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B. Thomson, K. Yu, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, S. Young

Engineering Department, Cambridge University, CB2 1PZ, UK
{brmt2, ky219, mg436, sk561, farm2, js532, sjy}@eng.cam.ac.uk

Abstract
In any dialogue manager, confidence scores play a central role
in ensuring robust operation. Recently, dialogue managers have
attempted to exploit N-best lists of alternatives for the seman-
tics rather than the single most likely interpretation. Each al-
ternative in the N-best list must have an associated confidence
score and it is very useful to be able to evaluate the utility of
these scored lists independent of the application in which they
are used. This paper adapts several traditional metrics for confi-
dence scoring to the context of the N-best semantic hypotheses
output by a speech understanding system. An alternative met-
ric, called the Item-level Cross Entropy (ICE), is proposed and
is shown to have good theoretical and experimental character-
istics. As an example of the use of the metrics, various simple
methods for assigning confidences are discussed and evaluated.
Of all the metrics tested only the ICE metric provided a consis-
tent monotonic ranking of the various systems.
Index Terms: Robustness, Speech processing, Spoken lan-
guage understanding, Dialogue systems, Confidence Scoring

1. Introduction
Robustness is a major concern for state-of-the-art dialogue sys-
tems. Both speech recognition and semantic errors cause dra-
matic decreases in performance if they are not dealt with cor-
rectly. Any approach to solving this problem requires confi-
dence scores on the semantics received by the dialogue man-
ager. Unless the system has some measure of its belief in what
the user is saying, it is unlikely that it will be able to deal with
errors effectively.

Current systems typically convert a given speech utterance
into exactly one semantic-level output, sometimes called a dia-
logue act. In this situation one can consider confidence scoring
as a classification task between correct and incorrect dialogue
acts [1]. When the system produces multiple hypotheses for
any utterance, a more complex approach may be required.

The use of multiple hypotheses is of particular interest
when the dialogue system is based on Partially Observable
Markov Decision Processes (POMDP) [2]. These systems can
significantly improve robustness by using multiple hypothe-
sised dialogue acts [3]. In a probabilistic framework, such as the
POMDP, each confidence scores should estimate the posterior
probability of its associated dialogue act. To build a working
POMDP-based system, the confidence scores must be evaluated
on this basis.

Central to the evaluation of confidence scores is the format
used for dialogue acts. This typically depends on the task and
there is no generally accepted standard. One approach, which
will be used here, is that the act is composed of a series of se-
mantic items whose order is unimportant. These semantic items
might represent attribute-value pairs or more abstract dialogue
act types, which distinguish for example whether the utterance

was requesting or giving information. An example utterance,
along with reference dialogue acts and semantic items as well
as act and item hypothesis lists are given in Table 1. The tech-
niques described in this paper could be extended to other dia-
logue act formats without significant effort.

Utterance: I’d like um an expensive hotel please
Ref. Act: inform(type=hotel, pricerange=expensive)

Ref. Items: (inform, type=hotel, pricerange=expensive)
Hyp. Acts: inform(type=hotel, pricerange=expensive) 0.9

inform(type=hotel, pricerange=inexpensive) 0.1
Hyp. Items: inform 1.0

type=hotel 1.0
pricerange=expensive 0.9

pricerange=inexpensive 0.1

Table 1: Example utterance with the reference dialogue act (Ref. Act),
reference semantic items (Ref. Items), example act hypothesis list (Hyp.
Acts) and semantic item hypothesis list (Hyp. Items). Confidences
scores are shown in the third column.

This paper adapts various standard metrics for confidence
score evaluation to the context of dialogue act confidences. In
addition, a new metric based on cross entropy is introduced
and shown to have good theoretical and experimental proper-
ties. Section 2 introduces the metrics followed in Section 3 by
an experimental analysis of their characteristics. An example
of using the metrics to distinguish between several simple con-
fidence scoring algorithms is given in Section 4, and Section 5
concludes the paper.

2. Evaluation Metrics
In many ways, evaluation of a semantic parser is the same as the
evaluation of any other classifier with multiple outputs. In eval-
uating a speech recogniser, for example, one compares words
with a reference transcription. In the case of a semantic parser
either the dialogue acts as a whole or the semantic items are
compared.

The use of either exact matches of dialogue acts or partial
matches given by counting the matching semantic items give
rise to two sets of metrics. Matches at a dialogue act level may
be more appropriate if there are strong dependencies between
semantic-items whereas item-level matching may give a better
overall evaluation of the semantic parser. If the confidences are
given only at an act level, they are converted to an item level
score by summing the confidences over acts containing the item.

When defining the item-level metrics it is simpler to con-
sider the set of all semantic items rather than just those hypoth-
esised. Semantic decoding then becomes a task of choosing
whether the semantic item is correct for a given utterance. In
practice, implementation may restrict calculations to the seman-
tic items actually hypothesised or in the reference but concep-



tually matches are compared by summing over all possibilities.
Most of the notation that will be used in definitions is com-

mon to all metrics. Starting with an item-based approach, let the
number of utterances be U and let W denote the number of all
available semantic items. Given u = 1 . . . U and w = 1 . . . W
let:

cuw =





Confidence assigned to the hypothesis that the
wth semantic item is part of utterance u,
0 if none was assigned

δuw =

{
1 if the wth item is in the reference for u
0 otherwise

Nw = Total number of reference semantic items

=
∑
uw

δuw

In the example from Table 1, the confidences cuw

are all zero except for those corresponding to the seman-
tic items “inform”, “type=hotel”, “pricerange=expensive” and
“pricerange=inexpensive” which are 1.0, 1.0, 0.9 and 0.1, re-
spectively. In the case of metrics defined at an act-level, a slight
variation in notation is used. Let the number of hypothesised or
reference acts be H and denote for h = 1 . . . H:

cuh =

{
Confidence assigned to the hth act being the correct
parse for utterance u, 0 if none was assigned

δuh =

{
1 if the hth act is the correct parse for u
0 otherwise

2.1. Confidence Weighted Metrics

A simple possibility for evaluating confidence scores is to ad-
just traditional metrics to take account of the confidence. Where
correct items would normally be calculated, one calculates an
expected value over the confidence scores. Similarly the num-
ber of hypothesised items is replaced with an expected number.

One example of this approach is to convert the semantic
error rate into a confidence weighted form. For each act a hy-
pothesised for utterance u, the items contained in a are matched
with the items contained in the reference and the sum of the
item substitutions, deletions and insertions are calculated and
denoted eua. The confidence weighted semantic error rate is
then:

WSER =
1

Nw

∑

u,h

cuheuh (1)

When using confidence-weighted metrics for evaluation, it
soon becomes obvious that good confidence scores are not nec-
essarily reflected in an improved score. As shown in section 3,
confidence weighted error rates actually increase with the num-
ber of hypotheses. This is counter-intuitive since the larger list
has more information and should perform better.

A theoretical explanation for this issue comes by examin-
ing the choices made by the confidence scorer. Suppose that
the scorer has some beliefs B about the semantics of each ut-
terance and aims to optimise the expected value of the metric
under its beliefs. Under the error rate metric this corresponds to
optimising:

E(
∑

u,h

cuheuh|B) =
∑

u,h

cuhE(euh|B) (2)

Given the constraints
∑

h cuh = 1 and cuh ≥ 0, the optimum is
achieved by setting cuh = 1 for the hypothesis with minimum

expected error. Added hypotheses will always result in worse
expected semantic error rates. This suggests severe deficiencies
in the metric as no credit is being given to the accuracy of the
confidence scores. Confidence weighted recall, precision or F-
scores can also be defined but suffer from similar problems.

2.2. NCE scores, Oracle rates and other metrics

One common metric for evaluating speech recognition confi-
dences is the normalized cross entropy (NCE). This was the
method used for several NIST evaluations and details of its
application to other natural language processing tasks may be
found in [4]. An equation for the item-level form of NCE is:

NCE =
Hbase +

∑
u,w log(δuwcuw + (1− δuw)(1− cuw))

Hbase
(3)

where Hbase = nc log pc + (Nh − nc) log(1 − pc), pc = nc
Nh

,
nc is the number of correct semantic items from this list of hy-
potheses and Nh is the number of hypothesised items (hypoth-
esised items are those with cuw > 0).

The reason for normalising by Hbase is to adjust for the over-
all probability of correctness to enable comparisons between
data sets. Hbase gives the entropy that would be obtained by
simply using the constant probability, pc. This normalisation
term, however, depends on the number of hypothesised items.
The score can be increased by simply adding more hypothesised
items with very low probability. NCE is thus a suitable metric
for evaluating the accuracy of probability estimates given a set
of hypotheses, but it does not necessarily test the overall cor-
rectness of the output.

A useful measure of correctness is the oracle error rate,
which measures the error rate that would be achieved if an or-
acle chose the best option from each hypothesised list of dia-
logue acts. This gives an upper bound on the error that could
be achieved for a given list of hypotheses. Unfortunately, it
is clearly not appropriate as an overall metric since confidence
scores are ignored.

Another commonly used tool for the evaluation of con-
fidence scores is the receiver operating characteristic (ROC)
curve [4]. One considers a classifier based on the confidence
score which accepts or rejects hypotheses depending on a con-
fidence threshold. The ROC curve then plots the number of cor-
rect rejections and acceptances. The problem with this is that
only the first hypothesis and its confidence is ever evaluated.

2.3. Cross Entropy

The traditional metrics discussed above give a way to evaluate
either the confidence scores or the overall correctness, but not
both. An ideal metric should incorporate both factors, as well as
giving a good indication of the effect on dialogue performance.
This leads to the proposal of a new metric, based on the cross
entropy between the probability density from the confidences
and the optimal density given by delta functions at the correct
values. This is very similar to the NCE metric, but does not
normalise for the average probability of correctness. An Item-
level Cross Entropy (ICE) is defined below, although a similar
metric could be defined for act-level evaluations.

ICE =
1

Nw

∑
u,w

− log(δuwcuw + (1− δuw)(1− cuw)) (4)

Assuming that the total number of reference items Nw is
fixed, consider the decisions that the confidence scorer makes



as was done in section 2.1. The scorer must aim to optimise the
expected value of the metric:

E(ICE|B) =
−1

Nw

∑
u,w

[puw log(cuw)+(1−puw) log(1−cuw)]

(5)
Differentiating with respect to cuw gives

puw − cuw

cuw(1− cuw)
= 0 (6)

and so the minimum is achieved when cuw = puw. When sub-
stituting this optimum into 5, the expected value of the metric
is the average entropy of the beliefs B. The metric therefore
penalises systems for bad confidence scores as well as giving
credit for bolder predictions.

3. Experimental analysis of metrics
An experimental evaluation of the metrics discussed above was
completed on a corpus of 648 dialogues recorded during a user
trial of various dialogue managers [5]. Users were asked to
imagine themselves in an unknown town and interacted with
the dialogue managers to find a hotel, bar or restaurant that
matched some predetermined constraints. The corpus contains
around 5800 utterances with semantic annotations. During ex-
periments three levels of noise were added to evaluate the ef-
fects of noise although the original clean signal was recorded.
The noise signal was directly added online to the raw waveform
before speech recognition and resulted in overall signal to noise
ratios of 35.3db (zero noise), 10.2db (medium noise) and 3.5db
(high noise).

Confidence scoring is implemented by first constructing
the confusion network from lattices output by the speech
recogniser[6]. Each word arc in the confusion network has a log
posterior associated which is used in a dynamic programming
search to construct an N-Best list. The summation of these log
posteriors is called the inference evidence and after exponen-
tiating and renormalising is used for the sentence-level score.
Confidences on the semantics are calculated by summing the
sentence-level scores for all sentences which are parsed as the
same dialogue act.

Table 2 shows a comparison of the various metrics on of-
fline transcription experiments. In offline experiments, the con-
fidence scorer described above was compared against an alter-
native approach which simply parses each sentence, chooses the
dialogue act with the most compatible sentences and assigns it
probability 1 (Const). The last two lines in the table show how
the confidence weighted semantic error rate actually improves
with a smaller number of speech to text (STT) hypotheses, con-
trary to the intuitive trend of higher performance with more in-
formation. Comparing the second and last lines shows how the
oracle error rate is also inadequate as a metric since the scores
are equal even though the confidence scores are completely dif-
ferent. Using the ICE metric gives a constantly decreasing error,
as would be expected.

The problems involved with using the NCE score are more
difficult to observe, but can also be seen in the table. Adding
noise with the original confidence scorer decreases performance
more than using a less effective confidence scorer. With the
NCE, the effect of the inaccurate confidence scores far outweigh
the lower oracle error rate. Similarly, decreasing the number of
speech hypotheses is deemed worse than adding noise. This
is despite the fact that the noise has significantly increased the
oracle error rate.

Noise Conf. N- Metric
(db) Cal. Best SER ORA NCE ICE
10.2 InfEv 100 — 16.4 0.352 1.737
35.3 Const1 100 — 7.9 -0.641 1.706
35.3 InfEv 5 19.2 12.2 0.212 1.103
35.3 InfEv 100 20.6 7.9 — 0.941

Table 2: Comparison of evaluation metrics for speech understanding
with multiple hypotheses. The table compares the Confidence Weighted
Semantic Error Rate (WSER), Oracle Error Rate (ORA), Normalised
Cross Entropy (NCE), and Item-level Cross Entropy (ICE) metrics.
Most experiments use the information evidence approach (InfEv) which
is compared against a less effective scorer (Const). All metrics except
NCE show improvements as decreases in the metric value.
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Figure 1: ICE scores obtained by varying the amount of noise and the
number of STT hypotheses.

The ICE metric has some further desirable properties which
are worth mentioning. Firstly, the ICE metric degrades with
added noise and improves when the number of STT hypothe-
ses increases. Experimental results on the corpus are shown in
Figure 1

The second desirable feature of the metric is that it gives
a good indication of the effect of spoken language understand-
ing on dialogue performance. Since the corpus consists of data
recorded from interactions with various dialogue managers one
can plot dialogue performance as a function of the proposed
metric for the different dialogue managers. Performance is mea-
sured by giving 20 points for a successful dialogue, 0 for an un-
successful one and subtracting 1 point for each dialogue turn.
The ICE metric is continuous so it is easier to visualise by us-
ing a regression model. For this purpose a Gaussian Process
regression was used because of its flexibility [7]1.

Two of the systems in the trial are based on the Bayesian
Update of Dialogue State model, which is derived from the Par-
tially Observable Markov Decision Process model (POMDP).
Two other systems are based on the more traditional finite state
Markov Decision Process (MDP). On both simulations and in
this experiment the POMDP models have been shown to out-
perform the MDP model [5]. As shown in Figure 2 this separa-
tion of dialogue performance is maintained when using the ICE
metric on the observed data with real users. In simulation exper-
iments from [5] the simulated error channel made use of confu-
sion rate to vary the amount of error. Although not shown here,
other experiments suggest that the ICE is an appropriate sub-
stitute for real experiments since simulation values are strongly
correlated.

1For GP regression we used a Matern class covariance function with
ν = 5

2
and type II maximum likelihood estimation of parameters
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Figure 2: Mean reward for real-users as a function of the ICE metric es-
timated using a Gaussian Process regression model. The shaded region
shows one standard error on each side of the mean.

4. Comparison of confidence scorers
An example comparison using the metrics above was completed
using several simple confidence scoring techniques. Each STT
hypothesis is assigned a sentence-level confidence score which
is normalised so that the sum over the N-best list is 1, and the
sentence is then passed to the semantic parser. The parser deter-
mines the most likely dialog act for each sentence, then groups
together sentences which produce the same dialog act and adds
confidence scores are added. Three methods were evaluated for
the STT sentence-level confidence score:

Const Constant value for each STT hypothesis

AvgWord Average of all word-level confidence scores

InfEv Exponentiated inference evidence

Table 3 shows a comparison of the confidence scoring algo-
rithms on the corpus from the previous section. All results use a
5-best list of speech recognition hypotheses. On all metrics, the
inference evidence approach achieves the highest performance.
The ICE and NCE metrics show that using multiple hypotheses
is better than using only one.

Conf. Cal. Metric
WSER NCE ICE

Const. 22.3 0.143 1.453
AvgWord 22.3 0.160 1.138

InfEv 19.2 0.212 1.103
InfEvTP1 16.6 -0.523 1.331

Table 3: Comparison of different confidence scoring methods. The last
line (InfEvTP1) uses the inference evidence for STT confidences but
after grouping together equivalent sentences keeps only the most likely
dialog act and assigns it a confidence of 1.

While the offline experiments from Table 3 are useful it
is important to check results with online experiments as well.
This was done by comparing the results from the above cor-
pus, which used inference evidence, against a second user trial,
which used the average word score as the STT confidence. This
trial contained 504 dialogues and around 4000 utterances.

Figure 3 shows a comparison of the different ICE scores as
a function of oracle error rate. The figure again uses a Gaussian
Process regression model to obtain estimates of the mean value
for each confidence scorer. The figure indicates that the in-
ference evidence approach is more effective than average word
score, although more data is required for conclusive results.

0 10 20 30 40 50
0

1

2

3

4

Oracle Error Rate

IC
E

 M
et

ric

InfEv

AvgWord

Figure 3: ICE metric for different confidence scoring algorithms as a
function of oracle error rate as estimated by the Gaussian Process re-
gression model. The shaded region shows one standard error on each
side of the mean.

5. Summary
This paper has shown how various traditional metrics for eval-
uating confidence scores can be adapted for evaluating the con-
fidence scores for N-best dialogue act recognition. A new met-
ric, called the Item-level Cross Entropy (ICE), was proposed
and shown to give a consistent performance ranking for both
the confidence scores and the overall correctness of the system.
Using the metrics, various confidence scoring algorithms were
evaluated.

Future work will focus on developing better techniques for
calculating confidence scores. In the meantime, the ICE met-
ric provides a very useful tool for evaluating our speech under-
standing performance and for comparing confidence scores.
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