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Abstract

Adaptive training is a powerful approach for building speec
recognition systems using non-homogeneous data. This work
presents an extension of model-based adaptive trainingrto h
dle reverberant environments. The recently proposed Rever
berant VTS-Joint (RVTSJ) adaptation[1] is used to factar ou
unwanted additive and reverberant noise variations inimult
conditional training data, yielding a canonical model nalut

to noise conditions. An maximum likelihood estimation of
the canonical model parameters is described. An inititdisa
scheme that uses the VTS-based adaptive training to iséial
the model parameters is also presented. Experiments are con
ducted on a reverberant simulated AURORAA4 task.

Index Terms. reverberant noise robustness, vector Taylor se-
ries, adaptive training

1. Introduction

Model-based approaches for noise-robust speech reamgniti
have been investigated and extended in a number of ways, e.g.
Vector Taylor series (VTS) compensation[2, 3] and jointemc
tain decoding (JUD)[2]. However, there has been less work in
applying model-based approaches to handle noise in reerbe
environments. In [1, 4], two model compensation schemes, re
verberant VTS (RVTS) and reverberant VTS-joint (RVTSJ, ar
proposed, where the underlying acoustic model is adaptibe to
target environment given an estimated noise model. The RVTS
compensation enables the joint estimation of additive aaerr
berant noise, thus gives better performance. RVTS and RVTSJ
schemes assume the underlying acoustic model is trained on
clean data. Acoustic models trained on multi-conditioratad
generally give better noise robustness. In [5], a cleanurp
was filtered by several room impulse responses (RIRs) to form
the multi-conditional data. It was found that the multilsty
trained acoustic model (MST) followed by general adaptgtio
e.g., MLLR, yielded large gains. Recently, [6] shows thangs
stereo data in multi-style training can further improve rineer-
berant noise robustness. However, multi-style trainimgde
the noise variations to be modelled by the underlying adoust
model, which could potentially harm the performance. Ibals
degrades the performance when the acoustic model is ogerate
outside the training environments.

Alternatively, adaptive training can be applied to factat o
the unwanted noise variation, yielding a canonical modat th
is neutral to the noise condition. Adaptive training is oraly
proposed for speaker adaptive training[7], and is exterided
handle additive and convolutional noise recently[2, 8]. tiMo
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vated by the success of VTS-based adaptive training (VAT) [8
this work investigates the model-based approaches toigeapt
training in reverberant environments. RVTSJ is used to com-
pensate acoustic models in both training and testing. The ne
training algorithm is referred to reverberant adaptiventrey
(RAT). An maximum likelihood (ML) estimation of canonical
model parameters in the EM framework is described. An iritia
isation scheme using VAT canonical model parameters td star
RAT training is also presented. This RAT training algorithm
was compared with MST and VAT on a reverberant simulated
version of AURORA4.

2. Reverberant and additive noise

If clean speech is corrupted by additive and short-time €han
nel distortion (a.k.a. convolutional noise) in the Mel-sepl
domain, the mismatch function describing the distortiorthan
current clean speech parameigtris given by :
y; =Clog (exp(C~ ' (z + p,)) + exp(C~'n}))

= f(wfyuh7n:)7 (1)
where the superscript (and also the subscript hereafteg-
notes static parameter, agd, h andn; are the noisy speech,
convolutional and additive noise, respectively,is the (trun-
cated) DCT matrix. It is usually assumed thatis Gaussian
distributed with mean, and diagonal matrix,, andh is a
unknown constant. Note that the above mismatch function re-
lies on the assumption that the effective length of the impub-
sponse of the channel is shorter than the size of the analysis
dow (typically 25ms). However, in a reverberant environtmen
due to the late-reflection caused by multiple acoustic fatins
the speaker to the microphone, the reverberant figaewhich
is the time needed for reflections sound to decay 60dB, is usu-
ally ranging from200ms to800ms or even longer. This is sig-
nificantly larger than the size of analysis window. The loeg r
verberant time causes the clean speech not only distortdteby
additive noise, but also blurred by several previous frantes
[1], a mismatch function describing the joint effect of s
and reverberant noise is derived:

z; = Clog (Z exp (C™H (@i s + ) + exp (Cln§)>
5=0

:g(mf7 7mf—n7u17n:) (2)
wherez; is the additive and reverberant noise corrupted speech,
= [y, -, e, ]" is referred to as reverberant noise.

2.1. Model compensation

Given the additive and convolutional noise mismatch fiorcti
in Eq. (1), VTS can be used to approximate it for every Gaus-



sian component in the following form:
(M))
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wherep_ and u{™ are the means of additive noise amdth
Gaussian respectively, and
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This yields the following VTS-based model compensatiomifor
for the static parameter:

nG =, 1), B =diag (I (4)

yilm ~ I (ng — ),

Jm = I =1- 3™
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The dynamic parameter compensation can be derived using the

continuous time approximation, i.e.,

py? = 3 B = diag (3BTI) - (6)

where the subscript denotes the delta parameter. The delta-
delta parameter is compensated in a similar way. For notatio
convenience, only the delta parameter is considered indke f
lowing discussion.

For the reverberant and additive noise mismatch function
in Eq. (2), the current observation, is a function of the pre-
ceding clean speech frames_i, - - - , :_, (ignoring the dy-

namic parameters). These clean speech frames should be in-

ferred from the noise corrupted observations. In practiis,is
computationally intractable. An approximation form was-pr
posed in [4], wherez; is assumed to depend on an extended
vectorz:, which is generated by the current Gaussian compo-
nent. Figure 1 illustrates the dynamic Bayesian networlisf t
approximated model, whekg andw; are the indicator of cur-
rent state and Gaussian component respectively.
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Figure 1: Approximate reverberant dynamic Bayesian ndtwor
For clarity, the dynamic parameters are ignored.
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The form ofz; is chosen such that when there is no rever-
berant noise, the compensated model will back off to the-stan
dard VTS compensation, and the Gaussian distribution id use
to modelz; conditioning on the current component i.e.,

Tt
AAzmt wt+w
T, = 3% =W ... ; (6)
A Tt Lt—n—w

and@;|m ~ N (@™ = )) wherew is the window size to
calculate the dynamlc paramet®¥ is a square and invertible
matrix, which maps a sequence of statics to static plus tbi fir
second and higher order dynamics. Given the model statis-
tics u(m), it is easy to derive the statistics of spliced vector

xf = (xf',---,x57,)". For example, the static and delta

mean vectors ak. can be obtained by
=€ {@Em) =P\, i) =€ (e m}=Pul™  (7)

wherePs andP, are the matrices that map to « andAx..
Using statistics of the extended vector, VTS is extended in
[1] to handle the mismatch function in Eq. (2). The expansion

is performed atu((?), py , 1,):
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where
I =[G 3 Il = ZJ“’” )
and Jf{}”) = Bfg N Along with the continuous
sxe 17

time apprOX|mat|on assumptlon this yields the mean compen
sation form in the following:

(m
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This is referred to as RVTSJ. It is possible to compensate the
variance as well. However, in the initial investigation i,[

it was found that variance compensation is not quite effecti
thus the standard VTS variance compensation was used, i.e.,
»{™ = ={™ This is also adopted in this work.

2.2. Noise estimation

Given the acoustic model parametet = {z(™, (™}, the
noise model parameté® = (u,, p,) is estimated using EM.
The following auxiliary function is maximised, i.e.,

& = argmax Z A log p(ze; pi™, ™)

t,m

(11)

wherew“”) is the posterior of component at timet, given
the current hypothesis and current noise estim@ed/TS is
again used to expand.™ using the current noise estimates
yielding the following update formula using the secondeord
method:
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anda is used to improve the stability of noise estimation. Note
that the above updating formula only considers the statiarpa
eters in the auxiliary function. It is possible to includétake
compensated parameters. A good initialisation of noisampar
eters is important. In [1], the standard VTS-based noismast
tion and a guess dfso value were used to initialise the reverber-
ant and additive noise. This is also adopted in this work.-Dur
ing the noise estimation, it is also important to ensureekiaty
update increases the auxiliary. More details about theeress
timation is given in [1].

3. Reverberant adaptivetraining

The above noise estimation assumes that the acoustic nsodel i
trained from clean data. The adaptive training frameworkiz=a
applied in which both the acoustic model and the noise model
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where

J(m) [J(m) X J§:)7J(m)] J(m)




are trained in a full ML framework on multi-conditional data
This is a powerful technique to factor out the unwanted acous
tic factors, such as speaker differences and noise distarti
yielding a canonical modeM. that models only the relevant
phoneme variations. The adaptive training framework is ex-
tended in this work to handle to reverberant and additiveaoi
distortions. This is referred to as reverberant adaptiamitrg
(RAT).

In adaptive training, both the canonical model. and a
set of noise model® are iteratively estimated using EM. First,
give the current canonical model, the noise modelare esti-
mated for each utteranehen the canonical modgM. is up-
dated given the current noise models. Multiple iteratiorssym
be performed to interleave optimisation in the EM framework
With RAT, the following auxiliary is used:

u mu u ~ (mu & (mu)
QM. {2 =D 7" log p(2f; 1™, ") (13)

u,t,m

wherew is the index of utterance. For exampfg(,m“) is the
posterior of component: at timet for thew-th utterance.

Given the canonical model, estimating the reverberant and
additive noise parameter is described in section 2.2. Affter
noise parameter updated, the canonical model parameter is r
trained. As in RVTSJ adaptation, only the mean is compedsate
for reverberation, in RAT, only the extended m&ai* will be
updated. The auxiliary function, where only terms depehden
on theiz{™ are shown, is:

1 (mu) ~ (mu)T
-5 v Ky :
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Eimu)—l (ﬂimu) _ 2F£mu)) (14)
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wherey(™) = S, 4™ andT{™ —W’l“” Sz
Similar as in the noise estimation, the VTS is applied to expa
u{™ using the current canonical model estimates, i.e.,
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Differentiating the auxiliary function and equating to agjives
the following update:

1
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u

« <Zry(mu)K(mu)TEEmu)—l(Fimu) _ Nému))> (16)
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bilise the canonical model parameter update, &nslthe step
size. For every update, the step sizis set as 1 initially. Due

to the approximation made in Eq. (15), it is necessary tokchec
the auxiliary function after every update to ensure the lauxi
iary is increasing. If not, a simple back-off procedure, iim

to the one used in [2], is used to reduce the step size until the
auxiliary increases. Since the auxiliary function of canah
model involves all the utterance, to make this back-off proc
dure possible, itis necessary to sTE™ for each component

m and each utterance, providedy(m“) is not zero, This is
impractical for media/large vocabulary task. An approxima

whereK (%) — , B is a parameter used to sta-

1t is assumed in this work, each utterance has a unique noise ¢
dition, thus a homogeneous block.

tion of the auxiliary function in Eq. (14) is used: for each
component update, the summation oweis done on a subset
U, = {uly™ > 6,,}, whered,, is choose such that the top
N utterances are in this subséY. = 156 is used in this work
and it was found this yields good increase in likelihood.

Since the auxiliary function is highly non-linear, it is cial
to have a good initialisation of the canonical model paranset
In this work, the following strategy is used: the standardigio
parametersuim), =™ are set as the parameter obtained by
the VTS-based adaptive training (VAT), whilst fp{™, it is
assumed thapi?), 6 = 0...n is a smooth trajectory start-

ing from uf(g") = uim); hence the reconstruction error is min-
imised. This amounts to the following optimisation problem

min ws || QsE™ — ™ |®
2 @

st Qo™ = p{™
where Qs is the matrix that mapgz{™ to uig”), ws

A
10_5%, A is the shift of the analysis window ( 10ms ), and
Teo the median of reverberation time in the multi-style tragnin
data (400ms in this work ).

4. Experiments

A reverberant version of the AURORAA4 task was used for eval-
uation. The original AURORA4 task is derived from Wall Stree
Journal (WSJO0) 5k-word dictation task. The WSJO training
set, consisted of 7138 utterances from 83 speakers, ratbyde
close-talking microphones, were used as the clean traganig

the experiments. To create a multi-conditional trainingvaéen
reverberation and background additive noise, the cleaminga

set was passed through the simulation tool in [9]. Two RIRS,
recored in an office environment (“officel”) and a living room
environment (“livl”) were used to filter the clean trainingt,s
with the reverberant time ranging from 200ms to 600ms. 6gype
of background noises which were used in AURORA4 task were
also added, with the SNR ranging from 10dB to 20dB, match-
ing the configuration in AURORA4 task. For the test sets, the
330 utterance from 8 speakers in the AURORA4 set A were fil-
tered by two RIRs, “officel” and “office2”, where the lattersva
recored in another office environment and not observed gurin
training. For each RIR, there were two background noise con-
ditions, “clean” and “restaurant”, where for the lattee tioise
from test04 in AURORA4 task were extracted and added to the
reverberant signal at the SNR ranging from 5dB to 15dB. Note
the creation of these sets were different from the method]in [
where the reverberant noise was added after background nois
distortion.

The HTK frontend was used to derive a 39-dimensional
feature vector, consisting of 12 MFCCs, extracted from magn
tude spectrum, appended with zeroth cepstrum, delta atat del
delta coefficients. A Cross-word triphone model with 314@iti
states and 16 components per state was built. This modd} topo
ogy was used for all the acoustic models throughout the exper
ments. For the extended model statisﬁflé@, the feature vec-
tor was appended with high-order DCT elements of an appro-
priate window width.n = 10, w = 4 were used as the length of
history frames and the window length used for calculatirgy th
dynamic parameters, respectively. The standard bi-gram LM
for the AURORA4 task was used in decoding. All the adapta-
tion in this work were performed in a unsupervised mode and
the noise models were all estimated at the utterance level.

Experiments were first run using the clean-trained acoustic



noise condition adaptation

rev. add. — VTS RVTSJ
clean 7.1 6.9 7.3

- rest. || 60.0 19.5 20.0

officel clean || 70.3 43.7 25.4
rest. || 97.3 51.6 43.1

office2 clean|| 60.1 30.9 16.5
rest. || 97.6 48.8 47.1

Table 1: Performance (in WER %) of the clean-trained acousti
model operated in a noisy and/or reverberant environment.

model. VTS-based noise model parameter was first estimated
using multiple EM iterations. The acoustic model was then
compensated and used to generate supervision hypothégs. T
supervision hypothesis was used for updating VTS noise mode
and estimating the RVTSJ noise model as well. For compari-
son, experiments were also run on the 01(clean conditioth) an
O4(restaurant noise, no reverberation) sets in the AURORA4
task. Results are shown in Table 1. As expected, the clean-
trained acoustic model is quite fragile to the environmets:
performance were greatly impacted by the additive andfer th
reverberant noise while reverberation seems to be a matie det
mental factor than additive noise. Recognition in a noisg an
reverberant environment is the most challenging task, &s bo
distortions cause large mismatch between the training estd t
ing data. Performing VTS compensation significantly reduce
the mismatch caused by noise and reverberation. RVTSJ adap-
tation on non-reverberant data gave similar but slightlyseo
performance (less than 0.5% absolute degradation). TFedtis

be a limitation of current noise estimation method when #ie r
verberant noisey, 5,5 = 1...n) approaches te-co. How-
ever, when the reverberation is presented in the data, RVTSJ
gave large gains over VTS. This demonstrated that RVTSJ is
modelling the impact of reverberation, which is not mod#lle
well by VTS.

In the second set of experiments, multi-conditional tragni
data was used to build acoustic models. Firstly, as in [6fest
data were used to build a MST system. Starting from this MST
model, VAT system was build, which in turn severs as an ikitia
isation for the RAT to begin. The parametewas reduced from
8 to 1 for 4 iterations of RAT canonical model re-estimation.
This was followed by 2 iterations of noise model update. This
process is repeated one more time to yield the final RAT model.
An initial decoding using MST system without adaptation was
run. Results are shown in line 2, Table 1. Compared with per-
formance in Table 1, in the environment observed duringnirai
ing, “officel”, MST model works quite well, producing bet-
ter performance than adapting clean-trained acoustic imdole
the target environment. However, when it was operated in “of
fice2”, an environment not observed during training , perfor
mances were degraded. This demonstrates multi-stylértgain
introduces biased toward the training environments while n
generalised well to other unseen conditions. The MST system
was also adapted by an CMLLR transform for each speaker. As
a general adaptation scheme, CMLLR is powerful to reduce the
mismatch at testing. As shown in line 3, Table 2, this yields
large error reduction in all the environments. This was con-
sistent with the finding in [6, 5]. The hypothesis obtained by
MST+CMLLR will be used as supervisions for the following
VTS/RVTSJ adaptation experiments. Compared with the CM-
LLR adapted MST system, VAT system with VTS adaptation
was worse performed when there is only reverberation distor
tion, but gave gains when the additive noise is also predénte

Systems| Adaptation officel office2 AVG.
clean rest| clean rest.

MST — 199 38.3] 37.4 63.6|| 39.8

CMLLR 14.1 30.1| 14.7 48.4|| 26.8

VAT VTS 15.1 29.0] 18.7 44.5|| 26.8

RVTSJ 149 29.6| 18.3 43.6|| 26.6

RAT RVTSJ 13.7 28.5| 15.0 42.2| 249
Table 2: Performance of multi-style trained and adaptively

trained acoustic models in reverberant environments.

the environment. This is due to that VTS is designed to compen
sate the impact of additive noise, while CMLLR can be used for
general adaption. Based on the VAT canonical model, the ex-
tended model statisticgz{™ } were initialised by solving the
optimisation in Eq. (17). Given the extended model stassti
RVTSJ adaptation of VAT was performed, which gave small
gains in average (0.2%). RVTSJ adaptation of the RAT system
further improves the performance. Compared with VAT sys-
tem, RAT vyields 0.5% to 1.3% absolute gains for the officel
environment, and 2.3% to 3.7% for the office2 environment.
This demonstrates that RVTSJ adaptation models the impact o
both the reverberant and additive noise, while RAT prodices
canonical model neutral to these distortions to some ex@mt
average, RAT system gave the best performance, yieldirftg 1.9
absolute gains over CMLLR adapted MST system.

5. Conclusions

This work investigates model based approaches to adaptive
training in reverberant environments. A new adaptive train
ing algorithm, reverberant adaptive training (RAT), isposed,
where the RVTSJ adaptation is used in both testing and tigini
stage. An ML estimation of canonical model parameters in the
EM framework is presented. Experiments conducted on a+ever
berant simulated AURORA4 task demonstrates RAT produces a
canonical model neutral (to some extent) to the reverbenaaht
additive noise variations and provides better results duapt-

ing the multi-style trained acoustic model using CMLLR.
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