
PARAMETER LEARNING FOR POMDP SPOKEN DIALOGUE MODELS

B. Thomson, F. Jurčı́ček, M. Gašić, S. Keizer, F. Mairesse, K. Yu, S. Young

Cambridge University Engineering Department

ABSTRACT

The partially observable Markov decision process (POMDP)
provides a popular framework for modelling spoken dialogue.
This paper describes how the expectation propagation algo-
rithm (EP) can be used to learn the parameters of the POMDP
user model. Various special probability factors applicable
to this task are presented, which allow the parameters be to
learned when the structure of the dialogue is complex. No an-
notations, neither the true dialogue state nor the true seman-
tics of user utterances, are required. Parameters optimised
using the proposed techniques are shown to improve the per-
formance of both offline transcription experiments as well as
simulated dialogue management performance.

Index Terms— POMDP, dialogue management, spoken
language understanding, expectation propagation.

1. INTRODUCTION

Various researchers have shown that spoken dialogue systems
based on the partially observable Markov decision process
(POMDP) outperform standard alternatives [1, 2, 3]. The
POMDP model views the dialogue as a sequence of turns
where the state of the dialogue at each turn is a hidden ran-
dom variable. The system must estimate its beliefs about the
dialogues state using standard probability theory. The proba-
bility distributions that model this hidden state are called the
user model. It is important that the user model’s parameters
are chosen appropriately.

The most common approach used by previous researchers
in selecting these parameters has been to hand-craft them [4,
5, 3]. This can be time-consuming, requires domain knowl-
edge and may be sub-optimal. A more appealing idea is to
try to learn the parameters from data. In [6], maximum like-
lihood estimates are used, but this requires one to annotate
the dialogue state. There are many situations where this is
impractical or even impossible, since the true dialogue state
may be unknown, even to a human annotator. [7] has shown
how expectation maximisation (EM) can be used, but that re-
search requires the user’s goal in the dialogue to remain con-
stant. This is an unsuitable assumption for many real-world
dialogues. EM has also been used to learn a complete user

This work was supported by the EU FP7 CLASSiC project. Email ad-
dresses: {brmt2, fj228,mg436,sk561,farm2,ky219,sjy}@eng.cam.ac.uk

model for a small system (7 states) [8], but this approach does
not scale well.

Recently, a method was described for optimising the
model parameters based on the reward obtained in a dialogue
[9]. While the reward is a good metric for optimising dia-
logue management performance the approach requires many
million online dialogues and also assumes a mechanism for
determining the reward. These requirements are not always
feasible with human users.

This paper describes an alternative approach for learning
the user model that requires only a small corpus of dialogues
and can be trained offline. A reward is required only to learn
the dialogue policy. The approach can be used in a com-
pletely unsupervised setting, requiring no human annotations,
and can be trained on simulated or human dialogues. The ap-
proach also has the advantage that the parameters can be used
for other tasks besides dialogue management, for example in
transcription tasks.

The proposed method is tested in two ways. First, two
POMDP-based dialogue managers are trained for the same
task but using different user model parameters. One of these
user-models is hand-crafted while the other is trained on the
true semantics of the user utterances. The POMDP system
with optimised user model parameters is shown to outper-
form the system with hand-crafted parameters. Second, a
user model with optimised parameters is used to recompute
the probabilities of an N-best list of semantics in a corpus
of human-machine dialogues. The semantics are represented
as user dialogue acts, which are an abstract representation of
the user’s intent in an utterance. The recomputed N-best lists
are shown to be more accurate when using trained parame-
ters (when trained on either hypothesised user dialogue acts
or annotated user dialogue acts).

The paper is organised as follows. Section 2 presents the
background theory used in the paper and describes the struc-
ture of the dialogue model used. This section includes a de-
scription of an example user model for modelling tourist in-
formation dialogues. The expectation propagation (EP) algo-
rithm is described in section 3. EP provides an elegant method
for extending the belief propagation algorithm to learning the
parameters of the user model. In section 4, the learned param-
eters are used to improve dialogue performance and section 5
describes how the learned user model parameters can improve
the transcription of user’s dialogue acts. Section 6 concludes

at−2 ut−1 ot−1

gt−1

ht−1

at−1 ut ot

gt

ht

Fig. 1. Dependencies in the BUDS dialogue system.

the paper.

2. THE DIALOGUE MODEL

The POMDP model of dialogue assumes that a dialogue con-
sists of a sequence of turns, t. In each turn, the dialogue state,
st, is hidden and depends on the previous state, st−1, and the
system’s previous action, at−1. The system’s beliefs about the
dialogue state, bt, is a probability distribution over the state at
time t, st. These beliefs are updated based on observations
the system receives about the user, ot, where ot depends on st
and at−1. In this paper, the observation is represented as an
N -best list of user dialogue acts with associated confidence
scores.

This paper makes use of a special case of the POMDP
model, called the Bayesian update of dialogue state (BUDS)
model [3]. In the BUDS model, the dialogue state is further
factorized into a user goal, gt, the user’s true dialogue act, ut,
and a history of the dialogue ht. The user goal and dialogue
history are further factorized into a series of slots, i, with slot-
level goals (called sub-goals) labelled gt,i and slot-level histo-
ries denoted ht,i. Conditional independence assumptions are
taken such that the gt,i depend on at−1 and gt−1,i and option-
ally a parent goal, gt,pa(i). ut depends on at−1 and the gt,i
and ht,i depend on ht−1,i and ut. The dependencies between
the unfactorized variables are shown in Figure 1.

2.1. TOWNINFO : An example system

The TOWNINFO system, which will be used in the later exper-
iments, provides a good illustration of this framework. The
system’s task is to provide tourist information about hotels,
restaurants and bars in a fictitious town. The user may con-
strain their requests according to nine slots : type of venue,
type of food, number of stars, area, price range, type of mu-
sic, type of drinks, nearness to a particular venue and venue
name. The system has four information slots, where the user
cannot constrain the value but can ask for information: phone
number, address, comment and price. Finally, a further two
slots are used for modelling other features of the dialogue:
one (disc) handles discourse actions such as the user asking

pricer

price type comm

foodstars

drinks music

phone

meth disc

areaname

near

addr

Fig. 2. Sub-goals in the TOWNINFO system.

to repeat or restart; the other (meth) models the style of inter-
action (for example, asking for a venue matching some con-
straints, asking for alternatives). Figure 2 presents a Bayesian
network representation of the sub-goals in the TOWNINFO
system. The dependencies shown are constraints so that a
child goal is only applicable when the parent variable has a
suitable value. For example, food is only applicable when the
type is “restaurant”.

2.2. The parameters and probability factors

The BUDS dialogue model makes use of several probability
distributions, each with its own conditional independence as-
sumptions. It is important to realise that these probability dis-
tributions will depend on some parameters, Θ. These param-
eters determine the probability for each possible output value
according to the definition of the relevant probability factor.
Three forms of probability factor are used in the TOWNINFO
system. Two of these forms model the evolution of sub-goals,
while the third models the probability of user acts given a col-
lection of sub-goals.

The evolution of all sub-goals depends on how the previ-
ous system action, at, relates to the previous sub- goal, gi,t−1,
and also on whether the parent sub-goal, gpa(i),t, is valid.
Sub-goals with no parent are modelled as sub-goals where
the parent is always valid. In the TOWNINFO system, twelve
different parent categories are defined, denoted by ρ. These
differentiate, for example, between: (1) when the system has
said that no venue with a particular slot-value exists, (2) when
the system has not informed a venue and (3) cases where the
parent is not applicable. The special value ρ =“N/A” is used
to denote that the parent sub-goal is not applicable. A com-
plete description of the categories is provided elsewhere [10].

One can now define the two types of goal factors. The
first models how the meth and disc goals evolve over time.
The changes in these goals are unconstrained, so a probability
is required for every possible pair of values. For each of the
slots, i, each parent category, ρ, and every possible value j, k,
a parameter, θi,ρ,j,k determines the probability

p(gt,i = j|gt−1,i = k, ρ) = θi,ρ,j,k.

The second type of factor models the evolution of all
remaining goals, with parameters tied to enforce a constant
probability of change. All slots include a special “N/A” value
for when the parent is not applicable and a “dontcare” value
for when the user doesn’t mind. For each of slot, i, each
parent category, ρ, and l,m ∈ {“N/A”, “dontcare”, “value1”,
“value2”}, a parameter, θi,ρ,l,m is defined, along with counts
ni and n′i. ni equals the number of non-special values while
n′i equals the number of values excluding “N/A” (but includ-
ing “dontcare”). Given a slot-value j, the value of l is selected
as “N/A” or “dontcare” if j is one of these and “value1” oth-
erwise. Given slot-values j, k the value of m is selected as
“N/A” or “dontcare” if k is one of these, “value1” if k = j
and “value2” otherwise. The basic form of the probability
factor p(gt,i = j|gt−1,i = k, ρ) is then defined as

0 if ρ =“N/A”, m 6=“N/A”
1 if ρ =“N/A”, m =“N/A”
0 if ρ 6=“N/A”, m =“N/A”
0 if ρ 6=“N/A”, l =“dontcare”, m =“value1”

θi,ρ,l,m
n′i−1

if ρ 6=“N/A”, l =“dontcare”, m =“value2”
θi,ρ,l,m
ni−1 if ρ 6=“N/A”, l 6=“dontcare”, m =“value2”
θi,ρ,l,m otherwise

.

A similar, though slightly more complex, form is used when
the system informs about venues [10]. This is enabled by
adding special cases into the parent category ρ for “system
informed a venue with this value” and “system informed a
venue with different value”. This extension does not affect
the basic structure of the factor.

The final factor to be defined is the probability of a user
action given the sub-goals and system action, p(u|{gi}i, a),
where {gi}i denotes the collection of sub-goals. Given the
collection of variables, hand-crafted rules are used to deter-
mine whether the user act contradicts each of the sub-goals,
with the contradiction state denoted cu,gi,a ∈ {“contradicts”,
“no contradiction”}. The collection of slots appearing in the
act is denoted by Iu. Three parameters θ∗,0, θ∗,1, θ∗,2 are de-
fined with the probability factor p(u|{gi}i, a) proportional to

θ∗,0 if there exists ci,gi,a =“contradicts”
θ∗,1 if u =“silence()”

θ∗,2
∏
i∈Iu ni otherwise

.

The factor is defined in this way so that the user model can
distinguish between invalid acts given a goal, the user keep-
ing silent, and sensible user actions. It is expected that θ∗,0
is close to zero, although a small positive value is permitted
to allow for user errors. The

∏
i∈Iu ni factors are used to

reduce the bias due to user acts having different prior prob-
abilities of contradicting the goals. Without this factor, the
probability of a user act not contradicting would constantly
decrease as more slots are spoken about. For example, the
prior probability of the user act “inform(food=Chinese, price

range=cheap)” would always have a lower value than for “in-
form(food=Chinese)” because the latter user act will contra-
dict less goals than the former.

This paper will present a Bayesian approach to learning
the parameters for all these factors. As such, a collection
of priors is defined for the parameters. The parameters are
grouped together into vectors, where the final index on the pa-
rameter denotes the index in the vector. The parameter vectors
are therefore denoted θi,ρ,j , θi,ρ,l and θ∗. The prior distribu-
tions used for each of these parameters are Dirichlet distri-
butions with parameters αpi,ρ,j , α

p
i,ρ,l and αp∗. The Dirichlet

distribution for variable θ with parameters α is the distribu-
tion

p(θ) =
Γ(
∑
j α̂j)∏

j Γ(α̂j)

∏
j

θ
αj−1
j ,

where Γ(z) is the gamma function,

Γ(z) =

∫ ∞
0

tz−1 exp(−t)dt.

3. EXPECTATION PROPAGATION

When all the nodes in a Bayesian network are discrete, one
can use the belief propagation algorithm to calculate the
marginal distributions of the random variables. The user
model parameters are drawn from a continuous space and
so this standard algorithm cannot be applied to learning
them. Expectation propagation [11] is an extension of belief
propagation to continuous variables and provides a suitable
approach to estimating these parameters.

The joint distribution of all variables, X , in the Bayesian
network can be written as a product of probability factors,
p(X) =

∏
f pf (X), with f indexing the factors. Each fac-

tor gives the probability of a variable given its parents in
the Bayesian network. The collection of variables linked to
factor f is denoted Xf . The joint can therefore be written
p(X) =

∏
f pf (Xf). When a collection of variables is ob-

served, the joint posterior distribution is again proportional
to
∏
f pf (Xf), with observed variables replaced by their ob-

served value. Expectation propagation attempts to find an
approximation to this posterior, q(X) =

∏
qf (Xf) ≈ p(X).

This paper uses a factorized approximation where each factor
is further factorized: qf (Xf) =

∏
j qf (xj), with j indexing

all variables and qf (xj) constant for variables not appearing
in the factor.

EP solves for this approximation one factor at a time.
A particular factor, f̃ , is chosen and all other factors are
fixed. One must then find qf̃ (Xf̃) =

∏
j qf̃ (xj) to minimize

KL(p||q\f̃qf), where

q\f̃ (Xf̃) ∝
∏
f 6=f̃

qf (Xf).

The function q\f̃ (Xf̃) denotes the cavity distribution, ob-
tained by multiplying all approximations except for f̃ . The
cavity distribution as a function of a single variable xj is
similarly defined as

q\f̃ (xj) ∝
∏
f 6=f̃

qf (xj). (1)

The function q\f̃qf̃ is called the target function.

3.1. EP for a discrete probability factor

In the case of this paper, all the probability factors to be ap-
proximated give the probability of a discrete output variable
given a collection of discrete input variables, and a collection
of parameter vectors. The case of the unconstrained factor, as
described for the meth and disc sub-goals in section 2.2, is
presented here. For clarity, the effect of the parent category,
ρ, and the index of the slot, i, are omitted.

The chosen probability factor, f̃ , has the form

p(gt = j|gt−1 = k) = θj,k.

One must obtain approximating functions qf̃ (gt), qf̃ (gt−1),
and qf̃ (θj). All qf (θj) approximations are constrained to the
Dirichlet distribution, with the parameters denoted by αf,j .
The approximations for other factors are fixed and the cavity
distributions for the variables are defined as per equation 1. In
the case of the discrete variables gt and gt−1, the cavity dis-
tributions are computed by multiplying all factor approxima-
tions except for f̃ . The cavity distribution for the parameters
θj is a product of continuous distributions. For Nf differ-
ent factors, the cavity distribution is the Dirichlet distribution
with parameters

α
\f̃
j =

∑
f 6=f̃

αf,j − (Nf − 1)1. (2)

Note that when the parameters θj do not appear in a factor,
the approximation is constant and the vector of approximation
parameters, αf,j , equals the vector of ones, 1.

Given the cavity distributions, one can show that the dis-
crete approximating functions that minimize KL(p||q\f̃qf̃)
are [10]

qf̃ (gt) ∝
∑
gt−1

q\f̃ (gt−1)E(θgt−1,gt |q\f̃ (θgt−1
)), (3)

qf̃ (gt−1) ∝
∑
gt

q\f̃ (gt)E(θgt−1,gt |q\f̃ (θgt−1)), (4)

where the expectations are taken over q\f̃ .
It can be shown that to minimize the KL divergence, the

set of parameters for the target function, denoted α∗j , must
satisfy the following equation for every k [10],

Ψ(α∗jk)−Ψ(

Nα∑
l=1

α∗jl) = cjk, (5)

where Nα denotes the number of values,

cjk = Ψ(α
\f̃
jk)−Ψ(

Nα∑
l=1

α
\f̃
jl) +

wjk

α
\f̃
jk

− 1− wj0∑Nα
l=1 α

\f̃
jl

, (6)

Ψ(z) is the digamma function,

Ψ(z) =
d

dz
log Γ(z), (7)

and the wjk are weights (
∑
k wjk = 1):

wj0 ∝
∑
j′ 6=j

q\f̃ (gt−1 = j′), (8)

wjk ∝q\f̃ (gt−1 = j)q\f̃ (gt = k)
α
\f̃
jk∑Nα

l=1 α
\f̃
jl

. (9)

Various methods are possible for solving equation 5. The
approach used here is taken from Section 3.3.3. of [12]. Let
∆ = Ψ(

∑Nα
k=1 α

∗
ik), and make α∗ij the subject of the formula

in equation 5,
α∗jk = Ψ−1(cjk + ∆). (10)

Summing over k and taking both sides as arguments for the
Ψ function gives,

∆ = Ψ(

Nα∑
l=1

α∗jl) = Ψ

(
Nα∑
l=1

Ψ−1(cjl + ∆)

)
. (11)

One can now solve for ∆ using Newton’s method and use
equation 10 to obtain the α∗j parameters. The desired approx-
imating function parameters are then calculated as

αf̃ ,j = α∗j −α
\f̃
j . (12)

The full algorithm operates by repeatedly choosing a factor
to update, computing the cavity distributions in terms of the
current approximations (equations 1 and 2) and then updating
the current approximating functions as per equations 3,4 and
12. Similar to belief propagation, the process is repeated until
changes in the approximating functions are below a threshold.
The other forms of probability factor are similar [10].

4. DIALOGUE MANAGEMENT EVALUATION

An analysis of simulated dialogue management performance
is the first method used here for evaluating the proposed
method. To this end, an agenda-based user simulator was
built for the TOWNINFO task [13]. The simulator uses hand-
crafted, probabilistic rules to simulate the dialogue act that a
user would respond with in a given situation. This dialogue
act is then passed to an error-simulator which simulates how
the dialogue act would be confused and how the confidence
scores would be generated.

The error simulator outputs an N-best list of user dialogue
acts with associated confidence scores (in these experiments
N = 3). The simulator is parameterized by an error rate, r,
and a variability parameter V . Given these values, the con-
fidence score parameter vector, αr of size N + 1 is defined
by

αr
> =

(
V r,

V (1− r − r2)

N − 1
, . . . ,

V (1− r − r2)

N − 1
, V r2

)
.

For each turn, a vector of confidence scores is drawn from the
Dirichlet distribution with parameters αr. These confidence
scores are used as probabilities to draw a position between
1 and N + 1. The true user act is placed at this position in
an N + 1-best list. All remaining positions are assigned a
confused user act, using hand-crafted rules to alter it. The
item at position N + 1 is dropped and the list is passed to the
dialogue manager.

Using the above simulation environment, a policy was
trained with the natural actor critic algorithm, as described
in [3]. The initial system was trained using a collection of
hand-crafted user model parameters, and is denoted by HDC-
USER. These parameters were hand-tuned by the system de-
signer in an attempt to improve dialogue performance and had
been used in previous experiments. 1000 dialogues with the
system were then simulated with a hand-crafted policy and
the true semantics in these dialogues were used to train a user
model as described in section 3. The resulting policy is de-
noted by TRN-USER. In both cases 800,000 dialogues were
simulated at an error rate of r = 0.4 to train the policy.

0 10 20 30 40 50
10

5

0

5

10

M
e
a
n
 r

e
w

a
rd

Mean reward for 5000 dialogues and its 95% confidence interval

HDC-USER

TRN-USER

0 10 20 30 40 50
Error rate (%)

75

80

85

90

95

100

S
u
cc

e
ss

 r
a
te

 (
%

)

Success rate for 5000 dialogues and its 95% confidence interval

HDC-USER

TRN-USER

Fig. 3. The effect of user model parameter learning on dia-
logue manager performance.

Figure 3 shows a performance comparison between the re-
sulting dialogue managers. The dialogue managers are com-
pared at different simulated error rates, with estimated perfor-
mance computed on 5000 dialogues at each error rate. For

a dialogue of length T , the reward is computed as 20 − T
if the dialogue is successful and 0 − T otherwise. The fig-
ure shows that the system with trained user-model parameters
significantly outperforms the alternative at all error rates, in
terms of both success and reward.

5. SEMANTIC RE-SCORING EVALUATION

A second application of the learned POMDP user model is its
use in transcribing human-machine dialogues. The effective-
ness of training the user-model for this task will be evaluated
on both simulated and human-machine dialogues. In each
case, the N-best list of dialogue acts is added as an obser-
vation to the Bayesian network. When EP is run, the updates
of factors connected to the user act will result in a collection
of recomputed probabilities for them. This can be used as a
re-scored hypothesis list.

The intuition here is that the user model provides a mech-
anism for incorporating evidence from different stages of the
dialogue when transcribing other parts. As an example, a user
who wants a restaurant at the beginning of a dialogue is un-
likely to change until they are offered something suitable.

The first re-scoring experiment makes use of the simu-
lated environment described above. 1000 dialogues are sim-
ulated and used to train the user model. A further 1000 dia-
logues are simulated, and the confidences on the hypothesised
semantic N-best lists are recomputed by running EP. The ac-
curacy of the top hypothesis (TAcc), item-level normalized
cross entropy (NCE), oracle accuracy (OAcc) and item-level
cross-entropy (ICE) metrics are then computed [10]. TAcc,
OAcc and NCE show improvements as increases in the met-
ric value while ICE shows improvements as decreases in the
metric value. Table 1 shows the effects of re-scoring with user
models trained from the hypothesised semantics (LEARNED
(NOISY)) and from the true user acts (LEARNED).

OAcc TAcc NCE ICE
NO RE-SCORING 93.5 75.7 0.586 0.921

LEARNED (NOISY) 93.5 81.7 0.650 0.870
LEARNED 93.5 81.5 0.632 0.903

Table 1. Evaluation of semantics after re-scoring simulated
data based on hypothesised semantics for the entire dialogue.
The simulated data contains 1000 dialogues, with 14358 sim-
ulated user utterances.

One can see from the table that the user model improves
transcription performance on the simulated data. The accu-
racy of the top hypothesis increases by 6% absolute, which is
34% of the available increase given the oracle accuracy. The
NCE and ICE scores, which evaluate the usefulness of the
confidence scores also improve.

A second re-scoring experiment was performed on human-
machine dialogues. Two corpora of dialogues in the TOWN-

INFO domain were compiled. The first corpus contains 720
dialogues from 36 different speakers interacting with 5 differ-
ent systems [14]. This corpus is denoted MAR09. The second
corpus contains 648 dialogues from 36 different speakers in-
teracting with 6 different systems [2, 3]. This corpus is
denoted FEB08. Both corpora contain annotations of the true
user dialogue act for all turns.

Table 2 presents the results of user model re-scoring on
these corpora. Two user models were trained on the MAR09
corpus. The first (LEARNED (NOISY)) uses only the hypoth-
esised semantics for training while the second uses the true
user actions transcribed by a human annotator (LEARNED).
These user-models were used to re-score the semantics on the
FEB08 corpus and the OAcc, TAcc, NCE and ICE metrics
were computed on the result.

OAcc TAcc NCE ICE
NO RE-SCORING 79.2 73.3 -0.033 1.687

LEARNED (NOISY) 79.2 73.4 0.327 1.586
LEARNED 79.2 73.9 0.338 1.655

Table 2. Evaluation of semantics after re-scoring the FEB08
corpus.

The use of the user model on the human-machine data im-
proves the usefulness of the confidence scores as can be seen
by the increase in the NCE scores. The accuracy of the top
hypothesis does increase, though the increase is small com-
pared to the simulated experiment. This can be attributed to
the difference in the type of confusions in the human-machine
and simulated data. The biggest increase in accuracy is 0.5%
absolute, which is 8.5% of the available increase given the
oracle accuracy.

6. CONCLUSION

This paper has described how expectation propagation can be
used to learn the user model parameters for a POMDP model
of dialogue. The approach requires no annotations of either
the dialogue state or the true user dialogue acts. Experiments
show that the proposed approach improves dialogue manage-
ment performance as well as transcriptions of the user’s dia-
logue acts. Future work should show that the improvements in
semantic accuracy can extend to improvements in the speech
recognition performance, that learning of user model param-
eters improves performance of dialogues with human users
and that the same methods can be used to build a trainable
user simulator.

7. REFERENCES

[1] J. D. Williams and S. Young, “Partially observable
Markov decision processes for spoken dialog systems,”

Computer Speech and Language, 2006.

[2] M. Gašič, S. Keizer, F. Mairesse, J. Schatzmann,
B. Thomson, K. Yu, and S. Young, “Training and eval-
uation of the HIS POMDP dialogue system in noise,” in
Proceedings of SIGDIAL, 2008.

[3] B. Thomson and S. Young, “Bayesian update of dia-
logue state: A POMDP framework for spoken dialogue
systems,” Computer Speech & Language, 2009.

[4] N. Roy, J. Pineau, and S. Thrun, “Spoken dialogue man-
agement using probabilistic reasoning,” in Proceedings
of the ACL, 2000.

[5] S. Young, M. Gašič, S. Keizer, F. Mairesse, J. Schatz-
mann, B. Thomson, and K. Yu, “The hidden informa-
tion state model: A practical framework for POMDP-
based spoken dialogue management,” Computer Speech
& Language, 2009.

[6] J. D Williams, “Exploiting the ASR N-best by tracking
multiple dialog state hypotheses,” in Proceedings of
Interspeech, 2008.

[7] U. Syed and J. D Williams, “Using automatically tran-
scribed dialogs to learn user models in a spoken dialog
system,” Proceedings of the ACL, 2008.

[8] F. Doshi and N. Roy, “Spoken language interaction with
model uncertainty: an adaptive human-robot interaction
system,” Connection Science, 2008.

[9] F. Jurčı́ček, B. Thomson, S. Keizer, F. Mairesse,
M. Gašič, K. Yu, and S. Young, “Natural belief-critic:
a reinforcement algorithm for parameter estimation in
statistical spoken dialogue systems,” in Proceedings of
Interspeech, 2010.

[10] B. Thomson, Statistical methods for spoken dialogue
management, Ph.D. thesis, University of Cambridge,
2009.

[11] T. Minka, “Expectation propagation for approximate
Bayesian inference,” Proceedings of UAI, 2001.

[12] U. Paquet, Bayesian inference for latent variable mod-
els, Ph.D. thesis, University of Cambridge, 2007.

[13] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye,
and S. Young, “Agenda-based user simulation for boot-
strapping a POMDP dialogue system,” in Proceedings
of HLT/NAACL, 2007.

[14] P. Bretier, P. Crook, S. Keizer, R. Laroche, O. Lemon,
and G. Putois, “CLASSiC deliverable D6.3: Initial eval-
uation of CLASSiC TOWNINFO and self-help systems,”
Tech. Rep., June 2009.

