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Abstract
Adaptive training is a powerful approach for building speech
recognition systems using non-homogeneous data. This work
presents an extension of model-based adaptive training to han-
dle reverberant environments. The recently proposed Rever-
berant VTS-Joint (RVTSJ) adaptation[1] is used to factor out
unwanted additive and reverberant noise variations in multi-
conditional training data, yielding a canonical model neutral
to noise conditions. An maximum likelihood estimation of
the canonical model parameters is described. An initialisation
scheme that uses the VTS-based adaptive training to initialise
the model parameters is also presented. Experiments are con-
ducted on a reverberant simulated AURORA4 task.
Index Terms: reverberant noise robustness, vector Taylor se-
ries, adaptive training

1. Introduction
Model-based approaches for noise-robust speech recognition
have been investigated and extended in a number of ways, e.g.
Vector Taylor series (VTS) compensation[2, 3] and joint uncer-
tain decoding (JUD)[2]. However, there has been less work in
applying model-based approaches to handle noise in reverberant
environments. In [1, 4], two model compensation schemes, re-
verberant VTS (RVTS) and reverberant VTS-joint (RVTSJ), are
proposed, where the underlying acoustic model is adapted tothe
target environment given an estimated noise model. The RVTSJ
compensation enables the joint estimation of additive and rever-
berant noise, thus gives better performance. RVTS and RVTSJ
schemes assume the underlying acoustic model is trained on
clean data. Acoustic models trained on multi-conditional data
generally give better noise robustness. In [5], a clean corpus
was filtered by several room impulse responses (RIRs) to form
the multi-conditional data. It was found that the multi-style
trained acoustic model (MST) followed by general adaptation,
e.g., MLLR, yielded large gains. Recently, [6] shows that using
stereo data in multi-style training can further improve therever-
berant noise robustness. However, multi-style training forces
the noise variations to be modelled by the underlying acoustic
model, which could potentially harm the performance. It also
degrades the performance when the acoustic model is operated
outside the training environments.

Alternatively, adaptive training can be applied to factor out
the unwanted noise variation, yielding a canonical model that
is neutral to the noise condition. Adaptive training is originally
proposed for speaker adaptive training[7], and is extendedto
handle additive and convolutional noise recently[2, 8]. Moti-
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vated by the success of VTS-based adaptive training (VAT) [8],
this work investigates the model-based approaches to adaptive
training in reverberant environments. RVTSJ is used to com-
pensate acoustic models in both training and testing. The new
training algorithm is referred to reverberant adaptive training
(RAT). An maximum likelihood (ML) estimation of canonical
model parameters in the EM framework is described. An initial-
isation scheme using VAT canonical model parameters to start
RAT training is also presented. This RAT training algorithm
was compared with MST and VAT on a reverberant simulated
version of AURORA4.

2. Reverberant and additive noise
If clean speech is corrupted by additive and short-time chan-
nel distortion (a.k.a. convolutional noise) in the Mel-cepstral
domain, the mismatch function describing the distortion onthe
current clean speech parameterxt is given by :
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where the superscript (and also the subscript hereafter)s de-
notes static parameter, andyt, h andnt are the noisy speech,
convolutional and additive noise, respectively,C is the (trun-
cated) DCT matrix. It is usually assumed thatn is Gaussian
distributed with meanµn and diagonal matrixΣn, andh is a
unknown constant. Note that the above mismatch function re-
lies on the assumption that the effective length of the impulse re-
sponse of the channel is shorter than the size of the analysiswin-
dow (typically 25ms). However, in a reverberant environment,
due to the late-reflection caused by multiple acoustic pathsfrom
the speaker to the microphone, the reverberant timeT60 which
is the time needed for reflections sound to decay 60dB, is usu-
ally ranging from200ms to800ms or even longer. This is sig-
nificantly larger than the size of analysis window. The long re-
verberant time causes the clean speech not only distorted bythe
additive noise, but also blurred by several previous frames. In
[1], a mismatch function describing the joint effect of additive
and reverberant noise is derived:
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wherezt is the additive and reverberant noise corrupted speech,
µl = [µT

l0, · · · ,µ
T

ln]
T is referred to as reverberant noise.

2.1. Model compensation

Given the additive and convolutional noise mismatch function
in Eq. (1), VTS can be used to approximate it for every Gaus-



sian componentm in the following form:
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This yields the following VTS-based model compensation form
for the static parameter:
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The dynamic parameter compensation can be derived using the
continuous time approximation, i.e.,
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where the subscript∆ denotes the delta parameter. The delta-
delta parameter is compensated in a similar way. For notation
convenience, only the delta parameter is considered in the fol-
lowing discussion.

For the reverberant and additive noise mismatch function
in Eq. (2), the current observationzt is a function of the pre-
ceding clean speech framesxt−1, · · · ,xt−n (ignoring the dy-
namic parameters). These clean speech frames should be in-
ferred from the noise corrupted observations. In practice,this is
computationally intractable. An approximation form was pro-
posed in [4], wherezt is assumed to depend on an extended
vectorxt, which is generated by the current Gaussian compo-
nent. Figure 1 illustrates the dynamic Bayesian network of this
approximated model, whereqt andwt are the indicator of cur-
rent state and Gaussian component respectively.
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Figure 1: Approximate reverberant dynamic Bayesian network.
For clarity, the dynamic parameters are ignored.

The form ofxt is chosen such that when there is no rever-
berant noise, the compensated model will back off to the stan-
dard VTS compensation, and the Gaussian distribution is used
to modelxt conditioning on the current componentm, i.e.,

xt =















xt

∆xt

∆2xt

∆3xt

...















= W





xt+w

. . .
xt−n−w



 ; (6)

andxt|m ∼ N (µ(m)
x ,Σ

(m)
x ), wherew is the window size to

calculate the dynamic parameter,W is a square and invertible
matrix, which maps a sequence of statics to static plus the first,
second and higher order dynamics. Given the model statis-
tics µ(m)

x , it is easy to derive the statistics of spliced vector
xs
e = (xsT
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mean vectors ofxe can be obtained by
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wherePs andP∆ are the matrices that mapxt toxs
e and∆xe.

Using statistics of the extended vector, VTS is extended in
[1] to handle the mismatch function in Eq. (2). The expansion
is performed at(µ(m)

sxe ,µl,µn):
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time approximation assumption, this yields the mean compen-
sation form in the following:
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This is referred to as RVTSJ. It is possible to compensate the
variance as well. However, in the initial investigation in [1],
it was found that variance compensation is not quite effective,
thus the standard VTS variance compensation was used, i.e.,
Σ

(m)
z = Σ

(m)
y . This is also adopted in this work.

2.2. Noise estimation

Given the acoustic model parameterM = {µ(m)
x ,Σ

(m)
x }, the

noise model parameterΦ = (µl,µn) is estimated using EM.
The following auxiliary function is maximised, i.e.,
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whereγ(m)
t is the posterior of componentm at time t, given

the current hypothesis and current noise estimatesΦ. VTS is
again used to expandµ(m)

z using the current noise estimatesΦ,
yielding the following update formula using the second-order
method:
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andα is used to improve the stability of noise estimation. Note
that the above updating formula only considers the static param-
eters in the auxiliary function. It is possible to include all the
compensated parameters. A good initialisation of noise param-
eters is important. In [1], the standard VTS-based noise estima-
tion and a guess ofT60 value were used to initialise the reverber-
ant and additive noise. This is also adopted in this work. Dur-
ing the noise estimation, it is also important to ensure thatevery
update increases the auxiliary. More details about the noise es-
timation is given in [1].

3. Reverberant adaptive training
The above noise estimation assumes that the acoustic model is
trained from clean data. The adaptive training framework can be
applied in which both the acoustic model and the noise model



are trained in a full ML framework on multi-conditional data.
This is a powerful technique to factor out the unwanted acous-
tic factors, such as speaker differences and noise distortions,
yielding a canonical modelMc that models only the relevant
phoneme variations. The adaptive training framework is ex-
tended in this work to handle to reverberant and additive noise
distortions. This is referred to as reverberant adaptive training
(RAT).

In adaptive training, both the canonical modelMc and a
set of noise modelsΦ are iteratively estimated using EM. First,
give the current canonical model, the noise modelsΦ are esti-
mated for each utterance1, then the canonical modelMc is up-
dated given the current noise models. Multiple iterations may
be performed to interleave optimisation in the EM framework.
With RAT, the following auxiliary is used:
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whereu is the index of utterance. For example,γ
(mu)
t is the

posterior of componentm at timet for theu-th utterance.
Given the canonical model, estimating the reverberant and

additive noise parameter is described in section 2.2. Afterthe
noise parameter updated, the canonical model parameter is re-
trained. As in RVTSJ adaptation, only the mean is compensated
for reverberation, in RAT, only the extended meanµ(m)

x will be
updated. The auxiliary function, where only terms dependent
on theµ(m)

x are shown, is:
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Similar as in the noise estimation, the VTS is applied to expand
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Differentiating the auxiliary function and equating to zero gives
the following update:
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, β is a parameter used to sta-

bilise the canonical model parameter update, andζ is the step
size. For every update, the step sizeζ is set as 1 initially. Due
to the approximation made in Eq. (15), it is necessary to check
the auxiliary function after every update to ensure the auxil-
iary is increasing. If not, a simple back-off procedure, similar
to the one used in [2], is used to reduce the step size until the
auxiliary increases. Since the auxiliary function of canonical
model involves all the utterance, to make this back-off proce-
dure possible, it is necessary to saveΓ

(mu)
z for each component

m and each utteranceu, providedγ(mu) is not zero, This is
impractical for media/large vocabulary task. An approxima-

1It is assumed in this work, each utterance has a unique noise con-
dition, thus a homogeneous block.

tion of the auxiliary function in Eq. (14) is used: for each
component update, the summation overu is done on a subset
Um = {u|γ(mu) ≥ θm}, whereθm is choose such that the top
N utterances are in this subset.N = 156 is used in this work
and it was found this yields good increase in likelihood.

Since the auxiliary function is highly non-linear, it is crucial
to have a good initialisation of the canonical model parameters.
In this work, the following strategy is used: the standard model
parameters,µ(m)

x ,Σ
(m)
x are set as the parameter obtained by

the VTS-based adaptive training (VAT), whilst forµ(m)
x , it is

assumed thatµ(m)
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x ; hence the reconstruction error is min-
imised. This amounts to the following optimisation problem:
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where Qδ is the matrix that mapsµ(m)
x to µ

(m)
xδ , wδ =
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−δ 3∆

T60 , ∆ is the shift of the analysis window ( 10ms ), and
T60 the median of reverberation time in the multi-style training
data ( 400ms in this work ).

4. Experiments
A reverberant version of the AURORA4 task was used for eval-
uation. The original AURORA4 task is derived from Wall Street
Journal (WSJ0) 5k-word dictation task. The WSJ0 training
set, consisted of 7138 utterances from 83 speakers, recorded by
close-talking microphones, were used as the clean trainingset in
the experiments. To create a multi-conditional training set with
reverberation and background additive noise, the clean training
set was passed through the simulation tool in [9]. Two RIRs,
recored in an office environment (“office1”) and a living room
environment (“liv1”) were used to filter the clean training set,
with the reverberant time ranging from 200ms to 600ms. 6 types
of background noises which were used in AURORA4 task were
also added, with the SNR ranging from 10dB to 20dB, match-
ing the configuration in AURORA4 task. For the test sets, the
330 utterance from 8 speakers in the AURORA4 set A were fil-
tered by two RIRs, “office1” and “office2”, where the latter was
recored in another office environment and not observed during
training. For each RIR, there were two background noise con-
ditions, “clean” and “restaurant”, where for the latter, the noise
from test04 in AURORA4 task were extracted and added to the
reverberant signal at the SNR ranging from 5dB to 15dB. Note
the creation of these sets were different from the method in [1],
where the reverberant noise was added after background noise
distortion.

The HTK frontend was used to derive a 39-dimensional
feature vector, consisting of 12 MFCCs, extracted from magni-
tude spectrum, appended with zeroth cepstrum, delta and delta-
delta coefficients. A Cross-word triphone model with 3140 tied
states and 16 components per state was built. This model topol-
ogy was used for all the acoustic models throughout the experi-
ments. For the extended model statisticsµ(m)

x , the feature vec-
tor was appended with high-order DCT elements of an appro-
priate window width.n = 10, w = 4 were used as the length of
history frames and the window length used for calculating the
dynamic parameters, respectively. The standard bi-gram LM
for the AURORA4 task was used in decoding. All the adapta-
tion in this work were performed in a unsupervised mode and
the noise models were all estimated at the utterance level.

Experiments were first run using the clean-trained acoustic



noise condition adaptation
rev. add. — VTS RVTSJ

—
clean 7.1 6.9 7.3
rest. 60.0 19.5 20.0

office1
clean 70.3 43.7 25.4
rest. 97.3 51.6 43.1

office2
clean 60.1 30.9 16.5
rest. 97.6 48.8 47.1

Table 1: Performance (in WER %) of the clean-trained acoustic
model operated in a noisy and/or reverberant environment.

model. VTS-based noise model parameter was first estimated
using multiple EM iterations. The acoustic model was then
compensated and used to generate supervision hypothesis. This
supervision hypothesis was used for updating VTS noise model
and estimating the RVTSJ noise model as well. For compari-
son, experiments were also run on the 01(clean condition) and
04(restaurant noise, no reverberation) sets in the AURORA4
task. Results are shown in Table 1. As expected, the clean-
trained acoustic model is quite fragile to the environment:its
performance were greatly impacted by the additive and/or the
reverberant noise while reverberation seems to be a more detri-
mental factor than additive noise. Recognition in a noisy and
reverberant environment is the most challenging task, as both
distortions cause large mismatch between the training and test-
ing data. Performing VTS compensation significantly reduced
the mismatch caused by noise and reverberation. RVTSJ adap-
tation on non-reverberant data gave similar but slightly worse
performance (less than 0.5% absolute degradation). This isfelt
be a limitation of current noise estimation method when the re-
verberant noise (µlδ, δ = 1 . . . n) approaches to−∞. How-
ever, when the reverberation is presented in the data, RVTSJ
gave large gains over VTS. This demonstrated that RVTSJ is
modelling the impact of reverberation, which is not modelled
well by VTS.

In the second set of experiments, multi-conditional training
data was used to build acoustic models. Firstly, as in [6], stereo
data were used to build a MST system. Starting from this MST
model, VAT system was build, which in turn severs as an initial-
isation for the RAT to begin. The parameterβ was reduced from
8 to 1 for 4 iterations of RAT canonical model re-estimation.
This was followed by 2 iterations of noise model update. This
process is repeated one more time to yield the final RAT model.
An initial decoding using MST system without adaptation was
run. Results are shown in line 2, Table 1. Compared with per-
formance in Table 1, in the environment observed during train-
ing, “office1”, MST model works quite well, producing bet-
ter performance than adapting clean-trained acoustic models to
the target environment. However, when it was operated in “of-
fice2”, an environment not observed during training , perfor-
mances were degraded. This demonstrates multi-style training
introduces biased toward the training environments while not
generalised well to other unseen conditions. The MST system
was also adapted by an CMLLR transform for each speaker. As
a general adaptation scheme, CMLLR is powerful to reduce the
mismatch at testing. As shown in line 3, Table 2, this yields
large error reduction in all the environments. This was con-
sistent with the finding in [6, 5]. The hypothesis obtained by
MST+CMLLR will be used as supervisions for the following
VTS/RVTSJ adaptation experiments. Compared with the CM-
LLR adapted MST system, VAT system with VTS adaptation
was worse performed when there is only reverberation distor-
tion, but gave gains when the additive noise is also presented in

Systems Adaptation
office1 office2 Avg.

clean rest. clean rest.

MST
— 19.9 38.3 37.4 63.6 39.8

CMLLR 14.1 30.1 14.7 48.4 26.8

VAT
VTS 15.1 29.0 18.7 44.5 26.8

RVTSJ 14.9 29.6 18.3 43.6 26.6
RAT RVTSJ 13.7 28.5 15.0 42.2 24.9

Table 2: Performance of multi-style trained and adaptively
trained acoustic models in reverberant environments.

the environment. This is due to that VTS is designed to compen-
sate the impact of additive noise, while CMLLR can be used for
general adaption. Based on the VAT canonical model, the ex-
tended model statistics{µ(m)

x } were initialised by solving the
optimisation in Eq. (17). Given the extended model statistics,
RVTSJ adaptation of VAT was performed, which gave small
gains in average (0.2%). RVTSJ adaptation of the RAT system
further improves the performance. Compared with VAT sys-
tem, RAT yields 0.5% to 1.3% absolute gains for the office1
environment, and 2.3% to 3.7% for the office2 environment.
This demonstrates that RVTSJ adaptation models the impact of
both the reverberant and additive noise, while RAT producesa
canonical model neutral to these distortions to some extent. On
average, RAT system gave the best performance, yielding 1.9%
absolute gains over CMLLR adapted MST system.

5. Conclusions
This work investigates model based approaches to adaptive
training in reverberant environments. A new adaptive train-
ing algorithm, reverberant adaptive training (RAT), is proposed,
where the RVTSJ adaptation is used in both testing and training
stage. An ML estimation of canonical model parameters in the
EM framework is presented. Experiments conducted on a rever-
berant simulated AURORA4 task demonstrates RAT produces a
canonical model neutral (to some extent) to the reverberantand
additive noise variations and provides better results thanadapt-
ing the multi-style trained acoustic model using CMLLR.
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