
Natural Belief-Critic: a reinforcement algorithm for parameter estimation in
statistical spoken dialogue systems
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Abstract

This paper presents a novel algorithm for learning parameters
in statistical dialogue systems which are modelled as Partially
Observable Markov Decision Processes (POMDPs). The three
main components of a POMDP dialogue manager are a dialogue
model representing dialogue state information; a policy which
selects the system’s responses based on the inferred state; and
a reward function which specifies the desired behaviour of the
system. Ideally both the model parameters and the policy would
be designed to maximise the reward function. However, whilst
there are many techniques available for learning the optimal
policy, there are no good ways of learning the optimal model
parameters that scale to real-world dialogue systems.

The Natural Belief-Critic (NBC) algorithm presented in this
paper is a policy gradient method which offers a solution to this
problem. Based on observed rewards, the algorithm estimates
the natural gradient of the expected reward. The resulting gra-
dient is then used to adapt the prior distribution of the dialogue
model parameters. The algorithm is evaluated on a spoken di-
alogue system in the tourist information domain. The experi-
ments show that model parameters estimated to maximise the
reward function result in significantly improved performance
compared to the baseline handcrafted parameters.

Index Terms: spoken dialogue systems, reinforcement learn-
ing, POMDP, dialogue management

1. Introduction
A POMDP dialogue manager includes three main parts: a di-
alogue model representing state information such as the user’s
goal, the user’s dialogue act and the dialogue history; a policy
which selects the system’s responses based on the inferred di-
alogue state; and a reward function which specifies the desired
behaviour of the system. In a POMDP system, the dialogue
model provides a compact representation for the distribution of
the unobserved dialogue state called the belief state and it is up-
dated every turn based on the observed user inputs in a process
called belief monitoring. Exact belief monitoring of the full di-
alogue state is intractable for all but the simplest systems. How-
ever, if the state is represented in the compact and approximate
form of a dynamic Bayesian Network (BN), factored accord-
ing to the slots in the system then by exploiting the conditional
independence of the network nodes, a tractable system can be
built [1]. In this case, the parameters of the model are the con-
ditional distributions describing the nodes in the network.

The policy selects the dialogue system’s responses (actions)
based on the belief state at each turn, and it is typically trained
using reinforcement learning with the objective of maximising
the reward function. While there are many efficient techniques
for learning the policy parameters [2, 3, 4], there are no good

ways of learning the model parameters which scale to real-
world dialogue systems. Hence, in virtually all current systems,
the dialogue model parameters are handcrafted by a system de-
signer [1, 3]. Ideally, one would like to estimate the parameters
from the interactions with the user and some attempts have been
made in this direction. For example, maximum likelihood esti-
mates can be obtained by annotating the correct dialogue state
in a corpus of real dialogues. However, in many real dialogues,
some components of the dialogue state, especially the user’s
goal, are hard to determine. Hence, in practice this approach
is restricted to cases where the user’s goal remains constant and
the dialogue is simple to annotate [5]. An alternative is to use al-
gorithms such as Expectation-Maximization [6] or Expectation-
Propagation [7] which can infer hidden state information. How-
ever, again these algorithms usually require the user goal to re-
main constant and even then it is not clear to what extent like-
lihood maximisation over a dialogue corpus correlates with the
expected reward of the dialogue system.

This paper presents a novel reinforcement algorithm called
Natural Belief-Critic (NBC) for learning the parameters of a di-
alogue model which maximise the reward function. The method
is presented and evaluated in the context of the BUDS POMDP
dialogue manager which uses a dynamic Bayesian Network to
represent the dialogue state. However, the method is sufficiently
general that it could be used to optimise virtually any parame-
terised dialogue model. Furthermore, unlike most of the maxi-
mum likelihood methods used so far, the NBC algorithm does
not require that the user goal remains constant.

The paper is structured as follows. Section 2 briefly de-
scribes the BUDS dialogue manager and the method it uses for
policy representation [1]. Section 3 then describes policy gradi-
ents methods and a specific form called the Natural Actor-Critic
(NAC) algorithm which is used to optimise the BUDS policy. In
Section 4, the proposed Natural Belief-Critic algorithm is pre-
sented as a generalisation of the NAC algorithm and then in
Section 5 it is evaluated on a system designed for the tourist
information domain. Finally, Section 6 presents conclusions.

2. BUDS dialogue manager
In a POMDP dialogue system, the true dialogue state st is un-
known. Therefore, the policy selects an action at at time t based
on the distribution over all states called the belief state, b(st).
The estimate of the belief state depends on past observations
and actions. If the system is Markovian then the belief state
bt depends only on the previous belief state bt−1, the current
observation ot and the last system action at−1:

b(st; τ) = k·p(ot|st; τ)
∑
st−1

p(st|at−1, st−1; τ)b(st−1|ht−1; τ)

(1)



g'
type

g'
food

h'
type

u'
a

g''
type

g''
food

h''
type

u''
a'

o' o''

h'
food

h''
food

Figure 1: An example factorisation for the Bayesian network
representing part of a tourist information dialogue system.

where the transition probability function p(st|at−1, st−1; τ)
and the observation probability p(ot|st; τ) represent the dia-
logue model which is parameterised by τ and k is a normali-
sation constant.

2.1. The dialogue model

A naive implementation of (1) is not tractable since there are
billions of states in a real-world spoken dialogue system1. Thus,
the BUDS dialogue manager uses a Bayesian Network (BN) to
represent the state of the POMDP system, where the network
is factored according to the slots in the system [1]. Provided
that each slot or network node has only a few dependencies,
tractable systems can be built and belief estimates maintained
with acceptable accuracy using approximate inference [8].

The BUDS dialogue state is factored into three components:
the user goal g, the user action u and the dialogue history h. In
addition, the goal and the history are further factored into sub-
goals gi and sub-histories hi according to a set of slots, i ∈ I, in
the system. For example, in a tourist information system typical
sub-goals might be the type of venue required (“type”) or the
type of food (“food”). The sub-history nodes allow the system
designer to store information about whether a user requested
information or the system informed the user about some slot.
The user action u is the estimate of the true dialogue act from
the observation o.2 Fig. 1 shows the resulting network for two
time-slices of a two-slot system based on this idea.

The BN model parameters τ comprise the set of con-
ditional probabilities of the node values. For example,
the “food” sub-goal values are described by the probability
p(g′′food|g′food, g′′type, a′; τfood) parameterised by τfood. To re-
duce the number of parameters specifying the distributions in
the sub-goals, some parameters are tied together on the assump-
tion that the probability of change in the sub-goals is constant
given the last system action and the parent sub-goal. For ex-
ample, the probability of change from “Chinese” to “Indian” in
the sub-goal “food” is equal to the probability of change from
“Chinese” to “Italian”.

2.2. The Policy

The BUDS dialogue manager uses a stochastic policy π(a|b; θ)
which gives the probability of taking action a given belief state
b and policy parameters θ. When used in the dialogue manager,
the policy distribution is sampled to yield the required action at
each turn. To reduce complexity, for every action a, the belief

1Note that if a dialogue system has 10 slots and each slot has 10
different values then there are 1010 distinct states.

2In the BUDS dialogue manager, the observations and system ac-
tions are implemented as dialogue acts. A dialogue act conveys the user
or system intention (such as inform, request, etc) and a list of slot-value
pairs (e.g. type=hotel, area=east).

state is mapped into a vector of features, Φa(b) and the policy
is then approximated by a softmax function:

π(at|b(·; τ)); θ) ≈ eθ
T ·Φat (b(·;τ))∑
ã e

θT ·Φã(b(·;τ))
. (2)

To estimate the policy parameters, BUDS uses the Natural
Actor-Critic (NAC) algorithm [4] ( see Section 3).

A further reduction in complexity can be achieved by utilis-
ing summary actions [1]. For example, if the dialogue manager
confirms the value of some sub-goal then it should always con-
firm the most likely value. As a result, the full set of actions
is not needed. The mapping of the summary actions into full
dialogue acts is performed by a handcrafted function based on
the information in the belief state.

There are a variety of possible forms for the Φ function [2].
The BUDS dialogue manager uses factored grid-based approxi-
mation. In this case, for every node in the BN a set of binary fea-
tures is generated based on the probabilities of two most likely
values. BUDS also supports handcrafted policies which are de-
signed by an expert. These policies deterministically choose
which action to take given the features.

3. Policy gradients
The objective of reinforcement learning is to find a policy π
which maximises the expected reward J(θ):

J(θ) = E
[ 1

T

T∑
t=1

r(st, at) | πθ
]
,

where r(st, at) is the reward when taking action at in state st.
Learning θ can be achieved by a gradient ascent which it-

eratively adds a multiple of the gradient to the parameters be-
ing estimated. Using “the log likelihood-ratio trick” and Monte
Carlo sampling, the gradient can be estimated as follows:

∇J(θ) =
1

N

N∑
n=1

Tn∑
t=1

∇ log π(ant |bnt ; θ)Rn (3)

where the sampled dialogues are numbered n = 1, . . . , N ,
the n-th dialogue has a length of Tn turns, and Rn =
1
Tn

∑Tn
t=1 r(st, at) is the reward accumulated in dialogue n. To

obtain a closed form solution for the gradient ∇J , the policy π
must be differentiable w.r.t. θ. Conveniently, the softmax func-
tion in ( 2) is “linear” w.r.t. the parameters θ. Thus, it is easy to
derive an analytic form for the gradient∇J .

Although (3) can provide an estimate for the “vanilla” gra-
dient, it has been shown that the natural gradient ∇̃ J(θ) =
F−1
θ ∇J(θ) is more effective for optimisation of statistical

models where Fθ is the Fisher Information Matrix [9]. Based on
this idea, Peters et al. developed the Natural Actor-Critic (NAC)
algorithm which estimates a natural gradient of the expected re-
ward function [4]. The appealing part of the NAC algorithm is
that in practice the Fisher Information Matrix does not need to
be explicitly computed. To obtain the natural gradient, w, of
J(θ), NAC uses a least square method to solve the following
set of equations:

Rn =

[
Tn∑
t=1

∇ log π(ant |bnt ; θ)T
]
·w+C ∀n ∈ {1, . . . , N}.

Oncew has been found, the policy parameters can be iteratively
improved by θ′ ← θ + βw, where β is a step size.

Of all the policy optimisation algorithms tested with BUDS,
the NAC algorithm has proved to be the most robust suggest-
ing that the use of the natural gradient is critical. The question



therefore arises whether this type of policy gradient method can
be generalised to optimise not just the policy but the parameters
of the dialogue model as well.

4. Natural Belief-Critic algorithm
The difficulty with using policy gradient methods for learning
the parameters of the dialogue model is that since the function
Φ, which extracts features from the belief state, is usually a
handcrafted function of non-continuous features, the policy is
not usually differentiable w.r.t. τ . However, this problem can
be alleviated by assuming that the model parameters τ come
from a prior distribution p(τ ;α) that is differentiable w.r.t. the
parameters α. This leads to a generalisation of the NAC algo-
rithm called the Natural Belief-Critic (NBC) algorithm.

The goal of NBC is to learn the parameters α of the prior
distribution while maximising the expected reward. The algo-
rithm assumes that the policy is fixed during training. At each
iteration, the NBC algorithm samples the model parameters, ex-
ecutes dialogues, and stores the rewards observed at the end of
each dialogue. After collecting sufficient statistics, the algo-
rithm updates the prior distribution based on the observed re-
wards. Finally, the expected values for τ given the distribution
p(τ ;α) provide the new estimates for τ .

The techniques used in NAC to compute the natural gradi-
ent can be extended to the NBC algorithm since both algorithms
sample from the distribution for which they are learning the pa-
rameters. The only difference is that NBC samples only at the
beginning of a dialogue. As a result, NBC solves the following
set of equations:

Rn = ∇ log p(τn;α)T · w + C ∀n ∈ {1, . . . , N} (4)

to obtain the natural gradient w of the expected reward.
In order to use NBC in practice a prior for the model pa-

rameters τ is needed. Since the parameters of the BN described
in Section 2.1 are parameters of multiple multinomial distribu-
tions, a product of Dirichlet distributions provides a convenient
prior.

Formally, for every node j ∈ {1, . . . , J} in the BN,
there are parameters τj describing a probability p(j|par(j); τj)
where the function par(j) defines the parents of the node j.
Let |par(j)| be the number of distinct combinations of val-
ues of the parents of j. Then, τj is composed of parame-
ters of |par(j)| multinomial distributions and it is structured
as follows: τj =

[
τj,1, . . . , τj,|par(j)|

]
. Consequently, a prior

for τj can be formed from a product of Dirichlet distribu-
tions:

∏|par(j)|
k=1 Dir(τj,k;αj,k) parameterised by αj,k. Let the

vector τ = [τ1, . . . , τJ ] be a vector of all parameters in the
BN. Then, the probability p(τ ;α) from (4) can be defined as
p(τ ;α) =

∏J
j=1

∏|par(j)|
k=1 Dir(τj,k;αj,k) which has a closed

form log-derivative w.r.t. α and can be used in (4) to compute
the natural gradient w. The complete NBC algorithm is de-
scribed in Algorithm 1.

5. Evaluation
An experimental evaluation of the Natural Belief-Critic algo-
rithm was conducted using the BUDS dialogue system de-
scribed in Section 2. The goal of the evaluation was to test
whether the NBC algorithm could improve on a set of carefully
handcrafted model parameters which had been refined over time
to optimise performance. The evaluation was in two parts.
Firstly a set of model parameters were estimated using a finely
tuned handcrafted policy, and secondly, a set of model param-
eters were estimated using a stochastic policy trained using the

Algorithm 1 Natural Belief-Critic
1: Let τ be the parameters of the dialogue model
2: Let p(τ ;α) be a prior for τ parameterised by α
3: Let α1 be the initial parameters of the prior for τ
4: Let π be a fixed policy
5: Let N be the number of dialogues sampled in each iteration
6: Let M be the number of training iterations
7: Let β be a step size

8: for i = 1 to M do
Collecting statistics:

9: for n = 1 to N do
10: Draw parameters τn ∼ p(τn;αi)
11: Execute the dialogue according the policy π
12: Observe the reward Rn
13: end for

Critic evaluation:
14: Choose wi to minimize the sum of the squares of the errors of

Rn = ∇ log p(τn;α)T · wi + C
Parameter update:

15: αi+1 ← αi + βwi
16: end for

NAC algorithm. In both cases, the results were compared to
the performance obtained using the initial handcrafted model
parameters.

The systems were trained and tested using an agenda based
user simulator, for the Town-Info domain which provides tourist
information for an imaginary town [1, 3]. The user simulator in-
corporates a semantic concept confusion model, which enables
the systems to be trained and tested across a range of semantic
error rates. The reward function used in all experiments awards
100 minus the number of dialogue turns for a successful dia-
logue and 0 minus the number of turns for an unsuccessful one.

5.1. Dialogue model for the Town-Info domain

The Bayesian Network for the Town-Info domain contains nine
sub-goals: name of the venue, type of venue, area, price range,
nearness to a particular location, type of drinks, food type, num-
ber of stars and type of music. Every sub-goal has a correspond-
ing sub-history node. The network also has nodes to represent
address, telephone number, a comment on the venue and the
price. However, for these only their sub-history nodes are used
since a user can only ask for values of these slots and cannot
specify them as query constraints. Finally, the network has two
special nodes. The “method” node stores the probability that
the user is searching for a venue by constraint rather than by
name. The “discourse” node infers whether a user wants the
system to repeat the last system action, restart the dialogue, end
the dialogue or provide the user with more information about
the last offered venue. Although the dialogue manager does not
ask about these nodes explicitly, their values are inferred just
like any other node.

The history, “method”, and “discourse” nodes use fully pa-
rameterised conditional probabilities in order to capture the de-
tailed characteristics of dialogue flow. All of the other sub-goal
nodes use parameter tying as described in Section 2.1. Overall
this results in a total of 577 parameters in the dialogue model.

5.2. Experiments

Dialogue model parameters using the handcrafted policy were
estimated by running the NBC algorithm for 50 iterations with
the simulator set to give a 40% error rate. In each iteration,
16k dialogues were sampled. Both the baseline system and the
system with the learnt BN parameters were evaluated over error
rates ranging from 0% to 50%. At each error rate, 5000 dia-
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Figure 2: Comparison of the mean rewards of the handcrafted
BN model parameters and the parameters learnt by NBC when
trained using both a handcrafted policy and a trained policy.

logues were simulated and to reduce the variance of results, this
training and evaluation procedure was executed 5 times. The
averaged results along with 95% confidence intervals are de-
picted in Fig. 2. As can be seen, the system with trained BN pa-
rameters significantly outperforms the system with handcrafted
parameters especially at high error rates. For example, at 40%
error rate, the mean reward was increased by 8.3% (p < 0.05).
Inspection of the results suggests that this improvement can be
mostly attributed to the sub-optimality of the handcrafted policy
and the ability of the learnt BN parameters compensate for this.

In the second experiment, the NBC algorithm was used to
estimate a set of model parameters for a system using an opti-
mised stochastic policy. The full training procedure was exe-
cuted in three steps. First, a stochastic policy was learnt using
a dialogue model initialised with handcrafted parameters. To
train the policy, the NAC algorithm was executed for 200 iter-
ations at a 40% error rate and in each iteration 4000 dialogues
were simulated. Second, NBC was used to train BN parame-
ters using the newly trained stochastic policy. Thirdly, the pol-
icy was retrained using NAC to take advantage of the improved
model parameters. The final system was evaluated as in the first
task; although in this case, the training and evaluation procedure
was executed 20 times. The results, depicted in Fig. 2, show
that a system with model parameters trained using NBC signif-
icantly improves on the system with handcrafted model param-
eters even when used with a trained policy. At 40% error rate,
the mean reward was increased by 2.2% (p < 0.05). Further it-
erations of model parameter estimation and policy optimization
did not lead to any further improvement in performance.

Inspection of the learnt model parameters compared to
the handcrafted parameters based on KL-divergence showed
that greatest effect of the NBC-based optimisation was on the
“method” and “discourse” nodes. This is in line with expecta-
tions since the probabilities of change in these nodes are less
intuitive and they are therefore much harder to set manually.

The NBC algorithm was also tested with initial model pa-
rameters different to the handcrafted ones. Simulations showed
that although the algorithm is able to improve on arbitrary ini-
tialisations, the maximum performance achieved is sensitive to
the initialisation, presumably because the algorithm converges
to differing local optima.

Experiments were also conducted with uninformative (uni-
form) priors on the model parameters; though, they were not en-
tirely successful since in this case, the final rewards were lower

by 10%-20% in comparison with the rewards obtained when
using the handcrafted parameters. It appears that the NBC al-
gorithm too quickly reduces the variance of the prior distribu-
tion. Consequently, it limits exploration of the dialogue model
parameters.

The NBC algorithm can also be understood as a random
search algorithm. Thus, other state-of-the-art random search
techniques such as SPSA [10] and CMA-ES [11] can be used.
However, informal testing with these techniques yielded no fur-
ther improvement to the results reported here.

6. Conclusion
This paper has proposed a novel method called the Natural Be-
lief Critic algorithm for estimating the model parameters of a
POMDP-based dialogue system so as to maximise the reward.
Based on observed rewards obtained in a set of training dia-
logues, the algorithm estimates the natural gradient of the ex-
pected reward of a dialogue system and then adapts the Dirichlet
prior distributions of the model parameters. Simulations have
shown that the NBC algorithm significantly improves upon an
initial set of handcrafted model parameters when used with both
handcrafted and trained policies. Although the NBC algorithm
converges reliably, the achievable maximum reward is sensitive
to the initialisation. Thus the algorithm is most effective for
improving on an existing set of model parameters which have
either been handcrafted or estimated by other methods such as
maximum likelihood.
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