
TANDEM SYSTEM ADAPTATION USING MULTIPLE LINEAR FEATURE TRANSFORMS

Y.-Q. Wang and M. J. F. Gales

Engineering Department, Cambridge University
Trumpington St. Cambridge, CB2 1PZ, U.K.

{yw293, mjfg}@eng.cam.ac.uk

ABSTRACT

Adaptation to speaker and environment changes is an es-
sential part of current automatic speech recognition (ASR)
systems. In recent years the use of multi-layer percpetrons
(MLPs) has become increasingly common in ASR systems.
A standard approach to handling speaker differences when
using MLPs is to apply a global speaker-specific constrained
MLLR (CMLLR) transform to the features prior to training
or using the MLP. This paper considers the situation when
there are both speaker and channel, communication link, dif-
ferences in the data. A more powerful transform, front-end
CMLLR (FE-CMLLR), is applied to the inputs to the MLP to
represent the channel differences. Though global, these FE-
CMLLR transforms vary from time-instance to time-instance.
Experiments on a channel distorted dialect Arabic conver-
sational speech recognition task indicates the usefulnessof
adapting MLP features using both CMLLR and FE-CMLLR
transforms.

Index Terms— MLP feature, acoustic model adaptation

1. INTRODUCTION

In recent years, the use of multi-layer perceptions (MLPs) for
automatic speech recognition (ASR) has received consider-
able research interests [1, 2, 3]. An MLP usually takes sev-
eral frames of short-term spectral-based feature vector (e.g.,
MFCC or PLP) as input to predict the center phone (or phone-
state) identity. There are two broad approaches to using MLPs
in the ASR systems. The first one, proposed in early 90’s, re-
places the Gaussian mixture model (GMM)-based emission
probabilities by the class posterior probabilities estimated by
MLPs [4]. This approach, usually referred to as hybrid artifi-
cial neural network-hidden Markov model (ANN-HMM), has
recently become popular, since it is found training MLPs us-
ing context-dependent tied triphone state as target with more
than 3 layers is able to deliver extremely good performance
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[5]. The other approach, usually referred to as probabilis-
tic TANDEM approach, was first proposed in [6], combines
the posterior obtained by MLPs with MFCC or PLP to form
the TANDEM feature, which is modelled by the conventional
GMM-based systems. An alternative form was proposed in
[7], where a bottleneck layer is introduced in which neural
nets are constrained to have a very narrow hidden layer, the
bottleneck layer, in the middle and the linear output of that
layer is taken as output instead of posteriors. The advantage
of TANDEM approach is that almost all the techniques devel-
oped for the GMM-based system can be equally applied, e.g.,
adaptation, adaptive training and discriminative training. This
work, considering using the existing adaptation techniques in
GMM-based systems for MLPs, thus sits in this TANDEM
framework.

It is well understood that speech signals are highly af-
fected by various factors. Thus the ability to adapt ASR
systems to new operating conditions, unseen in the training
data, is important. One approach to adapting MLPs is to
augment the neural nets with a linear transformation network
connected to the input, e.g., the Linear Input Network (LIN)
adaptation [8]. The transform matrix is then estimated by
minimising the cross entropy between the supervision hy-
pothesis and the model prediction. Due to this discriminative
criterion, the estimation is sensitive to the error in supervision
hypothesis. An alternative approach is to apply a global con-
strained maximum likelihood linear regression [9] (CMLLR)
transform to the features prior to training or using the MLP
(e.g., [10, 11]). This removes the need to estimate parameters
discriminatively [12]. However the use of a single global
transform, as the transform must be used for all classes, lim-
its the ability to model the complexity of environment and
channel distortions.

This work focuses extending adaptation approaches for
MLPs by leveraging the existing adaptation techniques al-
ready developed for GMM-based systems. In particular, this
work considers designing ASR systems to recognise speech
transmitted though different communication channels (links).
In the previous work [13], a front-end CMLLR (FE-CMLLR)
[14] technique was used to normalise the impact of the com-
munication channel while CMLLR was used to normalise the
speaker. In this work, these schemes are also applied to nor-



malise the input of a MLP with a bottleneck topology. FE-
CMLLR is suitable for this task as, though the transform is
applied globally, it varies from time-instance to time-instance.
Effectively it yields a non-liner transform in the model space.

The rest of this paper is organised as follows. Section 2
briefly reviews the CMLLR and FE-CMLLR techniques de-
veloped for the GMM-based system. Section 3 discusses op-
tions to adapt TANDEM systems. Experiment and results are
discussed in section 4 with the conclusions in section 5.

2. GMM-BASED SYSTEMS ADAPTATION

A popular choice of adapting GMM-based systems is to use
linear transform-based schemes, for example MLLR and
CMLLR. One of the advantages of CMLLR is that it can
be viewed as a transform acting on feature when a global
class is used [9]. When this form of CMLLR is used for
speaker adaptation, each speakers is associated with one line
transformW
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CMLLR in this form is acting on the feature, it is very effi-
cient to use in speaker adaptive training (SAT). The estimation
of the canonical modelMx and speaker transformW(s) is
done via iteratively maximising the likelihood function using
EM. An efficient iterative row-by-row maximising method is
used to estimate the transform [9].

To model complex acoustic conditions multiple linear
transforms can be used. In [13], an alternative feature trans-
formation, FE-CMLLR, is used to model the distortion of
communication channel, in conjunction with the CMLLR
used for modelling the speaker differences. For a communica-
tion channel (link) distorted speech vectoryt, a FE-CMLLR
is applied to yieldx̂t:
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Estimating the FE-CMLLR transform,Mc = {A
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and the canonical modelMx is also done via maximising
the likelihood function using EM. An approximated method
was used in [13] to perform the optimisation. It is obvious
that FE-CMLLR, similar as global CMLLR, operates in the
feature space. Different from global CMLLR, using multiple-
component transforms allows FE-CMLLR to model complex
distortions such as communication channels. FE-CMLLR
also enables a consistent space for speaker adaptation [13].

To simultaneously model the effect of speaker and link,
it is possible to combine FE-CMLLR with CMLLR. In [13],
speaker transformW(s) was applied in a link space defined
by FE-CMLLR:
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By transforming the feature using the speaker transform (CM-
LLR) and the link transform (FE-CMLLR), a link and speaker
adaptive trained (LSAT) model can be built in the normalised
feature space. The upper branch in Figure 1 shows the speaker
and link adaptation of PLP feature.

3. TANDEM SYSTEMS ADAPTATION

In the TANDEM system, MLP is used for feature extrac-
tion. Short-time spectral-based features (in this work, 13-
dimensional PLP) with dynamic features and context frames
are fed into MLP. Linear output of the bottleneck layer
is decorrelated by principle component analysis (PCA) or
SEMIT transform [15] and concatenated with PLP to form
the TANDEM PLP+MLP feature. To allow simple concate-
nation, both PLP and MLP-based features are extracted using
the same frame rate. The lower branch in Figure 1 shows the
architecture for generating TANDEM feature.

There are two possible approaches to adapting a TAN-
DEM system. First, the MLP input can be transformed to a
normalised space. Usually the same linear transform is used
for each context frame to reduce the number of adaptable pa-
rameters. The transform can be estimated by minimising a
frame-level cross-entropy based criterion, as in LIN adapta-
tion [8]. Alternatively, the feature transforms estimatedin the
GMM-based systems can be borrowed. This is shown in Fig-
ure 1 when the switch is in position 2. Second, as the TAN-
DEM feature is again modeled by GMMs, the same adap-
tation techniques, such as CMLLR and FE-CMLLR, can be
used. The dashed box in the lower branch in Figure 1 illus-
trates this.

It is interesting to compare these two forms of TANDEM
system adaptation. Transforms which directly adapt the TAN-
DEM feature are estimated by maximising the likelihood of
TANDEM acoustic model. Using the transforms from the
PLP system to modify the MLP input feature, which indi-
rectly adapts the TANDEM feature, does not guarantee the
increase in likelihood of TANDEM acoustic model or frame
accuracy of MLPs. On the other hand, linearly transforming
the MLP input yields a nonlinear transform of TANDEM fea-
ture, while directly adapts the TANDEM feature using CM-
LLR or FE-CMLLR is a linear (or piecewise linear) transform
of the TANDEM feature. Given the differences between two
approaches, it may be useful to combine them. In addition,
these forms of feature transformation can be further combined
with model-based adaptation, e.g., MLLR.



Fig. 1. Flowchart of PLP and TANDEM system adaptation.

4. EXPERIMENTS

Experiments were carried out on the training and test data
provided from Robust Automatic Transcription (RATS) pro-
gram for Arabic keyword spotting. The data was collected
by retransmitting Levantine Arabic conversational telephone
speech data over eight communication channels (links) which
are labelled as A to H. A wide range of distortion are asso-
ciated with these links. The training data include data from
all eight channels plus the original clean speech. Part of the
retransmitted data was held-out to form a test set, dev1. For
each of the channels there was 2 to 2.5 hours test data, de-
pending on how much of the retransmitting speech passed
quality assurance tests. The clean Levantine Arabic transcrip-
tions (excluding the dev1 test data), approximately 1.6 million
words, were used to train a trigram language model.

The acoustic data was parameterised using 13-dimensional
PLP, including C0. Delta, delta-deltas and triples were ap-
pended followed by an HLDA projection from 52 dimensions
to 39. Speaker (side) based cepstral mean normalisation was
applied. Word-based graphemic systems, incorporating word
boundary information were build. Cross-word decision-tree
state-clustered triphone models were then trained using MPE
criterion. There are about 3K distinct states with an average
of 36 components per state. In addition to the above speaker
(and link) independent (SI) system, SAT system was build
using global and full CMLLR transforms at the speaker level.
For link representation, a 128-component FE-CMLLR was
used for each link. A single front-end GMM was used for
all links. SAT was also built in the FE-CMLLR normalised
space, yielding the LSAT system.

TANDEM SI, SAT and LSAT systems were built using
the “fast” system build method detailed in [3]. The TAN-
DEM features for this work were 26-dimensional with decor-
relating transform constructed in the same fashion as in [3].
Initially 52-dimensional PLPs (static, delta, delta-deltas and
triples) were used for each frame. If MLP input adaptation is
switched on, the HLDA estimated in PLP system was used to

project the 52-dimension PLPs down to 39 dimensions, fol-
lowed by CMLLR and/or FE-CMLLR transforms. 9 context
frames were used. The inputs to MLP were also mean and
variance normalised on the side level. In the initial investi-
gation, a 4-layer MLP topology was used in which the first
hidden layer has 3500 hidden nodes while the second layer,
bottleneck layer, has 26 nodes. The neural net was trained us-
ing back-propagation in mini-batch (800 frames) mode. Ten
percents of the training data (randomly chosen at side level)
was used as the cross validation set.

For the SI systems, a one-pass unadapted decoding was
performed using the trigram language model. For SAT and
LSAT, the PLP SI system was first used to generate the su-
pervision hypothesis, which was then used to estimate the
speaker transforms. In this work, a CMLLR and a MLLR
mean transform were used, both were global and full trans-
forms. After the speaker adaptation, a second pass decoding
was performed using the adaptively trained models (SAT or
LSAT). During the test, it was assumed the segmentation and
link identity of each utterance were known. Three representa-
tive links in terms of distortions were given in the first Table:
link A (high), C (medium); and G (low). All results are based
on confusion network (CN) decoding.

Initially, PLP acoustic models were built. As this task is
known to be very challenging, the overall performances are
as expected, quite poor. Decoding using a PLP SI model gave
a WER (averaging on all links) of 68.4%. Using SAT/LSAT
for PLP-based systems yields average WERs of 63.9% and
63.3% respectively, while most of the gains coming from the
high distortion link such as link A. The initial TANDEM sys-
tems were build without MLP input adaptation. Using TAN-
DEM feature alone yield considerable gains over SI PLP sys-
tems (64.2% vs 68.4%), while adaptively trained SAT/LSAT
TANDEM systems gave further gains, as shown in the first
rows of block 2 and block 3 in table 1. Preliminary investi-
gation on MLP input adaptation showed transforming PLPs
using only HLDA does not give any significant gains, which
correlates to the findings in [12] for a deep neural net used



# layers
TANDEM MLP input adapt. Link

Avg
Systems Speaker Link A B C D E F G H

4
SI – – 71.9 73.6 67.9 62.8 76.0 65.7 57.4 71.868.0

SAT X – 70.4 70.5 63.7 58.0 73.2 63.4 53.8 69.264.9
LSAT X X 70.2 70.7 63.6 57.2 72.3 62.5 52.9 67.964.2

5
SAT – – 68.8 69.6 63.4 57.2 71.7 61.1 53.0 67.463.6
SAT X X 69.2 69.4 62.4 55.7 71.1 61.4 51.7 67.463.1

LSAT X X 69.3 69.5 62.3 55.4 70.8 61.3 51.4 67.162.9

7 SAT
– – 68.8 69.0 63.4 57.1 71.6 61.3 53.0 67.563.4
X X 69.4 69.4 61.5 55.2 71.4 61.4 51.7 67.262.9

Table 2. Performance contrast by adapting TANDEM system to speakerand/or link using different number of layers of bottle-
neck neural nets.

in the hybrid architecture. As the supervision hypothesis had
such a high WER, it is suspected LIN adaptation, estimated
by the discriminative criterion, will not give any gains ei-
ther. However, MLP input adaptation using CMLLR and FE-
CMLLR does give gains, as shown in table 1. The first block
of table 1 shows the contrast on SI systems. Compared with
the performance of the TANDEM SI system without input
adaptation, 0.7% absolute gains can be achieved by link adap-
tation, while about 1.5% gains can be obtained by adapting
the MLP input to speaker or speaker/link. Note that adapt-
ing the MLP input to link does not require a supervision,
therefore can be used in the initial decoding. The second and
third block of table 1 show the gains by combining MLP in-
put adaptation with adaptively trained TANDEM models. On
the most advanced systems (LSAT), using CMLLR and FE-
CMLLR as MLP input feature normalisation, there is about
0.6% performance gains (61.2% vs. 60.6%). The first block
of table 2 shows the overall adaptation gains on all links by
using speaker or speaker/link information. In total 3.1%-3.8%
gains can be obtained on this difficult task. This shows adap-
tation of TANDEM systems is helpful.

Systems MLP input adaptation Link
Avg

Speaker Link A C G

SI

– – 71.9 67.9 57.4 64.2
CMLLR – 71.3 65.6 56.0 62.8

– FE-CMLLR 71.1 66.4 57.2 63.5
CMLLR FE-CMLLR 71.1 65.6 56.0 62.7

SAT

– – 70.4 64.9 54.7 61.8
CMLLR – 70.4 63.7 53.8 61.1

– FE-CMLLR 70.8 63.5 53.5 61.0
CMLLR FE-CMLLR 70.4 63.4 52.9 60.6

LSAT

– – 70.4 64.1 53.8 61.2
CMLLR – 70.6 63.6 53.4 60.9

– FE-CMLLR 70.9 63.2 53.1 60.7
CMLLR FE-CMLLR 70.2 63.6 52.9 60.6

Table 1. MLP input speaker and/or link adaptation. The bot-
tleneck neural net had 4 layers.

Finally, the effectiveness of these MLP adaptation tech-
niques were examined on two more complex neural nets: a
5-layer and a 7-layer bottleneck neural net. The 5-layer neu-
ral net had 2 hidden layer each with 2K nodes, while the
7-layer neural net had 4 hidden layer each with 1K nodes.
Other layers were kept the same. To get the best perform,
the 7-layer neural net were discriminatively pre-trained and
then fine-tuned as in [12]. Adding additional hidden layers
yields gains, as shown in the second and third blocks of table
2. The average WERs of TANDEM SAT system was 63.1%
and 63.4% for the 5-layer and 7-layer neural nets respectively,
which compared to 64.9% WER of the system using 4-layer
neural nets. On the other hand, it seems that linearly trans-
forming the MLP input is still helpful when combining with
SAT TANDEM system, achieving 0.5% gains. Future work
will exam the trend of these gains when deeper MLPs and
context-dependent targets are used.

5. CONCLUSIONS

This paper has discussed approaches to TANDEM system
adaptation in degraded communication channels. Multiple
linear transforms were constructed to normalise the MLP
input: a global CMLLR was used to normalise the speaker
differences, and a more powerful FE-CMLLR was employed
for channel difference normalisation. Different from the
global CMLLR, which only allows a single transform for
each speaker, FE-CMLLR varies from time-instance to time-
instance. This gives FE-CMLLR a flexibility to normalise
more complicated, channel, distortions. By combing these
linear transforms, distortions caused by multiple acoustic
factors (speaker and channel differences in this work) can
be better normalised. These transforms were estimated in
the GMM-based system using maximum likelihood criterion.
Although used in a different system, they are shown to be
useful. MLP input adaptation is also combined with adaptive
trained TANDEM models. Experiments on the channel dis-
torted dialect Arabic conversational speech recognition task
demonstrated the benefits of TANDEM system adaptation
using multiple linear transforms.
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