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Abstract This work shows how a spoken dialogue system can be repessasta Par-
tially Observable Markov Decision Process (POMDP) with posite obser-
vations consisting of discrete elements representingglied acts and continu-
ous components representing confidence scores. Usinghadestmulated dia-
logue management problem and recently developed optimisiEchniques, we
demonstrate that this continuous POMDP can outperfornitivadl approaches
in which confidence score is tracked discretely. Furtherpvesent a method
for automatically improving handcrafted dialogue managdey incorporating
POMDP belief state monitoring, including confidence scofermation. Exper-
iments on the testbed system show significant improvemensef/eral example

handcrafted dialogue managers across a range of operatidgions.
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1. Introduction

Dialogue management is a difficult problem for several reasgirst, speech
recognition errors are common, corrupting the evidencdadla to the ma-
chine about a user’s intentions. Second, users may chapgdritentions at
any point - as a result, the machine must decide whether ctindjievidence
has been introduced by a speech recognition error, or by aisemintention.
Finally, the machine must make tradeoffs between the “aoistjathering ad-
ditional information (increasing its certainty of the usegoal, but prolonging
the conversation) and the “cost” of committing to an incorngser goal. That
is, the system must perform planning to decide what sequeheetions to
take to best achieve the user’s goal despite having impgenfiecmation about
that goal. For all these reasons, dialogue management czasbas planning
under uncertainty.

In this context, making use of available information abquéexch recogni-
tion accuracy ought to improve the performance of a dialaga@ager. One
key piece of information typically provided by the autorsagpeech recogni-
tion process is a confidence score, which provides a reakdatstimate of the
probability that the recognition hypothesis is correcta lnaditional spoken di-
alogue system, a confidence score is used to decide whethetdpt or reject
a speech recognition hypothesis: if a hypothesis has a higfidence score,
it is accepted; otherwise it is rejected. More nuanced aubres create confi-
dence buckets which sub-categorise the accept categorilittiuckets” such
as low, medium and high. Confidence bucket information can te incorpo-
rated into the dialogue state, and the dialogue managerutmeguently use
this information when choosing actions, for example whecidieg whether
or not to confirm an element of the dialogue state.

This process is illustrated in the first two columns of Figlyevhich shows
a conversation with a spoken dialogue system in the pizdarmg domain.
The first column indicates the words spoken by the user anchduhine; the
bracketed text shows the (possibly erroneous) results tinenspeech recogni-
tion process, followed by the confidence score. The secdndeoshows how
a typical spoken dialogue system might track dialogue statthe last turn, a
speech recognition error is made, and it is unclear how thékeace should be
incorporated into the form in column 2 - should the new infation replace
the old information, or should it be ignored?

In this chapter we consider a different model for dialoguenaggement:
a partially observable Markov decision process (POMDPauaced “pom-
dp”). Rather than tracking one explicit dialogue state, &P maintains a
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System / User / ASR Traditional dialogue state POMDP belief state
R A
size: {
Prior to start of dialogue value: <empty> b
confidence: <empty> D_l:l_l:l_
}
Sml Med Lrg
S: How can | help you? size: { 1
U: A small pepperoni pizza value: small b
[a small pepperoni pizza] confidence: high
Confidence score: 0.83 }
Sml Med Lrg
S: And what type of crust? order: { 1
U: Uh just normal size: large [?] b
[large normal] confidence: low [?]
Confidence score: 0.35 }

Sml Med Lrg

Figure 1. Example conversation with a spoken dialogue system in tmapordering domain.
The first column shows the words spoken by the user and theingacihe text in brackets
shows the results from the speech recognition processharidltowing line shows the resulting
confidence score provided by the speech recognition endihe.second column shows how
a typical dialogue manager might track a dialogue statdudiing a “confidence bucket” for
the “size” field. The third column shows how the “POMDP bebédte” would track the same
conversation. Note how the traditional method strugglesctmunt for the conflicting evidence
in the last turn, whereas in the POMDP, the confidence sconglgiscales the magnitude of the
update.

probability distribution over all possible dialogue statealled a belief state.
As the dialogue progresses, the belief state is updated.bEtief state update
provides a principled method for interpreting confidenaascintuitively, the
confidence score simply scales the magnitude of the updhte pfocess is il-
lustrated in the third column of Figure 1 - note how the (firsgjher-confidence
recognition causes a large movement of belief mass, wheheagsecond)
lower-confidence recognition causes a smaller movemerelaflmass.

The goal of this chapter is to explain this process in detadlghow it repre-
sents significant gains over a traditional “confidence bticgproach through
two central contributions. First, we show how a confidena@escan be ac-
counted for exactly in a POMDP-based dialogue manager layirige confi-
dence score as a continuous observation. Using a test#medbsed dialogue
management problem, we show that recent optimisation iggbs produce
policies which outperform traditional MDP-based appraschcross a range
of operating conditions.

Second, we show how a hand-crafted dialogue manager carpbevied au-
tomatically by treating it as a POMDP policy. We then show leogonfidence
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score metric can be easily included in this improvementgsscWe illustrate
the method by creating three hand-crafted controllershfeitést-bed dialogue
manager, and show that our technique improves the perfamenaineach con-
troller significantly across a variety of operating coratis. This chapter is
organised as follows. Section 2 briefly reviews backgroum®MDPs. Sec-
tion 3 casts the dialogue management problem as a POMDP|rghdww
to incorporate a confidence score, and reviewing previouk.w&ection 4
outlines our test-bed dialogue management simulationcantpares policies
produced by our method to a baseline on the test-bed probleishwses the
traditional “confidence-bucket” approach. Section 5 shbew a handcrafted
policy can be improved using confidence score, and providafiustration,
again using the test-bed problem. Section 6 briefly conslude

2. Overview of POMDPs

Formally, a POMDP is defined as a tudl§, A,,, T, R, O, Z}, whereS is
a set of states4,,, is a set of actions that an agent may take defines a tran-
sition probabilityp(s’|s, a,,,), R defines the expected (immediate, real-valued)
rewardr(s, a,,), O is a set of observations, atfidefines an observation prob-
ability, p(d’|s’, a,,). In this chapter, we will consider POMDPs with discrete
S and continuoug). The POMDP operates as follows. At each time-step,
the machine is in some unobserved stat&he machine selects an actiop,
receives a reward, and transitions to (unobserved) state wheres’ depends
only ons anda,,. The machine receives an observationwhich is dependent
on s’ anda,,. Although the observation gives the system s@wvidenceabout
the current state, s is hot known exactly, so we maintain a distribution over
states called a “belief state”, b. We wribés) to indicate the probability of
being in a particular state At each time-step, we updaieas follows:

V(') = p(s'|o,am,b) (8.1)
~ p(I]$, am, b)p(s'|am, b)
p(0'|am,b)
_ P18, am) 3o P('|am, b, $)p(s|am, b)
p(0'|am, b)
p(o'|s’s am) D e P(8|am, $)b(s)
p(0'|am,b)
The numerator consists of the observation function, ttemsimatrix, and
current belief state. The denominator is independent,@nd can be regarded

1in the literature, the system action set is often writtenraarasubscriptedi. In this work, we will model
both machine and user actions, and have chosen to write tbieimesaction set ad,,, for clarity.
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as a normalisation factor; hence:

V(s')=k-p(d|s,am) Zp(s'|am, s)b(s) (8.2)

seSs

We refer to maintaining the value éfat each time-step as “belief monitor-
ing”. The immediate reward is computed as the expected tboeer belief
states:

p(byam) = b(s)r(s, am) (8.3)

seS

A POMDP policy specifies which action should be taken givenebeb
staté. The goal of policy learning is then to find a policy which nraises
the cumulative, infinite-horizon, discounted reward @hllee return:

i Noo(bs, am,) = i)\t ir (s,am,) (8.4)
t=0 t=0 =0

whereb, indicates the distribution over all states at timeé,(s) indicates the
probability of being in state at time-step, and) is a geometric discount fac-
tor,0 < A < 1. Because belief space is real-valued, an optimal infiraiézbn
policy may consist of an arbitrary partitioning of S-dimemal space in which
each partition maps to an action. In fact, the size of thecpdpace grows
exponentially with the size of the (discrete) observatiehand doubly expo-
nentially with the distance (in time-steps) from the honZ&aelbling et al.,
1998). A continuous observation space compounds thisdurtbevertheless,
real-world problems often possess small policies of highligu

In this work, we make use of approximate solution methodse flilst, a
point-based value iteration algorithm called PerseusgSpad Vlassis, 2004),
operates on problems with discrete observation sets arapabte of rapidly
finding good yet compact policies (when they exist). Persmusistically se-
lects a small set of representative belief points, and ttematively applies
value updates to just those points, instead of all of theebepace, achieving
a significant speed-up. Perseus has been tested on a rangeblefs, and
found to outperform a variety of other methods, includingldrased methods
(Spaan and Vlassis, 2004).

Perseus (like all value-iteration optimisation algorig)nproduces a value
function represented as a set of N vectors each of dimeri#iohs. We write
vp(s) to indicate thes;;, component of they,;, vector. Each vector represents
the value, at all points in the belief space, of executing es§policy tree”
which starts with an action associated with that vector. Weewt(n) € A to

2We will assume the planning horizon for a policy is infinitdass otherwise stated.
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indicate the action associated with thg vector. If we assume that the policy
trees have an infinite horizon, then we can express the dpfiolizy at all
time-steps as:

7(b) = 7(argmax Z v (8)b(s)) (8.5)

In simple terms, a value function provides both a partitignof the belief
space (where each region corresponds to an action whichimalpn that re-
gion), as well as the expected return of taking that actionthis chapter we
will also make use of an extension to Perseus proposed by dludyPoupart
(2005) which operates on POMDPs with continuous or veryelaigcrete ob-
servation sets. This method exploits the fact that diffecdsservations may
lead to identical courses of action to discretise contisuoloservations with-
out any loss of information. In the context of dialogue mamagnt with a
continuous confidence score, it implicitly and adaptivetyd§ optimal loss-
less buckets of confidence that are equivalent to using igaal continuous
confidence scofe

3. Casting Dialogue Management as a POMDP

Williams et al. (2005) cast a spoken dialogue system as arstPOMDP,
and this model will be used as the general framework for thlerigues pre-
sented here. In this model, the POMDP state variabtesS is separated into
three components: (1) the user’s gagl.ce S, ; (2) the user’s actiorny,, € A;
and (3) the history of the dialogugy € S;. The POMDP state s is given by
the tuple(s,, a., sq). We note that, from the machine’s perspective, all of these
components are unobservable.

The user’s goals,, gives the current goal or intention of the user. Examples
of a complete user goal include a complete travel itineragesired appoint-
ment to make in a calendar, or a product the user would likeitohase. The
user’s goal persists over the course of the dialogue, anénergl it will re-
main static although it is possible for it to change (for epéemif the machine
indicates that there are no direct flights, the user’s goghimihange to include
indirect flights).

The user’s actiong,,, gives the user’'s most recent actual action. Examples
of user actions include specifying a place the user woulel tiiktravel to, re-
sponding to a yes/no question, or a “null” response indicathe user took
no action. User actions may convey a portion of the user’s oeh as re-

3The actual implementation used in this chapter approxisnatene integrals by Monte Carlo sampling,
which means that the confidence buckets are not exactheksss|
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questing a flight “to London”), or may serve a communicatiete r(such as
answering a yes/no question).

The history of the dialogue, indicates any relevant dialogue history infor-
mation. For examples; might indicate that a particular slot has not yet been
stated, has been stated but not grounded, or has been gdoundenables a
policy to make decisions about the appropriateness of li@navin a dialogue
- for example, if there are ungrounded items, a dialoguegdesimight wish
to penalise asking an open question (vs. grounding an item).

Note that we do not include a state componentdonfidenceassociated
with a particular user goal. The concept of confidence israijucaptured
by the distribution of probability mass assigned to a paldicuser goal in the
belief state.

The POMDP actionu,,, € A,, is the action the machine takes in the dia-
logue. For example, machine actions might include gredtieguser, asking
the user where he or she wants to go “to”, or confirming thatigex wants to
leave “from” a specific place.

To factor the model, we decompose the POMDP transition foimets fol-
lows:

p(8/|57am) = p s;,sfi,au(su,sd,au,am) (86)

(
(SUSu, Sds Au,s am) :
(

S

/ /
au‘suﬂ Suy Sdy Qu,s am) :

p(8$i|agu sgjﬂ 8u7 8d7 a'u> am)

S

We then assume conditional independence as follows. Thésfirs - which
we call the user goal model - indicates how the user’s goaigés (or does not
change) at each time step. We assume the user’s goal at atimdepends
only on the previous goal and the machine’s action:

p(5;|5u75d7au7am) :p(5;|5uaam) (87)

The second term - which we call theser action model} indicates what
actions the user is likely to take at each time step. We asslngser’s action
depends on his/her (current) goal and the preceding maebtian:

p(a;|5275u75d7au7am) :p(a;|5;aam) (88)

The third term - which we call thdialogue history model indicates how
the user and machine actions affect the dialogue historg Clinrent history
of the dialogue depends on the previous history combineul tivé most recent
user and machine actions:

p(S:i‘CL;“ 5;7 Suy Sdy Qus am) = p(5:i|a;m 8;,7 am) (89)
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In sum, our transition function is given by:
p(s'ls, am) = p($,|su, am) - play|sy, am) - p(sglay, sa,am) — (8.10)

This factored representation reduces the number of paeasnetquired for
the transition function, and allows groups of parameteisetestimated sepa-
rately. For example, we could estimate tiser action moddrom a corpus by
counting user dialogue acts given a machine dialogue actarsgr goal, or
use a “generic” distribution and adapt it to a particularigbeon once data be-
comes availabfe We could then separately specify the dialogue history mode
using a handcrafted function such as “Information Statelate rules as in for
example (Larsson and Traum, 2000).

The POMDP observation is decomposed into two elements: the speech
recognition hypothesig§, € A, and the confidence scorec R. The obser-
vation function is given by:

p(d|s', anm) = p(@.,, c|sl,, sy, al,, am) (8.11)

The observation function accounts for the corruption ddaed by the
speech recognition engine, so we assume the observati@ndiemnly on
the action taken by the user, and by the grampaelected by the dialogue
manager:

p(d;76/|5;78:17a;7am) :p(d;,c/|a;,g) (812)

The observation function can be estimated from a corpusroredkeanalyt-
ically using a phonetic confusion matrix, language modil, &his distribu-
tion expresses the probability density of observing reet@mnhypothesisi,,
with confidence score ¢ when the user actually took actipand recognition
grammarg was activated. As such, the observation function can beedexs
a model of the errors introduced by the speech recognitianrai.

Together equations 8.10 and 8.12 represent a statistiadlmba dialogue.
The transition function allows future behaviour to be peggti and the obser-
vation function provides the means for inferring a disttit over hidden user
states from observations. The factoring is general-perpothat the user goal
components,, allows the user to have a hidden, persistent state whicrsemit
unobserved actions, that are corrupted into observatiaisby the speech re-
cognition process. Further, the dialogue history compbegenables actions
to be selected with an awareness of dialogue history. Figstenmarizes the
factored model, depicted as an influence diagram.

“To appropriately cover all of the conditions, the corpus ldaweed to include variability in the strategy
employed by the machine - for example, using a Wizard-of4@méwork with a simulated ASR channel
(Stuttle et al., 2004).
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Timestep n Timestep n+1

Figure 2. Influence diagram for the factored model. The dotted boxcengis the composite
state s is comprised of three componests, sq, anda,. Shading indicates a component is
unobservable. Arcs into circular chance nodes and diansbaged utility nodes show influ-
ence, whereas arcs into square decision nodes are infomahtias in (Jensen, 2001, p140).
The arc from the dotted box ta,, indicates that.,, is chosen based on the belief state - i.e., a
distribution overs,, sq, anda.,.

The reward function is not specified explicitly in this pregbsince it de-
pends on the design objectives of the target system. We hatettie re-
ward measure could contain incentives for dialogue spegdging a per-turn
penalty), appropriateness (through rewards conditiomedialogue state), and
successful task completion (through rewards conditionethe user’s goal).
Weights between these incentives could be estimated thrimigalisms like
PARADISE (Walker et al., 2000), and then adapted to the neédspartic-
ular domain - for example, accuracy in performing a finanti@hsaction is
arguably more important than accuracy when obtaining vegattiormation.
As described in the previous section, actions are sele@séddoon the belief
state to maximise cumulative long-term reward.

Finally, we update the belief state at each time step by sutist) equations
8.10 and 8.12 into 8.2 and simplifying:

b/(siu 8:17(1;) =k- p(d;7cl‘a;,g)p(a;|8;, a’m) : Z p(S;‘8u7am) : (813)
Su€ESuy

Z p(5;|5uaam) ) Z p(s&|a;,sd,am) ) Z b(Su, Sd; @u)

Su€ESu SdGSd ay€Ay
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The belief monitoring update equation 8.13 exemplifies e difference
between conventional approaches to dialogue managemertharPOMDP
approach. In conventional approaches, a single state rvectmaintained
which encodes the system’s “best guess” about all of thermdtion needed
to determine the next system action. For example, a staterv@ight include
a record of all of the informational items supplied by theruieeir grounding
state, dialogue history, etc. Both the user’s input and tHesequent system
output are dependent on this state vector, but since thereearrors in this
state vector, the system will often make mistakes and mest émter some
form of recovery procedure. This is essentially a depth-fireedy search
with back-tracking.

In the POMDP approach, all possible states are maintairtbdrréhan the
single most likely state. Each user input (i.e., the obsemais then in-
terpreted in the context of each possible new state via tisergétion term
p(a,,lal,, g). If the new observation is likely gives, then the subsequent
belief in s’ will be high and vice versa. The new stateitself will only be
plausible if there is a non-zero likelihood of making a titios from some
previous states to the new state, and since the previous state is unknown, all
possible transitions are considered, weighted by thefeeltdhe previous turn.
In search terms, this is breadth-first search. It has therdalga over depth-
first that both inputs and outputs can be determined from wilete of all of
the alternative interpretations.

In practice the observation functigria,,, ¢|al,, g) will be difficult to esti-
mate directly from data, so we will decompose the distrioutby assuming
that confidence scores are drawn from just two distributicorse for “correct”
recognitions and another for “incorrect” recognitions:

1 I Peorrect(c’) - p(dua;ag)a if Gy = CL;
ay,Cla R . PR 8.14
o w | v 9) { pincorrect(c,) : p(@;‘@;a g9) if CL; CL; ( )

wherep(a,,|al,, g) expresses theonfusion matrix i.e., probability of observ-
ing hypothesisi/, given that the user took actiar), and grammay was active;
and peorrect () and pincorrect () €xpress the probability density function of
the confidence scores associated with correct and incaeeognitions. To
perform policy improvement on this POMDP we have two optioRsst, we
can use an optimisation method which accounts for the aootis observa-
tions, such as that by Hoey and Poupart (2005). This mettreates a policy
which takes the expected additional information in the arfte score into
account, and we call this tleontinuous-POMDRolution. Alternatively, there
is still benefit to using the confidence score informationlfelief state moni-
toring (as in 8.13) even if it was not used during policy opsation. Thus a
second option for performing policy improvement is to magadjise the confi-
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dence score, i.e.:

p@la0) = [ p(@clalo) (8.15)
and to then optimise the resulting POMDP using a techniquk agPerseus
At runtime, the full observation functiop(a’,, c|a.,, ¢) is used for belief state
monitoring. We call this theiscrete-POMDPsolution.

Stated alternatively, theontinuous-POMDRechnique uses infinitely many
confidence buckets during planning and belief monitoringereas theiscrete-
POMDP technique uses no confidence information during planningjrsi-
nitely many confidence buckets during belief monitoring. d@ytrast, MDP
methods (in the literature, and our baseline, presenteeise a handful of
confidence buckets for planning, but do not perform any belenitoring®.

In the literature, casting dialogue management as planmdgr uncertainty
has been attempted using both (fully observable) Markovsi®t processes
(MDPs) and POMDPs. The application of MDPs was first expldrgd evin
and Pieraccini (1997). Levin et al. (2000) provide a formmaatment of how
an MDP may be applied to dialogue management, and Singh €RaD?2)
show application to real systems. However, MDPs assumeuttiert state of
the environment (i.e., the conversation) is known exaathy thus they do not
naturally capture the uncertainty introduced by the speeobgnition channel.

Partially observable MDPs (POMDPs) extend MDPs by progdanprin-
cipled account of noisy observations. Roy et al. (2000) cana@n MDP
and a POMDP version of the same spoken dialogue system, ahthéihthe
POMDP version gains more reward per unit time than the MDBioBr Fur-
ther, the authors show a trend that as speech recognitiamamycdegrades,
the margin by which the POMDP outperforms the MDP increagdsang et
al. (2001) extend this work in several ways. First, the agtlamd “hidden”
system states to account for various types of dialogue lepshch as different
sources of speech recognition errors. Second, the autBerBayesian net-
works to combine observations from a variety of sourcedyding confidence
score). The authors again show that the POMDP-based metiugalsrform
MDP-based methods. In all previous work (using both MDPsROMDPS),
confidence score has been incorporated by dividing the Grdfascore metric
into discrete confidence “buckets”. For example, in the M@é&tdture, Singh
et al. (2002) track the confidence bucket for each field ash;higedium, or
low” confidence. The authors do not address how to deternmr®gatimal”

5In theory, one could create an MDP with continuous companinits state space, and use these com-
ponents to track confidence score. While this avoids “bigihthe confidence score, it does not aggregate
evidence over time: in order to do this in an MDP, state coreptsifor “most recent confidence score”,
“2nd more recent confidence score”, etc. would be requiradsiog rapid growth in the state space. By
contrast, a POMDP frames a sequence of confidence scoresesatipns and naturally accumulates evi-
dence over time through belief monitoring.
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number of confidence buckets, nor how to determine the “atithresholds
of the confidence score metric that divide each bucket. IiPOMDP litera-

ture, Zhang et al. (2001) use Bayesian networks to combifoenmation from

many continuous and discrete sources, including confidenoee, to com-
pute probabilities for two metrics called “Channel Statastl “Signal Status”.
Thresholds are then applied to these probabilities to fasorete, binary ob-
servations for the POMDP. Again, it is not clear how to ses¢hthresholds
to maximise POMDP return. Looking outside the (PO)MDP freumidx, Paek
and Horvitz (2003) suggest using an influence diagram to inagh and dia-
logue state, and selecting actions based on “Maximum Egddohmediate]

Utility”. This proposal can be viewed as a POMDP with contina observa-
tions that greedily selects actions - i.e., which select®ag based only on
immediate reward. By choosing appropriate utilities, théhars show how
local grounding actions can be automatically selected inreipled manner.
In this work, we are interested in POMDPs as they enable pignover any

horizon.

4. Comparison with Traditional Approach

To assess the benefits of the POMDP approach versus traditioonfi-
dence bucket” approaches, we created a test-bed dialoguageraent prob-
lem in the travel domain. This test-bed problem enablestaemparisons be-
tween dialogue managers produced by casting the problenP@MDP with
continuous observations, and dialogue managers producedding “confi-
dence buckets” and casting the problem as an MDP. In both@M PP and
MDP, dialogue managers are produced automatically. Asgyithat these rep-
resent optimal solutions, then this comparison gives atifatine indication
of the value of the POMDP approach.

4.1 POMDP Test-Bed Dialogue Management
Problem

In the test-bed dialogue management problem, the useriigyttg buy a
ticket to travel from one city to another city. The machinksahe user a series
of questions, and then “submits” a ticket purchase reqeeasing the dialogue.
The machine may also choose to “fail”. In the test-bed probliere are three
cities, {a, b, c}. The machine has 16 actions available, includinget ask-
from/ask-tq conf-to-x/conf-from-xsubmit-x-y andfail, wherezx, y € {a,b, c}.
As above, the POMDP state is given by the tuplg, a,, sq). The user’s goal
sy € Sy specifies the user’s desired itinerary. There are a totalusie goals,
given bys, = (z,y) : z,y € {a,b,c},z # y. The dialogue state; contains
three components. Two of these indicate (from the usersgeetive) whether
the from place and to place have not been specified (n), amniimoed (u),
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or are confirmed (c). A third componentspecifies whether the current turn is
the first turn (1) or not (0). There are a total of 18 valuesQfgiven by:

Sq = (T4, Yd,2); Tq,yq € {n,u,c}; z€1,0 (8.16)

The user’s actiom,, € A, and the observatiof, € A, are drawn from the

setx, from-x to-x, from-x-to-y yes no, andnull, wherex,y € {a,b,c},z #
y. These state components yield a total of 1944 states, tahwindicadd one
additional, absorbing end state. When the machine take&ihaction or a
submit-x-yaction, control transitions to this end state, and the diaoends.
The initial (prior) probability of the user’s goal is diditited uniformly over the
6 user goals. In the test-bed problem the user has a fixed godief duration
of the dialogue, and we define thser goal modehccordingly.

We define theuser action modeb(a,|s.,, a,,) to include a variable set of
responses - for example: the user may resporakksto/ask-fronwith z, to-
x/from-x or from-x-to-y the user may respond greetwith to-y, from-x or
from-x-to-y the user may respond tmnfirm-to-x/confirm-from-xvith yes/no
x, orto/from-x and at any point the user might not respond (i.e., respotid wi
null). The probabilities in the user action model were choseh that the user
usually provides cooperative but varied responses, anetioes doesn't re-
spond at all. The probabilities were handcrafted, seldotsgd on experience
performing usability testing with slot-filling dialogue stgms.

We define thedialogue modep(s,|a;,, s4, am) to deterministically imple-
ment the notions of dialogue state above - i.e., a field whahrot been ref-
erenced by the user takes the vatya field which has been referenced by the
user exactly once takes the valugand a field which has been referenced by
the user more than once takes the valuEor example, at the beginning of the
dialogue, the dialogue statgis (n,n, 1). If the user were to say “I'd like to go
to b” in his/her first utterance, the resulting dialogueestabuld be(n, u, 0).

If the system were to reply “To b - is that right?”, and the ussplied “Yes,
from a to b”, then the resulting dialogue state would(bec,0). We define
the confusion matriy(a.,|a.,, g) to encode the probability of making a speech
recognition error to be.,... Further, we assume that one recognition grammar
is always used:

p(d;,cl\a;,g) = p(d;,cl\a;) (8.17)
_ pcorrect(cl) : (1 - perr) Zf Qy, = Gy
pincorrect(cl) |XZ‘Til Zf Qo 7é Ay,

Below we will vary p..,.- to explore the effects of speech recognition errors.

Past work has found the distribution of confidence scoresstexponen-
tial (Pietquin, 2004), and here we define the confidence swoteability den-
sity functionspcorrect(¢') @ndpincorrect(c’) 10 be exponential probability den-
sity functions normalised to the region [0,1], i.e.:
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C-Qcorrect
Qcorrect€ a 40
P, t(c) — eaco'rrect 1 ’ correct
COT'TEC -
17 Acorrect = 0
aincorrecte(lic).ai"w”ﬂ“t
pincorrect(c) e eainco'rrect _ 1 9 aincorrect # 0 (818)
17 Qincorrect =

whereacorrect @Ndaincorrect @re constants defined ¢roo, o). We note that
as a, approaches positive or negative infinity,(c) becomes deterministic
and conveys complete information; whep = 0, p,(c) is a uniform density
and conveys no information. Since we expect the confidenoe Y¥ar correct
recognition hypotheses to tend to 1, and for incorrect reitimgp hypotheses
to tend to O, we would expeat, > 0. To illustrate the meaning @f.,,..: and
aincorrect, @ SMall classification task was created in which a confideooee is
used as a decision variable to classifyas eithercorrector incorrect Various
concept error rates (valuesf..) anda, were considered and for each pair of
values, the confidence threshold which minimised clastificarror rate was
used. Table 1 shows the results. Whgn= 0, all hypotheses are classified as
correctand the classification error rate is the sampas As a,, is increased,
the classification error rate decreases. Intuitively, @dbshows the minimum
possible classification error rate achievable with a giwgnand comparing
this with the prior error rate.,.» gives an indication of thenformativenessf
Ay -

Table 1. Minimum classification error rate possible for various agpicerror ratesk...) and
levels of confidence score informativeness)(

Concept error ratéf..,-)

Qg 0.10 0.30 0.50
0 10% 30% 50%
1 10% 30% 38%
2 9% 23% 27%
3 9% 16% 18%
4 6% 11% 12%
5 4% 7% 8%

00 0% 0% 0%

The reward measure for the test-bed dialogue problem iasladmponents
for both task completion and dialogue “appropriatenesgluiding: a reward
of -3 for confirming a field before it has been referenced byusder; a reward
of -5 for taking thefail action; a reward of +10 or -10 for taking tiseibmit-
x-y action when the user’s goal (%,y) or not, respectively; and a reward of
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-1 otherwise. The reward measure reflects the intuitiontiehaving inappro-
priately or even abandoning a hopeless conversation ea&rlyaih less severe
than getting the user’s goal wrong. The per-turn penaltyl @xpresses the in-
tuition that, all else being equal, short dialogues areebétian long dialogues.
The reward measure also assigned -100 for takingtbetaction when not in
the first turn of the dialogue. This portion of the reward fiimt effectively
expresses a design decision: the greet action may only e bakhe first turn.
A discount ofy = 0.95 was used for all experiments.

Both thePerseusand theHoey-Poupartalgorithms required parameters for
the number of belief points and number of iterations. Thloegperimen-
tation, we found that 500 belief points and 30 iterationgaiattd asymptotic
performance for all values a?..... In addition, theHoey-Poupartalgorithm
required a parameter specifying the number of observatmsample at each
belief point. Through experimentation, we found that 30 gkes produced
acceptable results and reasonable running times.

4.2 MDP Baseline

To test whether the method for incorporating confidenceesoatperforms
current methods, an MDP was constructed to assess perfoenudra model
which does not track multiple dialogue states, and whictsdu# make use
of an explicit user model. The MDP was patterned on systertisititerature
(Pietquin, 2004). The MDP state contains components fon éaé which
reflect whether, from the standpoint of the machine, (a) aevalas not been
observed, (b) a value has been observed but not confirmed) anélue has
been confirmed. The MDP state also tracks which confidendesbwas ob-
served for each field, as well as for the confirmation. Finallyo additional
states dialogue-startanddialogue-end are included in the MDP state space.

The “confidence bucket” is determined by dividing the coniitke score
into M buckets. ldeally the confidence score bucket sizes wouleleeted
so that they maximise average return. However, it is notais/how to per-
form this selection - indeed, this is one of the weaknessékeofconfidence
bucket” method. Instead, a variety of techniques for sgtthre confidence
score threshold were explored. It was found that dividiregggobability mass
of the confidence scoreevenly between buckets produced the largest average
returns among the techniques expléretihat is, we define

6The other techniques included dividing ttamge of confidencecores equally (e.g., for two buckets, using
a threshold of 0.5), and dividing ttrange of error ratesequally (e.g., for two buckets, setting a threshold
such that p(observation is corréatonfidence score) =0.5).
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cT'hreshy = 0 < cThreshy < --- < cT'hreshp_1 < cThreshy; =1
(8.19)
and then find the values of hresh,, such that:

cThreshm cThreshm+1
/ p(c)de = / p(c)de, mel,2,--- M —1 (8.20)
cThreshp, 1 cThreshm

wherep(c) is the prior probability of a confidence score. We find thi®pfor
our test-bed problem as follows. We first find the distribatidc|a,, ) as:

plclan) = p(h, claw) (8.21)
heA
= pcorrect(c|au)(1 - perr) + pincorrect(c‘au)(perr) (822)

In the MDP context, we assume the confidence score bucket®raned
without access to a prigr(a, ). From this assumption, we find:

p(C) = pcorrect(c)(l - perr) + pincorrect(c) (perr) (823)

from which the values ofT'hresh,, can be derived.

Because the confidence bucket for each field (including itlsevand its
confirmation) is tracked in the MDP state, the size of the MIdResspace
grows with the number of confidence buckets. Fbr= 2 confidence buckets,
the resulting MDP calleMDP-2 has 51 statés

Given the current MDP state, the MDP policy selects an MDRbacand
the MDP state estimator then maps the MDP action back to a P®&tition.
Because the MDP learns through experience with a simulateiioament,
an on-line learning technique, (Watkins, 1989) Q-learniwgs used to train
the MDP baseline. A variety of learning parameters werearpl, and the
best-performing parameter set was selected: inifialalues set to 0, explo-
ration parametet = 0.2, and the learning rate set tol/k (wherek is the
number of visits to th&)(s, a) being updated) MDP-2 was trained with ap-
proximately 125,000 dialogue turns. To evaluate the rieguliDP policy,
10,000 dialogues were simulated using the learned policy.

4.3 Results

Figure 3 shows the average returns for demtinuous-POMDPdiscrete-
POMDP, andMDP-2solutions vsp.,.- ranging from 0.00 to 0.65 fat.;rect =

“For referenceM = 1 produces an MDP with 11 states, ahfl = 3 produces an MDP with 171 states.
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aincorrect = @ = 1 . (At each data point, an error ratg. was set, and errors
and confidence scores were generated synthetically angamequations 8.17
and 8.18.). Figure 3 also shows curvestoconf-POMDPa POMDP which
ignores confidence score information aridP, an MDP which ignores confi-
dence score information (i.e., an MDP with just one configestore bucket).
The error bars show the 95% confidence interval for returarassgy a normal
distribution. Note that return decreases consistentp.asncreases for all so-
lution methods, but the POMDP solutions attain larger resithan the MDP
method at all values qf.... 8. From this plot it can be seen that the addition of
confidence score information improves both the POMDP and Mal&tions.
This plot shows that, at = 1, the addition of confidence score information has
a large improvement in performance for the MDP, and a modédignificant
improvement on the POMDP.

c
p—
=
[3)
S
(0]
o))
g
c|>.> —— disc-POMDP
< 64| noconf-POMDP
8 ----cont-POMDP
—0o— MDP-2
-10 1 | mpp
-12 =

O OOV OO

perr

Figure 3. Average returrfor continuous-POMDP, discrete-POMDP, noconf-POMDP, MDP
and MDP methods foi = 1.

As the informativeness of the confidence score increasesutd be ex-
pected that the performance of both the MDP and POMDP woutdirage
to improve. This is confirmed in Figures 4, 5, and 6 which sheerage re-
turns for thediscrete-POMDPand continuous-POMDRnethods andMDP-2
method vs.a for p.,, = 0.3, 0.4, and0.5, respectively. The error bars show

8The MDP-3 system was also created but we were unable to obtain betferpence from it than we did
from theMDP-2 system.
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the 95% confidence interval for return assuming a normalibligton. In these
figures, we again defin@.orrect = Gincorrect = a. The POMDP methods
outperform the baseline MDP method consistently. Noteiti@aeasinga in-
creases average return for all methods, and that the gréam®vements are
for p.» = 0.5 - i.e., the information in the confidence score has more impac
as speech recognition accuracy degrades. These figurepralsde a quan-
titative illustration of the benefit of belief monitoring .vghe benefit of the
confidence score information. For example, in Figure 6 (ilcp, ., = 0.5),
ata = 0, the POMDP achieves an average of 0.7 units of reward/dialog
whereas the MDP achieves an average of -3.1 units of rewalaljde. In
other words, ignoring confidence score altogether, theebeionitoring pro-
vided by the POMDP results in an increase from -3.1 to 0.7. addition of

a very informative confidence score (i.e.= 5) to the POMDP results in an
increase from 0.7 units of reward/dialogue to 3.2 units ofarel/dialogue.

Average return
w
(63}
|

s A
25 - ---- cont-POMDP
2 R (s MDP-2
15 T —disc-POMDP
1
0 1 2 5

a (Informativeness of confidence score)

Figure 4. Average returrvs. a (informativeness of confidence scoe)p.,,» = 0.30 for
continuous-POMDP, discrete-POMDP, and MDP-2 methods.

In Figures 3 through 6, the discrete-POMDP and continudds4BP meth-
ods performed similarf; In this task, use of the confidence scaharing
planning does not improve performance of the POMDP. This could be due
to the relatively short horizon in the test-bed problem, astof the dialogues

9Additional experiments were performed (not shown hereXxtigierformed POMDP optimisation with 2,
4, and 8 “buckets” and continuous belief monitoring duringleation, and these produced very similar
results.
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< 1-
— disc-POMDP
0 - ---- cont-POMDP
L MDP-2
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0 1 2 5

a (Informativeness of confidence score)

Figure 5. Average returrvs. a (informativeness of confidence scoe)p.,» = 0.40 for
continuous-POMDP, discrete-POMDP, and MDP-2 methods.

Average return

-2 1 — disc-POMDP
----cont-POMDP

0 1 2 5

a (Informativeness of confidence score)

Figure 6. Average returnvs. a (informativeness of confidence scost)p.., = 0.50 for
continuous-POMDP, discrete-POMDP, and MDP-2 methods.

spanned only a handful of turns. We intend to explore thigeissith larger
dialogue management problems in future work.
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5. Improving Handcrafted Policies

In the previous section, a designer specified a reward famctind actions
were selected to maximise reward using automated plannimgraditional
approaches to dialogue management, the designer specifi@ssadirectly, a
process often calledandcrafting®.

Automated planning is appealing because adding confidexace miforma-
tion to the dialogue state space increases its size draafigticomplicating
the work of a human designer. This section presents an atieerapproach in
which a human designer produces a handcrafted dialoguegeawhichdoes
not include confidence score informatidRather, the spoken dialogue system
is viewed as a POMDP, belief monitoring (which takes configescore into
account) is performed, and the handcrafted controller és@bed in conjunc-
tion with the belief state. Concretely, the handcraftedgyals evaluated by
constructing its value function, and is then executed irsthile of thediscrete-
POMDPabove.

Intuitively, a policy specifies what action to take in a givatuation. In the
previous section, we relied on the representation of a POlpdiEy produced
by value iteration - i.e., a value function, represented set af vV vectors each
of dimensionality|S|. We write v, (s) to indicate thesth component of the
nth vector.

A second way of representing a POMDP policy is as a “policypgta a
finite state controller consisting &f nodes and some number of directed arcs.
Each controller node is assigned a POMDP action, and we galnawrite
7(n) to indicate the action associated with th node. Each arc is labelled
with a POMDP observation, such that all controller nodesshexactly one
outward arc for each observatiol{n, 0) denotes the successor node for node
n and observatiom. A policy graph is a general and common way of rep-
resenting handcrafted dialogue management policiesa@teri and Huerta,
2005). More complex handcrafted policies - for exampleséhoreated with
rules - can usually be compiled into a (possibly very largdicy graph. That
said, a policy graph does not make the expected return assdaivith each
controller node explicit, but as pointed out by Hansen (9@ can find the
expected return associated with each controller node lwyngpthis system of
linear equations in:

va(s) = r(s, () +7 ) Y p(sls, w(n)p(ols’, 7 (n))vym.0)(s') (8.24)

s'eS ocO

10n both POMDP and traditional approaches, the designeteseadialogue model; the focus here is how
actions are selected given a dialogue model.
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Solving this set of linear equations yields a set of vectase vecton(s)
for each controller nodey, (s). To find the expected value of starting the
controller in noder and belief staté we compute:

5]

> vn(s)b(s) (8.25)
s=1

To improve the performance of the controller, we ugés) atrun-time as
follows. At the beginning of the dialogue, we find the nodehviite highest
expected return fds, and execute its action. Throughout the dialogue, we per-
form belief state monitoring - i.e., we maintain the currbelief state at each
time-step as given in equation 8.13. At each time-steperatian following
the policy specified by the finite state controller, reeevaluatewhich node
has the highest expected return for the curteMe then take the action spec-
ified by that node. Because the node-value function andftsttiee are exact,
this style of execution is guaranteed to perform at leastelkag the original
handcrafted controller. Note that, in this style of exemutitransitions may
occur which are not arcs in the handcrafted policy.

This style of execution is distinct fromolicy iteration in which the nodes
and links of the controller are changed and the controlles-isvaluated (using
e.g., equation 8.24) to iteratively improve the contr@lexpected return. We
do not explore policy iteration in this chapter; however, nate that a hand-
crafted controller could be used to bootstrap a policy ftenaprocess. Since
a finite state controller is more intuitive for a (human) desir to understand,
we intend to explore policy iteration in future work.

Three handcrafted policies were created for the test-baldglie manage-
ment problem, called HC1, HC2, and HC3. All of the handchfpelicies
first take the actiogreet HC1 takes theask-fromandask-toactions to fill the
from andto fields, performing no confirmation. If the user does not respda
re-tries the same action. If it receives an observation wlsdgnconsistent or
nonsensical, it re-tries the same action. If it fills bothdgWithout receiving
any inconsistent information, it takes the correspondingmit-x-yaction. A
logical diagram showin¢iC1is shown in Figure #.

HC2is identical to HC1 except that if the machine receives arenfagion
which is inconsistent or nonsensical, it immediately takegail action. Once
it fills both fields, it takes the correspondisgbmit-x-yaction.

HC3 employs a similar strategy to HC1 but extends HC1 by configmin
each field as it is collected. If the user responds with “noa tconfirmation,
it re-asks the field. If the user provides inconsistent imfation, it treats the

11A logical diagram is shown for clarity: the actual controlieses the real values a, b, and ¢, instead of the
variables X and Y, resulting in a controller with 15 states.
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from Xto Y

from XtoY

Figure 7. HCL1 handcrafted controller.

new information as “correct” and confirms the new informatidf the user
does not respond, or if the machine receives any nonsengmal it re-tries
the same action. Once it has successfully filled and confiromtid fields, it
takes the correspondirsgibmit-x-yaction.

We first studied the operation of the greedy improvement atkthithout
access to confidence score information. We executed 10,@08ydes for
each handcrafted policy at valuesgf.. ranging from 0.05 to 0.65. Figure 8
gives results fotHC'1. To make the gain of the greedy improvement method
explicit, Figure 8 shows the difference between the progpasethod and the
expected value of executing the handcrafted policy diyecHor reference,
Figure 8 also includes the difference between the handdralicies executed
normally and the POMDP policy, which we take to be a practiggier bound
for the test-bed problem. Error bars show the 95% confidemeeval for the
true expected return assuming normal distribution. We tiwein almost all
cases, the greedy improvement method results in a sigrificgmovement. In
many cases, the improved handcraft controller is closegdt@MDP policy -
our assumed practical upper bound. ResultsH6¥2 and HC'3 are shown in
Figures 9 and 10.

We next studied the operation of the greedy improvement odetithen
confidence score information is present. Figures 11, 1218rghow average
returns for thediscrete-POMDPand improved handcraft methods vs.for
perr = 0.3, 0.4, and0.5, respectively. a is defined as in Section 4.2 - i.e.,
4 = Georrect = Gincorrect- EITOr bars are negligible and are not shown. For
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each of the three handcrafted controllers in each of thesthadues ofp.,,
increasingu consistently increases average return.

1.2

—— POMDP-HC1
17 | o HCivf-HC1

0.8

0.6

0.4 -

Average or expected gain

0.2

0 L&

O O QO O VO M N H O © D L L &
Q'Q Q‘Q 0"» 0')' Qr'll Qr'l/ 0(‘5 Qr'b Q‘b‘ Q‘v Q?D 0<? 0(9 Q‘b

perr
Figure 8. Gain in average/expected return for HC1 executed usingfisthte monitoring vs.

perr fOr a = 0. (The POMDP policy, which we take to be our practical uppearrah is shown
for reference in Figures 8 through 10.)
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—— POMDP - HC2
o HC2vf - HC2

2,
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Q'Q Q‘Q 0"» Q.'» 0(‘]/ 0(‘]/ Q('b 0(‘5 Q'v Q'v 06‘) Q?) QQ') Q©
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Figure 9. Gain in average/expected return for HC2 executed usingfisthte monitoring vs.
Perr fOra = 0.
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o |~ POMDP-HC3
~o - HC3vf - HC3 ¢

Average or expected gain
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Figure 10. Gain in average/expected return for HC3 executed usingftstiate monitoring
VS. perr fOr a = 0.
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Figure 11. Average returrvs. o (informativeness of confidence score) for.,. = 0.30 for
discrete-POMDP and handcrafted policies executed witiefgtiate monitoring.

6. Conclusions

This chapter has shown how a confidence score can be diractypio-
rated into the dialogue model represented as a Partiall\ei@éisle Markov
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Figure 12. Average returrvs. a (informativeness of confidence score) for.. = 0.40 for
discrete-POMDP and handcrafted policies executed witiefogtate monitoring.
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Figure 13. Average returrvs. o (informativeness of confidence score) for., = 0.50 for
discrete-POMDP and handcrafted policies executed witiefsthte monitoring.

Decision Process (POMDP) used for dialogue managemenikerdditional
approaches which maintain a single dialogue state at emehdiep, in effect
a POMDP considers all possible dialogue states, and masngaprobability
distribution over these calledlzelief state This representation allows a con-
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fidence score to be tracked in the dialogue state in a pragtifdshion, and
optimising the POMDP produces a dialogue manager whicloégghis rep-
resentation when selecting actions. In evaluation, the POMignificantly
outperforms a baseline MDP, which tracks only one hypothési the dia-
logue state.

This chapter has also presented a second approach to padidygbion in
which a handcrafted controller which does not account farfidence score
information can be improved to automatically account fonfatence score
information.

The problems considered here were unrealistically smelidal-world de-
ployment, and recent work has shown how to scale POMDPs tdiliilag
problems of a realistic size (Williams and Young, 2005).Alhis chapter has
considered only the top recognition hypothesis and confielsnore. A natural
extension would to be consider more complex hypothesiesegntations such
asN-Bestlists or word lattices, and more recognition features susgbrasodic
information, parse scores, or acoustic metrics.
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