
THE USE OF DISCRIMINATIVE BELIEF TRACKING
IN POMDP-BASED DIALOGUE SYSTEMS

Dongho Kim, Matthew Henderson, Milica Gašić, Pirros Tsiakoulis, Steve Young

Department of Engineering, University of Cambridge, Cambridge, UK
{dk449,mh521,mg436,pt344,sjy}@cam.ac.uk

ABSTRACT

Statistical spoken dialogue systems based on Partially Ob-
servable Markov Decision Processes (POMDPs) have been
shown to be more robust to speech recognition errors by main-
taining a belief distribution over multiple dialogue states and
making policy decisions based on the entire distribution rather
than the single most likely hypothesis. To date most POMDP-
based systems have used generative trackers. However, con-
cerns about modelling accuracy have created interest in dis-
criminative methods, and recent results from the second Dia-
log State Tracking Challenge (DSTC2) have shown that dis-
criminative trackers can significantly outperform generative
models in terms of tracking accuracy. The aim of this pa-
per is to investigate the extent to which these improvements
translate into improved task completion rates when incorpo-
rated into a spoken dialogue system. To do this, the Recur-
rent Neural Network (RNN) tracker described by Henderson
et al in DSTC2 was integrated into the Cambridge statistical
dialogue system and compared with the existing generative
Bayesian network tracker. Using a Gaussian Process (GP)
based policy, the experimental results indicate that the system
using the RNN tracker performs significantly better than the
system with the original Bayesian network tracker.

Index Terms— dialogue management, spoken dialogue
systems, recurrent neural networks, belief tracking, POMDP

1. INTRODUCTION

Recent advances in statistical POMDP-based spoken dialogue
systems have demonstrated increased robustness to speech
recognition errors[1]. A key aspect of this approach is that
a belief distribution over multiple states is maintained, allow-
ing the dialogue policy to make decisions based on the entire
distribution rather than the single most likely hypothesis.

To date, most POMDP-based dialogue systems have used
generative belief trackers. However, it has been shown that
incorrect modelling assumptions and inaccurately estimated
parameters cause performance to degrade [2]. In particular,

This work was supported by the EC FP7 programme FP7/2011-14 under
grant agreement no. 287615 (PARLANCE).

most current generative trackers do not accurately model cor-
relations in Automatic Speech Recognition (ASR) errors re-
sulting in the potential to overestimate the probabilities of
ASR hypotheses which were actually spurious artefacts of the
way the recogniser works. Discriminative belief trackers pro-
vide an attractive alternative and recent results from the sec-
ond Dialog State Tracking Challenge (DSTC2) have shown
that discriminative trackers can significantly outperform gen-
erative models in terms of tracking accuracy.1

The aim of this research is to investigate the extent to
which these improvements in belief tracking translate into
improved system performance, measured by average rewards
and task completion rates, when incorporated into a spoken
dialogue system. To do this, the Recurrent Neural Network
(RNN) tracker [3] has been integrated into the Cambridge sta-
tistical dialogue system and compared with the existing gen-
erative Bayesian Network (BN) tracker.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the discriminative RNN tracker used in [3] and
the changes needed to integrate it into a full dialogue system.
Section 3 describes the Cambridge statistical dialogue system
and the experimental set-up. Section 4 then provides com-
parative results for belief tracking and dialogue performance
using the RNN and BN trackers.

2. RNN BELIEF TRACKER

RNNs provide a natural model for belief tracking in dialogue,
as they are able to model and and classify dynamic sequences
with complex behaviours from step to step. The role of a
POMDP belief tracker is to implement the belief update equa-
tion b′ = τ(b, a, o) where b is the belief, a is the agent’s last
action, o is the current observation, and b′ is the updated be-
lief. An RNN tracker therefore takes as input the last observa-
tion from the user and the last system action, updates its inter-
nal memory and outputs an updated belief. The observation
is typically the output of a Spoken Language Understanding
(SLU) component in the form of a semantic decoder, which

1The term dialog state tracking normally refers to tracking the most likely
hypothesis while belief tracking refers to tracking the full probability distri-
bution. We use these terms interchangeably in this paper since all the trackers
we consider output the full belief distribution.



maps the ASR hypotheses to an N -best list of semantic hy-
potheses.

2.1. Belief Tracking Problem Definition

The domain of the belief tracker considered in this paper is a
modified version of the second Dialog State Tracking Chal-
lenge (DSTC2) which consists of a large corpus of telephone-
based dialogues in the restaurant domain [4, 3] produced by
subjects recruited using Amazon Mechanical Turk. Each sub-
ject was asked to find a restaurant in Cambridge by specifying
values for upto three goal slots: area, food, and pricerange;
and obtain information about the selected venue from the sys-
tem. DSTC2 belief trackers must therefore output belief dis-
tributions at every turn for the user goals, the retrieval method,
and the requested information slots. In order to integrate a
tracker into the Cambridge dialogue system an additional Dis-
courseAct must be determined. Therefore, the belief state of
the extended DSTC2 tracker has the following components:

Goal A probability distribution over the user’s goal for each
slot. Each distribution ranges over all possible values
for that slot, plus the value None, to indicate that a valid
value has not been mentioned yet. In the experiments,
the joint goal is reported as a product of the marginal
distributions per slot.

Method A probability distribution over methods, which en-
codes how the user is trying to retrieve information
from the system. For example, byconstraints, when the
user is trying to constrain the search by specifying slot
values, and finished, when the user wants to end the
dialogue.

Requested slots The probability that each informational slot
(e.g. address, telephone number, ...) has been requested
by the user. The slots requested by the user are labeled
as requested.

DiscourseAct A probability distribution over possible dis-
course actions. Examples include saying hello, asking
for the system to repeat, and saying thank you.

In passing, it should also be noted that some corrections
were required to the DSTC2 annotations. For example, a
slot should be labeled as requested when the user performs
a request(slot) action, so that the value of the slot can be
subsequently informed by the system. Whereas directly
requested slots were annotated, user confirmation requests
confirm(slot=value) were not annotated and had to be added.
Full details of the challenge are given in [4, 3].

2.2. Feature Representation

The features used in [3] consist of n-grams at both the ASR
word level and the SLU dialogue act level. Since evaluation

and training of a full dialog system require the use of a simu-
lator operating at the semantic level, the RNN tracker studied
in this paper uses only n-gram features at the dialogue act
level.

Dialogue acts in the Cambridge restaurant domain con-
sist of a list of the form acttype(slot=value)[p] where p is the
probability of the act and the slot=value pair is optional. The
n-gram type features extracted from each such component act
are ‘acttype’, ‘slot’, ‘value’, ‘acttype slot’, ‘slot value’ and
‘acttype slot value’, or just ‘acttype’ for the dialogue act act-
type(). Since the user action is an N -best list of dialogue acts,
the n-gram features are weighted by the probabilities of each
act and summed to give a single vector. The system action
has a probability of 1, so it is encoded in the same way except
that each feature is given weight 1.

The RNN tracker which takes an SLU N -best list and the
last system action as input at each turn is shown in Table 1.
The features from the SLU N -best list and the last system
actions are combined to form the vector f in Table 1.

In order to make the RNN tracker more generalisable,
delexicalised n-gram features are also incorporated[3]. The
key idea is to replace all occurrences of a particular slot or
slot value with a tag like ‘〈slot〉’ or ‘〈value〉’. Table 1 shows
the process of creating the tagged feature vectors, fs and fv
from the untagged feature f .

SLU System Act
inform(food=jamaican) 0.9 confirm(food=jamaican)
inform(food=indian) 0.1
inform food 1.0 confirm food 1.0
inform food jamaican 0.9 confirm food jamaican 1.0
inform food indian 0.1 food jamaican 1.0
food jamaican 0.9 confirm 1.0

f food indian 0.1 food 1.0
inform 1.0 jamaican 1.0
food 1.0
jamaican 0.9
indian 0.1
inform 〈slot〉 〈value〉 1.0 confirm 〈slot〉 〈value〉 1.0
〈slot〉 〈value〉 1.0 〈slot〉 〈value〉 1.0
〈slot〉 1.0 〈slot〉 1.0
〈value〉 1.0 〈value〉 1.0

fs inform food 〈value〉 1.0 confirm food 〈value〉 1.0
food 〈value〉 1.0 food 〈value〉 1.0
inform 〈slot〉 jamaican 0.9 confirm 〈slot〉 jamaican 1.0
inform 〈slot〉 indian 0.1 〈slot〉 jamaican 1.0
〈slot〉 jamaican 0.9
〈slot〉 indian 0.1

fv inform food 〈value〉 0.9 confirm food 〈value〉 1.0
food 〈value〉 0.9 food 〈value〉 1.0
〈value〉 0.9 〈value〉 1.0

Table 1: Example of feature extraction for one turn, showing
f , fs=food and fv=jamaican. For all v /∈ {indian, jamaican}, fv =
0. This is the SLU version of Figure 1 in [3].



2.3. RNN Model

This section briefly explains the RNN structure. In what
follows, the notation ⊕ denotes vector concatenation and
NNet(·) denotes a neural network function of the input. In
this paper all networks have one hidden layer with a sig-
moidal activation function. Each RNN also holds an internal
memory, m, which is updated at each step. The output be-
lief b is the probability distribution over possible values as
described in Section 2.1. Therefore in one turn b and m are
updated to give the new belief b′ and memory m′.

The RNN for tracking the goal for a given slot s consists
of two parts. The first part uses untagged features to generate
output vector h, which is obtained from the untagged inputs
as follows:

h = NNet(f ⊕ b⊕m)

where f are the untagged features, b is the previous belief
vector and m is the hidden memory.

The network for h requires examples of every value in
training, and might be prone to poor generalisation. For each
value v, a component is calculated using a neural network
which additionally takes tagged features fs and fv as input:

gv = NNet (f ⊕ fs ⊕ fv ⊕ {bv,bNone} ⊕m) ∈ R.

The components gv are then combined to form a second vec-
tor g. By using regularisation, the learning will prefer where
possible to use the network for g rather than learning the in-
dividual weights for each value required in the network for
h. This network is able to deal with unseen or infrequently
seen dialogue states, so long as the state can be tagged in the
feature extraction. This model can also be shared across slots
since fs is included as an input.

The above networks applied to tagged and untagged in-
puts are combined to give the new belief b′:

b′ = softmax([h+ g]⊕ {B})

where B is a parameter of the RNN. The contribution from
g may be seen as accounting for the general behaviour of
tagged hypotheses, while h makes corrections due to corre-
lations with untagged features and value specific behaviour.

Finally, the memory is updated according to the logistic
regression:

m′ = σ(Wm0
f +Wm1

m)

where the Wmi
are parameters of the RNN.

A similar RNN is used to track the requested slots. Here v
runs over all the requestable slots, and requestable slot names
are tagged in the feature vectors fv . This allows the neural
network calculating g to learn general patterns across slots
just as in the case of goals. The equation for b′ is changed to:

b′ = σ(h+ g)

so each component of b′ represents the probability of a slot
being requested. For method and discourseAct classification,

the same RNN structure as for a goal is used. No tagging of
the feature vectors is used in this case.

3. THE DIALOGUE SYSTEM

The Cambridge statistical dialogue system is a domain inde-
pendent system, which is trainable from data by modelling
the dialogue as a POMDP. In the POMDP framework, the
system observes an action from the user, updates the belief
state and automatically chooses the system action at every
time step. The system is optimised to maximise rewards over
the dialogue, by training its policy which can be defined as
a mapping from belief to action. Hence, the accuracy of be-
lief trackers is crucial for learning how to manage dialogues
successfully.

For the experiments in this paper, the system is config-
ured for the restaurant domain with a Gaussian Process (GP)
policy [5] and two alternative belief trackers: a generative
BN tracker [6] and the discriminative RNN tracker described
in Section 2. The restaurant domain consists of about 150
restaurants in Cambridge, UK that were automatically ex-
tracted from the TopTable web service.

In the following subsections, the user simulator and error
model, which are responsible for simulating realistic spoken
dialogues on semantic level will be explained for complete-
ness. Note that the generated dialogues are used as training
and test data for belief trackers as well as the GP policy. The
method for policy optimisation is reviewed in the last subsec-
tion.

3.1. Agenda-Based User Simulator and Error Model

Since policy training demands a large amount of data, large-
scale comparative studies are greatly facilitated by the use
of a user simulator. In this paper, we used an agenda-based
user simulator developed by originally by Schatzmann [7, 8]
which factorises the user state into an agenda and a goal. The
goal ensures that the user simulator exhibits consistent, goal-
directed behaviour. The role of the agenda is to elicit the di-
alogue acts that are needed for the simulated user to fulfil the
required goal. Both the goal and the agenda are dynamically
updated throughout the dialogue. The updates are sometimes
stochastic to enable a wide spread of realistic dialogues to be
generated.

The simulator includes an error model which adds confu-
sions to the simulated user action such that it resembles those
found in real data [9]. In the experiments below, the maxi-
mum length of the N -best list output at each turn by the sim-
ulator was set to 3. In order to test robustness to differing
amounts of speech understanding errors, the confusion rate
was set to 15%, 30% or 45%, which indicates the probability
that the true hypothesis is not included in the N -best list.



3.2. Policy optimisation

GP-based reinforcement learning has been recently applied to
POMDP dialogue policy optimisation in order to exploit the
correlations between different belief states and thus speed up
the learning process [5]. In the GP-Sarsa algorithm [5], the
Q-function, which is a mapping of a belief-action pair to its
expected cumulative reward, is non-parametrically modelled
as a Gaussian process. This GP-based Q-function therefore
defines a Gaussian distribution for every belief-action pair.
During the training process, the algorithm iteratively samples
Q-values from the Gaussian distribution for each action and
selects the best system action. After observing each imme-
diate reward, the Q-function is updated based on this expe-
rience. In practice the variance of the Q-function is usually
scaled by a factor η to mitigate inaccurate estimation of vari-
ances.

In the existing system using the BN tracker, some do-
main knowledge is used in a form of constraints on system
actions. For example, the system retains a list of the slot
values which may have been mentioned by the user because
they have appeared in the SLU N -best hypotheses. The in-
form(slot=value) system action, which tells the user what the
system believes the value of the slot to be, is not executable
when no value has mentioned by the user. Similarly, when
there are less than two values in the list, the system cannot
perform the select(slot=value1,slot=value2) action, which re-
quests the user to choose between two values. The use of
these constraints is reasonable in the BN tracker since SLU
hypotheses are directly used as input and the probabilities for
unobserved values are effectively zero. However, there is no
notion of previously mentioned values in the RNN tracker be-
cause the SLU hypotheses are used as features and the corre-
lation between slot values can generate significant probabil-
ity for unobserved values. For fair comparison, therefore, we
trained and tested the BN-based system without those con-
straints. The result of the BN tracker with action constraints
is also reported as reference. Without action constraints, there
are more possible actions to choose at each turn. In order
to encourage exploration during policy training, the variance
scale factor η was set to 9, which is a factor of three higher
than normal. All the Gaussian processes were configured to
use Gaussian kernels.

Finally, the reward function was set to give a reward of
20 for successful dialogues, zero otherwise. For each dia-
logue turn, a reward of 1 is deducted to encourage shorter
dialogues, and an additional 4 is deducted when the system
offers a venue which does not satisfy the user’s goal. The
discount factor γ was set to 1.

4. RESULTS

4.1. Tracking Results

To test belief tracking accuracy, 5000 dialogues were gener-
ated using the agenda-based simulated user and a handcrafted
policy. A randomly chosen set of 4500 dialogues was used to
train the RNN tracker and the remaining 500 dialogues were
used for testing. The RNN tracker was compared to the exist-
ing generative BN tracker and the DSTC2 focus-based base-
line tracker [10]. The RNN was initialised before training,
using the denoising autoencoder [11] and the shared initiali-
sation method [12].

For the evaluation the conventions prescribed in DSTC2
were used, in which turns are only evaluated when there is
some information about the state component in the dialogue
so far. Note that the true state label is accumulated forwards
through the dialogues. For example the goal for slot s is None
until it is informed as s = v by the user, at which point it be-
comes v until it is informed otherwise. The performance was
measured using two metrics, accuracy and L2 distance. The
accuracy indicates the fraction of turns in which the tracker’s
1-best hypothesis is correct, and the L2 distance is calculated
between the belief distribution output by the tracker and the
delta distribution which has a probability of 1 on the label.

As shown in Table 2, in terms of accuracy and L2 dis-
tance, the RNN tracker outperformed the other trackers for
all dialogue state components and error rates. The BN tracker
provided only small improvements compared to the baseline.
For all trackers, the performance was degraded at the higher
error rate as expected. However, even with 45% error rate, the
RNN tracker achieved 84.6% accuracy for Joint Goals while
the BN tracker achieved only 50.7% accuracy, and or for the
Method, Requested Slots and DiscourseAct, the RNN tracker
maintained around 97% accuracy.

4.2. Dialogue Management Result

In order to investigate the effects of belief tracker accuracy
on the overall system performance, GP policies were trained
using the BN and RNN trackers on the simulated dialogues.
Results during training with up to 30000 dialogues are given
in Figure 1 and Figure 2. Note that each point in the plots
represents the performance, gathered during one training ses-
sion on 1000 dialogues, with exploration. To avoid variability
in GP policy training, 5 policies were trained for each setup.
The error bar indicates the 95% confidence interval.

As shown in Figure 1a and Figure 1b, it is clear that the
better accuracy of the RNN tracker introduced a significant
improvement in system performance. The GP policies with
the RNN tracker showed significantly higher average reward
at error rates of 15% and 30%, and obtained similar (Fig-
ure 2b) or higher (Figure 2a) success rates. However, at the
45% error rate, the improvement in RNN tracking perfor-
mance was not translated into the better performance of the



Joint Goals Method Requested Slots DiscourseAct
error=15% Acc L2 Acc L2 Acc L2 Acc L2

RNN 0.937 0.098 0.984 0.025 0.970 0.046 0.988 0.018
BN 0.644 0.506 0.884 0.213 0.876 0.275 0.962 0.055

Baseline 0.670 0.456 0.864 0.233 0.832 0.340 0.971 0.060
error=30% Acc L2 Acc L2 Acc L2 Acc L2

RNN 0.935 0.108 0.978 0.036 0.973 0.044 0.985 0.022
BN 0.688 0.480 0.897 0.188 0.871 0.307 0.961 0.060

Baseline 0.670 0.443 0.863 0.237 0.847 0.336 0.968 0.063
error=45% Acc L2 Acc L2 Acc L2 Acc L2

RNN 0.846 0.244 0.971 0.045 0.966 0.051 0.976 0.037
BN 0.507 0.667 0.888 0.207 0.851 0.304 0.945 0.083

Baseline 0.507 0.606 0.843 0.270 0.797 0.406 0.952 0.088

Table 2: Belief tracking performance. Acc denotes the accuracy of the most likely belief at each turn, and L2 denotes the
squared L2 distance between the estimated belief distribution and correct delta distribution.

0 5000 10000 15000 20000 25000 30000
Training dialogues

−15

−10

−5

0

5

10

15

A
ve

ra
ge

re
w

ar
d

RNN
BN
BN (constrained)

(a) 15% error rate

0 5000 10000 15000 20000 25000 30000
Training dialogues

−20

−15

−10

−5

0

5

10

A
ve

ra
ge

re
w

ar
d

RNN
BN
BN (constrained)

(b) 30% error rate

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

−25

−20

−15

−10

−5

0

5

A
ve

ra
ge

re
w

ar
d

RNN
BN
BN (constrained)

(c) 45% error rate

Fig. 1: Average reward during GP policy training with η = 9.

policy, as shown in Table 2 and Figure 1c. We suspect this is
due to the discriminative model which is trained to maximise
accuracy of the best hypothesis not the distribution across
possible hypotheses, and thus might be overconfident despite
the very high error rate.

The BN tracker shows poor tracking performance, espe-
cially when the user frequently changes his goal during the
dialogue. To highlight the advantage of the RNN tracker, we
tested the policies, trained with 30000 dialogues, on 1000 di-
alogues in which the user changes his mind at least once. For
the test policy, η is set to 1 and exploration is disabled. Ta-
ble 3 compares the results on normal dialogues to those on
the dialogues with frequent goal changes. The RNN results
suggest that performance degradation on goal changes is less
than the case of the BN tracker.

5. CONCLUSIONS

In this paper, a discriminative recurrent neural network
(RNN) based belief tracker has been integrated into a spo-
ken dialogue system in order to compare performance with
an existing generative Bayes network (BN) based tracker.
The results confirm earlier findings that the RNN tracker
delivers significantly higher tracking accuracy than the BN

Normal Goal change
error=15% Reward Success Reward Success

RNN 10.389 0.976 7.979 0.976
±0.557 ±0.009 ±0.502 ±0.009

BN 6.064 0.907 0.072 0.850
±0.757 ±0.018 ±0.925 ±0.022

error=30% Reward Success Reward Success
RNN 7.256 0.948 1.861 0.937

±0.674 ±0.014 ±0.971 ±0.015
BN 0.466 0.798 −6.742 0.736

±0.936 ±0.025 ±1.078 ±0.027
error=45% Reward Success Reward Success

RNN −0.645 0.727 −6.920 0.651
±1.005 ±0.028 ±1.203 ±0.030

BN TBA TBA TBA TBA
TBA TBA TBA TBA

Table 3: Performance on normal dialogues and with frequent
goal changes.

tracker over a range of error rates. Furthermore, at error rates
of 30% or less, this improved accuracy leads to significant
improvements in task success rates in a complete dialogue
system.

A key difference between the BN and RNN approaches is
that the BN tracker only assigns significant probability mass



0 5000 10000 15000 20000 25000 30000
Training dialogues

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

S
uc

ce
ss

ra
te

RNN
BN
BN (constrained)

(a) 15% error rate

0 5000 10000 15000 20000 25000 30000
Training dialogues

0.75

0.80

0.85

0.90

0.95

1.00

S
uc

ce
ss

ra
te

RNN
BN
BN (constrained)

(b) 30% error rate

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

S
uc

ce
ss

ra
te

RNN
BN
BN (constrained)

(c) 45% error rate

Fig. 2: Success rate during GP policy training with η = 9.

to values that have actually appeared in the decoded user in-
puts, whereas the RNN can assign mass to any part of the
output distribution. At very high error rates, belief space be-
comes very noisy in the RNN case, and the GP-based policy
learning becomes very slow. As a consequence, the discrim-
inative tracker does not perform as well. This suggests the
need to investigate other models for predicting target distri-
butions such as mixture density RNNs[13].

Having established, the potential of discriminative RNN
belief trackers, the next step will be to train and test a com-
plete end-to-end POMDP-based dialogue system via human
interaction [14]. This will also enable word-based RNN track-
ers [3] mapping directly from ASR results to belief without
using an explicit semantic decoder to be explored.

6. REFERENCES

[1] SJ Young, C Breslin, M Gasic, M Henderson,
D Kim, M Szummer, B Thomson, P Tsiakoulis, and
E Tzirkel Hancock, “Evaluation of statistical pomdp-
based dialogue systems in noisy environments,” in Int
Workshop Spoken Dialogue Systems, 2014.

[2] Jason D. Williams, “A critical analysis of two statistical
spoken dialog systems in public use,” in Proc. of SLT,
Dec. 2012, pp. 55–60.

[3] Matthew Henderson, Blaise Thomson, and Steve Young,
“Word-based dialog state tracking with recurrent neural
networks,” in Proc. of SIGdial, 2014.

[4] Matthew Henderson, Blaise Thomson, and Jason
Williams, “Dialog State Tracking Challenge 2 &
3 Handbook,” http://camdial.org/˜mh521/
dstc/downloads/handbook.pdf, 2013.

[5] Milica Gašić and Steve Young, “Gaussian processes for
POMDP-based dialogue manager optimisation,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 22, no. 1, pp. 28–40, 2014.

[6] Blaise Thomson and Steve Young, “Bayesian update of
dialogue state: A POMDP framework for spoken dia-
logue systems,” Computer Speech & Language, vol. 24,
no. 4, pp. 562–588, Oct. 2010.

[7] Jost Schatzmann, Statistical user and error modelling
for spoken dialogue systems, Ph.D. thesis, University of
Cambridge, 2008.

[8] Simon Keizer, Milica Gašić, Filip Jurčı́ček, François
Mairesse, Blaise Thomson, Kai Yu, and Steve Young,
“Parameter estimation for agenda-based user simula-
tion,” Proc. of SIGdial, pp. 116–123, 2010.

[9] Blaise Thomson, Milica Gašić, Matthew Henderson,
Pirros Tsiakoulis, and Steve Young, “N-best error sim-
ulation for training spoken dialogue systems,” in Proc.
of SLT, 2012.

[10] Matthew Henderson, Blaise Thomson, and Jason
Williams, “The second dialog state tracking challenge,”
in Proc. of SIGdial, 2014.

[11] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proc.
of the 25th Int. Conf. on Machine Learning, 2008.

[12] Matthew Henderson, Blaise Thomson, and Steve Young,
“Deep neural network approach for the dialog state
tracking challenge,” in Proc. of SIGdial, 2013.

[13] CM Bishop, “Mixutre density networks,” Report
NCRG/94/004, Neural Computing Research Group, As-
ton University, 1994.

[14] Milica Gašić, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson, Pirros
Tsiakoulis, and Steve Young, “On-line policy optimi-
sation of Bayesian spoken dialogue systems via human
interaction,” in Proc. of ICASSP, 2013.


