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Abstract
Generative feature spaces provide an elegant way to apply dis-
criminative models in speech recognition, and system perfor-
mance has been improved by adapting this framework. How-
ever, the classes in the feature space may be not linearly sepa-
rable. Applying a linear classifier then limits performance. In-
stead of a single classifier, this paper applies a mixture of ex-
perts. This model trains different classifiers as experts focusing
on different regions of the feature space. However, the num-
ber of experts is not known in advance. This problem can be
bypassed by employing a Bayesian non-parametric model. In
this paper, a specific mixture of experts based on the Dirichlet
process, namely the infinite support vector machine, is studied.
Experiments conducted on the noise-corrupted continuous digit
task AURORA 2 show the advantages of this Bayesian non-
parametric approach.
Index Terms: generative feature space, Bayesian non-
parametric, Dirichlet process, mixture of experts, infinite sup-
port vector machines

1. Introduction
In previous work [1, 2, 3, 4], a variety of discriminative mod-
els based on generative feature spaces were studied and experi-
ments showed improvement compared with well-trained hidden
Markov models (HMMs) [5]. The main advantage of using gen-
erative feature spaces, which are built on generative models, is
that model-based adaptation and compensation can be imple-
mented on the generative models in the process of evaluating
the feature spaces. This can enhance the noise robustness of
the recognition system. This paper focuses on a certain type of
Bayesian non-parametric model [6] named the infinite support
vector machine (iSVM) [7] in speech recognition based on gen-
erative feature spaces derived from vector Taylor series (VTS)
[8] compensated HMMs.

Speech recognition can be considered as a problem of clas-
sifying sequential audio data (e.g. vectors of MFCCs). Nor-
mally, the sequential data vary in length, but classifiers such
as SVMs can only handle data with fixed dimension. In order
to bridge this gap, a generative model (e.g. an HMM) can be
applied on the sequential data to derive features with fixed di-
mension [9]. In previous work [2, 3], one linear SVM classifier
was adopted on the feature space may be not linearly separa-
ble. Rather than applying a single linear classifier on the feature
space, it is more reasonable to utilise a mixture of experts [10]
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which makes an ensemble decision by all experts with various
weights determined by the region of space. Figure 1 illustrates
an single classifier and a mixture of experts on the feature space.

Although the kernel trick could be applied on the SVM to
yield a non-linear decision boundary, it might be problematical
to choose the type of kernel, and the number of support vectors
might be large which leads to inefficiency in testing. Thus, the
kernel trick is not considered in this paper, even if the kernel
trick could be applied on the mixture of experts as well.

In terms of the mixture of experts, it is hard to set the num-
ber of experts to fit with the training data under a parametric
framework. In contrast, the model complexity in a Bayesian
non-parametric model is treated as one set of model parameters,
and the posterior distribution of the complexity can be inferred.
Then, the model complexity can be integrated out when mak-
ing predictions, namely the model is averaged over all possible
complexities. Thus, a Bayesian non-parametric model becomes
a better choice in tackling the problem of selecting model com-
plexity. In [11], a Bayesian non-parametric model named sticky
hierarchical Dirichlet process hidden Markov model (HDP-
HMM) [12] was introduced to infer the unknown number of
speakers in a speech diarisation task, and state-of-art perfor-
mance was achieved. In this paper, one example of Dirichlet
process (DP) mixture of experts named iSVM is implemented
to resolve the problem of the unknown number of experts.

This paper is organised as follows. Section 2 discuss vari-
ous features derived from generative models. The mixture-of-
experts model is discussed in section 3, and its non-parametric
counterpart called DP mixture of experts is introduced in sec-
tion 4. Section 5 details a specific example of the DP mixture of
experts model, the iSVM. Finally, the experimental results and
conclusions are presented in section 6 and 7.

2. Features
In speech recognition, the speech utterances normally vary in
length. In order to handle the length variation of the observa-
tions, generative models can be utilised to map the sequential
data (on the input space) with various length to feature vectors

Figure 1: The single classifier and mixture of experts on the
feature space.
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Figure 2: The process of generating the feature vectors.

(on the feature space) with fixed dimension. Assume the speech
observations are O = {O1, . . . ,OI}, where {O1, . . . ,OI}
are one possible segmented data of the observationsO (e.g. the
1-best hypothesis of the lattice), and each segmentOi specifies
a word/phone/sub-phone. One possible utterance is illustrated
in Figure 2. Given a segment Oi, the log-likelihood feature
space can be described as follows [4]:

ϕl(Oi;λ) =
1

Ti

 log
(
p(Oi|λw̃1)

)
...

log
(
p(Oi|λw̃L)

)

L×1

(1)

where {w̃1, . . . , w̃L} are all the unique classes, or vocabular-
ies, Ti is the number of frames in the observation Oi, and
p(Oi|λw̃l) is the likelihood of the generative model parame-
ters corresponding to class w̃l givenOi. Figure 2 illustrates the
process of deriving features from an utterance. For simplicity,
ϕ(Oi;λ) is written as xi.

A more general form of generative feature space is the
derivative feature space, which not only includes the log-
likelihood of the parameters but also incorporates the deriva-
tives of the log-likelihood with respect to the parameters of the
generative models. If only the first order of the derivatives is
considered, the feature space can be described as follows:
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According to previous work [3, 4], the derivatives with respect
to the mean have better discrimination than the derivatives with
respect to other parameters. The derivative with respect to the
mean of the component m can be described as follows:

∇µm
log
(
p(Oi|λw̃1)

)
=
∑
t

γm(t)Σ−1
m (ot − µm) (3)

where γm(t) is the posterior probability of component m gen-
erating ot.

In order to adapt the generated features to the target noise
condition, state-of-art model-based adaptation and compensa-
tion technology can be implemented on generative models in
the process of deriving the features. VTS compensation [8] is
adopted in our work. The parameters of convolutional noise and
additive noise are estimated on each utterance to maximise the
likelihood of the HMM system.

3. Mixture of experts
Rather than making prediction on the whole feature space from
a single model, another method is choosing different models to
make prediction according to different features, and the choice
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Figure 3: The graphical model of the mixture of experts.

of the model is input-dependent. When the choice of the model
is a hard decision, this framework is known as a decision tree.
When the choice of each model is given a probability depending
on the input, this is known as a mixture of experts [13]:

P (w|x,θa,ηa) =

M∑
m=1

P (z = m|x,θa)P (w|x,ηm) (4)

where x is the variable in the feature space ϕ(Oi,λ) given
in section 2, w is the target variable, M is the number of
experts. P (z = m|x,θa) is the gating network which as-
signs probabilities to different experts according to the input x,
and P (w|x,ηm) is the mth expert, which is a discriminative
model. θa = {θ1, . . . ,θM} are the parameters of the gating
network, and ηa = {η1, . . . ,ηM} are the parameters of all the
experts. If the gating network is given from the component pos-
teriors of the mixture model and the number of experts is given
M , the graphical model of the mixture of experts is illustrated
in Figure 3, and the corresponding generative process of this
model can be described as follows:

π ∼ Dirichlet(α) zi ∼ Categorical(π) (5)
xi ∼ p(x|θzi) wi ∼ P (w|xi,ηzi) (6)

where π = {π1, . . . , πM} is a discrete distribution which is
drawn from a symmetric Dirichlet distribution with concentra-
tion parameter α, and zi is the indicator variable that denotes
the ith datum is associated with which expert. Categorical(π)
is the categorical distribution which is the generalisation of the
Bernoulli distribution with M possible outcomes. θzi are the
parameters of the component indicated by zi, and ηzi are the
parameters of the expert indicated by zi.

4. Dirichlet process mixture of experts
As a parametric model, the number of experts M needs to be
fixed in advance for the mixture of experts. In order to bypass
this problem of choosing model complexity, a Bayesian non-
parametric version of the mixture-of-experts model, namely DP
mixture of experts, is used here. In [14], the non-parametric
model called infinite Gaussian mixture model (iGMM) is de-
rived by setting the number of components to infinity in the
Gaussian mixture model (GMM). Similarly, in this paper, the
corresponding non-parametric counterpart of the mixture-of-
experts model is derived, when the number of experts goes to
infinity M →∞ in the mixture-of-experts model.

Since π is a discrete probability and zi ∼ Categorical(π),
then P (z1, . . . , zi) has a multinomial distribution. By
marginalising out π, the following result can be derived [14]:

P (z1, . . . , zi|α) =
Γ(α)

Γ(i+ α)

M∏
m=1

Γ(Nm + α/M)

Γ(α/M)
(7)



whereNm is the number of data points associated with themth

expert. The conditional probability of the indicator zi+1 given
the other i indicators can be described as follows:

P (zi+1 = m|z1, . . . , zi, α) = P (zi+1|z1, . . . , zi, α)|zi+1=m

=
P (z1, . . . , zi+1|α)

P (z1, . . . , zi|α)

∣∣∣∣
zi+1=m

=
Nm + α/M

i+ α
(8)

When the number of experts goes to infinity M → ∞, the ex-
perts’ weights π are given by the Dirichlet process (DP) [15],
and the conditional probability of the indicator variable zi+1

given all the previous i indicators can be described as follows:

P (zi+1 =m|z1, . . . , zi, α) =
Nm
i+ α

, where m is an existing expert

α

i+ α
, where m is a new expert

(9)

According to equation (9), the probability of the indicator indi-
cating an existing component is proportional to the number of
data associated with that component, and the probability of as-
signing to a new component is proportional to α. The process of
assigning the data to the components according to equation (9)
is also known as the Chinese Restaurant Process (CRP) [16].
The CRP provides a mechanism to draw from the distribution
given by a DP without specifying that distribution.

When M → ∞, the DP mixture-of-experts model could
be derived, then the corresponding generative process of this
model can be described as follows:

z ∼ CRP(α) θm ∼ G1,ηm ∼ G2, ∀m ∈ z (10)
xi ∼ p(x|θzi) wi ∼ P (w|xi,ηzi) (11)

where z = {z1, . . . , zN} are all the indicators, which are given
by the Chinese restaurant process CRP(α) with parameter α.
The parameters of the gating network θm and the parameters of
the experts ηm are given by the base distributions G1 and G2

respectively. The corresponding graphical model is illustrated
in Figure 4.

This non-parametric model used for classification can be
approximated by the samples from the posterior distribution of
the model parameters:

P (w|x,D) =

∫
P (w|x,Θ)p(Θ|D)dΘ ≈

1

K

K∑
k=1

P (w|x,Θ(k))

=
1

K

K∑
k=1

Mk∑
m=1

P (z = m|x,θ(k)a )P (w|x,η(k)
a , z = m) (12)

where Θ = {θa,ηa} are all the parameters of the DP mixture
of experts. For this non-parametric model, the posterior dis-
tribution of the parameters p(Θ|D) is extremely complicated.
This makes the integral in equation (12) intractable. Thus, a
Markov chain Monte Carlo (MCMC) [17] method is used to
approximate this integral. {Θ(1), . . . ,Θ(K)} are sampled from
the posterior distribution of the parameters p(Θ|D). Since this
distribution is complicated, it is impractical to draw samples
from this full joint distribution directly. Therefore, the Gibbs
sampling [18] is implemented here to draw samples from the
conditional posterior distribution of each parameter given all
others p(θm|Θ−θm ,D), rather than sample from the posterior
distribution of the whole parameter set p(Θ|D), where Θ−θm

denotes all the parameters Θ except θm.

G1 α G2

θm z ηm
|z| |z|

xi wi
N

Figure 4: The graphical model of the DP mixture of experts.

The indicator zi is sampled according to the follows:

P (zi|xi, wi,z−i,Θ) ∝ P (zi|z−i, α)p(xi|θzi)P (wi|xi,ηzi)
(13)

The first term P (zi|z−i, α) is given from equation (9). The
second term is the component likelihood, and the last term is
the expert’s conditional likelihood. When zi indicates an ex-
isting component, it is easy to calculate the last two terms.
When zi denotes a new component, the term p(xi|θzi) can
be obtained through the method discussed in [14]. The term
P (wi|xi,ηzi) =

∫
P (wi|xi,η)G2(η)dη, and Monte Carlo

sampling can be applied to estimate the probability as well. The
parameters ηa of the log-linear models are obtained from the
large margin criterion which is detailed in the next section. The
sampling process of all other parameters is similar to the meth-
ods discussed in [14, 19, 20].

5. Infinite support vector machine
The infinite SVM (iSVM) was introduced in [7], where the
iSVM is based on the stick-breaking representation [21] of the
DP. In this paper, the iSVM based on the DP from a CRP per-
spective is introduced. In the previous section, the DP mixture
of experts model is discussed. When each expert is defined as a
multi-class SVM [22] in the DP mixture-of-experts model and
the gating network is given from the component posterior of the
DP mixture model, the iSVM can be derived. Since the mixture
of experts is a probabilistic model, in order to derive the iSVM,
each expert needs to be interpreted in a probabilistic way.

According to [2], the multi-class SVM can be interpreted
probabilistically as a log-linear model with large-margin train-
ing criterion. The log-linear model can be described as follows:

P (w|x,ηm) =
exp

(
ηT
mΦ(x, w)

)∑
w exp

(
ηT
mΦ(x, w)

) (14)

where Φ(x, w) = δ(w) ⊗ x = [0T, . . . ,xT, . . . ,0T]T is the
joint feature space, δ(w) = [δ(w − w̃1), . . . , δ(w − w̃I)]T de-
notes the position of the label w in the vocabulary, and ⊗ is
the tensor product. The large-margin training criterion of the
log-linear model is defined as follows [2]:

− log p(ηm) +

Nm∑
i=1

[
max
w 6=wi

{
L(w,wi)− log

(
P (wi|xi,ηm)

P (w|xi,ηm)

)}]
+

(15)

where L(w,wi) is the loss function which measures the dis-
tance between the reference wi and label w, and [ · ]+ is the
hinge-loss function. Assume the prior of ηm is given a Gaus-
sian distribution p(ηm) = G2 = N (µη,Ση) with mean µη



and scaled identity covariance matrix Ση = CI . By substi-
tuting this Gaussian prior and equation (14) into equation (15),
the large margin criterion can be described as minimizing the
follows:

1

2C
||ηm − µη||

2 +

Nm∑
i=1

[
max
w 6=wi

{
ηT
mΦ(xi, w) + L(w,wi)

}
− ηT

mΦ(xi, wi)

]
+

(16)

In equation (16), when the mean µη = 0, this becomes
the training criterion of the multi-class SVM. In the iSVM, if
there are very few data associated with a expert (Nm is small),
the trained expert might lack generalisation. Thus, each expert
deploys a non-zero mean µη which is obtained from the multi-
class SVM trained on the whole training set. By introducing
the non-zero mean, the iSVM should retrieve multi-class SVM
performance, if C is small enough. Better performance could
be achieved by gradually increasing C.

Equation (16) is also known as the training criterion of
the structural SVM [23, 24]. The main difference between the
structural SVM and the multi-class SVM is the form of the joint
feature space Φ(xi, wi) which is defined by the observation-
label pair. In the structural SVM, the observation-label pair
is composed of the whole sentence {x1, . . . ,xn} and the cor-
responding labels {w1, . . . , wn}, then the corresponding joint
feature space is Φ

(
{x1, . . . ,xn}, {w1, . . . , wn}

)
. In contrast,

the segments are treated independently in the multi-class SVM,
and the pair consists of one segment xi and the corresponding
label wi. The definition of the joint feature space is detailed in
[24, 25]. Moreover, in the multi-class SVM, the loss function
L(w,wi) is defined as the Kronecker delta δ(w,wi). In the
structural SVM, the loss is set to a more refined function, say
the Levenshtein distance, rather than the 0/1 loss.

6. Experiments
In this paper, the experiments are conducted on the Aurora 2
database [26], which was designed to evaluate the performance
of speech recognition algorithm in various noisy conditions.
The utterances in this database are the continuous digit strings
with vocabulary size 12 (one to nine, plus zero, oh and silence),
and 8 real-world noise conditions have been added to the speech
artificially over a variant of signal to noise ratio (SNR). The gen-
erative models (HMMs) are trained on the clean data with 8840
utterances recorded from 55 male and 55 female adults. The
feature vectors used by the front-end HMMs consisted of 12
MFCCs appended with zeroth cepstrum, delta and delta-delta
coefficients. The noise model for VTS compensation is esti-
mated on each utterance. The performance of the VTS com-
pensated HMM is listed in Table 1. The SVM and iSVM are
trained on a subset of the multi-style training data containing
4 noise conditions (N2, N3 and N4) and 3 SNRs (20dB, 15dB
and 10dB). All three test database, A, B and C, are used in the
evaluation. In set A and B, each contains 4 noise conditions at
5 different SNRs (0dB to 20dB). There are 2 noise conditions at
5 different SNRs in set C.

In the experiments, log-likelihood feature vectors and
derivative feature vectors are used, and these feature vectors are
derived from the VTS compensated HMMs. To keep training
with derivative feature vectors feasible, only the first element
of the derivative with respect to each mean is used in this pa-
per. All the experts (SVMs) of the iSVM share the same C,
and the parameter C is tuned on the test set A. Figure 5 illus-
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Figure 5: The performance of the iSVM on test set A with dif-
ferent C

System Features Dim
test set WER(%) Avgtesta testb testc

HMM MFCC 39 9.84 9.11 9.53 9.48
SVM

Log-Like 12 8.29 7.90 8.61 8.20
iSVM 8.25 7.87 8.53 8.15
SVM

Derivative 558 8.28 7.85 8.63 8.18
iSVM 8.05 7.81 8.44 8.04

Table 1: The results on Aurora 2 database

trates the WER of the iSVM on different feature spaces with
various C. Since the parameter of each expert is given a Gaus-
sian prior with mean µη which is obtained from the multi-class
SVM, the iSVM only achieves the baseline performance of the
multi-class SVM when the C is small. By introducing the non-
zero mean µη , the iSVM can at least achieve the performance
of the multi-class SVM, and the optimised configuration can be
obtained by gradually increasing C. Without the mean µη , the
iSVM could have poor performance, because not all the experts
associate with enough data.

The classification criterion of the iSVM is given in equation
(12), and the number of samples K is 10 here. The experimen-
tal results are listed in Table 1. All the discriminative models
outperform the VTS compensated HMM baseline system. On
the log-likelihood feature space and derivative feature space, the
iSVM achieves better performance than the multi-class SVM.
This gain is obtained by the fact that the iSVM explores the dis-
tribution of the training data and infers the number of experts,
then applies different experts focus on different regions of the
feature space to make an ensemble decision, rather than apply-
ing a single classifier on the whole feature space.

7. Conclusions
In this paper, a DP mixture-of-experts model based on the Chi-
nese restaurant process has been presented, and a specific ex-
ample of this type of model, the iSVM, is studied. The iSVM
not only infers the number of expert in the mixture-of-experts
model, but also inherits the advantages of the mixture of ex-
perts that difference experts focus on different regions of the
feature space in oder to make better predictions. The experi-
ments show the advantages of the iSVM comparing with the
multi-class SVM. In this paper, the word segmentations are ob-
tained from the 1 best hypothesis of the word lattice. Future
work will study the way to optimise both the segmentations and
η, and generalise the iSVM to large vocabulary ASR by incor-
porating the structural SVM within the iSVM.
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