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Abstract
An important property of open domain spoken dialogue sys-
tems is their ability to deal with a set of new, previously unseen,
concepts introduced in the conversation. The dialogue manager
must then quickly learn how to talk about the new concepts us-
ing its knowledge of the existing concepts. It has previously
been shown that a single new concept could be accommodated
by mapping the kernel function of a Gaussian process to incor-
porate an additional concept into the domain of a statistical dia-
logue manager. Here we present an incremental scheme which
enables the domain of a dialogue manager to be repeatedly ex-
tended by recursively specifying priors in Gaussian processes.
We show that it is possible to effectively double the number of
concepts understood by a system providing restaurant informa-
tion using only 1000 adaptation dialogues with real users.
Index Terms: spoken dialogue systems, Gaussian processes

1. Introduction
In recent years there has been significant improvement in the
area of limited domain goal-directed spoken dialogue systems.
The introduction of statistical methods has been shown to pro-
vide more robust performance and be capable of learning from
data thereby avoiding the need for hand-crafting dialogue deci-
sions [1, 2, 3, 4, 5, 6]. In order to support large and potentially
open domains, techniques are needed to automatically extend
the operation of a dialogue system to cover previously unseen
concepts such as a new slot name and the values which can fill
that slot. This adaptation must be robust to mismatched training
data [7] and support adequate user modelling [8].

When new concepts are introduced into the conversation,
an open domain dialogue manager must be able to transfer the
knowledge of existing concepts and adapt its behaviour using a
small amount of training data. In [9] a method which supports
domain extension to cover a single new concept is described,
incorporating the ideas of transfer learning [10]. Here we re-
formulate this technique to allow repeated incremental domain
extension so that the range of concepts that the dialogue sys-
tem can converse about grows over time. We demonstrate that
a statistical spoken dialogue manager providing restaurant in-
formation for San Francisco can double its slot coverage, using
only 1000 adaptation dialogues with real users. We also show
that this adaptation technique can be used to improve policies
bootstrapped using a user simulator.

The rest of the paper is organised as follows. First, we
review dialogue management optimisation based on a Gaus-
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sian process model in a partially observable Markov decision
process (POMDP) setting. Then, we formulate an incremen-
tal policy adaptation scheme. Following that, we explain the
experimental set-up, consisting of the Bayesian Update of Dia-
logue State dialogue manager (Section 4.1), which operates in
a domain described by a set of ontologies automatically derived
from the web (Section 4.3). The experiments are conducted us-
ing subjects recruited via the Amazon Mechanical Turk crowd-
sourcing service (Section 4.5). In Section 3 we present results
obtained during adaptation and in Section 6 we give the final
evaluation results. Section 7 presents conclusions and future
research directions.

2. Gaussian processes in POMDPs
The input to the dialogue manager is typically an N-best list
of scored hypotheses obtained from the spoken language un-
derstanding unit. Based on this input, at every dialogue turn, a
POMDP dialogue manager maintains a distribution of possible
dialogue states called the belief state, b ∈ B. The role of a dia-
logue policy π is to map the belief state b into a system action
a ∈ A so as to maximise the expected cumulative reward which
is a measure of dialogue quality.

The expected cumulative reward is defined by the Q-
function as:

Q(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
, (1)

where rτ is the immediate reward obtained at time τ , T is the
dialogue length and γ is the discount factor, 0 < γ ≤ 1. Opti-
mising the Q-function is then equivalent to optimising the pol-
icy π.

GP-Sarsa is an on-line reinforcement learning algorithm
that models the Q-function as a Gaussian process [11],
Q(b, a) ∼ GP (0, k((b, a), (b, a))) where the kernel k(·, ·)
is factored into separate kernels over the belief state and ac-
tion space kB(b,b′)kA(a, a′). For a sequence of belief state-
action pairs B = [(b0, a0), . . . , (bt, at)]T visited in training
dialogues and the corresponding observed immediate rewards
r = [r1, . . . , rt]T, the posterior of theQ-function for any belief
state-action pair (b, a) is defined by the following:

Q(b, a)|r,B ∼ N (Q(b, a), cov((b, a), (b, a))),
Q(b, a) = k(b, a)THT(HKHT + σ2HHT)−1r,
cov((b, a), (b, a)) = k((b, a), (b, a))−
k(b, a)THT(HKHT + σ2HHT)−1Hk(b, a),
k(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T,
K = [k((b0, a0)), . . . ,k((bt, at))],

(2)



where K is the Gram matrix – the matrix of the kernel function
values for visited points B, σ2 is an additive noise parameter
which controls how much variability in theQ-function estimate
we expect during the process of learning and H is a linear op-
erator that captures the reward lookahead from the Q-function
(see Eq. 1) given by

H =


1 −γ · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ

 . (3)

A more detailed explanation of the use of GP-Sarsa in dialogue
systems is given in [12].

3. Incremental policy adaptation
There are two distinct cases to consider when performing adap-
tation. The first is the case when the dynamics of the environ-
ment change, for example if the user changes. The second is
the situation where the belief and the action space are different
because the dialogue domain changes.

3.1. Adaptation without changes in the belief and action
space

When the dynamics of the environment change, the system ac-
tions do not lead to the same cumulative rewards (Eq 1) and
therefore the underlying Q-function changes. In this case,
we can use the current estimate of the Q-function to find the
adapted Q-function in the following way.

If we assume that the Gaussian process
places a prior mean m(b, a) on the Q-function,
Q(b, a) ∼ GP (m(b, a), k((b, a), (b, a))) then the pos-
terior mean Q(b, a) is given by [13]:

Q(b, a) = m(b, a)+k(b, a)THT(HKHT+σ2HHT)−1(r−m),
(4)

where m = [m(b0, a0), . . . ,m(bt, at)]T. The estimate of the
variance is same as in Eq. 2. The mean of the Gaussian process
posterior (Eq. 4) defines a function of (b, a) and can thus be
used as the prior meanm(b, a) for another Gaussian process as
demonstrated in [9].

This can be even further extended. The resulting mean of
the Gaussian process posterior from Eq. 4 is again a function of
(b, a) and can be used as a prior for yet another Gaussian pro-
cess. In that way, every time the underlying function changes
the current estimate of the Gaussian process posterior can be
used as the prior mean and any additional training data is then
used to estimate the posterior. This formulation can be imple-
mented in a recursive manner where each Gaussian process has
an associated Gaussian process that recursively defines its prior.

More formally, consider a sequence of Gaussian pro-
cess posteriors Q1(b, a)|r1,B1, Q2(b, a)|r2,B2, . . . ,
Ql(b, a)|rl,Bl such that the prior mean of the jth Gaussian
process is the posterior mean of the (j − 1)th Gaussian process
and the prior mean for Gaussian process Q1 is zero. Then, the
posterior mean of Ql(b, a)|rl,Bl can be expressed as

Ql(b, a) = k1(b, a)
THT

1 (H1K1H
T
1 + σ2H1H

T
1 )
−1r1+

+k2(b, a)
THT

2 (H2K2H
T
2 + σ2H2H

T
2 )
−1(r2 −m2)

+ . . .
+kl(b, a)

THT
l (HlKlH

T
l + σ2HlH

T
l )
−1(rl −ml),

(5)

where mj = [Qj−1(b
0, a0), . . . , Qj−1(b

t, at)]T, j =
2, . . . , l.

3.2. Adaptation with incremental changes in the belief and
action space

Assume now that the domain incrementally changes, i.e. that
each subsequent belief state space Bj has additional dimen-
sions compared to the previous belief state space Bj−1 and
that every subsequent action space is a superset of the pre-
vious action space, Aj−1 ⊂ Aj , j = 2, . . . , l. In or-
der to apply adaptation as derived in Eq. 5 one needs to be
able to calculate vectors k1(b, a), . . . ,kl(b, a) for a point
(b, a) ∈ Bl × Al. From the definition in Eq. 2 we can
see that kj(b, a) is a vector of kernel values for points vis-
ited during learning for that particular domain kj(b, a) =
[k((b0

j , a
0
j ), (b, a)), . . . , k((b

t
j , a

t
j), (b, a))]

T, j = 1, . . . , l.
Therefore, in principle, one needs to be able to calculate the
kernel function k((b′, a′), (b, a)) where (b′, a′) ∈ Bj × Aj ,
(b, a) ∈ Bi × Ai and j ≤ i. Since the kernel function is
factored into the kernel for the belief state space and the action
space, this needs to be done separately for each of these spaces.
One way of doing this for the belief state space is to only con-
sider the common dimensions between Bi and Bj . In terms of
the action space the kernel function is defined only on the ac-
tions that appear both in Ai and Aj and set to 0 otherwise.

4. Experimental Set-up
To investigate the effectiveness of the incremental policy adap-
tation scheme described above, the Bayesian Update of Dia-
logue State dialogue manager was adapted in interaction with
real users. A user simulator was deployed for training the initial
policies.

4.1. BUDS dialogue manager

The Bayesian Update of Dialogue State (BUDS) dialogue man-
ager is a POMDP-based dialogue manager [5] which factorises
the dialogue state into conditionally dependent elements, ar-
ranged into a dynamic Bayesian network. Thus, the belief state
consists of the marginal posterior probability distribution over
hidden nodes in the Bayesian network. The hidden nodes con-
sist of the history nodes and the goal nodes for each concept.

To apply GP policy optimisation, a kernel function must be
defined on both the belief state space B and the action spaceA.
In this case, the same approach is taken as in [9]. The kernel
function on the belief state space is constructed from the sum of
individual kernels over the hidden node distributions, such that
the kernel function of two corresponding nodes is based on the
expected likelihood kernel [14], which is a simple linear inner
product:

kB(b,b
′) =

∑
h

〈bh,b′h〉, (6)

where bh is the probability distribution encoded in the hth hid-
den node. This kernel gives the expectation of one belief state
distribution under the other.

For history nodes, the kernel is a simple inner product be-
tween the corresponding node distributions.The kernel over two
goal nodes is calculated as the dot product of vectors, where
each vector represents the corresponding distribution sorted into
order of probability.

For the action space kernel, the δ-kernel is used defined by:

kA(a, a
′) = δa(a

′), (7)



where δa(a′) = 1 iff a = a′, 0 otherwise.
4.2. The agenda-based user simulator

For training the initial policies, the agenda-based user simulator
was used, which factorises the user state into an agenda and a
goal to ensure consistent, goal-directed behaviour [15, 16].

A dialogue was considered successful if the system pro-
vided all the information that the user asked for. The reward
function was set to give a reward of 20 for successful dialogues,
zero otherwise. In addition, 1 was deducted for each dialogue
turn to encourage shorter dialogues.

4.3. Ontologies

The evaluation system provides restaurant information for San
Francisco. The core system understands just 3 slot types: food,
area and pricerange. Extended systems successively learn to
handle three new slots: near, allowedforkids and goodformeal.
The corresponding domains are described by a set of ontolo-
gies that are automatically generated using information from
the web [17], see Table 1.

Ontology Attributes ( # of vaues )
SFCore food(59), area(155), pricerange(3)
SF1Ext SFCore + near(39)
SF2Ext SF1Ext + allowedforkids(2)
SF3Ext SF2Ext +goodformeal(4)

Table 1: Expanding domains

The three domain extensions have attributes of very differ-
ent nature. Attribute near has a large number of possible values,
while allowedforkids is a binary attribute and goodformeal has
only a few values such as dinner, lunch etc. Therefore, every
time a new attribute is added the dialogue manager must adjust
its behaviour. The overall number of entities is 239 and the user
can enquire about phone, address, postcode and prices.

4.4. Extended belief state

Every time the domain is extended with a new attribute, a set
of hidden nodes is added to the Bayesian network. The dia-
logue manager then needs to be able to update the belief state
of this larger network. In order to do that, the similarity is com-
puted between the new attribute and each existing attribute by
comparing cardinalities. Then, the transition probabilities for
the new nodes are defined as the transition probabilities for the
nodes that correspond to the most similar attribute.

In order to adapt the policy to new domains one needs to
define the kernel function between the belief states that come
from different domains, where one is the extension of the other.
We only consider attributes that are the same in both domains:

kB(b
B,bE) =

∑
h∈B

〈bB
h,b

E
h〉, (8)

where h are the hidden nodes in the basic domain B. The kernel
function between two sets of actions is

kA(a
B, aE) = δaB(a

E), (9)

where aE ∈ AB.

4.5. Crowd-sourcing via Amazon MTurk

In order to adapt and evaluate policies with humans, we inte-
grated the BUDS dialogue manager into a telephone-based spo-

ken dialogue system and recruited the subjects via the Ama-
zon Mechanical Turk service in a set-up similar to [18, 6]. We
collected a small amount of text dialogues using a handcrafted
policy operating on SF3Ext domain and used them to train the
language model. The spoken language understanding compo-
nent is a variant of Phoenix parser and the language generation
unit is template-based.

The MTurk users were assigned specific tasks in different
domains. They were asked to find restaurants that have partic-
ular features as defined by the given task. After each dialogue
the users were asked whether they judged the dialogue to be
successful or not. Based on that binary rating, the subjective
success was calculated as well as the average reward. An ob-
jective rating was also computed by comparing the system out-
puts with the predefined task. During adaptation only dialogues
where both objective and subjective score were the same were
used, while for evaluation all dialogues were taken into account.

5. Adaptation in interaction with real users
We investigated two cases of adaptation – when the environ-
ment changes and when the domain changes incrementally.
Rather than trying to expand the full domain immediately, we
gradually make the task more difficult, adopting the ideas of
curriculum learning [19]. The adaptation schedule is illustrated
in Fig. 1. First a policy for the SFCore domain was trained using
the user simulator and learning on a large number of dialogues
until the policy converged. For comparison, a policy for the full
SF3Ext domain was also trained on the simulator.

The SFCore policy trained on the user simulator was then
used as a prior to obtain an SFCore policy adapted using real
users. In this case the domain did not change, only the environ-
ment, so we used the technique described in Section 3.1 using
200 adaptation dialogues. Then, the resulting policy was taken
as a prior for the SF1Ext domain and adapted using a further
300 dialogues. The domain was then again extended to SF2Ext
and 300 adaptation dialogues were performed. The final exten-
sion to the SF3Ext domain had 200 adaptation dialogues1.

For comparison, we also adapted the SF3Ext policy trained
on the user simulator using 300 dialogues with real users, c.f.
Fig. 1.
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SF3Ext	
  
adapt	
  

SFCore	
   SF1Ext	
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Evalua;on	
  

Figure 1: Adaptation schedule

For each adaptation experiment we calculated the moving
average reward using a moving window of 150 dialogues. The
results are shown in Figs. 2,3,4 and 5. The shaded area repre-
sents one standard error. Bearing in mind that the initial parts of

1The performance deteriorated after 200 dialogues due to an in-
crease in speech understanding errors.



the graphs are not indicative of the performance since the num-
ber of dialogues in the beginning is very small, Figs. 2,4 and 5
show an upward trend in performance.
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Figure 2: Adaptation to real users on SFCore domain
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Figure 3: Adaptation to SF1Ext domain
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Figure 4: Adaptation to SF2Ext domain
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Figure 5: Adaptation to SF3Ext domain

The performance of the SF1Ext domain (Fig 3) however is
clearly worse than for the other domains. We transcribed the
collected dialogues and calculated the word error rate (WER)
for each domain extension and found that it is considerably
larger for SF1Ext (Table 2).

Table 2: Word error rate for different domains
Domain #Adaptation diags #Diags WER
SFCore 200 399 15
SF1Ext 300 602 22
SF2Ext 329 534 19
SF3Ext 200 320 18

It is somewhat counter-intuitive that the word error rate for
a larger domain is lower than for a smaller domain. The reason
for this may be that the larger system can use attributes which
are easy to recognise such as allowedforkids and goodformeal
to narrow down the user’s request without always needing to
specify attribute near which, due to the very large number of
possible values, proves particularly challenging for speech un-
derstanding.

6. Evaluation
To investigate the effectiveness of the adaptation technique, we
evaluated three policies in direct interaction with real users: the
policy trained on the simulator for the SF3Ext domain (sim), the
policy adapted to SF3Ext using the policy trained on the user
simulator as the prior (adapt), the policy incrementally adapted
to SF3Ext starting from the SFCore policy trained on the user
simulator (inc adapt). The results are given in Table 3 along
with one standard error. The results show that the SF3Ext adapt
policy is significantly better than the SF3Ext sim policy and that
there is no statistical difference between the SF3Ext inc adapt
policy and the SF3Ext adapt policy.

Table 3: Evaluation of policies operating on the SF3Ext domain
Policy #Diags Reward Success(%) #Turns
sim 306 9.2± 0.6 80.7± 2.3 6.9± 0.3
adapt 311 10.5± 0.5 83.9± 2.1 6.3± 0.2
inc adapt 305 10.3± 0.5 82.3± 2.2 6.1± 0.2

7. Conclusions
These results have two important implications. First, a policy
trained on a user simulator can be improved in interaction with
real users. In this case, the domain is the same but the environ-
ment has changed. By using additional adaptation dialogues,
the policy captures changes in the environment while reusing
the knowledge of the policy trained on the user simulator.

Secondly, this form of adaptation appears to be practical
even when the domain significantly expands. A policy can be
trained for a limited domain and then incrementally adapted to a
larger domain without supervision in direct interaction with real
users using a small number of adaptation dialogues and without
the expense of building a user simulator for the extended do-
main.

The ability to handle an expanding domain represents a
clear step towards open domain dialogue. The next step is to
show that policies trained for different domains can be com-
bined into some form of distributed policy representation which
enables a dialogue to seamlessly switch from one topic to an-
other. This will be the focus of future work.
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