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Abstract

Recently a variety of LSTM-based condi-
tional language models (LM) have been ap-
plied across a range of language generation
tasks. In this work we study various model ar-
chitectures and different ways to represent and
aggregate the source information in an end-
to-end neural dialogue system framework. A
method called snapshot learning is also pro-
posed to facilitate learning from supervised
sequential signals by applying a companion
cross-entropy objective function to the condi-
tioning vector. The experimental and analyt-
ical results demonstrate firstly that competi-
tion occurs between the conditioning vector
and the LM, and the differing architectures
provide different trade-offs between the two.
Secondly, the discriminative power and trans-
parency of the conditioning vector is key to
providing both model interpretability and bet-
ter performance. Thirdly, snapshot learning
leads to consistent performance improvements
independent of which architecture is used.

1 Introduction

Recurrent Neural Network (RNN)-based condi-
tional language models (LM) have been shown to
be very effective in tackling a number of real world
problems, such as machine translation (MT) (Cho
et al., 2014) and image caption generation (Karpa-
thy and Fei-Fei, 2015). Recently, RNNs were ap-
plied to task of generating sentences from an ex-
plicit semantic representation (Wen et al., 2015a).
Attention-based methods (Mei et al., 2016) and
Long Short-term Memory (LSTM)-like (Hochreiter

and Schmidhuber, 1997) gating mechanisms (Wen et
al., 2015b) have both been studied to improve gen-
eration quality. Although it is now clear that LSTM-
based conditional LMs can generate plausible nat-
ural language, less effort has been put in compar-
ing the different model architectures. Furthermore,
conditional generation models are typically tested
on relatively straightforward tasks conditioned on
a single source (e.g. a sentence or an image) and
where the goal is to optimise a single metric (e.g.
BLEU). In this work, we study the use of condi-
tional LSTMs in the generation component of neu-
ral network (NN)-based dialogue systems which de-
pend on multiple conditioning sources and optimis-
ing multiple metrics.

Neural conversational agents (Vinyals and Le,
2015; Shang et al., 2015) are direct extensions of
the sequence-to-sequence model (Sutskever et al.,
2014) in which a conversation is cast as a source to
target transduction problem. However, these mod-
els are still far from real world applications be-
cause they lack any capability for supporting domain
specific tasks, for example, being able to interact
with databases (Sukhbaatar et al., 2015; Yin et al.,
2016) and aggregate useful information into their re-
sponses. Recent work by Wen et al. (2016a), how-
ever, proposed an end-to-end trainable neural dia-
logue system that can assist users to complete spe-
cific tasks. Their system used both distributed and
symbolic representations to capture user intents, and
these collectively condition a NN language genera-
tor to generate system responses. Due to the diver-
sity of the conditioning information sources, the best
way to represent and combine them is non-trivial.



In Wen et al. (2016a), the objective function for
learning the dialogue policy and language generator
depends solely on the likelihood of the output sen-
tences. However, this sequential supervision signal
may not be informative enough to learn a good con-
ditioning vector representation resulting in a gener-
ation process which is dominated by the LM. This
can often lead to inappropriate system outputs.

In this paper, we therefore also investigate the use
of snapshot learning which attempts to mitigate this
problem by heuristically applying companion super-
vision signals to a subset of the conditioning vector.
This idea is similar to deeply supervised nets (Lee
et al., 2015) in which the final cost from the out-
put layer is optimised together with the companion
signals generated from each intermediary layer. We
have found that snapshot learning offers several ben-
efits: (1) it consistently improves performance; (2) it
learns discriminative and robust feature representa-
tions and alleviates the vanishing gradient problem;
(3) it appears to learn transparent and interpretable
subspaces of the conditioning vector.

2 Related Work

Machine learning approaches to task-oriented di-
alogue system design have cast the problem as
a partially observable Markov Decision Process
(POMDP) (Young et al., 2013) with the aim of
using reinforcement learning (RL) to train dia-
logue policies online through interactions with real
users (Gašić et al., 2013). In order to make RL
tractable, the state and action space must be care-
fully designed (Young et al., 2010) and the un-
derstanding (Henderson et al., 2014; Mrkšić et al.,
2015) and generation (Wen et al., 2015b; Wen et al.,
2016b) modules were assumed available or trained
standalone on supervised corpora. Due to the under-
lying hand-coded semantic representation (Traum,
1999), the conversation is far from natural and the
comprehension capability is limited. This motivates
the use of neural networks to model dialogues from
end to end as a conditional generation problem.

Interest in generating natural language using NNs
can be attributed to the success of RNN LMs for
large vocabulary speech recognition (Mikolov et
al., 2010; Mikolov et al., 2011). Sutskever et
al. (2011) showed that plausible sentences can be

obtained by sampling characters one by one from
the output layer of an RNN. By conditioning an
LSTM on a sequence of characters, Graves (2013)
showed that machines can synthesise handwriting
indistinguishable from that of a human. Later on,
this idea has been tried in several research fields,
for example, generating image captions by condi-
tioning an RNN on a convolutional neural network
(CNN) output (Karpathy and Fei-Fei, 2015; Xu et
al., 2015); translating a source to a target language
by conditioning a decoder LSTM on top of an en-
coder LSTM (Cho et al., 2014; Bahdanau et al.,
2015); or generating natural language by condition-
ing on a symbolic semantic representation (Wen et
al., 2015b; Mei et al., 2016). Among all these meth-
ods, attention-based mechanisms (Bahdanau et al.,
2015; Hermann et al., 2015; Ling et al., 2016) have
been shown to be very effective improving perfor-
mance using a dynamic source aggregation strategy.

To model dialogue as conditional generation,
a sequence-to-sequence learning (Sutskever et al.,
2014) framework has been adopted. Vinyals and Le
(2015) trained the same model on several conversa-
tion datasets and showed that the model can gener-
ate plausible conversations. However, Serban et al.
(2015b) discovered that the majority of the gener-
ated responses are generic due to the maximum like-
lihood criterion, which was latter addressed by Li
et al. (2016a) using a maximum mutual information
decoding strategy. Furthermore, the lack of a con-
sistent system persona was also studied in Li et al.
(2016b). Despite its demonstrated potential, a ma-
jor barrier for this line of research is data collection.
Many works (Lowe et al., 2015; Serban et al., 2015a;
Dodge et al., 2016) have investigated conversation
datasets for developing chat bot or QA-like general
purpose conversation agents. However, collecting
data to develop goal oriented dialogue systems that
can help users to complete a task in a specific do-
main remains difficult. In a recent work by Wen et
al. (2016a), this problem was addressed by design-
ing an online, parallel version of Wizard-of-Oz data
collection (Kelley, 1984) which allows large scale
and cheap in-domain conversation data to be col-
lected using Amazon Mechanical Turk. An NN-
based dialogue model was also proposed to learn
from the collected dataset and was shown to be able
to assist human subjects to complete specific tasks.



Snapshot learning can be viewed as a special form
of weak supervision (also known as distant- or self
supervision) (Craven and Kumlien, 1999; Snow et
al., 2004), in which supervision signals are heuristi-
cally labelled by matching unlabelled corpora with
entities or attributes in a structured database. It has
been widely applied to relation extraction (Mintz et
al., 2009) and information extraction (Hoffmann et
al., 2011) in which facts from a knowledge base (e.g.
Freebase) were used as objectives to train classifiers.
Recently, self supervision was also used in mem-
ory networks (Hill et al., 2016) to improve the dis-
criminative power of memory attention. Conceptu-
ally, snapshot learning is related to curriculum learn-
ing (Bengio et al., 2009). Instead of learning eas-
ier examples before difficult ones, snapshot learning
creates an easier target for each example. In prac-
tice, snapshot learning is similar to deeply super-
vised nets (Lee et al., 2015) in which companion ob-
jectives are generated from intermediary layers and
optimised altogether with the output objective.

3 Neural Dialogue System
The testbed for this work is a neural network-based
task-oriented dialogue system proposed by Wen et
al. (2016a). The model casts dialogue as a source
to target sequence transduction problem (modelled
by a sequence-to-sequence architecture (Sutskever
et al., 2014)) augmented with the dialogue his-
tory (modelled by a belief tracker (Henderson et
al., 2014)) and the current database search outcome
(modelled by a database operator). The model con-
sists of both encoder and decoder modules. The de-
tails of each module are given below.

3.1 Encoder Module
At each turn t, the goal of the encoder is to produce
a distributed representation of the system action m

t

,
which is then used to condition a decoder to gen-
erate the next system response in skeletal form1. It
consists of four submodules: intent network, belief
tracker, database operator, and policy network.
Intent Network The intent network takes a se-
quence of tokens1 and converts it into a sentence em-
bedding representing the user intent using an LSTM

1Delexicalisation: slots and values are replaced by generic
tokens (e.g. keywords like Chinese food are replaced by
[v.food] [s.food] to allow weight sharing.

network. The hidden layer of the LSTM at the last
encoding step z

t

is taken as the representation. As
mentioned in Wen et al. (2016a), this representation
can be viewed as a distributed version of the speech
act (Traum, 1999) used in traditional systems.
Belief Trackers In addition to the intent network,
the neural dialogue system uses a set of slot-based
belief trackers (Henderson et al., 2014; Mrkšić et al.,
2015) to track user requests. By taking each user in-
put as new evidence, the task of a belief tracker is
to maintain a multinomial distribution p over values
v 2 V

s

for each informable slot2 s, and a binary
distribution for each requestable slot2. These prob-
ability distributions ps

t

are called belief states of the
system. The belief states ps

t

, together with the intent
vector z

t

, can be viewed as the system’s comprehen-
sion of the user requests up to turn t.
Database Operator Based on the belief states ps

t

,
a DB query is formed by taking the union of the
maximum values of each informable slot. A vector
x

t

representing different degrees of matching in the
DB (no match, 1 match, ... or more than 5 matches)
is produced by counting the number of matched enti-
ties and expressing it as a 6-bin 1-hot encoding. If x

t

is not zero, an associated entity pointer is maintained
which identifies one of the matching DB entities se-
lected at random. The entity pointer is updated if the
current entity no longer matches the search criteria;
otherwise it stays the same.
Policy Network Based on the vectors z

t

, ps

t

, and
x

t

from the above three modules, the policy network
combines them into a single action vector m

t

by a
three-way matrix transformation,

m

t

= tanh(W
zm

z

t

+W

xm

x

t

+
P

s2GW

s

pm

p

s

t

) (1)

where matrices W
zm

, Ws

pm

, and W

xm

are param-
eters and G is the domain ontology.

3.2 Decoder Module
Conditioned on the system action vector m

t

pro-
vided by the encoder module, the decoder mod-
ule uses a conditional LSTM LM to generate the
required system output token by token in skeletal
form1. The final system response can then be formed

2Informable slots are slots that users can use to constrain the
search, such as food type or price range; Requestable slots are
slots that users can ask a value for, such as phone number. This
information is specified in the domain ontology.



(a) Language model type LSTM (b) Memory type LSTM (c) Hybrid type LSTM

Figure 1: Three different conditional generation architectures.

by substituting the actual values of the database en-
tries into the skeletal sentence structure.

3.2.1 Conditional Generation Network
In this paper we study and analyse three different
variants of LSTM-based conditional generation ar-
chitectures:
Language Model Type The most straightforward
way to condition the LSTM network on additional
source information is to concatenate the condition-
ing vector m

t

together with the input word embed-
ding w

j

and previous hidden layer h
j�1,
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ĉ

j

1

CCA =

0

BB@

sigmoid
sigmoid
sigmoid
tanh

1

CCAW4n,3n

0

@
m

t

w

j

h

j�1

1

A

c

j

= f

j

� c

j�1 + i

j

� ĉ
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where index j is the generation step, n is the hidden
layer size, i

j

, f
j

,o
j

2 [0, 1]n are input, forget, and
output gates respectively, ĉ

j

and c

j

are proposed cell
value and true cell value at step j, and W4n,3n are
the model parameters. The model is shown in Fig-
ure 1a. Since it does not differ significantly from the
original LSTM, we call it the language model type
(lm) conditional generation network.
Memory Type The memory type (mem) condi-
tional generation network was introduced by Wen et
al. (2015b), shown in Figure 1b, in which the condi-
tioning vector m

t

is governed by a standalone read-
ing gate r

j

. This reading gate decides how much in-
formation should be read from the conditioning vec-
tor and directly writes it into the memory cell c

j

,
0

BB@

i

j

f

j

o

j

r

j

1

CCA =

0

BB@

sigmoid
sigmoid
sigmoid
sigmoid

1

CCAW4n,3n

0

@
m

t

w

j

h

j�1

1

A

ĉ
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where W

c

is another weight matrix to learn. The
idea behind this is that the model isolates the con-
ditioning vector from the LM so that the model has
more flexibility to learn to trade off between the two.
Hybrid Type Continuing with the same idea as the
memory type network, a complete separation of con-
ditioning vector and LM (except for the gate con-
trolling the signals) is provided by the hybrid type
network shown in Figure 1c,
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This model was motivated by the fact that long-term
dependency is not needed for the conditioning vec-
tor because we apply this information at every step j
anyway. The decoupling of the conditioning vector
and the LM is attractive because it leads to better in-
terpretability of the results and provides the potential
to learn a better conditioning vector and LM.

3.2.2 Attention and Belief Representation
Attention An attention-based mechanism provides
an effective approach for aggregating multiple infor-
mation sources for prediction tasks. Like Wen et al.



(2016a), we explore the use of an attention mecha-
nism to combine the tracker belief states in which
the policy network in Equation 1 is modified as

m
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where the attention weights ↵j
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are calculated by,
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where v
t

= z
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+x

t

and matrix W

r

and vector r are
parameters to learn.
Belief Representation The effect of different be-
lief state representations on the end performance are
also studied. For user informable slots, the full belief
state p

s

t

is the original state containing all categori-
cal values; the summary belief state contains only
three components: the summed value of all categor-
ical probabilities, the probability that the user said
they “don’t care” about this slot and the probabil-
ity that the slot has not been mentioned. For user
requestable slots, on the other hand, the full belief
state is the same as the summary belief state because
the slot values are binary rather than categorical.

3.3 Snapshot Learning
Learning conditional generation models from se-
quential supervision signals can be difficult, because
it requires the model to learn both long-term word
dependencies and potentially distant source encod-
ing functions. To mitigate this difficulty, we in-
troduce a novel method called snapshot learning
to create a vector of binary labels ⌥

j

t

2 [0, 1]d,
d < dim(mj

t

) as the snapshot of the remaining part
of the output sentence T

t,j:|Tt| from generation step
j. Each element of the snapshot vector is an indica-
tor function of a certain event that will happen in the
future, which can be obtained either from the sys-
tem response or dialogue context at training time. A
companion cross entropy error is then computed to
force a subset of the conditioning vector m̂j

t

⇢ m

j

t

to be close to the snapshot vector,

L
ss

(·) = �
P

t

P
j

E[H(⌥j

t

, m̂j

t

)] (2)

where H(·) is the cross entropy function, ⌥j

t

and m̂j

t

are elements of vectors ⌥j

t

and m̂

j

t

, respectively. In
order to make the tanh activations of m̂j

t

compat-
ible with the 0-1 snapshot labels, we squeeze each

Figure 2: The idea of snapshot learning. The snap-
shot vector was trained with additional supervisions
on a set of indicator functions heuristically labelled
using the system response.

value of m̂j

t

by adding 1 and dividing by 2 before
computing the cost.

The indicator functions we use in this work have
two forms: (1) whether a particular slot value (e.g.,
[v.food]1) is going to occur, and (2) whether the sys-
tem has offered a venue3, as shown in Figure 2. The
offer label in the snapshot is produced by checking
the delexicalised name token ([v.name]) in the en-
tire dialogue. If it has occurred, every label in sub-
sequent turns is labelled with 1. Otherwise it is la-
belled with 0. To create snapshot targets for a partic-
ular slot value, the output sentence is matched with
the corresponding delexicalised token turn by turn,
per generation step. At each generation step, the tar-
get is labelled with 0 if that delexicalised token has
been generated; otherwise it is set to 1. However, for
the models without attention, the targets per turn are
set to the same because the condition vector will not
be able to learn the dynamically changing behaviour
without attention.

4 Experiments

Dataset The dataset used in this work was col-
lected in the Wizard-of-Oz online data collection de-
scribed by Wen et al. (2016a), in which the task of
the system is to assist users to find a restaurant in
Cambridge, UK area. There are three informable
slots (food, pricerange, area) that users can use to
constrain the search and six requestable slots (ad-
dress, phone, postcode plus the three informable

3Details of the specific application used in this study are
given in Section 4 below.



Architecture Belief Success(%) SlotMatch(%) T5-BLEU T1-BLEU

Belief state representation
lm full 72.6 / 74.5 52.1 / 60.3* 0.207 / 0.229* 0.216 / 0.238*

lm summary 74.5 / 76.5 57.4 / 61.2* 0.221 / 0.231* 0.227 / 0.240*

Conditional architecture
lm summary 74.5 / 76.5 57.4 / 61.2* 0.221 / 0.231* 0.227 / 0.240*

mem summary 75.5 / 77.5 59.2 / 61.3* 0.222 / 0.232* 0.231 / 0.243*

hybrid summary 76.1 / 79.2 52.4 / 60.6* 0.202 / 0.228* 0.212 / 0.237*

Attention-based model
lm summary 79.4 / 78.2 60.6 / 60.2 0.228 / 0.231 0.239 / 0.241
mem summary 76.5 / 80.2* 57.4 / 61.0* 0.220 / 0.229 0.228 / 0.239
hybrid summary 79.0 / 81.8* 56.2 / 60.5* 0.214 / 0.227* 0.224 / 0.240*

Table 1: Performance comparison of different model architectures, belief state representations, and snapshot
learning. The numbers to the left and right of the / sign are learning without and with snapshot, respectively.
The model with the best performance on a particular metric (column) is shown in bold face. The lm models in
Conditional architecture and Attention-based model are the same models as in Wen et al. (2016a). Statistical
significance was computed using two-tailed Wilcoxon Signed-Rank Test (* p <0.05) to compare models w/
and w/o snapshot learning.

slots) that the user can ask a value for once a restau-
rant has been offered. There are 676 dialogues in the
dataset (including both finished and unfinished dia-
logues) and approximately 2750 turns in total. The
database contains 99 unique restaurants.
Training The training procedure was divided into
two stages. Firstly, the belief tracker parameters
✓
b

were pre-trained using cross entropy errors be-
tween tracker labels and predictions. Having fixed
the tracker parameters, the remaining parts of the
model ✓\b are trained using the cross entropy errors
from the generation network LM,

L(✓\b) = �
P

t

P
j

H(yt

j

,pt

j

) + �L
ss

(·) (3)

where yt

j

and p

t

j

are output token targets and predic-
tions respectively, at turn t of output step j, L

ss

(·)
is the snapshot cost from Equation 2, and � is the
tradeoff parameter in which we set to 1 for all mod-
els trained with snapshot learning. We treated each
dialogue as a batch and used stochastic gradient de-
scent with a small l2 regularisation term to train the
model. The collected corpus was partitioned into
a training, validation, and testing sets in the ratio
3:1:1. Early stopping was implemented based on the
validation set considering only LM log-likelihoods.
Gradient clipping was set to 1. The hidden layer
sizes were set to 50, and the weights were randomly

initialised between -0.3 and 0.3 including word em-
beddings. The vocabulary size is around 500 for
both input and output, in which rare words and
words that can be delexicalised have been removed.

Decoding In order to compare models trained with
different recipes rather than decoding strategies, we
decode all the trained models with the average log
probability of tokens in the sentence. We applied
beam search with a beamwidth equal to 10, the
search stops when an end-of-sentence token is gen-
erated. In order to consider language variability, we
ran decoding until 5 candidates were obtained and
performed evaluation on them.

Metrics We compared models trained with differ-
ent recipes by performing a corpus-based evaluation
in which the model is used to predict each system
response in the held-out test set. Three evaluation
metrics were used: BLEU score (on top-1 and top-
5 candidates) (Papineni et al., 2002), slot matching
rate and objective task success rate (Su et al., 2015).
The dialogue is marked as successful if both: (1)
the offered entity matches the task that was speci-
fied to the user, and (2) the system answered all the
associated information requests (e.g. what is the ad-
dress?) from the user. The slot matching rate is the
percentage of delexicalised tokens (e.g. [s.food] and
[v.area]1) appear in the candidate also appear in the



(a) Hybrid LSTM w/o snapshot learning (b) Hybrid LSTM w/ snapshot learning

Figure 3: Learned attention heat maps over trackers. The first three columns in each figure are informable
slot trackers and the rest are requestable slot trackers. The generation model is the hybrid type LSTM.

reference. We computed the BLEU scores on the
skeletal sentence forms before substituting with the
actual entity values. All the results were averaged
over 10 random initialised networks.
Results Table 1 shows the evaluation results. The
numbers to the left and right of each table cell are the
same model trained w/o and w/ snapshot learning.
The first observation is that snapshot learning con-
sistently improves on most metrics regardless of the
model architecture. This is especially true for BLEU
scores. We think this may be attributed to the more
discriminative conditioning vector learned through
the snapshot method, which makes the learning of
the conditional LM easier.

In the first block belief state representation, we
compare the effect of two different belief represen-
tations. As can be seen, using a succinct represen-
tation is better (summary>full) because the iden-
tity of each categorical value in the belief state does
not help when the generation decisions are done in
skeletal form. In fact, the full belief state representa-
tion may encourage the model to learn incorrect co-
adaptation among features when the data is scarce.

In the conditional architecture block, we com-
pare the three different conditional generation archi-
tectures as described in section 3.2.1. This result
shows that the language model type (lm) and mem-
ory type (mem) networks perform better in terms of
BLEU score and slot matching rate, while the hybrid
type (hybrid) networks achieve higher task success.
This is probably due to the degree of separation be-

Model i

j

f

j

r

j

/o
j

hybrid, full 0.567 0.502 0.405
hybrid, summary 0.539 0.540 0.428
+ att. 0.540 0.559 0.459

Table 2: Average activation of gates on test set.

tween the LM and conditioning vector: a coupling
approach (lm, mem) sacrifices the conditioning vec-
tor but learns a better LM and higher BLEU; while
a complete separation (hybrid) learns a better condi-
tioning vector and offers a higher task success.

Lastly, in the attention-based model block we
train the three architectures with the attention mech-
anism and compare them again. Firstly, the char-
acteristics of the three models we observed above
also hold for attention-based models. Secondly, we
found that the attention mechanism improves all
the three architectures on task success rate but not
BLEU scores. This is probably due to the limita-
tions of using n-gram based metrics like BLEU to
evaluate the generation quality (Stent et al., 2005).

5 Model Analysis

Gate Activations We first studied the average ac-
tivation of each individual gate in the models by av-
eraging them when running generation on the test
set. We analysed the hybrid models because their
reading gate to output gate activation ratio (r

j

/o
j

)
shows clear tradeoff between the LM and the con-
ditioning vector components. As can be seen in Ta-



(a)

(b)

(c)

Figure 4: Three example responses generated from the hybrid model trained with snapshot and attention.
Each line represents a neuron that detects a particular snapshot event.

ble 2, we found that the average forget gate activa-
tions (f

j

) and the ratio of the reading gate to the out-
put gate activation (r

j

/o
j

) have strong correlations
to performance: a better performance (row 3>row
2>row 1) seems to come from models that can learn
a longer word dependency (higher forget gate f

t

ac-
tivations) and a better conditioning vector (therefore
higher reading to output gate ratio r

j

/o
j

).
Learned Attention We have visualised the
learned attention heat map of models trained with
and without snapshot learning in Figure 3. The at-
tention is on both the informable slot trackers (first
three columns) and the requestable slot trackers (the
other columns). We found that the model trained
with snapshot learning (Figure 3b) seems to pro-
duce a more accurate and discriminative attention
heat map comparing to the one trained without it
(Figure 3a). This may contribute to the better perfor-

mance achieved by the snapshot learning approach.

Snapshot Neurons As mentioned earlier, snap-
shot learning forces a subspace of the condition-
ing vector m̂

j

t

to become discriminative and in-
terpretable. Three example generated sentences
together with the snapshot neuron activations are
shown in Figure 4. As can be seen, when generat-
ing words one by one, the neuron activations were
changing to detect different events they were as-
signed by the snapshot training signals: e.g. in Fig-
ure 4b the light blue and orange neurons switched
their domination role when the token [v.address]
was generated; the offered neuron is in a high ac-
tivation state in Figure 4b because the system was
offering a venue, while in Figure 4a it is not acti-
vated because the system was still helping the user
to find a venue.



6 Conclusion and Future Work

This paper has investigated different conditional
generation architectures and a novel method called
snapshot learning to improve response generation in
a neural dialogue system framework. The results
showed three major findings. Firstly, although the
hybrid type model did not rank highest on all met-
rics, it is nevertheless preferred because it achieved
the highest task success and also it provided more in-
terpretable results. Secondly, snapshot learning pro-
vided gains on virtually all metrics regardless of the
architecture used. The analysis suggested that the
benefit of snapshot learning mainly comes from the
more discriminative and robust subspace represen-
tation learned from the heuristically labelled com-
panion signals, which in turn facilitates optimisation
of the final target objective. Lastly, the results sug-
gested that by making a complex system more inter-
pretable at different levels not only helps our under-
standing but also leads to the highest success rates.

However, there is still much work left to do. This
work focused on conditional generation architec-
tures and snapshot learning in the scenario of gen-
erating dialogue responses. It would be very help-
ful if the same comparison could be conducted in
other application domains such as machine transla-
tion or image caption generation so that a wider view
of the effectiveness of these approaches can be as-
sessed. Furthermore, removing slot-value delexical-
isation and learning confirmation behaviour in noisy
speech conditions are also main research problems
from the system development prospective.
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