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Abstract—Model-based approaches to handling additive back-
ground noise and channel distortion, such as Vector Taylor Series
(VTS), have been intensively studied and extended in a number
of ways. In previous work, VTS has been extended to handle
both reverberant and background noise, yielding the Reverberant
VTS (RVTS) scheme. In this work, rather than assuming the
observation vector is generated by the reverberation of a sequence
of background noise corrupted speech vectors, as in RVTS, the
observation vector is modelled as a superposition of the back-
ground noise and the reverberation of clean speech. This yields
a new compensation scheme RVTS Joint (RVTSJ), which allows
an easy formulation for joint estimation of both additive and
reverberation noise parameters. These two compensation schemes
were evaluated and compared on a simulated reverberant noise
corrupted AURORA4 task. Both yielded large gains over VTS
baseline system, with RVTSJ outperforming the previous RVTS
scheme.

I. I NTRODUCTION

Hands-free speech recognition using distant microphones is
useful for many applications, e.g., voice control of consumer
electronics, automatic meeting transcription and speech dia-
logue systems. Distant-talking automatic speech recognition
(ASR) systems need to handle both the background noise
and the reverberant noise. The background noise is caused
by other interfering sources and is usually additive in the
linear spectrum domain, while the reverberation is usually
caused by multiple acoustic paths of sound waves from the
source to the microphone. The reverberation effect can be
described as a convolution of clean speech with Room Impulse
Response(RIR). The RIR is usually characterised by the so
called reverberant time,T60, which is the time needed for
reflections of a direct sound to decay by 60dB to the level of
the direct sound. In a reverberant environment, theT60 value
is significant longer than the analysis window used for feature
extraction in ASR. Thus the observed feature vector becomes
a superposition of multiple delayed and attenuated copies of
previous clean speech.

There are several approaches in the literature to handle
reverberant noise. Signal processing methods like beamform-
ing [1] and inverse filtering [2] can be used to clean the
reverberant speech signals, or speech feature vectors can
be enhanced [3], [4]. Recently, model-based approaches to
robust speech recognition, e.g., Parallel Model Combination
(PMC) [5] and Vector Taylor Series (VTS) [6], have been
investigated to handle the additive and convolutional noise and

were extended in a number of ways. Model-based approaches
have also been extended to deal with the reverberant noise,
e.g., in [7], [8] and [9], acoustic models are compensated using
PMC. In [10], Reverberant VTS (RVTS) was proposed, where
model-based VTS compensation was extended to handle the
reverberant noise, as well as the background noise. RVTS al-
lows the compensation formula for all the model parameters to
be defined, and the parameters of the reverberant noise model
can be estimated using maximum likelihood (ML) criterion.
To handle background noise in a reverberant environment, a
series of approximations were made such that the observation
vector can be described as the reverberation of a sequence of
background noise corrupted speech vectors. The background
and reverberant noise were then estimated in a sequential way.
In this work, an alternative assumption about the relationship
of the additive and reverberant noise is explored, where the
observation vector is assumed to be a combination of the
reverberation of the clean speech and additive noise. Basedon
this assumption, an extension of RVTS, RVTS Joint (RVTSJ)
compensation scheme is proposed. Compared with the RVTS
scheme, the noise parameters for RVTSJ, including the addi-
tive and reverberant noise parameters, are estimated jointly,
rather than sequentially.

The rest of the paper is organised as follows. The next
section will discuss the mismatch functions that can be used
to describe the impact of environment, as well as the extra
statistics needed to model the dependency caused by reverber-
ation. Section III describes the RVTS and its extension RVTSJ
model compensation schemes. Noise estimation is presented
in section IV. Experiments and results are discussed in section
V with conclusion and future work in section VI.

II. M ISMATCH FUNCTIONS

A. Additive Noise and Convolutional Distortion

In the time domain, the standard form used to describe the
additive noisen(τ) and short-term convolutional noiseh(τ)
corrupting the clean speechx(τ) is

y(τ) = h(τ) ∗ x(τ) + n(τ) (1)

where the length ofh(τ) is less than the length of analysis
window in feature extraction. After a series of approximations,
the mismatch function in the cepstral domain, relating the
corrupted speech MFCCsyt to the clean speech vector,xt, is



written as:

yt =C log
(

exp(C−1(xt + µh)) + exp(C−1
nt)
)

= f(xt,µh,nt) , (2)

wherent is the noise coefficient,µh the convolutional noise,
andC the (truncated) DCT matrix. Note that this mismatch
function assumes the noise and speech are linearly additivein
the magnitude domain. Combining noise and speech in other
domains is possible, which only requires a simple change: the
DCT matrix C is replaced byγC, whereγ = 1 represents
the magnitude domain, andγ = 2 the power domain. Given
this mismatch function, VTS can be used to yield a linear
approximation. For a clean speech vectorxt, generated from
componentm, its noise-corrupted observationyt is

yt|m≈f(µ(m)
sx ,µsn,µh)+J(m)

x (xt−µ
(m)
sx )+J(m)

n (nt−µsn) (3)

where subscripts indicates the static parameters, and

J(m)
x =

∂y

∂x

∣

∣

∣

µ
(m)
sx ,µsn,µh

, J(m)
n = I− J(m)

x (4)

Using this approximation, the static model parameters can be
compensated via

µ
(m)
sy = f(µ(m)

sx ,µh,µn) (5)

Σ(m)
sy = diag

(

J(m)
x Σ(m)

sx J(m)T
x + J(m)

n ΣsnJ
(m)T
n

)

(6)

For delta model parameters, the continuous time approxima-
tion assumption[11] is used, yielding:

µ
(m)
∆y = J(m)

x µ
(m)
∆x (7)

Σ
(m)
∆y = diag(J(m)

x Σ
(m)
∆x J(m)T

x + J(m)
n Σ∆nJ

(m)T
n ) (8)

where∆ in the subscripts denotes static and delta parameters.
The delta-delta parameters are also compensated in a similar
form. It is necessary to estimate the noise model parameters
µsn,µh,Σn,Σ∆n andΣ∆2n. These can be done via ML esti-
mates, e.g., [12], [13].

B. Reverberant Noise

In a reverberant noise environment, if only a single multi-
path term is considered, the signalz(τ), corrupted by the
reverberant and background additive noise, may be expressed
as

z(τ) = hr(τ) ∗ x(τ) + nr(τ) (9)

where nr(τ) and hr(τ) are the additive and reverberant
noise term, including intra-frame distortion and inter-frame
reverberation, i.e.,

hr(τ) = h(τ) + hl(τ); nr(τ) = n(τ) + nl(τ) (10)

hl(τ) is usually caused by late-reflection of indirect acoustic
path from the speaker to the microphone, whose length usually
ranges from 200ms to 1s or more. Since this is much longer
than the length of analysis window used for feature extraction
(typically 25ms), the effect of reverberant noise cannot be
described as a simple bias term in the cepstral domain.

In previous work [10], the following approximations were
made to simplify the overall expressions:

hl(τ) ≈ h̃l(τ) ∗ h(τ); nl(τ) ≈ h̃l(τ) ∗ n(τ) (11)

It is then possible to write

z(τ) = (1 + h̃l(τ)) ∗ y(τ) (12)

By ignoring the cross-term correlation, the effect of rever-
berant distortion in the cepstral domain can be approximated
as a combination ofn + 1 frame-level distortion terms,
µ̃l = [µ̃T

l0, · · · , µ̃
T

ln]
T, acting on a set of preceding noise-

corrupted MFCC features,yt, · · · ,yt−n, i.e.,

zt = C log

(

n
∑

δ=0

exp
(

C−1(yt−δ + µ̃lδ)
)

)

= g̃(yt, · · · ,yt−n, µ̃l) (13)

The Mismatch function in Eq. (13) allows reverberant noise
compensation to be built on top of the VTS-compensated mod-
els. In this work, rather than using the approximation in Eq.
(11), the mismatch function in Eq. (9) is used, which directly
links the clean speech, additive noise and noise corrupted
observation. Again, by ignoring the cross-term correlation, the
corresponding mismatch function in the cepstral domain is
written as

zt = C log

(

n
∑

δ=0

exp
(

C−1(xt−δ + µlδ)
)

+ exp
(

C−1
nt

)

)

= g(xt, · · · ,xt−n,µl,nt) (14)

This mismatch function assumes the corrupted observa-
tion vector is a combination of additive noise and several
delayed-and-attenuated copies of previous clean speech vec-
tors xt, · · · ,xt−n, while the mismatch function in Eq. (13)
assumes the observation is generated by the reverberation of
additive noise corrupted speech vectorsyt, . . . ,yt−n.

Similar to the VTS case, the mismatch functions in Eqs.
(13-14) assume the linear combination in the magnitude do-
main. Power domain combination is also possible by setting
γ = 2. The above mismatch functions describe the impact
of reverberant and additive noise on the static features. Itis
also possible to derive the mismatch functions for delta and
delta-delta features using continuous time approximation.

C. Model Statistics

For the above mismatch functions, the reverberant and
additive noise corrupted static speech frame is a function of
a window of n + 1 clean speech framesxt, . . . ,xt−n and
additive noisent (or nt, . . . ,nt−n to yield yt, . . . ,yt−n).
Therefore, additional model statistics are needed to modelthis
dependency.

Figure 1 shows the generating process of the reverberant
observations (ignoring the dynamic parameters) accordingto
the mismatch function in Eq. (14). Inference on this dynamic
Bayesian network (DBN) is not practical as the number
of states and components affecting the current state grows



exponentially. Approximations to this form are possible. For
example, in [9] the Viterbi decoding algorithm is modified
where model parameters are adapted based on the current
best partial path. The model adaptation is done at each frame,
which results in a large amount of computation. Alternatively,
the model parameters can be adapted prior to recognition,
based on the estimated preceding states, either the intra-
phoneme preceding states or inferred from the context of
biphone [8] or triphone [7] models. However, it is difficult to
infer a long preceding state sequence in this way, especially
when tied-state cross word triphone models are used.
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Fig. 1. Reverberant dynamic Bayesian network.qt andmt denote the state
and component at timet,n = 1.

Alternatively, another form of approximation was proposed
in [10] and is also used in this work. The DBN is shown in
Figure 2. In this approximation, rather than an explicit depen-
dence on the previous observation or states, the observation
vector zt is assumed to depend on an extended observation
vectorxt. In this way, the standard Viterbi algorithm can be
used for inference. This approximation results in two forms
of smoothing. First statistics are smoothed over all possible
previous states. This effect is moderated for the context
dependent models as the left context automatically limits the
range of possible states. The second impact is the smoothing
over components for the previous state. It is worth noting that
this is exactly the same form of approximation that is used in
deriving the standard dynamic parameters.
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Fig. 2. Approximate reverberant environment dynamic Bayesian network.

It is also important to decide which form of the probability
distribution, p(xt|mt = m), to use. To ensure that if there
is no reverberant noise, the compensated model becomes the

original model, the following form is used:

xt =









xt

∆xt

∆2
xt

x̃t









= W





xt+w

. . .

xt−n−w



 ∼ N (µ(m)
x ,Σ

(m)

x ) (15)

wherew is the window size to calculate the dynamic parame-
ters,x̃t can be any vector, providedW is square and invertible,
andΣ

(m)

x is a diagonal matrix. Using this representation, it is
simple to derive the clean speech statistics. For example, the
mean and covariance of spliced framesxe(ranging fromt to
t− n), µ(m)

xe andΣ(m)
xe , can be derived by

µ
(m)
xe = Pµ

(m)
x ; Σ(m)

xe = PΣ
(m)

x PT (16)

whereP is the matrix that mapsxt to xe. Since the deltas
of xe, ∆xe, are also linear combination ofxt, the mean and
covariance of∆xe, µ

(m)
∆xe andΣ(m)

∆xe can be obtained in a similar
way.

The above expressions describe the derivation of the “clean”
statistics required by the mismatch function in Eq. (14). Given
the noise model parametersµsn,µh,Σn, it is possible to derive
the “noisy” statistics required by the mismatch function inEq.
(13). To avoid computing a large number of Jacobian matrices,
linear approximation is used: for example, the mean ofyt−δ,
µ

(m)
yδ , is given by

µ
(m)
yδ = f(µ(m)

x ,µh,µsn) + J(m)
x (µ

(m)
xδ − µ

(m)
x ) (17)

whereµ(m)
xδ is the mean ofxt−δ, conditioning on the com-

ponentm. Onceµ
(m)
yδ (δ = −w, . . . n + w) are known, the

noisy delta statistics,µ(m)
∆ye , can be obtained in the same way

asµ(m)
∆xe .

III. R EVERBERANT VTS COMPENSATION

Given the mismatch functions in Eq. (13) and Eq. (14) and
the statistics described in the previous section, it is possible to
extend the use of VTS to handle reverberant noise. In previous
work [10], the mismatch function in Eq. (13) is expanded
about model parameters and current noise parameters, i.e.,

zt|m = g̃(ye, µ̃l) ≈ g̃(µ(m)
ye , µ̃l) + J(m)

ye (ye − µ
(m)
ye ) (18)

whereye is the stacked noisy framesyt, . . . ,yt−n and

J(m)
ye = [J

(m)
y0 , · · · ,J(m)

yn ] ; J
(m)
yδ =

∂g̃

∂yt−i

∣

∣

∣

µ
(m)
ye ,µ̃l

(19)

With this expansion, as well as the continuous time approxi-
mation, the mean is compensated using

µ
(m)
sz = g̃(µ(m)

ye , µ̃l) (20)

µ
(m)
∆z = J(m)

ye µ
(m)
∆ye (21)

This form of compensation is referred to as RVTS.



A similar approximation can be carried out for the mismatch
function in Eq. (14). Performing an expansion of the function
g() aroundµ(m)

x ,µl andµn yields

zt|m ≈ g(µ(m)
xe ,µl,µn) + [J(m)

xe ,J(m)
ne ]

[

xe − µ
(m)
xe

nt − µn

]

(22)

where

J(m)
xe = [J

(m)
x0 , · · · ,J(m)

xn ] ; J(m)
ne = I−

n
∑

δ=0

J
(m)
xδ (23)

and

J
(m)
xδ =

∂g

∂xt−δ

∣

∣

∣

µ
(m)
xe ,µl,µn

(24)

Thus the model parameters are compensated by

µ
(m)
sz = g(µ(m)

xe ,µl,µn) (25)

µ
(m)
∆z = J(m)

xe µ
(m)
∆xe (26)

The delta-delta parameters are compensated in a similar way
as the delta parameters. This compensation form is referredto
as RVTS Joint (RVTSJ).

It is possible to compensate the variances as well. However,
in this initial investigation, it was found that variance compen-
sation is quite sensitive and a good compensation is hard to
obtain. Thus, in this work the variance compensation is done
using standard VTS, i.e.,Σ(m)

z = Σ(m)
y (c.f. Eq. 5 - Eq. 8 ) ,

whereµsn,µh andΣn are estimated via standard VTS noise
estimation.

IV. N OISE ESTIMATION

In the previous section, two model compensation forms,
RVTS and RVTSJ, are described. The noise parameters need
to be determined. Though there exists a simple method to
determine the frame-level distortion terms [7] based on the
known reverberation timeT60, it is preferable to use ML
estimate of noise parameters, as it yields consistent fit with
the reverberant data. In [10], a sequential ML estimation of
noise parameters for RVTS was presented, where the additive
and convolutional noise parameters,µn,µh andΣn, were first
estimated using standard VTS noise estimation, then the noisy
statisticsµ(m)

ye were obtained, followed by reverberant noise
meanµ̃l estimation. Though it is possible to jointly estimate
µ̃l,µn andµh for RVTS, additional assumptions (e.g.,J

(m)
n is

invariant ofµh,µn) are needed. In this work, joint estimation
of the reverberant and additive noise mean is presented for the
RVTSJ compensation.

The estimation of reverberant and additive noise mean
is done in the EM framework, similar to the convolutional
and additive noise mean estimation using EM. The following
auxiliary function is maximised:

Q(µ̂l, µ̂n)=
∑

t,m

γ
(m)
t log p(zt;µ

(m)
z ,Σ(m)

z )+R(µ̂l, µ̂n) (27)

whereγ(m)
t is the posterior of componentm at time t, given

the current hypothesis and current noise estimatesµl,µn,

R(µ̂l, µ̂n) is a regularisation term to improve the stability
of noise estimation. In this work, the following form of
regularisation was used:

R(µ̂l, µ̂n) = α
(

(µ̂l−µl)
T(µ̂l − µl) + (µ̂n−µn)

T(µ̂n−µn)
)

Performing a first-order expansion ofµ
(m)
z using the current

estimates,µl,µn, yields:

µ̂
(m)
sz ≈ µ

(m)
sz +

[

J
(m)
le J(m)

ne

]

[

µ̂l − µl

µ̂n − µn

]

(28)

where

J
(m)
le = [J

(m)
l0 , · · · ,J

(m)
ln ] J

(m)
lδ =

∂g

∂µlδ

∣

∣

∣

µ
(m)
xe ,µl,µn

Differentiating the auxiliary function and equating to zero
gives the following update:
[

µ̂l

µ̂n

]

=

(

∑

t,m

γ
(m)
t J(m)TΣ(m)−1

sz J(m) + αI

)

−1

× (29)

(

∑

t,m

γ
(m)
t J(m)TΣ(m)−1

sz

(

µ
(m)
sz − J(m)

[

µl

µn

])

)

where J(m) = [J
(m)
le J

(m)
ne ]. Note in noise estimation for

RVTS, similar expression were used, except that onlyµ̃l were
updated whileµn were fixed at the value estimated in VTS.

The above updating formula only consider the static pa-
rameters in the auxiliary function. To yield best performance,
all the compensated parameters should be included in the
auxiliary function. The updating formula is slightly modified
to reflect that compensated delta and delta-delta parameters
are also functions of̂µl and µ̂n. Moreover, due to the linear
approximation in Eq. (28), the auxiliary function needs to be
checked after every updating iteration to ensure the auxiliary
is non-decreasing. More details of the noise estimation canbe
found in [14].

Since the auxiliary function is highly nonlinear, it is crucial
to have a good initialisation. The initialisation scheme inthis
work uses an initial (rough) estimate ofT60 value, similar
to the one used in [7]. The initialisation scheme is slightly
modified so that the initial compensated mean vectors are
approximately the same as the VTS compensated means. For
RVTS, the initial frame-level distortion terms are given by

µ̃lδ = C[ δη + β . . . δη + β]T (30)

where

η = −3 log(10)
∆

T60
; β = − log

(

1− e(n+1)η

1− eη

)

(31)

and∆ is the shift of analysis window (10ms in this work).
Note that here the cepstral coefficients are extracted from the
magnitude spectrum rather than power spectrum, therefore Eq.
(31) is slightly different from the one in [7]. For RVTSJ,µn

is initialised as the additive noise mean estimated by standard
VTS noise estimation, while forµlδ

µlδ = µh +C[ δη + β . . . δη + β]T (32)



and µh is the convolutional noise estimated in VTS noise
estimation.

V. EXPERIMENTS AND RESULTS

The above RVTS and RVTSJ were evaluated and contrasted
on a reverberant version of the AURORA4 task [15]. The
original AURORA4 task is derived from Wall Street Journal
(WSJ0) 5k-word closed vocabulary task, with 330 utterances
from 8 speakers in the test set. Test set A (test01) was
recorded with a close-talking microphone; set B(test02-07)
had 6 different types of noise added, with randomly selected
SNRs, ranging from 15dB to 5dB; Set C (test08) was
recorded with secondary microphones; noise was also added
to set C to form set D(test09-14). Three of these 14
sets, 01,04 and 08 were selected and passed through a
simulation tool [16] to simulate the effect of reverberant noise,
with the reverberation timeT60 set to 400ms. These additive
and reverberant noise corrupted sets form the reverberant
AURORA4 task1.

The HTK frontend was used to derive a 39-dimensional
feature vector, consisting of 12 MFCCs, extracted from mag-
nitude spectrum, appended with zeroth cepstrum, delta and
delta-delta coefficients. Cross-word triphone models with3140
distinct states and 16 component per state were trained on the
“clean” data (7138 utterances/83 speakers). For the extended
model statistics, the feature vector was appended with high-
order DCT elements of an appropriate window width.n =
10, w = 4 were used as the length of history frames and the
window length used for calculating the dynamic parameters,
respectively. The standard bi-gram LM for the AURORA4 task
was used in decoding.

Adaptation in the experiments were performed in an un-
supervised mode. All noise parameters were estimated at the
utterance level. Initially, acoustic models were compensated
based on an initial estimation of the additive noise, using the
first and last 20 frames of each utterance. These compensated
models were used to generate an initial hypothesis. With this
initial hypothesis, the noise models were re-estimated. New
hypotheses were then generated. This process was optionally
repeated several times. Table I shows the how the VTS systems
performed on theoriginal AURORA4 task. Compared with the
unadapted system, VTS adaptation greatly reduces the error
rates on this additive and convolutional noise corrupted corpus.

Est. set A set B set C set D Avg.

– 7.1 55.9 47.1 71.7 58.5
Init 8.0 24.0 44.4 49.7 35.3
ML 6.9 15.1 11.8 23.3 17.8

TABLE I
ESTIMATION OF ADDITIVE AND CONVOLUTIONAL NOISE ON THE

ORIGINAL AURORA4 TASK.

The same VTS compensation scheme was also run on the

1To keep the experiments repeatable, the reverberant noise is added after
background noise distortion, which matches the assumptionof RVTS. Exper-
iments on the real data are on-going and will be reported elsewhere.

Schemes Est. test Avg.
01 04 08

VTS ML 43.8 48.9 55.7 49.5

RVTS Init 29.7 48.7 43.4 40.6
ML 26.7 43.9 40.4 37.0

RVTSJ
Init 29.4 46.9 41.9 39.4
ML 24.1 40.4 35.2 33.2

TABLE II
WER%OF RVTS AND RVTSJUSING INITIAL AND ML ESTIMATED

NOISE.

reverberant AURORA4 task. Results are shown in the first line
of Table II. Due to the reverberation effect, the performance
were seriously degraded: the average WERs were 49.5% while
the WERs on the original three sets were only 12.7% (01,
6.9%,04 19.5%,08 11.8%). This demonstrates the challenge
of this task.

RVTS and RVTSJ model compensation experiments were
run using both initial and ML estimates of noise parameters.
For initialisation, theT60 value was set as 400ms, matched
with the simulator’s setting. Results were shown in the second
and fourth rows of Table II. It is observed that the model
compensation using initial noise parameters already yielded
large gains, especially on01 and 08, with RVTSJ slightly
better. As a comparison, reference [7] reports a WER of 39.8%
on the same01 set, using the compensation scheme therein.

As demonstrated in Table I, using ML estimated noise yields
large gains over simple initial estimates of noise. Therefore,
it is also preferable to use ML estimated noise for RVTS
and RVTSJ compensation. The VTS hypothesis was taken
as the initial supervision, noise parameters were re-estimated
while the model variance was locked as the VTS compensated
variance. 4 EM iterations were used. The supervision hypoth-
esis was also updated (1 in the experiments) to yield better
noise estimation before final decoding. Results are shown
in the third and fifth rows of Table II. As expected, ML
estimation of noise yields consistent gains over initial noise
estimation. RVTSJ outperforms RVTS in all three sets. This
is due to the sequential approach to noise estimation in RVTS,
where the additive noise was estimated using the VTS-style
mismatch function, then the frame-level distortion terms were
estimated given the additive noise. Because of this sequential
approach, the additive noise was used to model some attributes
of reverberation, yielding inaccurate noise estimates. Joint
estimation of both additive and reverberant noise alleviates
this issue by taking the effect of both reverberant and additive
noise into account.

Experiments in Table II assumed the reverberation time,
T60, was known. In practice, it is only possible to know the
reverberation time to some extent. Another set of experiments
were run with differentT60 values ranging from 200ms to
800ms. Though using initial estimated noise based on mis-
matchedT60 value do have an impact on performance, the
ML estimate was relatively insensitive to the initialisation. For
example, using the initial noise estimate, RVTSJ performance
varied from 27.5% to 31.7%, while the performance of ML
estimated noise only varied from 24.3% to 25.0%. This again



Schemes domain test Avg.
01 04 08

VTS power 46.7 61.1 61.7 56.5
magnitude 43.8 48.9 55.7 49.5

RVTSJ power 30.5 53.1 46.9 43.5
magnitude 24.1 40.4 35.2 33.2

TABLE III
VTS AND RVTSJADAPTATION USING MISMATCH FUNCTIONS IN POWER

AND MAGNITUDE DOMAIN .

Schemes test Avg.
01 04 08

VTS ML 43.8 48.9 55.7 49.5
+CMLLR 32.0 45.2 44.6 40.6

RVTS
ML 27.3 44.0 40.8 37.4
+CMLLR 22.8 41.0 32.8 32.2

RVTSJ
ML 24.1 40.4 35.2 33.2
+CMLLR 20.2 36.5 29.0 28.6

TABLE IV
VTS, RVTSAND RVTSJAND THEIR COMBINATION WITH CMLLR ON

REVERBERANTAURORA4 TASK.

demonstrates the advantage of the ML noise estimation.
The above experiments assume the noise and speech are

additive in the magnitude domain, as it was empirically found
magnitude domain combination yielded better results [17] for
additive noise corrupted data. It is also interesting to examine
this conclusion for reverberant noise corrupted data. VTS and
RVTSJ adaptation experiments were re-run using the power
domain mismatch functions (γ = 2) with the same setup.
Results are shown in Table III. Consistent with the finding
in [17], magnitude domain combination performs better.

To further improve the performance, a linear transform,
CMLLR transform [18], was combined with previous model
compensation schemes. A global CMLLR transform was es-
timated for each speaker. Results are shown in Table IV. As
expected, adding linear transforms to further reduce the mis-
match yielded large gains. The best performance was achieved
by RVTSJ combined with CMLLR adaptation, which was a
42.2% relative error reduction, compared with VTS adaptation
alone. The combination of RVTSJ and CMLLR transform
also outperforms the Direct CMLLR approach proposed in
[10], in which a linear transform was employed to project
several neighbouring frames. This demonstrates that the use
of nonlinear mismatch functions is helpful for the reverberant
noise distortion.

VI. CONCLUSION

This paper investigates Reverberant VTS model compensa-
tion for hands-free speech recognition. In [10], the VTS model
compensation was extended to handle reverberant noise, where
it was assumed that the observation vector is generated by
the reverberation of a sequence of additive noise corrupted
noisy speech vectors. An alternative form of RVTS model
compensation, RVTSJ, was examined, where another form of
mismatch is explored, in which the corrupted observation is
generated by the combination of additive and the reverberant
of previous clean speech vectors. This form of mismatch
function allows an easy formulation of estimating background

and reverberant noise jointly. These two model compensation
schemes were evaluated on the Reverberant AURORA4 task.
Both RVTS and RVTSJ yielded large gains over VTS baseline
system, with RVTSJ being consistently better.
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