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ABSTRACT

Adaptive training is a powerful technique to build system on non-
homogeneous training data. A canonical model, representing “pure”
speech variability and a set of transforms representing unwanted
acoustic variabilities are trained. It is necessary to have transforms
in order to deal with the testing acoustic conditions. One prob-
lem here is to robustly estimate the transforms parameters where
there is limited or even no adaptation data. Recently, Lower bound
based Bayesian approaches have been used to solve this problem
in batch adaptation mode, of which point estimates, MAP or ML,
and variational Bayes are two main approximation forms. This
paper extends the Bayesian adaptation framework to incremental
mode. Strict Bayesian inference and various approximated infor-
mation propagation strategies during adaptation are discussed in
detail. The techniques are examined for both ML and discrim-
inative systems. The experiments on a large vocabulary speech
recognition task showed that the incremental Bayesian adaptation
can lead to robust performance with limited data at the start and
gradually improve with more data available.

1. INTRODUCTION

Adaptive training is a powerful approach to build speech recog-
nition systems on non-homogeneous data [1]. During training,
two sets of parameters are extracted. The first set is the canonical
model parameters, which represent the “pure” speech variability.
The second set, the transform parameters, represent any unwanted
variability, such as speaker and acoustic condition changes. A
separate transform is used to represent each homogeneous block
of data, e.g. from a particular speaker/environment combination.
Though adaptive training is usually derived from a maximum like-
lihood perspective, it may be described within a Bayesian frame-
work [2]. With sufficient training data, the standard point esti-
mate adaptive training can be justified within the Bayesian frame-
work [2]. However during recognition there is usually no control
over the amount of data available. It is therefore preferable to use
a full Bayesian approach to obtain robust estimate of transform
parameters. Lower bound based Bayesian approaches have been
investigated in batch adaptation mode and applied to adaptively
trained systems with MLLR transforms [2]. The standard point
estimates, Maximum Likelihood (ML) [3] or Maximum a Poste-
riori (MAP) [4], and variational Bayes (VB) [5, 6, 2] with real
transform distributions are two main forms of approximation ap-
proaches. Using a strict Bayesian inference process in batch mode,
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the VB approach was shown to significantly outperform both stan-
dard point estimates when the adaptation data is very limited [2].
The strict Bayesian inference 1 is further investigated in this paper,
where the inference evidence is calculated for every hypothesis
candidate of the same observation sequence. This yields a differ-
ent adaptation process from the standard iterative self adaptation.

Another important area is incremental, or on-line, adaptation.
In on-line adaptation, the data often becomes available gradually
rather than in a batch. This paper investigates the lower bound
based Bayesian adaptation in incremental mode. Various Bayesian
information propagation strategies are investigated. An efficient
incremental Bayesian adaptation framework with recursive trans-
form (distribution) update formulae is established.

Discriminative adaptive training is used in all state-of-the-art
speech recognition systems [7, 8]. Due to the lack of correct tran-
scription in unsupervised adaptation, transforms in adaptation is
hard to be discriminatively estimated. To keep consistent criterion
in transform estimation in testing adaptation, a simplified discrim-
inative adaptive training is normally used where only the canon-
ical model parameters are discriminatively updated with the ML-
estimated transforms fixed [8]. Bayesian adaptation can also be
applied to the discriminative canonical model with the prior trans-
form distribution estimated from the ML training transforms. In
this paper, ML and discriminative adaptively trained systems with
MLLR transforms are used as a particular application of incremen-
tal Bayesian adaptation. The discriminative system in this paper is
implemented using the Minimum Phone Error (MPE) criterion [9]
rather than the Maximum Mutual Information criterion in [7].

2. ADAPTATION USING BAYESIAN INFERENCE

The aim of inference in adaptation is to find the optimal hypothesis
sequence, Ĥ, satisfying

Ĥ = arg max
H

p(O|H)P (H) (1)

where P (H) is the language model, for example N-gram, p(O|H)
is the acoustic marginal likelihood of interest in Bayesian adapta-
tion. Normally HMMs, with Gaussian mixture model (GMM) as
the state output distributions, are used as the underlying acous-
tic model to calculate p(O|H, T ). The standard HMMs training
regards the training data as a whole block. Hence, the resultant
HMMs include both speech and non-speech variabilities and can
be directly used for inference. In comparison, the adaptive training
separates the speech and non-speech variabilities on each real ho-
mogeneous block. The resultant canonical model only represents

1The general term inference in this paper has the same meaning with
recognition or decoding in speech community.
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speech variability and requires transforms to represent acoustic
conditions in testing adaptation. Though the point estimate of the
canonical model can be justified with the sufficient data assump-
tion during training [2], it may not be robust to employ a point
estimate of transform during adaptation when there is limited, or
even no, adaptation data. It is then useful to extract the prior dis-
tribution of the transform parameters from the training data and
employ a full Bayesian approach in testing adaptation. Hence,

p(O|H) =

Z

T
p(O|H, T )p(T ) dT (2)

where O is assumed to belong to a single homogeneous block,
p(T ) is the prior transform distribution. The prior may be updated
to the posterior distribution given some supervision data, in which
case, the Bayesian adaptation is referred to as posterior adapta-
tion [10]. In this paper, the update of the prior is not concerned.
As direct calculation of 2 is infeasible, a lower bound approxima-
tion is used. Applying Jensen’s inequality yields

log p(O|H) ≥
fi

log
p(O, θ|T ,H)p(T )

q(θ, T )

fl

q(θ,T )

(3)

where < f(x) >q(x) denotes the expectation of function f(x)
with respect to the distribution of q(x) and q(θ, T ) is a joint dis-
tribution over the component sequence θ and transform parameters
T . The above becomes equality when

q(θ, T ) = P (θ|O,H, T )p(T |O,H) (4)

Using equation 4 is impractical, so alternative approximated forms
of q(θ, T ) are required. The tightness of the bound is dependent
on the precise form. There are two forms commonly used:

1. Point Estimates (Standard MAP or ML) [4, 2]
With sufficient adaptation data assumption, the transform dis-

tribution can be approximated by a Dirac delta function

q(θ, T ) = P (θ|O,H, T )δ(T − T̂ ) (5)

This is equivalent to the standard Maximum a Posteriori (MAP)
adaptation. The equivalent lower bound of 3 can be updated using
the standard EM algorithm, resulting in a MAP estimate T̂K after
K iterations. The lower bound can then be calculated by

L(T̂K) = log p(O|H, T̂K) + log p(T̂K) (6)

If a non-informative prior is used, the point estimate degrades to
the Maximum Likelihood (ML) estimate. The advantage of point
estimates is the low computational cost and the compatibility with
standard training/decoding algorithms. However, it may not be
robust, even for MAP, for very limited adaptation data case.

2. Variational Bayes (VB) [5, 6, 2]
The variational component sequence and transform distribu-

tions are assumed to be conditionally independent

q(θ, T ) = q(θ|O,H)q(T |O,H) (7)

Then VBEM algorithm [5, 2] was proposed to optimise the lower
bound 3 with respect to the two variational distributions rather than
particular parameters. This is an iterative process resulting in an
optimal transform distribution. After K iterations’ VBEM algo-
rithm, the resultant lower bound can be expressed as

L (qK(T )) = logZΘ(O,H)−
Z

T
qK(T ) log

qK(T )

p(T )
dT (8)

where qK(T ) is the brief notation for qK(T |O,H), ZΘ(O,H)

can be calculated as the standard p(O|H, T̂K) except that qK(T )

is applied to the Gaussian components instead of T̂K [2]. As VB
employs real distributions, it has been shown to perform more ro-
bustly than the point estimate with very limited adaptation data [2].

Given the form of q(θ, T ), the tightness of the lower bound
is dependent on the iteration number. At each iteration, the lower
bound is guaranteed to increase to the marginal likelihood. The
final lower bound, equation 8 or 6, is used for inference instead
of 2. The assumption here is that the ordering of the real like-
lihood is similar to the ordering of the lower bound if it is tight
enough. It is worth emphasising that, to do strict inference with 2,
the lower bound of every possible hypothesis needs to be calcu-
lated. This means one distinct transform (distribution) is required
for each hypothesis of the same observation sequence. It is inter-
esting to compare this to the standard iterative adaptation such as
iterative MLLR. In iterative MLLR, one transform is estimated for
each observation sequence using the 1-best hypothesis as super-
vision. This transform is then used to do inference on all possi-
ble hypothesis and the process repeated if necessary. As the esti-
mated transform is biased to the particular supervision, the lower
bound of other hypothesis candidates should be looser than the
lower bound calculated using 3. This may significantly affect the
performance especially for complex transforms or short sentences.
This hypothesis-bias problem for unsupervised self adaptation has
been discussed in detail in [10].

Though calculating lower bound for every possible hypothesis
may be trivial for simple tasks, such as isolated word recognition,
it is hard to be directly used for tasks of Large Vocabulary Continu-
ous Speech Recognition (LVCSR) because the number of hypothe-
sis combinations is too large to explore. One possible solution is to
generate candidate hypothesis sequences with a reasonably small
number, stored as N-Best List. Strict inference based on 3 may
then be done on those hypothesis candidates, which is referred to
as N-Best rescoring. Given sufficient hypothesis candidates gen-
erated, this rescoring process is reasonable. This approach will be
adopted in the experiments of this paper. Another widely used al-
ternative for inference on LVCSR tasks is the Viterbi algorithm, in
which the likelihood of one optimal state sequence is used to ap-
proximate the whole likelihood. As the Viterbi algorithm is hard
to be used for the strict inference, it is not concerned in this paper.

3. INCREMENTAL BAYESIAN ADAPTATION

The Bayesian adaptation discussed in section 2 runs in a batch
mode where all test data are assumed to be available before adap-
tation. However, in the real world, test data often become available
gradually. To deal with this issue, incremental adaptation is often
used, where information from the previously inferred data may be
propagated to do adaptation and inference of the subsequent data.
This section will investigate the incremental adaptation within the
Bayesian framework. The key problem here is what information
to propagate and how to use it. Different information propagation
strategies are discussed with the variational Bayes approximation.
The point estimate version may be easily analogised.

Each homogeneous data block is assumed to be split into U ut-
terances, for example, observation O ≡ O1:U ≡ {O1, · · · ,OU}.
Then, the information that may be propagated to the U th utter-
ance include the previously inferred hypothesis sequence Ĥ1:U−1

and the optimal variational distributions qK(T |O1:U ,H1:U ) and
qK(θ1:U |O1:U ,H1:U ) where K is the iteration number in VBEM
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learning. These information may be propagated individually or
together, resulting in different adaptation/inference process.

1. No information
In this case, the lower bound of the whole U utterances has to

be re-optimised and the inference has to be redone from scratch.
The incremental adaptation degrades to the batch mode.

2. Inferred hypothesis sequence Ĥ1:U−1 and
posterior transform distribution qK(T |O1:U−1, Ĥ1:U−1)
In this case, HU is the only free partial hypothesis sequence

during the adaptation, while the hypothesis sequence from the 1st

to the (U − 1)th is fixed as Ĥ1:U−1. Meanwhile, the previous
variational transform distribution qK(T |O1:U−1, Ĥ1:U−1) is used
as the initial transform distribution instead of the prior p(T ) to get
better alignment. Then the variational distributions in 7 becomes

q(θ|O,H) = q(θ|O, Ĥ1:U−1,HU ) (9)

q(T |O,H) = q(T |O, Ĥ1:U−1,HU ) (10)

q0(T |O, Ĥ1:U−1,HU ) = qK(T |O1:U−1, Ĥ1:U−1) (11)

As a result, the inference only concerns all possible hypotheses
of the U th utterance. The VBEM algorithm remains unchanged
except that O1:U−1 only needs to be re-aligned against Ĥ1:U−1.

3. Posterior component sequence distribution
qK(θ1:U−1|O1:U−1, Ĥ1:U−1)
The posterior component sequence distribution is closely re-

lated to the sufficient statistics for updating the transform distribu-
tion. With this information further propagated, 9 becomes

q(θ|O,H) = q(θU |OU ,HU )

U−1Y
u=1

qK(θu|Ou, Ĥu) (12)

From 12, the previous U−1 utterances do not need to be re-aligned
at all, only q(θU |OU ,HU ) needs to be calculated, i.e., only the
sufficient statistics of the U th utterance need to be accumulated.
With the information propagation strategy 3, an efficient VBEM
algorithm can be derived as below:

1. Initialisation:
set k = 0, the initial transform distribution is given by 11. For

the first utterance, set q0(T ) = p(T ).
2. VBE step:

In this step, qk(θU |OU ,HU ) and corresponding statistics are
calculated using the forward backward algorithm with Gaussian
components adapted by the transform distribution of the previous
iteration, qk−1(T |O1:U , Ĥ1:U−1,HU ), similar to [2].

3. VBM step:
The optimal transform distribution can be shown as

log qk(T |O1:U , Ĥ1:U−1,HU ) ∝
log p(T ) + 〈log p(OU , θU |T ,HU )〉qk(θU |OU ,HU )

+
PU−1

u=1

D
log p(Ou, θu|T , Ĥu)

E
qK(θu|Ou,Ĥu)

(13)

From 13, the total sufficient statistics is a summation of those of
the current utterance and those of the previous U − 1 utterances,
which are propagated and do not need to be re-calculated. This
recursive formulae significantly reduces the computation cost.

4. k = k + 1. Goto 3 until k = K.
Having obtained the optimal transform distribution with the

above incremental VBEM algorithm, the inference on the U th ut-
terance is done using the VB lower bound 8. It can be shown the
normalisation term in 8 can also be calculated recursively

ZΘ(O,H) = ZΘ(OU ,HU )

U−1Y
u=1

ZΘ(Ou, Ĥu) (14)

Note that here one normalisation term is calculated for each possi-
ble hypothesisHU . ĤU is worked out by strict inference. Then the
process can go ahead to the next utterance. With point estimate ap-
proximation, such as MAP, similar incremental EM algorithm and
strict inference process can be derived. The main difference is that
here the transform estimate rather than the distribution is propa-
gated. The initial estimate for the first utterance in this case can
be set to the mean of p(T ) for MAP and an identity transform for
ML. In this paper, the incremental Bayesian adaptation is applied
to MLLR transform. The exact formulae are similar to those in [2].

4. EXPERIMENTAL RESULTS

The performance of the incremental Bayesian adaptation was eval-
uated on a large vocabulary speech recognition system, conversa-
tional telephone speech task. The training data set consists of 5446
speakers (2747 female, 2699 male), about 295 hours of data. The
performance was evaluated on the 2003 evaluation test dataset,
eval03, consisting of 144 speakers (77 female, 67 male), about
6 hours of data. All systems used a 12-dimensional PLP front-
end with log energy and its first, second and third derivatives with
Cepstral mean and variance normalisation and VTLN. An HLDA
transform was then applied to reduce the feature dimension to 39.
A standard decision-tree state-clustered triphones with an aver-
age of 16 Gaussian components per state was constructed as the
starting point for the adaptive training. This is the baseline ML
speaker-independent (SI) model. After 4 iterations of standard
MPE training [9], the baseline MPE-SI model was obtained.

Two adaptively trained systems were built. The first was a
ML-SAT system constructed using MLLR, where a single com-
ponent Gaussian prior was estimated from the training data. The
second was a simplified MPE-SAT system with the ML-estimated
transforms fixed during MPE training of the canonical model. Hence,
the transform prior from the ML-SAT training is also applicable
to the MPE-SAT system. To evaluate the effect of adaptive train-
ing, a transform prior for the non-adaptively trained ML-SI system
was extracted from the training transforms estimated based on the
ML-SI model. For the SAT systems in this paper, separate speech
and silences transforms were used, the priors for which were in-
dependently estimated. As indicated in section 2, N-best rescor-
ing is employed for inference. Two 150-best lists were generated
for ML and MPE systems from corresponding SI models respec-
tively. All results shown are based on the two 150-best lists. Dur-
ing adaptation, 1 iteration is employed for updating the transform
(distribution). The baseline performance is shown in table 1. The

Incremental Adaptation ML-SI MPE-SI
— 32.83 29.20

ML + Threshold 31.23 27.81

Table 1. eval03 WER (%) of baseline SI systems

second row shows the performance of standard adaptation on SI
systems. A threshold was used to determine the minimum poste-
rior occupancy to estimate a robust ML transform. On the contrary,
Bayesian adaptation approaches did not employ any threshold be-
cause the prior information is considered 2.

2ML approach in table 2 was viewed as an approximation of Bayesian
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Fig. 1. Incremental adaptation WER (%) of different number of
utterances on ML-SAT system

To investigate the effect of the data amount on different Bayesian
approaches, WERs of the first 30 utterances of the ML-SAT sys-
tem were plotted in figure 1. The SI line in figure 1 refers to the
non-adapted SI performance. At the beginning of adaptation, the
ML adaptation performed significantly worse than SI due to in-
sufficient adaptation data. With more data available, the ML es-
timate became more reasonable, hence the performance gradually
improved and outperformed SI. The insufficient data problem was
well solved by MAP and VB, they both had lower WERs than
ML and SI all the time. Comparing the two approaches shows
that VB significantly outperformed MAP at the beginning, consis-
tent with [2]. With more data available, the two gradually became
close. This is expected as VB is more robust than MAP only when
the adaptation data is limited. Given sufficient adaptation data,
point estimate is feasible and the variance of the VB transform
distribution is small, hence the two became close to each other.

Approx. ML-SI ML-SAT MPE-SAT
ML 32.23 31.84 28.72

MAP 30.92 30.40 27.46
VB 30.88 30.31 27.42

Table 2. eval03 WER (%) of incremental adaptation with single
Gaussian transform distribution

The final incremental Bayesian adaptation results are shown in
table 2. Observing the performance of ML adaptation on ML-SAT,
it is about 1% absolute better than the ML-SI performance. This
is the effect of data accumulation in incremental adaptation, which
may result in a robust transform estimate. However, this result is
still 0.6% worse than the standard ML adaptation with threshold,
which shows the ML approximation can not take full advantage of
the ML-SAT system. Employing the prior information, MAP and
VB both significantly outperformed the standard ML adaptation.
Though VB is 0.1% better than MAP, the difference is small due to
the gradually increased data amount. Comparing the performance
of ML-SAT system to ML-SI system shows that the adaptively
trained system consistently and significantly outperformed non-
adaptively trained system by over 0.4%. The simplified MPE-SAT

adaptation, hence, no threshold was set, either.

system yielded significant gains (about 3%) over ML-SAT systems
with all Bayesian adaptation techniques. The relative gain between
different Bayesian adaptation techniques of ML-SI and MPE-SAT
systems were also similar to that of ML-SAT system. This shows
that the gain from Bayesian adaptation is additive to the gain of
adaptive training and discriminative training.

5. CONCLUSION

This paper describes an incremental Bayesian adaptation frame-
work. Strict Bayesian inference for adaptation is discussed. Lower
bound based approaches are employed to approximate the true in-
ference evidence. The point estimate only works when adapta-
tion data is sufficient while the variational Bayes approach uses
real distributions over parameters and may obtain more robust per-
formance than the point estimate. The Bayesian adaptation ap-
proaches are then extended to incremental mode. Information gath-
ered from previously inferred utterances can be propagated do to
adaptation on subsequent utterances. By appropriately propagat-
ing the information, efficient recursive adaptation formulae can be
derived. Besides ML adaptively trained systems, the incremen-
tal Bayesian adaptation can also be applied to simplified discrim-
inative adaptively trained systems where only the model param-
eters are discriminatively updated with the ML-estimated trans-
forms fixed. The incremental adaptation approaches are evaluated
on a conversational telephone speech task. Experiments showed
that VB approach can obtain robust performance at the start and
overall good performance at the end. The gain of Bayesian adap-
tation is additive to adaptive training and discriminative training.
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