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ABSTRACT

Over the past decade, a variety of user models have been proposed
for user simulation-based reinforcement-learning of dialogue strate-
gies. However, the strategies learned with these models are rarely
evaluated in actual user trials and it remains unclear how the choice
of user model affects the quality of the learned strategy. In par-
ticular, the degree to which strategies learned with a user model
generalise to real user populations has not be investigated. This
paper presents a series of experiments that qualitatively and quan-
titatively examine the effect of the user model on the learned strat-
egy. Our results show that the performance and characteristics of
the strategy are in fact highly dependent on the user model. Fur-
thermore, a policy trained with a poor user model may appear
to perform well when tested with the same model, but fail when
tested with a more sophisticated user model. This raises signifi-
cant doubts about the current practice of learning and evaluating
strategies with the same user model. The paper further investi-
gates a new technique for testing and comparing strategies directly
on real human-machine dialogues, thereby avoiding any evaluation
bias introduced by the user model.

1. INTRODUCTION

The application of machine-learning techniques to dialogue man-
agement is currently a growing research area [1]. In particularly
the use of reinforcement-learning for finding optimal dialogue strate-
gies is attracting interest [2] [3]. Previous research has demon-
strated that systems can successfully learn from training data what
constitutes a good dialogue strategy. However, it is usually not
possible to learn an optimal strategy directly from a corpus of di-
alogues, since the size of current corpora is rarely sufficient to ex-
haustively explore the vast space of possible dialogue states and
strategies. Moreover, no guarantee can be given that the optimal
strategy is indeed present in the given training corpus, regardless
of the size of the corpus.

As a solution to this problem, several research groups [4], [5],
[6], [7] have investigated the use of a two-phased learning setup in-
volving a simulated user. First, a stochastic model of real user be-
haviour is trained on a corpus of human-computer dialogues using
supervised learning. In the second phase, the dialogue manager
uses reinforcement-learning to learn an optimal strategy through
interaction with the simulated user. This setup allows any number
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of training episodes for strategy learning to be generated and fur-
ther, it allows strategies which are not present in the corpus to be
explored.

A variety of different techniques for user simulation have been
proposed in the literature, but the evaluation of these techniques is
still an open question of research. It has been shown that the cur-
rently available techniques fail to reproduce the variety of human
behaviour. For example, as shown in [8], simple statistical met-
rics are often sufficient to discern synthetic dialogues from real
ones. However, it remains unclear how much the learned strategy
depends on the choice and the quality of the user simulation. It
is also unclear how reliable the current practice of learning and
evaluating strategies with the same user model is.

This paper attempts to investigate these questions by training
three of the most prominent stochastic user models on a COM-
MUNICATOR corpus of human-machine dialogues and learning
strategies with each of these models. We then quantitatively and
qualitatively compare the learned strategies with respect to the
handcrafted COMMUNICATOR strategies and with respect to each
other. We also test each strategy on user models that have not been
used to learn the strategy. Finally, we report on initial experiments
with a new and potentially more objective technique for evaluating
the quality of learned strategies using real dialogue data.

2. BACKGROUND

2.1. Dialogue as a Markov Decision Process

Human-computer dialogue can be modelled as a Markov Decision
Process (MDP) [3] with a finite state space S, a finite action set
A, a set of transition probabilities T and a reward function R. At
each time step, the dialogue manager is in a particular state s ∈ S.
It executes the discrete action a ∈ A, transitions into the next state
s′ according to the transition probability p(s′|s, a) and receives a
reward r. The Markov Property ensures that the state and reward
at time t + 1 only depend on the state and action at time t.

The MDP model of dialogue allows us to view a dialogue man-
agement strategy (or policy) π as a mapping from states to actions:
For every state s, the policy selects the next system action a based
only on s. It also enables us to formalize dialogue management
as a mathematical optimization problem. The optimal policy π∗ is
the policy that maximizes the cumulative reward over time.

2.2. Reinforcement-Learning

Let r(t) be the total return received when starting at time t. A
discount factor γ, with 0 ≤ γ ≤ 1, is typically used to discount
immediate rewards more strongly than distant future rewards
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The goal is then to find the optimal policy π∗ that maximizes the
expected value of r(t). Reinforcement-learning offers a variety
of algorithms for finding π∗ within the MDP framework through
trial-and-error interaction between the learning agent and its dy-
namic environment.

The Q-Learning algorithm [9] is one of the simplest forms of
reinforcement-learning. It works by maintaining Q-values for ev-
ery pair (s, a) of state s and action a. These values estimate the
expected return of taking action a in state s and following π there-
after

Q
π(s, a) = Eπ(r(t)|st = s, at = a). (2)

Once the Q-values for each state-action pair have been estimated,
the optimal policy can be found using

π
∗(s) = arg max

a

Q
∗(s, a). (3)

The learning process is started by arbitrarily initialising the
Q-values for all state-action pairs. As the learning dialogue man-
ager interacts with the (simulated) user, the Q-values are iteratively
updated to become better estimates of the expected return of the
state-action pairs. After each system action a in state s, the user
response results in a transition to state s′ and a reward r. The
corresponding Q-value estimate is then updated using

Q(s, a) := (1 − α)Q(s, a) + α(r + γ max
a′

Q(s′, a′)) (4)

where α represents a learning rate parameter that decays from 1 to
0.

During the learning process, it is necessary to achieve a com-
promise between exploration (trying out random actions) and ex-
ploitation (taking actions which have already shown to lead to high
rewards). The most straightforward solution is an ε-greedy control
policy. At each step, a random number 0 < β < 1 is generated
and the next action is selected randomly if β < ε. If β ≥ ε, the
best action is taken. ε is usually selected so as to decrease with the
number of training cycles from 1 to 0.1.

2.3. Approaches to User Simulation

The problem of user simulation for Spoken Dialogue Systems has
been approached by various research groups over the last decade.
With regards to robustness, scalability and portability, the work
on stochastic models is of greatest interest to us. Most of this
work models dialogue on the abstract level of intentions rather
than the word- or acoustic-level since this avoids the problem of
natural language generation. In the following paragraph, a very
brief overview of some of the most prominent domain-independent
techniques is provided. A more detailed comparison can be found
in [8].

The Bigram model proposed in early work by Eckert et al.
[4] is perhaps the simplest stochastic model for predicting user
responses to system actions. It estimates a probability p(au|as)
for every possible pair of system action as and user response au

based on their frequency of occurrence in the training data.

In later work stronger constraints were applied to the user be-
haviour to correlate better with the conventional structure of hu-
man dialogues. The Levin Model [3] limits the Bigram model to
selected pairs of system action and user reponse. A system request
for a certain piece of information A, for example, is parameterised
by the probability of the user actually providing A and the proba-
bility of providing n additional pieces of information.

The Bigram and Levin Model both suffer from a lack of goal-
consistency in user behaviour. To overcome this problem, Schef-
fler and Young [5] suggested the use of explicit user goal represen-
tations in the form of attribute-value pairs and the use of determin-
istic rules to ensure that the user acts in accordance with his goal
throughout the dialogue. In subsequent work, Pietquin [6] adapted
the Levin model and conditioned its parameters on an extended
representation of Scheffler and Young’s goal model. Pietquin also
suggested a number of additional user parameters to account for
user memory and satisfaction.

More recently, Georgila, Henderson and Lemon [7] have in-
vestigated the use of n-gram models in conjunction with linear
feature combination to learn what aspects of the dialogue state are
most useful for prediciting user responses.

3. RESEARCH OBJECTIVE

A major criticism of simulation-based learning of dialogue strate-
gies is the current lack of a reliable and objective evaluation method.
Indeed, the current standard technique for testing strategies learned
with a simulated user is to try the strategy on the same simulated
user. Using this technique, many research groups have been able
to show that learned strategies can outperform competing hand-
crafted strategies. However, whilst this illustrates the feasibility of
learning strategies using a simulated user, it raises the question as
to what effect the choice of user model has on the quality of the
learned strategy. It also raises doubts as to whether a learned strat-
egy is truly optimal or just optimized for a particular user model
since, in effect, the model is being tested on the training data.

The goal of this paper is to investigate this problem by training
several user models on the same corpus of dialogues and learning
dialogue strategies with each of these user models. We then qual-
itatively and quantitatively compare the learned strategies with re-
spect to handcrafted strategies and with respect to each other. We
also test the learned strategies on user models that have not been
used for training.

Ideally, we would prefer to test learned strategies on real users.
However, given the high cost of running user trials, unbiassed eval-
uation methods using existing dialogue corpora would clearly be
valuable. The paper concludes with a proposed evaluation ap-
proach which attempts to achieve this.

4. EXPERIMENTAL SETUP

4.1. Dataset

The corpus used for the experiments described in this paper is
a COMMUNICATOR corpus of 697 real human-computer dia-
logues recorded with 97 different users. The data was collected
with 4 different dialogue managers developed by ATT, BBN, CMU
and SRI and covers flight-, hotel- and rental car-bookings. The
nature of the dialogues is task-oriented rather than conversational
and may be described as “slot-filling” with a high degree of system
initiative. The data has been previously annotated using the DATE
scheme [10] and tagged with further semantic information as de-
scribed in [11]. The annotation allows us to view the dialogues at



the abstract level of intentions and we have converted the data such
that each dialogue is a sequence of turns containing one or more
tuples of the form <speech act, slot name, slot value>. The user
utterance ”I want to go to London”, for instance, is compressed to
<provide info, dest city, london>.

4.2. User Models

We selected three of the most prominent domain-independent sto-
chastic user models: a) the simple Bigram model [4], b) the more
sophisticated Levin model [3] which accounts for some degree
of conventional dialogue structure in user behaviour and c) the
Pietquin model [6] which extends the Levin model with simple
representations of user goal, memory and satisfaction. All of these
models simulate dialogue on the abstract level of intentions, as de-
scribed above and all were trained on the actual recognised speech
rather than the reference transcriptions. The simulation thus effec-
tively models both the user and the communication channel, and
hence, no separate error modelling is required. Further details of
how these user models were adapted for use with the COMMUNI-
CATOR dataset can be found in [8].

4.3. Action Set, State Space and Reward Function

The slot-filling dialogues in the COMMUNICATOR corpus can be
suitably represented as Markov Decision Processes (MDPs) with
a system action set A and a state space S (as described in Section
2.1). The size of the state space is determined by the number of
slots and the number of states each slot can be in. The learning
problem is limited to the four slots entailed in a single-leg flight-
booking: the origin city, the destination city, the departure date and
the departure time. Each of these can be either unknown, known or
confirmed, resulting in a total number of 34 = 81 states.

The size of the system action set is determined by the num-
ber of system speech acts and the number of slots that each of
these acts can be combined with. We have three speech acts: re-
quest info, implicit confirm and explicit confirm, representing a
request for a slot, an implict confirmation of a slot value or an
explicit confirmation. We are interested in dialogues where each
dialogue turn can have more than one speech act, so that the system
can, for example, implicitly confirm slot A and request slot B in a
single turn. In every turn, each of the 4 slots is either requested,
implicitly confirmed, explicitly confirmed or not mentioned at all.
This results in 44−1 = 255 combinations. (The empty turn where
no slot is mentioned is discarded.) We further add a hangup ac-
tion to the system action set, thus increasing the total number of
system actions to 256.

The total number of system state/action combinations that the
learning dialogue manager has to explore is 81 ∗ 256 = 20736.
This number is large, and it grows exponentially as the number of
slots or speech acts is increased. To mitigate this, it is reasonable
to hardcode a limited amount of prior knowledge into the learning
process by blocking subsets of the action set for certain states. We
use the following simple rules: 1) For all states where slot x is
unknown, all actions that request a confirmation for x are blocked.
2) For all states where x is known, the request info action for this
slot is blocked. 3) For all states where x is confirmed, the request
and confirmation actions are blocked, thus forcing the system to
hangup once all slots are filled and confirmed. This reduces the
learning process to the true design issues: When do we confirm,
do we confirm explicitly or implicitly, and how many slots do we
attempt to simultaneously fill or confirm?

The reward function is selected so that it penalises long dia-
logues with -1 point for every system action and awards +20 points
for the successful completion of the flightbooking dialogue (all 4
slots filled and confirmed). We do not reward partial completion
of the dialogue to avoid providing clues on how to complete the
full task.

4.4. Learning Setup

In choosing the learning algorithm, our aim is to keep the setup
as generic and simple as possible. The goal is to avoid any fea-
tures that might bias the result and distract from the effects of the
user model on the learned strategy. The Q-Learning algorithm is
selected with a simple ε-Greedy control policy as described in Sec-
tion 2.2 of this paper. The learning rate parameter α is set to decay
from 1 to 0 using

α(s, a) =
τ

τ + n(s, a)
(5)

where n(s, a) = 1, 2, 3, ... is the number of times Q(s, a) has
been visited and τ is set to some positive constant. (Good results
were obtained with τ = 100.) This definition of α ensures conver-
gence. The discounting factor γ is set to 0.9.

For each of the three user models, 100,000 cycles were used
for learning the strategy. We found that the Q-values had con-
verged well by the end of the training process. Additional experi-
ments were run with 1,000,000 cycles, but no change in policy was
observed.

5. EXPERIMENTAL RESULTS

5.1. Strategy Evaluation Metric

The “quality” of a dialogue is not precisely defined and this makes
dialogue evaluation problematic. As shown in [12], user satisfac-
tion depends on a variety of factors including the task success rate,
the dialogue efficiency and qualitative factors such as the system’s
ability to handle misunderstandings.

For the sake of simplicity and comparability, we chose a straight-
forward performance measure that has also been previously used
by [13] for the evaluation of simulation-based strategy learning.
The metric rewards the filling and grounding of slots while pe-
nalising long dialogues. For each of the four slots, 25 points are
awarded once the slot is filled and another 25 points are awarded
once it is confirmed. One point is subtracted from the total score
for every system action. 1

Whereas the learned strategies are trained to complete only the
single-leg flight booking, the COMMUNICATOR dialogues often
include hotel- or car-rental reservations in addition to the flight
booking. If the computation of the length penalty is based on the
full dialogue this naturally favours the learned strategies. To guar-
antee a fair comparison we stop the COMMUNICATOR dialogues
when the first flight offer is made. This ensures that only the sys-
tem actions are counted that contribute to the filling and grounding
of the four slots covered by our evaluation metric. We also exclude
the small percentage of COMMUNICATOR dialogues covering
multiple-leg flight bookings, leaving a total of 643 dialogues for
evaluation.

1Note that the metric is similar to the reward function used during strat-
egy learning but not identical: During learning we want to reward the
successful completion without specifying clues as to how the task can be
completed. During evaluation we also want to award points for the partial
completion of the task.



5.2. Traditional Strategy Evaluation

The first experiment follows the typical form of evaluation cur-
rently used by research groups working on simulation-based strat-
egy learning. The learned strategy is tested on the same user model
that was used for training. More precisely, a set of dialogues
is simulated between the user model and the DM following the
learned strategy. The quality of these dialogues is then compared
to the quality of the dialogues in the original COMMUNICATOR
training corpus. The results are used to compare the performance
of the learned strategy to the handcrafted strategy used when col-
lecting the training corpus.

Figure 1 shows the results obtained with this form of evalu-
ation. ATT, BBN, CMU and SRI denote the scores for the indi-
vidual COMMUNICATOR systems, ALL denotes the combined
corpus and BIG, LEV and PTQ denote the scores obtained with
each of the three user models. The sample size for the user model
tests is 100 (simulated) dialogues and the sample size for the in-
dividual COMMUNICATOR systems varies between 79 and 258
dialogues.

As can be seen, all of the three user models appear to achieve
very good results. Even the simple Bigram model receives a score
of 129.9 ± 6.0 (mean reward ± standard error), a relative im-
provement of 20.1% over the best competing handcrafted strategy
(BBN, 108.2 ± 4.3). 2

Viewed individually, each of the user models seems to produce
an optimal strategy, superior to the competing handcrafted ones.
However, the graph also shows a clear dependency between user
model quality and dialogue strategy performance. The Pietquin
and the Levin model clearly outperform the simple Bigram model,
indicating that an increase in user model sophistication leads to a
better strategy.

Fig. 1. Strategies learned and evaluated on the same user model
appear to outperform handcrafted strategies. The bars show the
mean reward obtained and the thin lines indicate 95% confidence
intervals.

We also measured the Q-values of the best action in the initial
state of each of the learned policies. The Pietquin policy achieved
the best value of 9.01, followed by the Levin model with 7.43
and the Bigram model with 4.64. These numbers confirm that
the Pietquin model and the Levin model are comparable in per-
formance and that both lead to a more efficient strategy than the
Bigram model.

2The improvements for all three user models relative to the best hand-
crafted strategy are significant with a confidence of 99.9% according to the
standard t-test.

5.3. Cross-model Evaluation

The availability of several user models allows us to investigate how
a learned strategy performs when evaluated with a user model that
was not used for learning. The results, pictured in Figure 2 are
revealing: When tested on the Bigram model, all strategies per-
form very similarly. The difference in reward is in fact statisti-
cally insignificant. But when tested on a better user model, such as
the Levin or Pietquin model, the performance of the Bigram strat-
egy deteriorates drastically. (62.90 ± 14.3 on the Pietquin model,
sample size = 100). This is clearly lower than good handcrafted
strategies. 3

Fig. 2. Cross-Evaluation shows that strategies learned with a poor
user model may appear to perform well when tested on the same
user model but fail when tested on a better user model.

Interestingly, the figure also shows that a strategy learned with
a good user model such as the Pietquin or the Levin user model
still performs well when tested on a poor user model such as the
Bigram. This result is important and promising, because it sug-
gests that a strategy learned with a good user model can generalise
well to other user models and is not necessarily overfitted to the
particular model used to train it.

5.4. Qualitative Evaluation of Learned Strategies

To gain a better understanding of the effects of the user model
on simulation-based learning, it is helpful to analyse not only the
performance of the learned strategies, but also their characteristics.

Due to the restrictions placed on the dialogue manager, all of
the learned strategies follow the logical constraints described in
Section 4.3. However, the strategies differ in when and how they
confirm, and how many slots they request at a time. As the state
space is large, it is not possible to visualise the strategies in the
form of flow-charts, nevertheless a few general observations can
be made.

The graph in Figure 3 shows how actively the different systems
pursue the filling and grounding of slots. As in Figure 1 above, the
first five columns denote the COMMUNICATOR datasets and the
last three columns denote the dialogues generated using the sim-
ulated users. The bars indicate what percentage - averaged over
all dialogue states - of unknown slots is requested and what per-
centage of known slots is explicitly/implicitly confirmed. The thin
lines indicate 95% confidence intervals.

This analysis shows that the learned strategies request and con-
firm much more actively than the handcrafted strategies. On aver-

3Again the difference in means is significant with a confidence of more
than 99.9%.



Fig. 3. Qualitative analysis reveals that the learned strategies over-
load the user with requests.

age, the learned strategies request more than 90% of the unknown
slots in each state. In fact, manual analysis shows that the open-
ing system action for all the learned strategies is to request all four
slots at once. The COMMUNICATOR systems in contrast only
request between 24% and 43% of the unknown slots in each state.

Figure 3 is interesting because it shows that the learned strate-
gies are different from any strategy present in the corpus. It is only
due to the simulation-based approach that such strategies can be
learnt. At the same time, the figure shows that the quality of the
user model has an immediate effect on the characteristics of the
learned strategy. In reality, a large number of simultaneous ques-
tions is likely to lead to lower recognition accuracy on the user
response, a larger number of misunderstandings and a higher like-
lyhood of the user hanging up. But since none of the user models
acknowledge that users are unlikely to respond to many questions
at once, the learned strategies overload users with requests. We can
also assume that the good evaluation results described in Section
5.2 are at least partly due to the fact that the learned strategies can
exploit the over-optimistic level of user cooperativeness inherent
in the three models.

A second observation we can make is that the handcrafted
strategies have a higher ratio of implicit to explicit confirmations
than the learned strategies. This is explained by the fact that we
have constrained the learned strategies not to reconfirm already
confirmed slots. The COMMUNICATOR systems use implicit
confirmations throughout the dialogue to remind the user of what
has been established as ”common ground” so far.

More interestingly however, the Bigram strategy has a much
higher ratio of implicit to explicit confirmations than the other two
learned strategies. This may seem surprising, given the poor re-
sults obtained with the Bigram strategy when tested on the Levin
or Pietquin model. One might expect that the use of implicit con-
firmations improves the dialogue efficiency. Manual analysis re-
veals that the Bigram strategy for many states is to only implic-
itly confirm slots, without requesting or explicitly confirming any
other slots. When tested on the Bigram user model, this works be-
cause the model sees instances during the training where the sys-
tem turn contains an implicit confirmation and the user response
is not empty. But the Bigram model cannot learn that an implicit
confirmation request on its own does not necessarily trigger a re-
sponse from the user. The Pietquin and the Levin model account
for a higher degree of conventional dialogue structure. They have
a much lower probability of replying to an implicit confirmation

request, especially if the slot value that is being confirmed is cor-
rect. Hence, a DM following the Bigram strategy interacting with
the Pietquin model may often spend several turns trying to implic-
itly confirm slots with no response coming from the user, hence
causing high length penalties and poor evaluation results as shown
in Figure 2.

5.5. Strategy Evaluation on Real Dialogue Data

In view of the results presented above, it is apparent that user
model-based forms of evaluation can produce misleading results.
Studies with real users are clearly the most preferable form of eval-
uation, but given the costs involved in such studies any technique
not involving human users may be seen as a helpful tool during the
development phase of a spoken dialogue system.

To avoid any bias that may be introduced through the user
model, evaluation of the learned strategy should be based directly
on a real dialogue corpus. However, doing this is not trivial, since
the learned strategy is not necessarily a strategy that has been used
in the corpus, and even if it does appear in the corpus, the number
of instances is likely to be too small to derive any conclusion from
the outcome of the corresponding dialogues.

Our suggestion to overcome these problems is to analyse wheth-
er the dialogues which appear to follow a strategy similar to the
learned one are indeed successful. To do this, we first calculate
a similarity-score Sim(πd, π∗) for each dialogue d based on how
similar the strategy πd followed in this (real) dialogue is to the
learned policy π∗. Secondly, we compute the reward Rew(d) ob-
tained in dialogue d using the evaluation metric described in 5.1.
If the learned policy has a high quality, we expect to see a positive
correlation between Sim(πd, π∗) and Rew(d), indicating that di-
alogues with a high similarity to the learned policy tend to achive
higher rewards than other dialogues.

The similarity between the learned strategy π∗ and the ob-
served strategy πd can be expressed as a function of the system
actions in d. Let

Sim(πd, π
∗) =

1

n

n∑

i=1

θπ(ai) (6)

where n is the number of system actions in d and θπ(ai) expresses
how well the selected system action ai agrees with the learned
policy π∗. Of course, many definitions for θπ(ai) are possible.
One option is the reciprocal rank of ai according to the ordering
of Q-values in the learned policy for the state s in which ai was
executed

θ
π

1 (ai) =
1

1 + |{k | Qπ(s, ak) > Qπ(s, ai), k 6= i}|
. (7)

Figure 4 visualises the similarity-reward-correlation using the above
definition for the CMU dataset and the Pietquin strategy. Every dot
represents one dialogue, with its y-axis value indicating the reward
obtained in the dialogue and its x-axis value indicating its similar-
ity to the strategy learned with the Pietquin model.

When tested on the full COMMUNICATOR corpus (sample
size = 643), we obtain a correlation coefficient ρ of 0.28 for the
Pietquin strategy, 0.21 for the Levin strategy and 0.16 for the Bi-
gram strategy. The ranking hence corresponds to the performance
of the three user models. In fact, the correlation coefficient found
with the Bigram strategy is not statistically significant with a con-
fidence of more than 95% (ρ < 0.195) - an indicator of the low
quality of this strategy.



Fig. 4. The scatterplot shows that dialogues with a high similarity
to the Pietquin strategy tend to achieve higher rewards. (Correla-
tion coefficient ρ = 0.58, statistically significant with a confidence
of more than 99.9%, sample size = 132 dialogues)

To assess how dependent our results are on the choice of simi-
larity criterion, two further metrics were tested. First, the value of
action ai according to π∗ as the ratio of its Q-value to the sum of
all Q-values for the state s in which ai is executed

θ
π

2 (ai) =
Qπ(s, ai)∑
k

Qπ(s, ak)
. (8)

Secondly, the similarity between ai and the best action aπ∗ ac-
cording to π∗ for the state s in which ai is executed. This may be
expressed as the ratio of <speech act, slot name> pairs present in
both ai and aπ∗ to pairs present in ai or aπ∗

θ
π

3 (ai) =
|{a ∈ ai} ∩ {a ∈ aπ∗}|

|{a ∈ ai} ∪ {a ∈ aπ∗}|
. (9)

Using any of the three similarity metrics presented above, we
obtained positive values for the correlation coefficient ρ for all of
the three learned strategies when evaluating on the full COMMU-
NICATOR corpus. However, the Pietquin strategy consistently
outranked the two competing strategies. It was also the only strat-
egy that always achieved a score which was statistically significant
with a confidence of more than 95%.

6. CONCLUSION

This paper has presented a series of experiments that investigate
the effect of the user model on simulation-based reinforcement-
learning of dialogue strategies. Our motivation for work in this
area has been to examine how good a user model needs to be in
order to learn truly optimal strategies. The results show that it is
possible to fit a strategy to any particular user model, but that this
strategy is not necessarily a good one. In particular, a strategy
learned with a poor user model may appear to perform well when
tested on the same user model but it fails when tested on a better
user model. The converse, however, appears not to be true: A
strategy learned with a good user model will still perform well
when tested on a poor user model.

The results indicate that the choice of user model has a signifi-
cant impact on the learned strategy. They also raise serious doubts
about the current practice of learning and evaluating strategies with
the same user model. On the positive side, they also demonstrate
that a strategy learned with a high quality user model generalises
well to other types of user model. One may conclude that the de-
velopment of realistic user models is a high priority for future re-
search on simulation-based learning of dialogue strategies.

Finally, the paper has investigated a new technique for test-
ing learned strategies directly on existing corpora of real human-
machine dialogues with the aim of avoiding the inevitable bias that
is incurred when testing with a simulation model. The proposed
approach measures the correlation between actual reward and the
similarity between the observed and learnt policies. Although this
does not give an absolute measure of “goodness”, it does provide a
good cross-check that the learnt policy is rational and is not merely
exploiting the short-comings of the user simulation model. It re-
mains to be seen whether the approach can go beyond this and
provide a more reliable predictor of subsequent performance in
the field.
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