4.4 concludes by highlighting the key challenge of scalability and suggests two methods for
advancing POMDP-based spoken dialog systems.

2. Casting a spoken dialog system as a POMDP

In this section we will cast a spoken dialog system as a POMDP. We start by briefly reviewing POMDPs.
Then, we analyze the typical architecture of a spoken dialog system and identify the major sources of uncer-
tainty. Finally, we show how to represent a spoken dialog system as a POMDP. In this discussion extensive
use is made of influence diagrams and Bayesian inference – readers unfamiliar with these topics are referred to
texts such as (Jensen, 2001).

2.1. Review of POMDPs

Formally, a POMDP is defined as a tuple {S,A,T,R,O,Z,k,b0} where S is a set of states describing the
agent’s world; A is a set of actions that an agent may take; T defines a transition probability P(s 0js,a); R

defines the expected (immediate, real-valued) reward r(s,a); O is a set of observations the agent can receive
about the world; and Z defines an observation probability, P(o 0js 0,a); k is a geometric discount factor
0 6 k 6 1; and b0 is an initial belief state b0(s). A POMDP can be depicted as an influence diagram, as in Fig. 1.

The POMDP operates as follows. At each time-step, the world is in some unobserved state s 2 S. Since s is
not known exactly, a distribution over states is maintained called a ‘‘belief state,’’ b, with initial belief state b0.
We write b(s) to indicate the probability of being in a particular state s. Based on b, the machine selects an
action a 2 A, receives a reward r(s,a), and transitions to (unobserved) state s 0, where s 0 depends only on s

and a. The machine then receives an observation o 0 2 O which is dependent on s 0 and a. At each time-step,
the belief state distribution b is updated as follows:
2 Us
b0ðs0Þ ¼ pðs0jo0; a; bÞ ¼ pðo0js0; a; bÞpðs0ja; bÞ
pðo0ja; bÞ ¼ pðo0js0; aÞ

P
s2Spðs0ja; b; sÞpðsja; bÞ
pðo0ja; bÞ

¼ pðo0js0; aÞ
P

s2Spðs0ja; sÞbðsÞ
pðo0ja; bÞ : ð1Þ
ually read as ‘‘Pom D P’’.
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Fig. 1. Influence diagram representation of a POMDP. Circles represent random variables; squares represent decision nodes; and
diamonds represent utility nodes. Shaded circles indicate unobserved random variables, and un-shaded circles represent observed
variables. Solid directed arcs indicate causal effect and dashed directed arcs indicate that a distribution is used (and not the actual
unobserved value). The subscript RL indicates that actions are chosen using ‘‘Reinforcement learning,’’ i.e., with the objective of
maximizing the cumulative long-term reward.
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The numerator consists of the observation function Z, transition matrix T, and current belief state b. The
denominator is independent of s 0, and can be regarded as a normalization constant k; hence:
3 In
trainin

4 Tec
observ
is a us
b0ðs0Þ ¼ k � pðo0js0; aÞ
X
s2S

pðs0ja; sÞbðsÞ: ð2Þ
We refer to maintaining the value of b at each time-step as ‘‘belief monitoring.’’ The value b has the useful
property that it is a complete summary of the dialog history. More formally, for a given initial belief state
b0 and history {a1,o1,a2,o2, . . .}, b provides a proper sufficient statistic: b is Markovian with respect to b0

and {a1,o1,a2,o2, . . .}. Thus, in effect, the update expressed in Eq. (2) is considering all possible (hidden) state
transition histories when computing a new belief state, and planning algorithms need only consider b when
choosing actions.

As mentioned above, at each time-step, the agent receives reward rt. The cumulative, infinite-horizon, dis-
counted reward is called the return:
H ¼
X1
t¼0

ktrt; ð3Þ
where k is the geometric discount factor, 0 6 k 6 1. The goal of the machine is to choose actions in such a way
as to maximize the expected return E [H] – i.e., to construct a plan called a policy which indicates which actions
to take at each turn.3 In general, a policy p can be viewed as a mapping from belief state to action p(b) 2 A,
and an optimal policy p*(b) 2 A is one which maximizes E [H].

In theory every belief point b could map to an arbitrary action p(b), and for this reason finding optimal
policies for POMDPs is in general intractable. In practice, p*(b) rarely maps to an arbitrary action and rather
an optimal policy is a partitioning of belief space into a finite number of regions. Even so, exact algorithms
such as the Witness algorithm (Kaelbling et al., 1998) rarely scale to problems with more than about 10
actions, states, and observations.4 However, effective approximate solutions do exist. A review of POMDP
optimization techniques is beyond the scope of this work; however, it should be noted that a family of approx-
imate optimization techniques called point-based value iteration has been demonstrated to provide tractable
this work, we will assume that a planner has a model of the system dynamics – i.e., T, R, and Z are known or can be estimated from
g data. In other words, we will focus on POMDPs which use model-based learning, as opposed to experience-based learning.

hnically the method scales with the complexity of the optimal policy and not (necessarily) with the number of states, actions, and
ations, but in practice the complexity of the optimal policy cannot be predicted, and the number of states, actions, and observations
eful heuristic.
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Fig. 2. Belief space in a POMDP with two states, save and delete, which correspond to hidden user goals. At each time-step, the current
belief state is a point on this line segment. The ends of the line segment represent certainty in the current state. The belief point shown is the
initial belief state.
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solutions for a variety of real-world problems.5 Standard (exact) value iteration computes a so-called value
function V(b) which provides an estimate of the expected total reward that can be achieved from any point
b in belief space given some policy p. Value iteration is a recursive process which leads to an estimate of
V*(b), the value function corresponding to the optimal policy p*. Exact value iteration involves searching
the whole of belief space; however, point-based value iteration heuristically selects a small set of representative
belief points, and then iteratively applies value updates to just those points, achieving a significant speed-up
(Pineau et al., 2003; Spaan and Vlassis, 2005).

In general, value iteration methods for POMDPs produce a collection of n vectors tn(s) each of dimension-
ality jSj and an array of corresponding actions b(n). Each vector tn(s) indicates the (long-term) value of taking
a particular action b(n) 2 A in state s. By taking an expectation over belief space, we can find regions where
action b(n) is optimal – i.e., a policy can be produced from tn(s) and b(n) as
5 See
6 Th
pðbÞ ¼ bðarg max
n

X
s2S

tnðsÞbðsÞÞ: ð4Þ
Thus value iteration provides both a partitioning of belief space into regions corresponding to optimal actions
as well as the expected return of taking that action.

To illustrate how this POMDP framework is used in a spoken dialog system, an example will now be
presented in some detail. This example concerns a very simple voicemail application which although very
limited, nevertheless demonstrates the key properties of the POMDP approach. Later in the paper, we will
consider the various issues which arise when scaling up the POMDP framework to handle more sophisti-
cated applications.

In this example, users listen to voicemail messages and at the end of each message, they have two choices –
save or delete the message. We refer to these as the user’s goals and since the system does not a priori know
which goal the user desires, they are hidden goals. For the duration of the interaction relating to each message,
the user’s goal is fixed and the POMDP-based dialog manager is trying to guess which goal the user has. Fig. 2
shows a graphical depiction of belief space – since there are only two states, belief space can be shown as a line
segment. In this depiction, the ends of the segment (in general called ‘‘corners’’) represent certainty. For exam-
ple, b = (1,0) indicates certainty that s = save. Intermediate points represent varying degrees of certainty.

The machine has only three available actions: it can ask what the user wishes to do in order to infer his or
her current goal, or it can doSave or doDelete and move to the next message. When the user responds to a
question, it is decoded as either the observation save or delete.6 However, since speech recognition errors
can corrupt the user’s response, these observations cannot be used to deduce the user’s intent with certainty.
If the user says save then an error may occur with probability 0.2, whereas if the user says delete then an error
may occur with probability 0.3. Finally, since the user wants save more often than delete, the initial belief state

is set to indicate the prior (0.65, 0.35), and it is reset to this value after each doSave or doDelete action via the
transition function.

The machine receives a large positive reward (+5) for getting the user’s goal correct, a very large negative
reward (�20) for taking the action doDelete when the user wanted save(since the user may have lost important
information), and a smaller but still significant negative reward (�10) for taking the action doSave when the
user wanted delete (since the user can always delete the message later). There is also a small negative reward
Murphy (2000) for an overview of POMDP solution techniques.
e bar above save and delete indicates that these are observations – i.e., noisy, possibly erroneous indications of the user’s goal.



Table 2
Transition function p(s 0js,a) for the example voicemail spoken dialog POMDP

a s s 0

save delete

ask save 1 0
delete 0 1

doSave save 0.65 0.35
delete 0.65 0.35

doDelete save 0.65 0.35
delete 0.65 0.35

The state s indicates the user’s goal as each new voicemail message is encountered.

Table 3
Observation function p(o 0js 0,a) for the example voicemail application

a s0 o 0

save delete

ask save 0.8 0.2
delete 0.3 0.7

doSave save 0.5 0.5
delete 0.5 0.5

doDelete save 0.5 0.5
delete 0.5 0.5

Note that the observation o0 only conveys useful information following an ask action.

Table 4
Reward function r(s,a) for the example voicemail application

a s

save delete

ask �1 �1
doSave +5 �10
doDelete �20 +5

The values encode the dialog design criteria where it is assumed that deleting wanted messages should carry a higher penalty than saving
unwanted messages, and where time wasting by repeatedly asking questions should be discouraged.
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for taking the ask action (�1), since all else being equal the machine should try to make progress to its goal as
quickly as possible. The transition dynamics of the system are shown in Tables 2–4.7

For a POMDP problem of this size, it is possible to produce an exact solution and here we have used the
Witness algorithm (Kaelbling et al., 1998). Fig. 3 shows the optimal policy. In the regions of belief space close
to the corners (where certainty is high), the policy chooses doSave or doDelete; in the middle of belief space
(where certainty is low) it chooses to gather information with the ask action. Further, since the penalty for
wrongly choosing doDelete is worse than for wrongly choosing doSave, the doDelete region is smaller i.e.,
it requires more certainty than when the user’s goal is save.

Fig. 4 shows an example conversation between the user and a machine executing the optimal policy. At
each time-step, the machine action and the observation are used to update the belief state as in Eq. (2). Actions
are selected depending on the partition which contains the current belief state. The first response is misrecog-
nized as delete, moving the belief state towards the delete corner. However, since belief remains in the central
region where uncertainty is high, the machine continues to ask the user what to do. After two successive
7 Readers may recognize this as a variation of the Tiger problem cast into the spoken dialog domain (Cassandra et al., 1994).
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Fig. 3. Optimal policy for the example voicemail spoken dialog system POMDP.
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Fig. 4. Evolution of the belief state in the example voicemail spoken dialog system POMDP. The dashed lines show the partition policy,
given in Fig. 3. At each time-step, the point b is updated using Eq. (2). Note that a recognition error is made after the first ‘‘ask’’ action.
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(correct) save observations, the belief state moves into the doSave region, the message is saved and the belief
state transitions back to the prior state. The total reward for processing this message is +7.8

The key idea illustrated by this example is that the dialog system can never be certain of exactly what the
user intends. This is true in human–human dialogs, but it is particularly true in human–machine dialogs where
the existence of recognition errors greatly exacerbates the uncertainty. The sequence of machine actions dic-
tated by the optimal POMDP policy guarantees that when averaged over a large number of dialogs, no other
policy would achieve a greater reward. Hence, provided that the chosen reward function accurately reflects the
dialog design criteria, the POMDP framework provides a principled approach to spoken dialog system design
and optimization.

Although the voicemail example illustrates the general approach to representing a spoken dialog system
within the POMDP framework, it nevertheless sidesteps a number of important issues. In particular, models
of how the user’s goal evolves, how the user reacts, and how the speech recognition corrupts the user’s actions
need to be represented. In addition, some dialog history needs to be captured. To deal with this, the state space
must be factored to allow the user’s goal, the user’s intention and relevant dialog history to be separated.
8 For simplicity we have ignored the geometric discount factor in this calculation, which would reduce this figure slightly.
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2.2. A factored state-space representation for spoken dialog systems

The architecture of a spoken dialog system is shown in Fig. 5 (Young, 2000).9 In this depiction, the user has
some internal state Su which corresponds to a goal that a user is trying to accomplish. Also, from the user’s
viewpoint, the dialog history has state Sd which indicates, for example, what the user has said so far, what the
machine has confirmed, etc. Based on the user’s goal prior to each turn, the user takes some communicative

action (also called intention) Au. Au might correspond to a speech act, dialog act, or a parse structure. The user
renders Au as an audio signal Yu by speaking. The speech recognition and language understanding component
then takes the audio signal Yu and produces two outputs: first, eAu, which is a noisy estimate of the user’s action

Au; and C which represents a confidence score which provides an indication of the reliability of the recognition
result eAu.10 eAu and C are then passed to the dialog model, which maintains an internal state Sm which tracks
(from the machine’s perspective) the state of the conversation.

Sm is then passed to the dialog manager, which decides what action Am the machine should take. Am is con-
verted to an audio response Ym by the language generation and text-to-speech component, and it is also passed
back to the dialog model so that Sm may track both user and machine actions. The user listens to Ym, attempts
to recover Am, and as a result might update their goal state Su and their interpretation of the dialog history Sd.
The cycle then repeats.

One key reason why spoken dialog systems are challenging to build is that eAu will contain recognition
errors: i.e., it is frequently the case that eAu 6¼ Au. As a result, the user’s action Au, the user’s state Su, and
the dialog history Sd are not directly observable and can never be known to the system with certainty. How-
ever, eAu and C provide evidence from which Au, Su, and Sd can be inferred.

We are now ready to cast a spoken dialog system as a POMDP. First, the machine action Am will be cast as
the POMDP action A. In a POMDP, the POMDP state S expresses the unobserved state of the world and the
above analysis suggests that this unobserved state can naturally be factored into three distinct components: the
user’s goal Su, the user’s action Au, and the dialog history Sd. Hence, the factored POMDP state S is defined as
9 Th
the rec
survey
10 In

extract
s ¼ ðsu; au; sdÞ ð5Þ

and the system state Sm becomes the belief state b over su, au, and sd:
sm ¼ bðsÞ ¼ bðsu; au; sdÞ: ð6Þ

The noisy recognition result eAu and the confidence score C will then be cast as the SDS-POMDP observation
O:
is figure makes several simplifications but conveys the concepts important to present purposes. Readers interested in the details of
ognition, understanding, generation, and text-to-speech components are referred to texts such as Jurafsky and Martin (2000) or
articles such as Glass (1999).

practice estimation of eAu is usually performed in two stages – first a string of words is produced, then these words are parsed toeAu. This detail is not important for the purposes of this paper.
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o ¼ ð~au; cÞ: ð7Þ

We will henceforth refer to this factored form as the SDS-POMDP.

To compute the transition function and observation function, a few intuitive assumptions will be made.
First, substituting (5) into the transition function and decomposing, we obtain
pðs0js; aÞ ¼ pðs0u; s0d ; a0ujsu; sd ; au; amÞ; ð8Þ
pðs0js; aÞ ¼ pðs0ujsu; sd ; au; amÞpða0ujs0u; su; sd ; au; amÞpðs0d ja0u; s0u; su; sd ; au; amÞ: ð9Þ
We then assume conditional independence as follows. The first term in (9), which we call the user goal model,
indicates how the user’s goal changes (or does not change) at each time-step. We assume that the user’s goal at
each time-step depends only on the previous goal and the machine’s action:
pðs0ujsu; sd ; au; amÞ ¼ pðs0ujsu; amÞ: ð10Þ

The second term, which we call the user action model, indicates what actions the user is likely to take at each
time-step. We assume the user’s action depends on their (current) goal and the preceding machine action:
pða0ujs0u; su; sd ; au; amÞ ¼ pða0ujs0u; amÞ: ð11Þ

The third term, which we call the dialog history model, captures relevant historical information about the dia-
log. We assume this component has access to the most recent value of all variables:
pðs0d ja0u; s0u; su; sd ; au; amÞ ¼ pðs0d ja0u; s0u; sd ; amÞ: ð12Þ

Substituting (10)–(12) into (9) then gives the SDS-POMDP transition function:
pðs0js; aÞ ¼ pðs0ujsu; amÞpða0ujs0u; amÞpðs0d ja0u; s0u; sd ; amÞ: ð13Þ

From (5) and (7), the observation function of the SDS-POMDP becomes
pðo0js0; aÞ ¼ pð~a0u; c0js0u; s0d ; a0u; amÞ: ð14Þ

The observation function accounts for the corruption introduced by the speech recognition and language
understanding process, so we assume that the observation depends only on the action taken by the user:11
pð~a0u; c0js0u; s0d ; a0u; amÞ ¼ pð~a0u; c0ja0uÞ: ð15Þ

The two Eqs. (13) and (15) represent a statistical model of a spoken dialog system. The transition function
allows future behaviour to be predicted and the observation function provides the means for inferring the hid-
den system state from observations. The models themselves have to be estimated of course. The user goal
model and the user action model (the first two components of Eq. (13)) will typically be estimated from a cor-
pus of annotated interactions. For example, conditional distributions over user dialog acts can be estimated
given a machine dialog act and a user goal. To appropriately cover all of the conditions, the corpus would
need to include variability in the strategy employed by the machine – for example, using a Wizard-of-Oz
framework with a simulated ASR channel (Stuttle et al., 2004).

The dialog history model can either be estimated from data, handcrafted, or replaced by a deterministic
function representing information state update rules as in for example (Larsson and Traum, 2000). Thus
the SDS-POMDP system dynamics enable both probabilities estimated from corpora and handcrafted heuris-
tics to be incorporated. This is a very important aspect of the SDS-POMDP framework in that it allows deter-
ministic programming to be incorporated in a natural way.

The observation function can be estimated from a corpus or derived analytically using a phonetic confusion
matrix, language model, etc. (Deng et al., 2003; Stuttle et al., 2004).

The reward function is not specified explicitly since it depends on the design objectives of the target system.
The reward function is well-suited to encoding a variety of objectives. Expressing simple, single optimization
metrics is straightforward – for example, the chances of successful closure could be maximized by setting a
positive reward for successful closure, and a zero reward for information gathering actions. Alternatively,
is implicitly assumes that the same recognition grammar is always used. For systems where the grammar is switched at each turn, the
ence on am should be retained.



402 J.D. Williams, S. Young / Computer Speech and Language 21 (2007) 393–422
the number of turns to completion could be minimized by setting a uniform negative reward for all informa-
tion gathering actions, and a zero reward for closure actions.

Of course in a spoken dialog system, multiple competing criteria are important, and often a system should
strive to maximize the chances of successful closure while also minimizing the number of turns required to do
so. To combine multiple optimization criteria into one metric, weightings between the criteria are needed, and
in a POMDP these weightings are naturally expressed in the reward function. For example, the reward func-
tion can include components for successful and unsuccessful closure, abandonment, and per-turn penalties,
and the ratios between these reward components specifies the relative cost of longer dialogs, user abandon-
ment, unsuccessful closure, etc. Moreover, the per-turn penalties can be used to encourage dialog ‘‘appropri-
ateness’’, for example by setting a higher per-turn penalty for confirming an item which has not been discussed
yet.

Finally, given the definitions above, the belief state can be updated at each time-step by substituting Eqs.
(13) and (15) into (2), and simplifying:
Table
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The summations over s = (su,au, sd) predict a new distribution for s 0 based on the previous values weighted by
the previous belief. For each assumed value of a0u, the leading terms outside the summation scale the updated
belief by the probability of the observation given a0u and the probability that the user would utter a0u given the
user’s goal and the last machine output. Fig. 6 shows the influence diagram depiction of the SDS-POMDP,
which clearly shows these dependencies. This figure will also be useful later for making comparisons between
the SDS-POMDP representation and other approaches to dialog management.

For ease of reference, Table 5 summarises the expansion of terms in a standard POMDP to give the SDS-
POMDP needed to characterize a spoken dialog system.
5
ary of SDS-POMDP components

Standard POMDP SDS-POMDP

et S (Su,Au,Sd)
ation set O ðeAu;CÞ
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Influence diagram representation of the SDS-POMDP model. The dashed box indicates the composite state s which is comprised of
omponents, su, sd, and au (see text for a complete definition of variables). The dashed line from the dashed box to am indicates that
ion am is a function of the belief state sm = b(su,au, sd).
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Fig. 7. View of a spoken dialog system as a greedy decision theoretic process. Action Am is selected to maximize the expected immediately
utility R, indicated by the subscript MEU (‘‘Maximum Expected Utility’’). The dashed line indicates that Am is a function of the
distribution over Sm, rather than its actual (unobserved) value.
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3. POMDPs and existing architectures

As described in the previous section, the SDS-POMDP model allows the dialog management problem to be
cast in a statistical framework. It is therefore particularly well-suited to coping with the uncertainty inherent in
spoken dialog systems. In this section, three existing techniques for handling uncertainty in an SDS will be
reviewed: maintaining multiple dialog states, local use of confidence scores, and automated planning. In each
case, it will be shown that the SDS-POMDP model provides an equivalent solution but in a more principled
way which admits global parameter optimization from data. Indeed, it will be shown that each of these exist-
ing approaches represents a simplification or special case of the SDS-POMDP model.

3.1. POMDPs and parallel state hypotheses

Traditional dialog management schemes maintain (exactly) one dialog state sm 2 Sm, and when a recogni-
tion error is made, sm may contain erroneous information. Although designers have developed ad hoc tech-
niques to avoid dialog breakdowns such as allowing a user to ‘‘undo’’ system mistakes, the desire for an
inherently robust approach remains. A natural approach to coping with erroneous evidence is to maintain
multiple hypotheses for the correct dialog state. Similar to a beam search in a hidden Markov model, main-
taining many possible dialog states allows a system to explore many paths through a dialog, always allowing
for the possibility that each piece of evidence is an error. In this section, we briefly review two techniques for
maintaining multiple dialog hypotheses: greedy decision theoretic approaches and an M-Best list.

Greedy decision theoretic approaches construct an influence diagram as shown in Fig. 7. The structure of
the network is identical to a POMDP: the system state Sm is a belief state over hidden variables, such as su, au,
and sd. The dashed line in the figure from Sm to Am indicates that Am is chosen based on the distribution over
Sm rather than its actual (unobserved) value. As with a POMDP, a reward (also called a utility) function is
used to select actions – however, greedy decision theoretic approaches differ from a POMDP in how the reward
is used to selection actions. Unlike a POMDP, in which machine actions are chosen to maximize the cumu-
lative long-term reward, greedy decision theoretic approaches choose the action which maximizes the immedi-

ate reward.12 In other words, the POMDP is performing planning, whereas the greedy decision theoretic
approach is not. As such, action selection is certainly tractable for real-world dialog problems, and greedy
decision theoretic approaches have been successfully demonstrated in real working dialog systems (Horvitz
and Paek, 2000; Paek et al., 2000).

However, whether the dialog manager explicitly performs planning or not, a successful dialog must make
progress to some long-term goal. In greedy decision theoretic approaches, a system will make long-term
progress toward a goal only if the reward metric has been carefully crafted. Unfortunately, crafting a reward
12 As such, a greedy decision theoretic method could also be classified as an ‘‘automatic action selection’’ method – the focus here is
maintaining multiple dialog state hypotheses.



Sm

Timestep n Timestep n+1 

Sm

Am Am

HC HC

Sm* Sm*
DET DET

C, Au
~

C, Au
~

C, Au
~

C, Au
~

Fig. 8. Influence diagram showing multiple state hypotheses. S�m takes the value of the state Sm with the highest probability mass at each
time-step. The superscript DET indicates that the variable S�m is not random but is rather a deterministic function of its inputs.
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measure which accomplishes this is a non-trivial problem and in practice encouraging a system to make pro-
gress to long-term goals inevitably requires some handcrafting resulting in the need for ad hoc iterative tuning.

An alternative to the greedy decision theoretic approach is to still maintain multiple dialog hypotheses but
select actions by considering only the top dialog hypothesis, using a handcrafted policy as in conventional heu-
ristic SDS design practice. This approach is referred to as the M-Best list approximation, and it is shown
graphically in Fig. 8. In this figure, the superscript DET indicates that the node S�m is not random but rather
takes on a deterministic value for known inputs, and here S�m is set to the state Sm with the most probability
mass. The M-best list approach has been used to build real dialog systems and shown to give performance
gains relative to an equivalent single-state system (Higashinaka et al., 2003).13

The M-best approximation can be viewed as a POMDP in which action selection is handcrafted, and based
only on the most likely dialog state. When cast in these terms, it is clear that an M-best approximation makes
use of only a fraction of the available state information since considering only the top hypothesis may ignore
important information in the alternative hypotheses such as whether the next-best is very similar or very dif-
ferent to the best hypothesis. Hence, even setting aside the use of ad hoc handcrafted policies, the M-best list

approach is clearly sub-optimal. In contrast, since the SDS-POMDP constructs a policy which covers belief
space, it naturally considers all alternative hypotheses.

3.2. POMDPs and local use of confidence scores

Most speech recognition engines annotate their output word hypotheses eW with confidence scores pð eW jY uÞ
and modern systems can compute this measure quite accurately (Evermann and Woodland, 2000; Kemp and
Schaff, 1997; Moreno et al., 2001). Subsequent processing in the speech understanding components will often
augment this low level acoustic confidence using extra features such as parse scores, prosodic features, dialog
state, etc. (Bohus et al., 2001; Gabsdil and Lemon, 2004; Hirschberg et al., 2001; Krahmer et al., 1999, 2001;
Litman et al., 2001; Pao et al., 1998).

For the purposes of a dialog system, the essential point of a confidence score is that it provides an overall
indication of the reliability of the hypothesized user dialog act ãu. Traditional systems typically incorporate
confidence scores by specifying a confidence threshold cthresh which implements an accept/reject decision for
an ãu: if c > cthresh then ãu is deemed reliable and accepted; otherwise it is deemed unreliable and discarded.
In practice any value of cthresh will still result in classification errors, so cthresh can be viewed as implementing
a trade-off between the cost of a false-negative (rejecting an accurate ãu) and the cost of a false-positive
(accepting an erroneous ãu).

Fig. 9 shows how a spoken dialog system with a confidence score can be expressed in an influence diagram.
Ac is a decision node that indicates the ‘‘confidence bucket’’ or action relative to the confidence score – for
example, {hi, low} or {accept, reject}. Ac is typically trained using a corpus of examples and supervised learn-
13 This work makes two further approximations – first, for computational efficiency, a ‘‘beam’’ of approximately 30 states is maintained
rather than all possible states. Second, a ‘‘scoring’’ mechanism is used as an approximation to a proper probability score.
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Fig. 9. Influence diagram showing how a confidence score is typically incorporated into a spoken dialog system. Node C is a random
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ing, indicated by the subscript SL on the node Ac.
14 This ‘‘confidence bucket’’ is then incorporated into the

dialog state using handcrafted update rules – i.e., S0m ¼ f ðSm;Am;A
0
c;
eA0uÞ. As above, the superscript DET on

the node Sm indicates that Sm takes on a deterministic value – i.e., for a known set of inputs, it yields exactly
one output. Based on the updated dialog state Sm, the policy determines which action to take. The dialog man-
ager is implemented with handcrafted rules, indicated by the subscript HC on the Am decision node.

Fig. 9 also highlights key differences between a traditional system with a confidence score and the SDS-
POMDP model. In both models, eAu and C are regarded as observed random variables. However, in tradi-
tional approaches, a hard and coarse decision is made about the validity of eAu via the decision Ac. The decision
implemented in Ac is non-trivial since there is no principled way of setting the confidence threshold cthresh. In
practice a developer will look at expected accept/reject figures and use intuition. A slightly more structured
approach would attempt to assign costs to various outcomes (e.g., cost of a false-accept, cost of a false reject,
etc.) and choose a threshold accordingly. However, these costs are specified in immediate terms, whereas in
practice the decisions have long-term effects (e.g., subsequent corrections) which are difficult to quantify,
and which vary depending on context. Indeed, when long-term costs are properly considered, there is evidence
that values for optimal confidence thresholds are not at all intuitive: one recent study found that for many
interactions, the optimal confidence threshold was zero – i.e., any recognition hypothesis, no matter how
poorly scored, should be accepted (Bohus and Rudnicky, 2005b).

By contrast, the SDS-POMDP is a generative model in which confidence score is modelled as a continuous
observed random variables. Note how in Fig. 9, the confidence score is viewed as a functional input, whereas
in the POMDP (Fig. 6), it is viewed as an observed output from a distribution. In this way, the SDS-POMDP
never makes hard accept/reject decisions about evidence it receives, but rather uses the confidence score to
perform inference over all possible user actions Au. Further, the explicit machine dialog state Sm used in tra-
ditional approaches is challenged to maintain a meaningful confidence score history since typically if a value ofeAu is rejected, that information is discarded.15 By contrast, the SDS-POMDP aggregates all information over
time including conflicting evidence via a belief state, properly accounting for the reliability of each observation
in cumulative terms. Finally, whereas accept/reject decisions in a traditional system are taken based on local
notions (often human intuitions) of utility, in the SDS-POMDP actions are selected based on expected long-
term reward – note how Fig. 6 explicitly includes a reward component, absent from Fig. 9.

In summary, local use of confidence scores in traditional handcrafted SDSs does add useful information,
but acting on this information in a way which serves long-term goals is non-trivial. A traditional SDS with
a confidence score can be viewed as an SDS-POMDP with a number of simplifications: one dialog state is
maintained rather than many; accept/reject decisions are used in place of parallel dialog hypotheses; and
actions are selected based on a handcrafted strategy rather than selected to maximize a long-term reward
metric.
14 Ac could also be handcrafted – the key point that confidence score is quantized.
15 A small body of work has attempted to identify ‘‘good dialogs’’ by looking at features over multiple turns, but the classification scheme –

good dialog vs. bad dialog – is even coarser than accept/reject decisions (Litman and Pan, 2000; Langkilde et al., 1999).
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3.3. POMDPs and automated action selection

Choosing which action am a spoken dialog system should take in a given situation is a difficult task since it
is not always obvious what the long-term effect of each action will be. Handcrafting dialog strategies can lead
to unforeseen dialog situations, requiring expensive iterative testing to build good systems. Such problems
have prompted researchers to investigate techniques for choosing actions automatically and in this section,
the two main approaches to automatic action selection will be considered: supervised learning, and Markov
decision processes.

As illustrated graphically in Fig. 10, supervised learning attempts to estimate a direct mapping from
machine state Sm to action Am given a corpus of training examples. It can be thought of as a simplification
of the SDS-POMDP model in which a single state is maintained, and in which actions are learnt from a cor-
pus. Setting aside the limitations of maintaining just one dialog state and the lack of explicit forward planning,
using supervised learning to create a dialog policy is problematic since collecting a suitable training corpus is
very difficult for three reasons.

Firstly, using human–human conversation data is not appropriate because it does not contain the same dis-
tribution of understanding errors, and because human–human turn-taking is much richer than human–
machine dialog. As a result, human–machine dialog exhibits very different traits than human–human dialog
(Doran et al., 2001; Moore and Browning, 1992). Secondly, while it would be possible to use a corpus collected
from an existing spoken dialog system, supervised learning would simply learn to approximate the policy used
by that spoken dialog system and an overall performance improvement would therefore be unlikely. Thirdly, a
corpus could be collected for the purpose, for example, by running Wizard-of-Oz style dialogs in which the
wizard is required to select from a list of possible actions at each step (Bohus and Rudnicky, 2005a; Lane
et al., 2004) or encouraged to pursue more free-form interactions (Skantze, 2003; Williams and Young,
2004). However, in general such collections are very costly, and tend to be orders of magnitude too small
to support robust estimation of generalized action selection.

Fully observable Markov decision processes (usually just called Markov decision processes, or MDPs) take
a very different approach to automated action selection. As their name implies, a Markov decision process is a
simplification of a POMDP in which the state is fully observable. This simplification is shown graphically in
Fig. 11. In an MDP, eAu is again regarded as a random observed variable and S0m is a deterministic function of
Sm, Am, eA0u, and A0c. Since at a given state sm a host of possible observations eAu are possible, planning is per-
formed using a transition function – i.e. P ðs0mjsm; amÞ. Like POMDPs, MDPs choose actions to maximize a
long-term cumulative sum of rewards: i.e., they perform planning. Unlike POMDPs, the current state in an
MDP is known, so a policy is expressed directly as a function of state s: p(s) 2 A. This representation is dis-
crete (a mapping from discrete states to discrete actions), and as a result, MDPs are usually regarded as a more
tractable formalism than POMDPs. Indeed, MDPs enjoy a rich literature of well-understood optimization
techniques and have been applied to numerous real-world problems (Sutton and Barto, 1998).
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Fig. 10. Supervised learning for action selection. The node Am has been trained using supervised learning on a corpus of dialogs (indicated
with the SL subscript). The DET superscript on Sm indicates that this node is deterministic.
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By allowing designers to specify rewards for desired and undesired outcomes (e.g., successfully completing a
task, a caller hanging up, etc.) without specifying explicitly how to achieve each required goal, much of the
tedious ‘‘handcrafting’’ of dialog design is avoided. Moreover, unlike the supervised learning approach to
action selection, MDPs make principled decisions about the long-term effects of actions, and the value of this
approach has been demonstrated in a number of research systems. For example, in the ATIS Air Travel
domain, Levin et al. constructed a system to optimize the costs of querying the user to restrict (or broaden)
their flight search, the costs of presenting too many (or too few) flight options, and the costs of accessing a
database (Levin and Pieraccini, 1997; Levin et al., 1998, 2000). In addition, researchers have sought to find
optimal initiative, information presentation, and confirmation styles in real dialog systems (Singh et al.,
2002; Walker et al., 1998). MDP-based spoken dialog systems have also given rise to a host of work in user
modelling and novel training/optimization techniques (Denecke et al., 2004; Goddeau and Pineau, 2000; Hen-
derson et al., 2005; Pietquin, 2004; Pietquin and Renals, 2002; Scheffler and Young, 2002).

A key weakness of MDPs is that they assume that the current state of the world is known exactly and this
assumption is completely unfounded in the presence of recognition errors. The impact of this becomes clear
when the MDP transition function is calculated:16
16 In
P ðs0mjsm; amÞ ¼
X

~a0u

P ð~a0ujsm; amÞP ðs0mjsm; am; ~a0uÞ: ð17Þ
To compute the transition function properly, an estimate of P ð~aujsm; amÞ is required, but in reality eAu depends
critically (via Au) on Su. Dialog designers try to ensure that Sm closely models Su, but as errors are introduced
and the two models diverge, the effects of the dependence of eAu on a hidden variable increasingly violate the Mar-
kov assumption expressed in P ðs0mjsm; amÞ, compromising the ability of the MDP to produce good policies. While
there exist sophisticated learning techniques (such as eligibility traces) which attempt to partially overcome the
fact that the user’s state is not fully observable (Scheffler and Young, 2002), in simple terms, as speech recognition
errors become more prevalent, theory predicts that POMDPs will perform better than MDPs by an increasing
margin. As will be shown below, the results of simulation studies support this theoretical prediction.

In summary, from a theoretical standpoint, maintaining multiple dialog hypotheses, local use of confidence
scores, and automated planning can all be viewed as special cases or simplifications of a POMDP. Of course,
contemporary spoken dialogue systems may employ more than one of these techniques, but a POMDP is
unique in providing a unified statistical framework that supports global optimization. For example, an
MDP may include a confidence bucket in its state space, but there is no straightforward way to search for
optimal confidence threshold settings (i.e., those which maximize expected return), save a brute-force search.
Further, some combinations of these techniques have only been demonstrated with a POMDP – for example,
as far as the authors are aware, the only systems in the literature which both maintain multiple hypotheses for
the dialog state and perform forward planning are POMDPs.
this calculation, a0c has been omitted for clarity.
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In the next section, we illustrate the benefits of these theoretical advantages concretely through example
dialogs and experimental simulations.

4. Empirical support for the SDS-POMDP framework

Section 2 has shown how POMDPs can be viewed as a principled theoretical approach to dialog manage-
ment under uncertainty and Section 3 has demonstrated that existing approaches to handling uncertainty are
subsumed and generalized by the SDS-POMDP framework. In this section, the practical advantages of util-
ising the SDS-POMDP framework are demonstrated through example interactions and simulation
experiments.

4.1. Benefits of parallel state hypotheses

A central claim of this paper is that because POMDPs maintain parallel dialog state hypotheses, they are
able to cope better with speech recognition errors. In this section, we will first discuss how multiple dialog
hypotheses add robustness to speech recognition errors. In doing so, we will also explain how the SDS-
POMDP model takes proper account of a user model.

To begin illustrating this claim, consider a spoken dialog system with no confidence scoring and which
makes speech recognition errors with a fixed error rate. For this example, which is in the pizza ordering
domain, it is assumed that all cooperative user actions are equally likely: i.e., there is no effect of a user model.
An example conversation with such a system is shown in Fig. 12. In this figure, the first column shows
M: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]

Sml Med Lrg

bb

M: Ok, what toppings?
U: A small pepperoni

[a small pepperoni]

M: And what type of crust?
U: Uh just normal

[large normal]

Sml Med

b

Lrg

b

Sml Med

b

Lrg

b

Sml Med

b

Lr

b

Lrg

order: {
size: <empty>
…

}

order: {
size: small
…

}

order: {
size: small
…

}

order: {
size: large [?]
…

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

Fig. 12. Example conversation with a spoken dialog system illustrating the benefit of maintaining multiple dialog state hypotheses. This
example is in the pizza ordering domain. The left column shows the machine and user utterances, and the recognition results from the
user’s utterance is shown in brackets. The centre column shows a portion of the POMDP belief state; b represents the belief over a
component of the user’s goal (pizza size). The right-hand column shows a typical frame-based method which is also tracking this
component of the user’s goal. Note that a speech recognition error is made in the last turn – this causes the traditional method to absorb a
piece of bad information, whereas the POMDP belief state is more robust. In this example no account is taken of which user actions are
more or less likely, or of confidence score – see below for illustrations of these elements.
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interactions between the user and the machine. Text in brackets shows the recognized text (i.e., eAu). The mid-
dle column shows a portion of a POMDP representation of the user’s goal. The last column shows how a tra-
ditional dialog model might track this same portion of the dialog state with a frame-based representation.

This conversation illustrates how multiple dialog hypotheses are more robust to errors by properly account-
ing for conflicting evidence. In this example, the frame-based representation must choose whether to change its
value for the size field or ignore new evidence; by contrast, the POMDP easily accounts for conflicting evi-
dence by shifting belief mass. Intuitively, a POMDP naturally implements a ‘‘best two out of three’’ strategy.

A POMDP is further improved with the addition of a user model which indicates how a user’s goal Su

changes over time, and what actions Au the user is likely to take in a given situation. For example, consider
the dialog shown in Fig. 13. In this figure, a user model informs the likelihood of each recognition hypothesiseAu given Su and Am.

In this example, the machine asks for the value of one slot, and receives a reply. The system then asks for
the value of a second slot, and receives a value for that slot and an inconsistent value for the first slot.

In the traditional frame-based dialog manager, it is unclear how this evidence should be incorporated –
should the new information replace the old information, or should it be ignored? If the frame is extended
to allow conflicts, how can they be resolved? Finally, how can the fact that the new evidence is less likely than
the initial evidence be incorporated? By contrast, in the SDS-POMDP the belief state update is scaled by the
likelihood predicted by the user model. In other words, the POMDP takes minimal (but non-zero) account of
very unlikely user actions it observes, and maximal account of very likely actions it observes.

To test these intuitions experimentally, a test-bed dialog simulation experiment was created (Williams et al.,
2005a). The goal of the experiment was to quantify the benefits of multiple dialog hypotheses and the embed-
ded user model, and explore the effects of different speech recognition errors rates. This assessment is made by
comparing the performance of a POMDP to an MDP which (as described in Section 3.3) does not maintain
multiple hypotheses.

The test-bed simulation is in the travel domain. A simulated user is trying to buy a ticket to travel from one
city to another city. The machine asks the user a series of questions, and then ‘‘submits’’ the ticket purchase
request, ending the dialog. The machine may also choose to ‘‘fail,’’ abandoning the dialog. To make the sys-
M: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]

Sml Med Lrg

b

M: And what type of crust?
U: Uh just normal

[large normal]

Sml Med

b

Lrg

Sml Med

b

Lrg

order: {
size: <empty>
…

}

order: {
size: small
…

}

order: {
size: large [?]
…

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

Fig. 13. Example conversation with a spoken dialog system illustrating the benefit of an embedded user model. In the POMDP, for the
first recognition, the observed user’s response is very likely according to the user model. The result is a large shift in belief mass toward the
Sml value. In the second recognition, providing information about the size is predicted as being less likely; as a result, the observed
response Lrg (which happens to be a speech recognition error) is given less weight, and the final POMDP belief state has more mass on Sml

than Lrg. By contrast, the traditional method must choose whether to update the state with Sml or Lrg.



Table 6
Extracts from the handcrafted user model employed in simulation experiments

am s0u Description a0u pða0ujs0u; amÞ
greet From x to y User was not paying attention null 0.100

User says both places from-x-to-y 0.540
User says just ‘‘from’’ place from-x 0.180
User says just ‘‘to’’ place to-y 0.180
All other user actions (All others) 0.000

ask-from From x to y User was not paying attention null 0.100
User says just the name of the place x 0.585
User says the name of the place
preceded by ‘‘from’’

from-x 0.225

User says both places from-x-to-y 0.090
All other user actions (All others) 0.000

confirm-to-y From x to y (NB – the system
has the right hypothesis)

User was not paying attention null 0.100
User says just ‘‘yes’’ yes 0.765
User says the item that was being confirmed y 0.101
User says the item being confirmed,
with the ‘‘to’’ preposition

to-y 0.034

All other user actions (All others) 0.000
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tem relatively straightforward to optimize, there are just three cities in the test-bed problem. The machine has
16 actions available, including greet, ask-from/ask-to, confirm-to-x/confirm-from-x, submit-x-y, and fail. The
user’s goal specifies the user’s desired itinerary, and the dialog history sd indicates (from the user’s perspective)
whether the from place and to place have not been specified, are unconfirmed, or are confirmed. The user’s
action and the speech recognition result are drawn from the set x, from-x, to-x, from-x-to-y, yes, no, and null,
where in all cases x and y indicate cities. These state components yield a total of 1945 states.

In the test-bed problem the user has a fixed goal for the duration of the dialog, and we define the user goal

model accordingly. We define the user action model to include a variable set of responses – for example, the
user may respond to ask-to/ask-from with x, to-x/from-x, or from-x-to-y. The probabilities in the user action
model were chosen such that the user provides cooperative but varied responses, and sometimes does not
respond at all. The probabilities were handcrafted, selected based on experience performing usability testing
with slot-filling dialog systems. A portion of the user model parameters is given in Table 6.

We define the observation function to encode the probability of making a speech recognition error to be
perr, and define the observation function as
17 Fo
pð~a0uja0uÞ ¼
1� perr if ~a0u ¼ a0u;

perr

jAuj�1
if ~a0u 6¼ a0u:

(
ð18Þ
Below we will vary perr to explore the effects of speech recognition errors.
The reward measure includes components for both task completion and dialog ‘‘appropriateness’’ and

reflects the intuition that behaving inappropriately or even abandoning a hopeless conversation early are both
less severe than submitting the user’s goal wrong. The reward assigns �3 for confirming a field before it has
been referenced by the user; �5 for taking the fail action; +10 or �10 for taking the submit-x-y action when
the user’s goal is (x,y) or not, respectively; and -1 otherwise. This reward function expresses how trade-offs
should be made between the system’s competing objectives of speed and accuracy – for example, this reward
function indicates that a dialog which requires 15 turns to arrive at the correct answer (and receives
�1 Æ 15 + 10 = �5) obtains the same reward as one in which the system immediately abandons the interaction
via the fail action (and receives �5). Thus if the planner determines that successful completion would require
more than 15 turns, it will instead choose to immediately abandon the conversation and not waste the user’s
time.17
r clarity, this illustration has assumed that the discount factor c is equal to 1.



Table 7
The 11 MDP states used in the test-bed simulation

List of MDP states

u-u o-u c-u
u-o o-o c-o
u-c o-c c-c
dialog-start dialog-end

In the items of the form x–y, the first item refers to the from slot, and the second item refers to the to slot. u indicates unknown; o indicates
observed but not confirmed; c indicates confirmed.
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POMDP optimization was performed with a variant of point-based value iteration called Perseus (Spaan
and Vlassis, 2005).

An MDP was constructed to assess performance of a model which does not track multiple dialog states,
and which does not make use of an explicit user model. The MDP was patterned on systems in the literature,
for example (Pietquin, 2004). The MDP was trained and evaluated through interaction with a model of the
environment, which was formed from the POMDP transition, observation, and reward functions. This model
of the environment takes an action from the MDP as input, and emits an observation and a reward to the
MDP as output.

The MDP state contains components for each field which reflect whether, from the standpoint of the

machine, a value has not been observed, a value has been observed but not confirmed, or a value has been
confirmed. Two additional states – dialog-start and dialog-end – which were also in the POMDP state space,
are included in the MDP state space for a total of 11 MDP states, shown in Table 7. The MDP was optimized
using Watkins Q-Learning (Watkins, 1989).

Fig. 14 shows the average return (i.e. total cumulative reward) for the POMDP and MDP solutions vs. the
recognition error rate perr ranging from 0.00 to 0.65. The (negligible) error bars for the MDP show the 95%
confidence interval for the estimate of the return assuming a normal distribution.18 The POMDP and MDP
perform equivalently for perr = 0, and the return for both methods decreases consistently as perr increases but
the POMDP solution consistently achieves the larger return. Thus, in the presence of perfect recognition accu-
racy, there is no advantage to maintaining multiple dialog states, however, when errors do occur, the POMDP
solution is always better and furthermore the difference in performance increases as perr increases. This result
confirms that the use of multiple dialog hypotheses and an embedded user model enable higher recognition
error rates to be tolerated compared to the conventional single-state approach. A detailed inspection of the
dialog transcripts confirmed that the POMDP is better at interpreting inconsistent information, agreeing with
the intuition shown in Fig. 12.

Although there is little related work in the literature, experiments by Roy et al. also showed performance
gains compared to a conventional MDP, using a simpler Augmented MDP in which planning is performed
considering only the (discrete) best state, and the entropy of the belief state (Roy et al., 2000).

4.2. Benefits of the POMDP approach to confidence scoring

A second central claim of this work is that POMDPs provide a principled approach to confidence scoring.
To illustrate this claim, consider a spoken dialog system which makes use of a per-utterance confidence

score which ranges from 0 to 1. Assume that all cooperative user actions are equally likely so that the effects
of a user model can be disregarded. In the traditional version of this system with three confidence buckets
{reject, low,hi}, suppose that a good threshold between reject and low has been found to be 0.4, and a good
threshold between low and hi has been found to be 0.8.

An example conversation is shown in Fig. 15 in which the machine asks a question and correctly recognizes
the response. In the traditional method, the confidence score of 0.85 is in the high confidence bucket, hence the
utterance is accepted with ‘‘hi’’ confidence and the dialog state is updated accordingly. In the POMDP, the
confidence score is incorporated into the magnitude of the belief state update.
18 The POMDP value is exact and hence error bars are not shown.
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Fig. 15. Example conversation with a spoken dialog system illustrating a high-confidence recognition. The POMDP incorporates the
magnitude of the confidence score by scaling the belief state update correspondingly. The traditional method quantizes the confidence
score into a ‘‘bucket’’ such as {reject, low,hi}.
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Now consider the conversation in Fig. 16, in which each of the recognitions is again correct, but the con-
fidence scores are lower. In the traditional method, each confidence score falls into the ‘‘reject’’ confidence
bucket, and nothing is incorporated into the dialog frame. In the POMDP-based system, however, the mag-
nitude of the confidence score is incorporated into the belief update as above, although this time since the
score is lower, each update shifts less belief mass.

This second example illustrates two key benefits of POMDPs. First, looking within one time-step, whereas
the traditional method creates a finite set of confidence buckets, the POMDP in effect utilizes an infinite num-
ber of confidence buckets and as a result the POMDP belief state is a lossless representation of a single con-
fidence score. Second, looking across time-steps, whereas the traditional method is challenged to track
aggregate evidence about confidence scores over time, a POMDP effectively maintains a cumulative confidence
score over user goals. For the traditional method to approximate a cumulative confidence score, a policy
which acted on a historical record of confidence scores would need to be devised, and it is quite unclear
how to do this.

Moreover, the incorporation of confidence score information and user model information are complemen-
tary since they are separate product terms in the belief update Eq. (16). The probability pð~a0u; c0ja0uÞ reflects the
contribution of the confidence score and the probability pða0ujs0u; amÞ reflects the contribution of the user model.
The belief term b(su, sd,au) records the dialog history and provides the memory needed to accumulate evidence.
This is in contrast to traditional approaches which typically have a small number of confidence score ‘‘buck-
ets’’ for each recognition event, and typically log only the most recently observed ‘‘bucket’’. POMDPs have in
effect infinitely many confidence score buckets and they aggregate evidence properly over time as a well-formed
distribution over dialog states (including user goals).



S: What size do you want?
U: Small please
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Fig. 16. Example conversation with a spoken dialog system illustrating two successive low-confidence recognitions. In this example, both
recognitions are correct. The POMDP incorporates the confidence score in the same way as shown in Fig. 15, accumulating weak evidence.
For the traditional method, both confidence scores are below the threshold of 0.40, and thus they are both ignored. In effect, the traditional
method is ignoring possibly useful information.

J.D. Williams, S. Young / Computer Speech and Language 21 (2007) 393–422 413
To test these intuitions experimentally, the dialog management problem presented in Section 4.1 was
extended to include a confidence score (Williams et al., 2005b). In the POMDP, the confidence score c is
regarded as a continuous component of the observation, and in the MDP, the confidence score is quantized
into ‘‘buckets’’ as is customarily done (Pietquin, 2004).

In the POMDP, the observation function pð~a0u; c0ja0uÞ is in practice impossible to estimate directly from data,
so it is decomposed into two distributions – one for ‘‘correct’’ recognitions and another for ‘‘incorrect’’ rec-
ognitions. In the test-bed problem we assume that all confusions are equally likely and occur with probability
perr, yielding:
19 Fo
pð~a0u; c0ja0uÞ ¼
phðc0Þ � ð1� perrÞ if ~a0u ¼ a0u;

phð1� c0Þ � perr

jAuj�1
if ~a0u 6¼ a0u;

(
ð19Þ
where c 0 is defined on the interval [0,1], and ph(c 0) is an exponential probability density functions with slope
determined by a parameter h. When h = 0, ph(c 0) is a uniform density and conveys no information; as h ap-
proaches infinity, ph(c 0) provides complete and perfect information. POMDP policy optimization was per-
formed with a technique which admits continuous observations (Hoey and Poupart, 2005).

The MDP baseline was similarly extended to include M confidence buckets, patterned on systems in the
literature, such as Pietquin (2004). Ideally the thresholds between confidence buckets would be selected so that
they maximize average return; however, it is not obvious how to perform this selection – indeed, this is one of
the weaknesses of the ‘‘confidence bucket’’ method. Instead, a variety of techniques for setting confidence
score threshold were explored, and it was found that dividing the probability mass of the confidence score
c evenly between buckets produced the largest average returns.

The MDP state was extended to include this confidence ‘‘bucket’’ information. Because the confidence
bucket for each field (including its value and its confirmation) is tracked in the MDP state, the size of the
MDP state space grows with the number of confidence buckets. For M = 2, the resulting MDP called
MDP-2 has 51 states; this is shown in Table 8.19 Watkins Q-learning was again used for MDP optimization.
r reference, M = 1 produces an MDP with 11 states, and M = 3 produces an MDP with 171 states.



Table 8
The 51 states in the ‘‘MDP-2’’ simulation

List of MDP-2 states

u-u u-o(l) u-o(h) u-c(l,l) u-c(l,h) u-c(h,l) u-c(h,h)
o(l)-u o(l)-o(l) o(l)-o(h) o(l)-c(l,l) o(l)-c(l,h) o(l)-c(h,l) o(l)-c(h,h)
o(h)-u o(h)-o(l) o(h)-o(h) o(h)-c(l,l) o(h)-c(l,h) o(h)-c(h,l) o(h)-c(h,h)
c(l,l)-u c(l,l)-o(l) c(l,l)-o(h) c(l,l)-c(l,l) c(l,l)-c(l,h) c(l,l)-c(h,l) c(l,l)-c(h,h)
c(l,h)-u c(l,h)-o(l) c(l,h)-o(h) c(l,h)-c(l,l) c(l,h)-c(l,h) c(l,h)-c(h,l) c(l,h)-c(h,h)
c(h,l)-u c(h,l)-o(l) c(h,l)-o(h) c(h,l)-c(l,l) c(h,l)-c(l,h) c(h,l)-c(h,l) c(h,l)-c(h,h)
c(h,h)-u c(h,h)-o(l) c(h,h)-o(h) c(h,h)-c(l,l) c(h,h)-c(l,h) c(h,h)-c(h,l) c(h,h)-c(h,h)

dialog-start dialog-end

In the items of the form x–y, the first item refers to the from slot, and the second item refers to the to slot. u indicates unknown; o indicates
observed but not confirmed; c indicates confirmed. o(l) means that the value was observed with low confidence; o(h) means that the value
was observed with high confidence. c(l,l) means that both the value itself and the confirmation were observed with low confidence; c(l,h)
means that the value was observed with low confidence and the confirmation was observed with high confidence, etc.
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Fig. 17. Average return for the POMDP and MDP-2 methods for h = 1.
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Fig. 17 shows the average returns for the POMDP and MDP-2 solutions vs. perr ranging from 0.00 to 0.65
for h = 1. The error bars show the 95% confidence intervals for the return assuming a normal distribution.
Note that return decreases consistently as perr increases for all solution methods, but the POMDP solutions
attain larger returns than the MDP method at all values of perr.

20

We next explored the effects of varying the informativeness of the confidence score. Fig. 18 shows the aver-
age returns for the POMDP method and the MDP-2 method vs. h for perr = 0.3. The error bars show the 95%
confidence interval for return assuming a normal distribution. The POMDP method outperforms the baseline
MDP method consistently for a range of confidence score measures. This trend was also observed for a range
of other values of perr (Williams et al., 2005a). Note that increasing h increases the average return for all
methods.

4.3. Benefits of automated planning

A third central claim of this work is that POMDPs provide a principled framework for automated plan-
ning. In this section we support this claim with two discussions. First, since there exists considerable expertise
in handcrafting spoken dialog systems, it is important to make comparisons with handcrafted strategies. We
show how these comparisons can be made and demonstrate the relative gains of POMDPs. Second, the ben-
efits of planning (vs. not planning) for automatically generated dialog mangers are also addressed.

To compare a POMDP policy with a handcrafted policy, first the form of POMDP policies must be con-
sidered. In the previous sections, we relied on the representation of a POMDP policy produced by value iter-
ation – i.e., a value function, represented as a set of N vectors each of dimensionality jSj. A second way of
20 The MDP-3 system was also created but we were unable to obtain better performance from it than we did from the MDP-2 system.
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representing a POMDP policy is as a ‘‘policy graph’’ which is a finite state controller consisting of N nodes and
some number of directed arcs. Each controller node is assigned a POMDP action, and p̂ðnÞ indicates the
action associated with the nth node. Each arc is labelled with a POMDP observation, such that all controller
nodes have exactly one outward arc for each observation. l(n,o) 2 N denotes the successor node for node n and
observation o.

A policy graph is a general and common way of representing handcrafted dialog management policies (Pie-
racinni and Huerta, 2005). More complex handcrafted policies – for example, those created with rules – can
usually be compiled into a (possibly very large) policy graph. A policy graph does not make the expected
return associated with each controller node explicit; however, as pointed out by (Hansen, 1998), the expected
return associated with each controller node can be found by solving a system of linear equations in t:
21 On
contro
tnðsÞ ¼ rðs; p̂ðnÞÞ þ c
X
s02S

X
o2O

pðs0js; p̂ðnÞÞpðojs0; p̂ðnÞÞtlðn;oÞðs0Þ: ð20Þ
Solving this set of linear equations yields a set of vectors – one vector t(s) for each controller node, tn(s). In
words, Eq. (20) sets the value of a node equal to the immediate reward of taking that node’s action rðs; p̂ðnÞÞ
plus the discounted expected future reward.

To find the expected value Vn(b) of starting the controller in node n and belief state b we compute
V nðbÞ ¼
X
s2S

tnðsÞbðsÞ: ð21Þ
Note that a human designer is free to define the controller however they wish: the controller may have any
number of nodes, and its size is not linked to the size of the POMDP state space.

To illustrate policy graph evaluation, three handcrafted policies called HC1, HC2, and HC3 were created
for the spoken dialog problem presented above. Each of these policies encode strategies typically used by
designers of spoken dialog systems. All of the handcrafted policies first take the action greet. HC1 takes
the ask-from and ask-to actions to fill the from and to fields, performing no confirmation. If no response is
detected, HC1 re-tries the same action. If HC1 receives an observation which is inconsistent or nonsensical,
it re-tries the same action. Once HC1 fills both fields, it takes the corresponding submit-x-y action. A flow dia-
gram of the logic used in HC1 is shown in Fig. 19.21 HC2 is identical to HC1 except that if the machine
receives an observation which is inconsistent or nonsensical, it immediately takes the fail action. HC3 employs
a similar strategy to HC1 but extends HC1 by confirming each field as it is collected. If the user responds with
‘‘no’’ to a confirmation, it re-asks the field. If the user provides inconsistent information, it treats the new
information as ‘‘correct’’ and confirms the new information. Once it has successfully filled and confirmed both
fields, it takes the corresponding submit-x-y action.
ly the logic of HC1 is shown for clarity: the full controller uses actual city name values instead of the variables X and Y,resulting in a
ller with 15 nodes. This type of expansion is typical of the ‘‘compilation’’ process mentioned above.
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Fig. 20 shows the expected return for the handcrafted policies and the optimized POMDP solution vs. the
recognition error rate perr. The optimized POMDP solution outperforms all of the handcrafted policies for all
values of perr. On inspection, conceptually the POMDP policy differs from the handcrafted policies in that it
tracks conflicting evidence rather than discarding it. For example, whereas the POMDP policy can interpret
the ‘‘best 2 of 3’’ observations for a given slot, the handcrafted policies can maintain only 1 hypothesis for each
slot. As expected, the additional representational power of the automated solution is of no benefit in the pres-
ence of perfect recognition – note that where perr = 0, HC1 and HC2 perform identically to the POMDP pol-
icy. It is interesting to note that HC3, which confirms all inputs, performs least well for all values of perr. For
the reward function used in the test-bed system, requiring two consistent recognition results (the response to
ask and the response to confirm) gives rise to longer dialogs which outweigh the benefit of the increase in
accuracy.

Finally, we consider whether planning is beneficial to automatically generated dialog managers by compar-
ing the performance of the POMDP to a greedy decision theoretic dialog manager (Section 3.1) on the dialog
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problem described in Section 4.1. This greedy dialog manager always takes the action with the highest
expected immediate reward – i.e., unlike a POMDP, it is not performing planning. Both dialog managers were
evaluated by simulating conversations and finding the average reward gained per dialog. Results are shown in
Fig. 21. The POMDP outperforms the greedy method by a large margin for all error rates. Intuitively, the
POMDP is able to reason about the future and determine when gathering information will reap larger gains
in the long term even if it incurs an immediate cost. More specifically, in this example, the POMDP gathers
more information than the greedy approach. As a result, dialogs with the POMDP dialog manager are longer
but the resulting increased cost is offset by correctly identifying the user’s goal more often. In general, POM-
DPs are noted for their ability to make effective trade-offs between the (small) cost of gathering information,
the (large) cost of acting on incorrect information, and rewards for acting on correct information (Cassandra
et al., 1994).

4.4. Illustration with real dialog data

All of the above simulations employed a handcrafted model of the user. To assess the impact of this, a final
experiment was conducted using a dialog manager optimized with a user model estimated from real dialog
data, and then evaluated on a second user model estimated from held-out data.

In this experiment, we employed real dialog data from the SACTI-1 corpus (Williams and Young, 2004).
The SACTI-1 corpus contains 144 human–human dialogs in the travel/tourist information domain using a
‘‘simulated ASR channel’’, which introduces errors similar to those made by a speech recognizer (Stuttle
et al., 2004). One of the subjects acts as a tourist seeking information (analogous to a user) and the other acts
as an information service (analogous to a spoken dialog system). The corpus contains a variety of word error
rates, and the behaviours observed of the subjects in the corpus are broadly consistent with behaviours
observed of a user and a computer using a real speech recognition system (Williams and Young, 2004).

Wizard/User turn pairs which broadly matched the types of action in the test-bed dialog problem were
annotated. The corpus was then segmented into a training sub-corpus and a testing sub-corpus, each com-
posed of an equal number of dialogs, the same mix of word error rates, and disjoint subject sets. One user
model pða0ujs0u; amÞ was then estimated from each sub-corpus, shown in Table 9. Due to data sparsity in the
SACTI-1 corpus, the user actions yes and no were grouped into one class, so probabilities for these actions
are equal (with appropriate conditioning for the sense of yes vs. no).

To conduct the simulations, first policy optimization was performed on the test-bed dialog problem with
the training user model using Perseus. Then the testing user model was installed, and 10,000 dialog turns were
run with the policy created from the training user model. This process was repeated for values of perr from 0.00
to 0.65. Fig. 22 shows results for a range of values of perr. The Y-axis shows average return per dialog. Error
bars indicate the 95% confidence interval for the performance on the testing user model. As speech recognition
errors increase, the average reward decreases, consistent with the findings in the previous sections. For all



Table 9
Training and testing user models estimated from disjoint data in the SACTI-1 corpus

am s0u Description a0u Training Testing
pða0ujs0u; amÞ pða0ujs0u; amÞ

greet From x to y User was not paying attention null 0.013 0.025
User says both places from-x-to-y 0.573 0.630
User says just ‘‘from’’ place from-x 0.207 0.173
User says just ‘‘to’’ place to-y 0.207 0.173
All other user actions (All others) 0.000 0.000

ask-from From x to y User was not paying attention null 0.013 0.025
User says just the name of the place x 0.444 0.419
User says the name of the place
preceded by ‘‘from’’

from-x 0.399 0.349

User says both places from-x-to-y 0.144 0.207
All other user actions (All others) 0.000 0.000

confirm-to-y From x to y (NB – the
system has the right hypothesis)

User was not paying attention null 0.013 0.025
User says just ‘‘yes’’ yes 0.782 0.806
User says the item that was being confirmed y 0.108 0.092
User says the item being confirmed,
with the ‘‘to’’ preposition

to-y 0.097 0.077

All other user actions (All others) 0.000 0.000
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values of perr, the performance on the testing user model is very close to the performance on the training user
model, and in some cases it is slightly higher. This is possible because, in some situations, the testing user
model provides slightly more information than the training user model, and this enables the policy to perform
better on the testing user model at certain error rates. For example, when asked the greet question or asked for
the from or to places, the testing user model is more likely than the training model to reply with both the from
and to places. Overall, the results in Fig. 22 demonstrate that the POMDP policy estimation is reasonably
robust to variations in user behaviour, or stated alternatively, that errors in the estimation of the user model
can be tolerated.

4.5. Conclusions and future work

Despite the advances made in recent years, the design of robust spoken dialog systems continues to be a
major research challenge. The key problem is that the uncertainty caused by speech recognition errors makes
it extremely difficult to accurately track the state of the dialog. Typically, these errors lead to false assumptions
which in turn lead to spurious dialogs. This paper has argued that by modelling a spoken dialog system as a
partially observable Markov decision process (POMDP), significant improvements in robustness can be
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achieved. Furthermore, it has been shown that the ideas underlying existing techniques to improving robust-
ness – maintaining multiple state hypotheses, using local confidence scores to validate user input, and auto-
mating action selection and planning – are all just special cases of the POMDP formalism. Thus, the
POMDP approach provides a basis for both improving the performance of these existing techniques and uni-
fying them into a single framework supporting global optimization. The paper has explained how the various
benefits of POMDPs can be exploited in the form of an SDS-POMDP, and presented empirical results from
simulation experiments – including experiments trained on real dialog data and evaluated on held-out dialog
data – as supporting evidence.

Even so, despite the clear potential of POMDPs, several key challenges remain. Most crucially, scaling the
model to handle real-world problems remains a significant challenge: the complexity of a POMDP grows with
the number of user goals, and optimization quickly becomes intractable. The POMDPs described in this paper
and in the literature (Roy et al., 2000; Zhang et al., 2001) have been artificially small problems consisting of a
limited set of user goals, yet real systems have thousands or millions of user goals for which optimization is
intractable, even using the latest approximate optimization techniques.

To illustrate why POMDPs scale poorly for dialog management, consider an SDS-POMDP in the travel
domain which attempts to gather the name of a single city from a user. The machine is aware of 1000 cities,
and since the POMDP maintains a distribution over all user goals, it must include one user goal for each of the
1000 cities. Further, the POMDP includes (among other actions) distinct actions to ‘‘confirm’’ and ‘‘submit’’
each city. Finally, the POMDP includes an observation for each city name. Thus, in general, the number of
states, actions, and observations all grow with the number of distinct user goals, and adding models for the
user actions and dialog history further exacerbates this growth.

Two strands of recent work have begun to address scalability. First, the Summary POMDP method pro-
vides a way to scale up the SDS-POMDP model for the so-called slot-filling class of spoken dialog systems
(Williams and Young, 2005).22 In a Summary POMDP, exact belief monitoring is performed, but planning
is done in a compressed space called summary space. For a given slot, summary space expresses the probability
mass of the highest-ranking value but disregards the value itself. Continuing the example above with 1000 cit-
ies, suppose that at a certain time-step, max(b(su)) = 0.8 and arg maxsuðbðsuÞÞ ¼ london. The summary
POMDP performs planning by considering the vector pð~suÞ ¼ ½0:8; 0:2�, whereas a standard formulation con-
siders a vector over all 1000 cities. As a result, the Summary POMDP method can scale to much larger prob-
lems. This is demonstrated by Fig. 23 which shows the expected reward of the optimal policy computed using
both the full POMDP model and the Summary model as the number M of slot values increases. As can be seen
22 ‘‘Slot-filling’’ dialogs seek to elicit values for N variables – or ‘‘slots’’ – from a user. This construction makes it possible to enumerate all
possible user goals by constructing a vector of all possible values for each slot. Slot-filling dialogs are generally regarded as a useful class of
dialogs but they are limited in expressiveness and cannot account for more complex dialog behaviours like negotiation, complex
information exchange, stack-like behaviour, etc.
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the baseline model fails to find acceptable solutions for M greater than 20 slots, whereas the performance of
the Summary model is unaffected by M. Subsequent work has extended this technique to scale to a large num-
ber of slots by performing planning myopically for each slot, and then combining each slot’s policy together
using a simple heuristic (Williams and Young, 2006). The optimization techniques employed are described in
detail in Williams (2006).

The Summary POMDP performs belief monitoring by enumerating all possible user goals, and while this
enumeration is reasonable for comparatively simple dialog models such as slot-filling, it is not directly appli-
cable to more complex applications such as those tackled by Information State Update systems which represent
the dialog state by a large and complex hierarchical data structure (Larsson and Traum, 2000). To deal with
these very large state spaces, a second promising method is to divide the space of user goals into a hierarchy of
equivalence classes or partitions. Belief updating is then performed on partitions rather than states. By succes-
sively splitting partitions, the system can use the incoming evidence to gradually focus-in on the underlying
states of interest without having to needlessly consider large numbers of low probability states. A specific
implementation of this idea is the Hidden Information State dialog model which uses probabilistic context-free
rules to describe the partition hierarchy. In effect, these rules form an ontology of the application domain and
they enable user goals to be expressed in a top-down manner which directly reflects the order in which sub-
topics are typically visited in conversation (Young et al., 2006).

In addition to scaling issues, several other interesting questions remain concerning the uses of POMDPs in
dialog. In particular, the choice of appropriate reward functions and their relationship to established metrics
of user performance such as the PARADISE scheme remain to be resolved (Walker et al., 1997). There is also
the related question of how models of user behaviour should be created and evaluated. Ultimately, the defin-
itive test of a POMDP-based dialog system must be evaluation using real users, and the next step is clearly to
build such systems and gather the necessary empirical data. In the meantime, the SDS-POMDP is unique in
providing a complete mathematical framework for designing and building spoken dialog systems. This frame-
work allows all of the key components to be trained from data and it supports global optimization. We believe
that POMDPs have clear potential to advance the state-of-the-art in spoken dialog systems and as such merit
serious further investigation.
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