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Abstract

Language Modelling is a crucial component in many areas and applications including auto-

matic speech recognition (ASR).n-gram language models (LMs) have been the dominant

technology during the last few decades, due to their easy implementation and good gen-

eralism on unseen data. However, there are two well known problems withn-gram LMs:

data sparsity; and then-order Markov assumption. Previous research has explored various

options to mitigate these issues. Recently, recurrent neural network LMs (RNNLMs) have

been found to offer a solution for both of these issues. The data sparsity issue is solved by

projecting each word into a low, continuous, space, and the long term history is modelled via

the recurrent connection between hidden and input layer. Hence, RNNLMs have become

increasingly popular and promising results have been reported on a range of tasks. However,

there are still several issues to be solved in area to apply RNNLMs to the ASR task. Due to

the long term history, the training of RNNLMs is difficult to parallelise and slow to train on

large quantities of training data and large model size. It iseasy to apply Viterbi decoding or

lattice rescoring for standardn-gram LMs as they have limited history, while it is difficult

for RNNLMs because of their long term history. This thesis aims to facilitate the applica-

tion of RNNLMs in ASR. First, efficient training and evaluation of RNNLMs are developed.

By splicing multiple sentences, RNNLMs could be trained efficiently with bunch (i.e. mini-

batch) mode on GPUs. Several improved training criteria arealso investigated to further

improve the efficiency of training and evaluation. Second, two algorithms are proposed for

efficient lattice rescoring and compact lattices are able togenerate. Third, the adaptation of

RNNLMs is investigated. Model fine-tune and incorporation of informative feature based

adaptation are investigated. Various topic models are applied to extract topic representation

for efficient adaptation. Finally, the different modellingpower of RNNLMs andn-gram

LMs are explored and the interpolation of these two types of models is studied.

The first contribution of this thesis is the efficient training and inference of RNNLMs.

The training of RNNLMs is computationally heavy due to the large output layer and dif-

ficulty of parallelisation. In most previous works, RNNLMs were trained on CPU with

class based RNNLMs. In this thesis, a novel sentence splicing method is proposed, which

allows RNNLMs to be trained much more efficiently with bunch mode. GPU is also used



x

to fully explore its parallelisation power for fast computation. In addition to the standard

cross entropy based training criterion, two improved training criteria: variance regularisa-

tion and noise contrastive estimation, are studied for rapid RNNLM training and inference.

Experiments show that significant speedup can be obtained for both training and testing.

The second contribution of this thesis is the lattice rescoring of RNNLMs. Due to the

long term history, lattice rescoring of RNNLMs is difficult.Most previous work used N-best

or prefix tree, which only rescore top N hypotheses using RNNLMs and can not generate

compact lattices. In this thesis, we aims to apply RNNLMs forlattice rescoring. Approx-

imations are made for RNNLM lattice rescoring to cluster similar histories. n-gram and

history vector based clustering are proposed and used as criteria to cluster history and com-

bine paths in lattices. Both of these two approaches are ableto generate compact lattices,

which can be used for applications including confusion network decoding and key word

spotting with performance improvement.

The third contribution of this thesis is the study of efficient adaptation for RNNLMs.

Two popular approaches for RNNLM adaptation: model fine-tuning and incorporation of

informative feature, are investigated and compared. A range of topic models are used to

extract topic representation for efficient adaptation. Theexperiments show that the unsuper-

vised RNNLM adaptation yield significant perplexity reduction and moderate word error

rate improvement on a large quantities of data compared to standard RNNLMs.

Another contribution of this thesis lies in the interpolation betweenn-gram LMs and

RNNLMs. Based on an experimental analysis of interpolationbetween RNNLM andn-

gram LM, back-off level is used as a feature to cluster and share parameters for interpolation.

Two back-off based interpolation algorithms are proposed and investigated.

It is also worth mentioning that the work described in this thesis has been developed

to an open source toolkit: CUED-RNNLM [41]. This toolkit supports efficient RNNLM

training on GPU, evaluation on CPU, RNNLM lattice rescoringand adaptation. It has been

used by a number of speech groups from universities and institutes.
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Chapter 1

Introduction

Speech is one of the most natural ways to communicate betweenpeople. It plays an impor-
tant role in our daily lives. To make machines able to talk with people is a challenging but
very useful task. A crucial step is to enable machines to recognise and understand what peo-
ple are saying. Hence, speech recognition becomes a key technique providing an interface
for communication between machines and humans. There has been a long research history
on speech recognition [102].

The first speech recognition system, a digit recogniser, wasinvented in 1952 in Bell
lab [53]. Since then, research on speech recognition has been carried out in both academia
and industry and gained vast attention [102]. Hidden Markov models (HMMs) [9, 109]
were introduced into speech recognition in the 1970s, and became the cornerstone in the
area of speech recognition. The standard HMM has been refinedin a number of ways such
as state clustering, adaptation and discriminative training in subsequent years [71]. Signif-
icant progress has been achieved in speech recognition overthe last several decades. In
the early years, speech recognition was studied on isolatedword recognition, with small
vocabulary size (e.g. several hundreds). Native speakers spoke under clean environment,
such as reading speech. Nowadays, large vocabulary (hundreds of thousands of words),
continues speech recognition becomes the main research interest, such as voice search [31]
and conversational telephone speech recognition [194]. The speech is spontaneous under di-
verse acoustic environments, which is more similar to how people behave in their daily lives.
Advance in computer hardware (multi-core CPU and GPU) and parallel algorithms also fa-
cilitate the use of dramatically increasing amount of training data. Nowadays, thousands of
hours of speech and billions of text data can be used to train recognition systems. Various
adaptation techniques [71] are also developed to address the acoustic mismatch causedby
speaker, noise, channel and so on. The improvement in performance can be also obtained
from multi-microphone by overcoming reverberation and reducing noise [249]. Recently,
deep learning has attracted extensive research interests and presented significant improve-
ment in performance over a range of tasks [97]. With the big advance in speech recognition
techniques, many companies have integrated speech recognition into products, such as Siri
from Apple, Google watch from Google and speech translationin Skype from Microsoft.
It is clear that the speech recognition techniques are entering our daily lives and gradually
changing the way of life.
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1.1 Overview of Automatic Speech Recognition Systems

Modern ASR systems are mainly based on statistical approaches under a Bayesian frame-
work [71]. Mathematically, given the obervationO = {o1,o2, ...oT} (i.e. feature extracted
from raw speech signal), the probability of the specific wordsequenceW = {w1,w2, ...,wN}
can be written asP(W|O). According to Bayesian decision rules, the most likely wordsen-
tenceŴ can be obtained as,

Ŵ = argmax
W

P(W|O) (1.1)

This can be rewritten based on Bayes’ formula,

Ŵ = argmax
W

P(W|O)

= argmax
W

p(O|W)p(W)

P(O)

= argmax
W

p(O|W)P(W) (1.2)

where the probability of the observationp(O) can be omitted since it is independent of the
word sequenceW. The posterior probabilityP(W|O) can be split into two components in
the Equation1.2: p(O|W) andP(W). p(O|W) is the likelihood of observationO given
word sequenceW, which is called the acoustic model in the literature.P(W) is the prior
probability of the word sequenceW, which is called the language model. The acoustic
model is usually trained on audio corpus where the speech andits word sequence label (i.e.
transcription) are given, and language model is trained on text corpus where a large number
of word sequences are available. Given the acoustic model and language model, the poste-
rior probability of a specific word sequenceW can be calculated. The word sequence with
the highest posterior probability is chosen as the recognition result as shown in Equation
1.2.

Figure1.1shows a standard framework of ASR system. The acoustic and language mod-
els are prepared before recognition. The lexicon (also known as pronunciations dictionary)
specifies the pronunciation of each word in the vocabulary. The pronunciation of a word
can be generated manually by experts or automatically by grapheme to phoneme (g2p) al-
gorithms [17]. The information from the acoustic model, language model and lexicon are
integrated in a decoder. For each utterance to be recognised, acoustic features can be ex-
tracted from the raw speech waveform using front-end processing [210]. The decoder takes
the acoustic feature as input, searches from the search space constraint by acoustic model,
language model and lexicon, and finally generates the most possible hypothesis based on
Equation1.2.

This thesis mainly focuses on the language model. The language model aims to model
the probability of any given word sequence. A range of language models have been pro-
posed for speech recognition.n-gram language models (n-gram LMs) are the most popu-
lar language model and have been the dominating language model during the last several
decades. More recently, recurrent neural network languagemodels (RNNLMs) have shown
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Fig. 1.1A framework of speech recognition system.

promising performance in a range of applications includingspeech recognition [154, 61,
216, 55, 123]. However, some issues still exist when RNNLMs are applied in speech recog-
nition, such as long training time for large training corpora [39] and difficulty of lattice
rescoring [142]. In this thesis, the application of RNNLMs in state-of-the-art speech recog-
nition systems is studied.

1.2 Thesis Organisation

This thesis is organised as follows,
Chapter2 introduces the key techniques in speech recognition systems. The extraction

of acoustic feature from speech signal, training of the acoustic model and language model,
as well as the search (i.e. decoding) are described.

The neural network based language model is the research topic in this thesis. Chapter3
reviews three popular types of neural network based language model, including feedforward,
recurrent and LSTM based neural network language model.

The efficient RNNLM training and inference are explored in Chapter4. The training of
RNNLMs is computationally heavy due to the large output layer and difficulty of paralleli-
sation. A novel sentence splicing method is proposed, whichallows RNNLMs to be trained
much more efficiently with bunch mode. GPU is also used to fully explore its parallelisation
power for fast computation. In addition to the standard cross entropy based training criterion,
two improved training criteria: variance regularisation and noise contrastive estimation, are
studied for rapid RNNLM training and inference.

Latticie rescoring using RNNLMs is studied in Chapter5. Due to the long term history,
lattice rescoring of RNNLMs is difficult. Most previous workused N-best or prefix tree,
which only rescore top N hypotheses using RNNLM and can not generate compact lattices.
Approximations are made for RNNLM lattice rescoring to cluster similar histories in this
thesis. n-gram and recurrent vector based clustering are proposed and used as criteria to
cluster history and combine paths in lattices. Both of thesetwo approaches are able to
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generate compact lattices, which can be used for applications including confusion network
decoding and key word spotting.

Chapter6 studies the adaptation of RNNLMs. Two popular approaches for RNNLM
adaptation: model fine-tuning and incorporation of informative feature, are investigated and
compared. A range of topic models are used to extract topic representation for efficient
adaptation.

Chapter7 investigates the interpolation between RNNLMs andn-gram LMs. Based on
an experimental analysis of interpolation between RNNLM and n-gram LM, back-off level
is used as a feature to cluster and share parameters for interpolation. Two back-off based
interpolation algorithms are proposed and investigated.

Chapter8 examines the techniques discussed in the thesis on a meetingtranscription
task. Several sources of public meeting data including AMI,ICSI and NIST meetings are
used for training, and two sets of test data are used. The firstone is from the standard AMI
test data and the other test set is a series of real meetings collected by Toshiba.

Finally, this thesis concludes in Chapter9 with a summary of contribution and a discus-
sion of future work.

1.3 Contributions and Collaborations

This thesis covers a wide range of topics concerning RNNLMs for speech recognition. This
thesis has benefited from the help of various collaborators.In this section, I will give a brief
summary of contributions made by these collaborators. Prof. Mark Gales is my supervi-
sor and he has involved in idea discussion, experiments and paper writting for all papers
associated with this thesis.

(a) The work on efficient RNNLM training and evaluation in Chapter 4 has been pub-
lished in 3 conference papers and 1 journal article [40, 43, 44, 46]. I was responsible for the
original ideas, code implementation, experiments and paper writting. The collaborators pro-
vided baseline ASR systems and helped on paper correction. Yongqiang had been attending
most of the related discussions till he joined Microsoft in 2014.

(b) The work on RNNLM lattice rescoring in Chapter5 has been published 2 conference
papers and 1 journal article [142, 47, 144]. The original ideas came from weekly discussions
between Xunying, Yongqiang and I. We have equal contributions on the idea. Xunying
was the person who implemented the lattice expansion code inHLRescore (HTK [29]) and
provided all baseline ASR systems. I was responsible for thecode related to RNNLM
training, model input, probability computation and experiments. Anton Ragni and Jake
Vasilakes provided baseline ASR systems for keyword search. [142, 144] were written by
Xunying Liu and I wrote [47].

(c) The work on RNNLM adaptation in Chapter6 has been published in 1 conference
paper [45]. I contributed the original idea and was responsible for implementing RNNLM
adaptation code, experiments and paper writting. The collaborators helped to train PLSA
models and extract PLSA features; provided baseline ASR systems, and extracted HDP
features.
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(d) The work on language model interpolation in Chapter7 has been published in 1 con-
ference paper [42]. I contributed the original ideas, was responsible for implementation of
the RNNLM interpolation code, experiments and paper writting. The collaborators provided
baseline ASR systems and helped on paper correction.





Chapter 2

Automatic Speech Recognition

This chapter describes key components of the standard automatic speech recognition (ASR)
system. As shown in Figure1.1, these include acoustic feature extraction, acoustic model,
language model and decoder.

2.1 Front-End Feature

In speech recognition, acoustic features are extracted from the raw speech signal. The acous-
tic features are expected to carry sufficient information from speech as well as to be a suit-
able form for modelling. Mel frequency cepstral coefficient(MFCC) [148, 54], perceptual
linear predictive (PLP) [94], filter bank (FBANK) [160], Tandem [95] are popular acoustic
feature.

2.2 Hidden Markov Model based Acoustic Model

Hidden Markov Model (HMM) has been the most popular model forspeech recognition
systems since the 1980s [181, 180]. HMM provides an elegant way to model the continuous
and dynamic character in speech signal. ASR systems considered in this thesis are based
on the Hidden Markov Model (HMM)1. In this section, the basic concept of HMM will be
presented.

Two assumptions are made to allow HMM to be suitable for modelling speech.

• Quasi-stationarity: Speech can be split into short segments or states, in which the
speech signal is stationary. The transition between statesis instantaneous.

• Conditional independence: The acoustic feature vector is only dependent on the
current state. Given the state, the feature vector is conditionally independent from the
previous or following feature vectors. And the transition probability of the next state
depends only on the current state, irrelevant of the featurevectors.

1 The recent proposed alternatives of HMM to model the speech signal based on LSTM-CTC models
[82, 80, 192] and attention model [28] are not discussed in this thesis.
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Neither of these assumptions is true for speech signal in practice. The speech signal is
not stationary and varies quickly with time. The successivefeature vectors are also highly
correlated. Much works has been carried out to alleviate these assumptions. However,
HMM is still a successful model and gives good performance for speech recognition under
these assumptions.

Figure2.1 shows a typical left-to-right HMM model with five states. It is a finite state
machine with one entry state 1, one exit state 5 and three emitting states. The entry state
1 and exit state 5 are non-emitting states. The emitting states 2, 3 and 4 allow self-loop
transitions. The acoustic feature vectorot is generated at each time stampt. Its probability
density function (PDF) depends on the current state; e.g., when the current state is 2, the
PDF of ot is b2(ot). In the next time step, the state is 2 with probabilitya22 and 3 with
probabilitya23. In this way, a variable length speech signal can be modelledby the HMM.

1 2 3 4 5

Time instance

Observations

State

ot ∼ b2(o) ot ∼ b3(o) ot ∼ b4(o)

t1 t2 t3 t4 t5 t6

a12

a22

a23

a33

a34

a44

a45

Fig. 2.1A left-to-right HMM model with 3 emitting states, states 1 and 5 are non-emitting
states and 2,3,4 are emitting states

There are several parameters to be estimated.

1 π : initial state distribution
The initial state probability is,

πi = P(φ0 = si) (2.1)

whereφt denotes the state at timet. ForΠ = {π1,π2, ...πN} to be a valid distribution,
it must satisfy,

N

∑
i=1

πi = 1 (2.2)

whereN is the number of states. For the left-to-right HMM shown in Figure2.1, the
initial state is state 2 with probability 1.
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2 A: state transition probability matrix
A= {ai j} defines transition probabilities from statesi to statesj

ai j = P(φt = sj |φt−1 = si) (2.3)

which satisfies the following constraints ifA is a full matrix, transitions between each
pair of states are allowed.

N

∑
j=1

ai j = 1 (2.4)

In many applications,A does not need to be full. For a left-to-right HMM shown in
Figure2.1, the transition probability matrixA is written as,

s2 s3 s4 s5

s2 a22 a23 0 0
s3 0 a33 a34 0
s4 0 0 a44 a45

where each state is constrained to jump to itself or the next state. s1 ands5 are non-
emitting states, they will jump to the next state immediately.

3 B: state output probability distribution
B = {b1(ot),b2(ot), ...,bN(ot)} are PDFs of acoustic feature vectors given states. The
PDF of acoustic feature vectorot in statesi at timet can be written as,

bi(ot) = p(ot |φt = si) (2.5)

The PDFbi(ot) is also called a likelihood. There are mainly two popular acoustic
models to compute likelihoods in ASR systems. One is a Gaussian Mixture Model
(GMM). The GMM-HMM system is constructed using this form of PDF. The other
is a Deep Neural Network (DNN) [97], which yields a so-called DNN-HMM system
(also known as a Hybrid system) [199]. The GMM and DNN will be introduced in
Chapters2.2.1and2.2.2respectively. There are also other variants such as recurrent
neural network for acoustic modelling [80]. They are out of the scope of this thesis.

2.2.1 Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a mixture of finite multivariate Gaussian distribution.
Theoretically, GMM is able to approximate any distributionwhen there are sufficient Gaus-
sian components. GMM is widely used for modelling state emission probabilities in speech
recognition. Given statesi , the output PDF of observationot is computed as below,

p(ot |Λi) =
K

∑
k=1

ωikN (ot ; µµµ ik,ΣΣΣik), (2.6)
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where state parametersΛ = {Λi}= {ωik,µµµ ik,ΣΣΣik} consist of mixture weights{ωik}, mean
vectors{µµµ ik} and covariance matrices{ΣΣΣik}. The mixture weights for each statesi must
satisfy the following constraints:

K

∑
k=1

ωik = 1 and ωik > 0 (2.7)

The multivariate Gaussian distribution for each componentcan be written as,

N (ot ,µµµ ,ΣΣΣ) = (2π)−
d
2 |ΣΣΣ|− 1

2 exp{−1
2
(ot −µµµ)⊤ΣΣΣ−1(ot −µµµ)} (2.8)

whered is the dimension of feature vector. Typically, the diagonalcovariance matrices are
used. To reduce the number of parameters for estimation and simplify the computation,
there have been also efforts on incorporating more power forms [7, 69]. In this work, we
only consider the diagonal covariance matrix for GMM.

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is one of the most popular training criteria for
HMM parameter estimation. The aim is to find the optimal modelparameter to maximize
the observation likelihood given the reference transcription. The objective function of MLE
can be written as,

FML(M) = log(p(O|W;M)) (2.9)

whereW is a word transcription for acoustic observationsO. The ML objective function
can be rewritten as,

FML(M) = log(p(O|W;M))

= log
{

∑
S,Q

p(O,S|Q;M)p(Q|W)
}

= log
{

∑
S,Q

(

aφ0φ1

T

∏
t=1

p(ot |φt;M)aφtφt+1

)

p(Q|W)
}

(2.10)

wheret is frame index andφt is the state index at timet. p(ot |φt;M) is the GMM likelihood
as shown in Equation2.6. Q is a particular phone sequence corresponding to the word
sequenceW. Although it is possible that there are multiple pronunciations, usually only
the highest likely pronunciation is used for MLE estimation. Hence, the sum overQ in
Equation2.10can be removed.S is any possible state alignment given the phone sequence
derived from the word sequence. The length of the state sequence is the same as that of the
observation sequenceO. Hence, the objective function of Equation2.10can be simplified
as

FML(M) = log
{

∑
S

p(O,S|W;M)
}

(2.11)
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There are two hidden variables during the above estimation,the stateφt and the GMM
componentωi in each state. Expectation Maximum (EM) algorithm can be used to optimise
Equation2.11[16].

Discriminative Training

Maximum Likelihood is the optimal criterion when two conditions are satisfied, i.e. suffi-
cient training data and correct model assumption. However,neither of these two conditions
is satisfied. Hence, discriminative techniques were introduced into acoustic model training
as these do not assume infinite amount of data or the correct model. Rather than maximising
the likelihood of observation given the correct transcription in MLE training, discriminative
training aims to maximise the posterior probability given the observation. The recognition
accuracy metric can also be taken into account. There are a range of discriminative crite-
ria proposed for speech recognition. Significant and consistent performance improvements
were reported in various tasks [178]. Hence, discriminative training is widely used in the
state-of-the-art speech recognition systems. In this chapter, several common discriminative
criteria are reviewed briefly, including maximum mutual information (MMI) and minimum
Bayers’ risk (MBR).

Maximum Mutual Information

MMI [ 8, 178] training attempts to maximum the mutual information between reference
sentenceW and observation sequenceO. The objective function can be written as below,

FMMI (M) = I(W,O|M)

= log
( p(W,O|M)

P(W)p(O|M)

)

(2.12)

Normally the language model probabilityP(W) is not jointly trained with the acoustic
model since the language model is trained on a far larger corpus. Given thatP(W) is fixed,
MMI objective function is equivalent to maximising the average log-posterior probability
for the reference sentence logP(W|O,M), which is normally written as below,

FMMI (M) = log
( p(O|W,M)

1
k P(W)

∑
W′

p(O|W ′,M)
1
k P(W ′)

)

(2.13)

The denominator term is the probability of observation sequencesp(O|M), which sums
over all possible word sequencesW ′. In practice, a lattice containing highest probable
word sequences as used to approximate all possible word sequences. k is the language
model scale factor, which aims to scale down the dynamic range of acoustic score to yield a
broader posterior probability distribution.
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Minimum Bayes’s Risk

The Minimum Bayes’ Risk (MBR) aims to minimise the expected loss. The expected loss
can be expressed as,

FMBR(M) = ∑
W′

P(W|O;M)L(W ′,W) (2.14)

whereL(W ′,W) is the loss function for the output hypothesisW given the reference word
sequenceW. A number of loss functions can be found in the literature. These differ in
terms of minimising error at different levels such as sentence, word and phone.

• Sentence: this form is shown in Equation2.15. It aims to minimise error at the sen-
tence level.

LW ′,W =

{

1 i f W ′ 6=W
0 i f W ′ =W (2.15)

• Word: The loss function can be defined at a word level. It leads to criterion as called
minimum word error (MWE) rate.

• Phone: When phone is selected as the unit to compute loss function, it results in a
minimum phone error (MPE) criterion, which is applied widely in large vocabulary
speech recognition system [178].

2.2.2 Deep Neural Network

An alternative state output distribution can be obtained using a neural network. This ap-
proach can be traced back to 1980s. Feedforwad Neural network and recurrent Neural net-
work were proposed to substitute GMM based acoustic modelling [183, 19, 186, 21], where
a single hidden layer was normally used and monophone was chosen as the target during
training. However, due to their long train time and difficulty of adaptation, GMM-HMM
has been the state-of-the-art for the last two decades. Neural network revives with the ad-
vance of deep neural network containing many hidden layers since 2006. [96] proposed a
novel pretraining method to construct a deep neural networkand obtained significant im-
provement on image task. This model was introduced into speech recognition in [51] and
promising results were reported on a range of LVCSR systems [199, 97]. The system using
DNN to yield state output distributions is called DNN-HMM. This is also known as hybrid
system in the literature.

Figure2.2illustrates the structure of deep neural network (DNN) [199].
Input features consist of observations from several consecutive frames. These are fed

into a sequence of hidden layers, where each hidden layer applies a linear transform, fol-
lowed by an element-wise non-linear transform, such as sigmoid function. Softmax func-
tion is used in the output layer to yield a valid probability.Tied triphone states derived from
decision tree are used as target.
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... ... ...

...
...

output layer

........

input layer hidden layers

...
...

ot

ot−k

ot+k

P(ot |si)

Fig. 2.2An illustration of deep neural network with multiple hiddenlayers. The input is
acoustic feature and output is the tied states.

Training of DNNs consists of two stages, pretraining and fine-tuning. Pretraining aims
to find a good initialisation for the following fine-tuning stage. There are two types of
pretraining used for acoustic model training. The first typeis based on Restricted Boltzman
Machine [96]. The other type is based on discriminative layer-wised pretraining. The later
method was found to converge faster in the fine-tuning stage [198]. In the fine-tuning stage,
cross entropy is used as objective function and standard error backpropagation algorithm is
adopted based on stochastic gradient descent.

The state posterior probabilityP(si|ot) is calculated from DNN. However, in speech
recognition, the observation likelihoodp(ot |si)is required, which can be obtained by,

p(ot |si) =
P(si|ot)p(ot)

P(si)
(2.16)

wherep(ot) can be ignored during decoding.P(si) is the prior probability of statesi .
There have been a lot of efforts to improve performance of theDNN-HMM systems in

recent years. Lattice based sequence training using MMI or MBR criteria were investigated
in [115, 214, 232], second order (Hessian free) optimisation was examined in[116]. In
addition, filter bank feature were found to outperform features like MFCC [161] for acoustic
modelling. Recently, recurrent neural networks were foundto yield gains over DNNs [83,
191, 162]. Deep neural network and recurrent neural network can alsobe used for language
modelling, which will be introduced in Chapter3.

2.2.3 Tandem System

Instead of using the output of neural network to calculate likelihood directly, there is another
branch in acoustic modelling that makes use of neural network: Tandem system [95, 253].
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The neural network is used to extract acoustic features, which are concatenated with stan-
dard acoustic features to form “new” acoustic features for subsequent GMM-HMM training.
Figure2.3 shows an example of Tandem system. The neural network is trained based on
input feature vectors consisting of several consecutive frames and output targets being con-
text independent (CI) phones or context dependent (CD) states. This is the same as the
neural network in a Hybrid system, except that there is a bottleneck layer for extracting
features. The acoustic features used in Tandem systems consist of two parts. One are tra-
ditional acoustic features such as MFCC, PLP. The other are bottleneck features extracted
from neural network.

bottleneck
layer

GMM Model

...

output layer

input layer
hidden layers

...... ... .....
..

ot

õt õt+1

ot−k

ot+k

p(ot |si)

Fig. 2.3An illustration of deep neural network. Neural network is used to extract bottleneck
feature from the output of hidden layer and this bottleneck feature will be concatenated with
the standard acoustic feature to form Tandem feature and fedinto GMM-HMM systems

In [95], the Tandem system is first introduced into speech recognition. The posterior of
phone is modelled and combined with the traditional acoustic features to form high dimen-
sional Tandem features. These features are also called bottleneck features in the literatures.
In [86], bottleneck features from the output of a hidden layer (before the non-linear function
in the hidden nodes) were used to substitute posterior features and it yielded performance
gain. The dimensionality of bottleneck features, typically 26, is relatively low compared
with the number of nodes in the output or other hidden layers.The GMM-HMM system
trained using this kind of feature is called a Tandem system in the literatures. Traditional
techniques such as MLE and discriminative training can be applied to Tandem systems with-
out modification.
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2.2.4 Joint Decoding

In many systems, various acoustic models are trained separately and then combined for bet-
ter performance. Joint decoding [233] and Confusion network combination (CNC) [63] are
two popular methods to combine systems together for improved performance. Joint decod-
ing combines systems during decoding. Taking Tandem and Hybrid system combination as
an example, given a speech frameot , the log-likelihood of statesi in joint decoding can be
computed as,

LJ(ot |si) ∝ Z(si)+λHLH(ot |si)+λTLT(ot |si) (2.17)

whereZ(si) is normalisation term and normally set to 0,LT(ot |si) andLH(ot |si) are the
log-likelihood from Tandem and Hybrid systems for statesi given observationot .

The joint decoding system used in this chapter is shown in Figure2.4.

Speaker Dependent

Layer
Bottleneck

Bottleneck

 Pitch

HMM−GMM
Tandem

Stacked Hybrid

F
usion Score

Log−Posteriors

Log−Likelihoods

PLP

 PLP

 FBank

Fig. 2.4 An illustration of joint decoding system for acoustic modelling. A Tandem and
Hybrid systems can be combined on score level.

λT andλH denote weights for Tandem and Hybrid systems. In this chapter, the following
empirical values were used for joint decoding.

λT = 0.25

λH = 1.0 (2.18)

In confusion network decoding [145, 63], confusion networks are obtained by decoding
Hybrid and Tandem systems first. The confusion networks fromtwo or more systems are
aligned and combined, and the hypothesis word with highest posterior probability is chosen
for output. These two methods normally give comparable performance [233]. However,
joint decoding saves the compute time as it only requires a single decoding. Furthermore,
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compact lattices can be generated by joint decoding, which can be used for lattice rescoring
with better models to further improve performance.

2.2.5 Acoustic Model Adaptation

For statistical pattern classification, it is important that the training data is representative of
the testing data. Otherwise, a serious performance degradation may be caused due to the
mismatch. In speech recognition, test data always containsunexpected factors such as new
speakers. In order to make acoustic model more suitable for new speakers, speaker adap-
tation is applied widely to transform the speaker independent acoustic models into speaker
adapted models. It helps to reduce the mismatch between the model and the test data. It
is worth noting that in this section, only speaker adaptation is discussed. However, these
methods can aslo be applied to adaptation with other factorssuch as gender, environments,
and so on.

Speaker adaptation can be divided into supervised and unsupervised adaptation accord-
ing to whether references for adaptation data are availableor not. In the supervised adap-
tation, the correct transcription is given and used for adaptation. However, in most applica-
tions, it is very costly or impractical to obtain referencesfor adaptation data. Unsupervised
adaptation is adopted instead where these hypotheses are generated by an ASR system. In
this thesis, the unsupervised adaptation is considered because it is more practical and useful
in real life.

A number of adaptation algorithms have been proposed for GMM-HMM system with
consistent and significant performance gains. There are three broad categories of adaptation
methods [240], maximum a posterior (MAP) [74] which estimates the model parameters
using Bayesian inference, linear transform techniques such as maximum likelihood linear
regression (MLLR) [133], and techniques using subspace to represent speaker model, such
as cluster adaptive training (CAT) [70] and eigen voice adaptation [126].

Speaker Adaptation on DNN-HMM System

There is also a strong interest in speaker adaptation for DNN-HMM systems to improve
performance. One of the earliest works on adaptating DNN-HMM systems in ASR can
be traced back to the 1990s [166]. Along with the revived interests in Hybrid system, the
adaptation of DNNs has been studied intensively during the past several years. Several
methods for speaker adaptation with DNN-HMMs are reviewed here.

One method is to transform input features. These features transformed by CMLLR
from GMM-HMM systems were used for normalisation of different speakers in [198]. In
[234], FE-CMLLR [135] added on Tandem system was investigated. In FE-CMLLR, the
linear transform is determined by the posterior from GMM, rather than regression tree when
multiple transforms are used. The transformed feature willbe used as input for the training
of DNN to get a speaker adapted DNN-HMM system.

Another method is to append a speaker related feature as an auxiliary feature, such as i-
vector feature for speaker recognition [193, 113] and speaker code [2], to standard acoustic
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features. The acoustic adaptation using i-vector is illustrated in Figure2.5. The blue block
in the input layer represents the speaker related i-vector.

... ... ...

...
...

...
...

output layer

........
..i−vector

input layer hidden layers

ot

ot−k

ot+k

P(ot |si)

Fig. 2.5An illustration of deep neural network based acoustic modeladaptation using i-
vector. The i-vector feature is used as appended feature in the input layer of deep neural
network for speaker adaptation.

The i-vector is estimated on the training data for each speaker first. During training, the
i-vector is appended to the standard acoustic features for each speaker. At test time, for each
speaker, its i-vector is estimated, and appended with the acoustic features. The speaker code
approach adopts a similar structure, but the speaker representation vector is derived from
the DNN. This structure is also adopted for the neural network language model adaptation
and more details can be found in Chapter6.

The DNN model can also be adapted directly [198, 247, 254]. In [198], feature-space
Discriminative Linear Regression (fDLR) was applied, where an additional adaptation layer
is added directly after the input layer. The adaptation layer linearly transforms input feature,
which is a CMLLR-like transform. Because of adaptation datasparsity, the transform is
shared between different frames. During adaptation, only the adaptation layer is updated. In
case of very limited adaptation data, diagonal transform matrix can be applied [198]. As an
improvement, [134] adds L2 regularisation using weight decay and updates the input, output
layer or all layers. In [254], a KL-divergence based regularised adaptation was proposed. In
[225, 243], a cluster adaptive adaptation was investigated. In [222], the output of activation
is used for speaker adaptation.

2.3 Language Model

Language modelling aims to compute the probability of any given word sequenceP(W).
Language models play an important role in many applicationsincluding speech recogni-
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tion, machine translation and spoken language understanding. For speech recognition, they
impose constraints on the possible word sequence by computing the probabilities of the
sequence.

The probability of a word sequenceW = {w0,w1,w2, ...wN} can be decomposed into
cascading probabilities using the chain rule. The overall probability can be written as prod-
ucts of conditional probabilities for each word given its history.

P(W) = P(w0,w1,w2, ...wN)

=
N

∏
i=1

P(wi |wi−1, ...w1,w0) (2.19)

whereN is the valid length of word sequenceW, w0 is always the symbol of sentence start,
e.g. <s> andwN is always the sentence end symbol, e.g. </s>. Language models are trained
on a set of training corpus to estimate the probability ofP(wi |wi−1, ...w1,w0). However, for
any applications with even a moderate vocabulary size, the number of parameters for this
model is prohibitively large and impractical to store and compute all combinations of word
wi and history(wi−1, ...w1,w0). Hence, the history(wi−1, ...w1,w0) is normally grouped to
an equivalent class. AssumingΦ denotes the function used for clustering histories, the word
probability can be rewritten as,

P(wi |wi−1, ...w1,w0)≈ P(wi |Φ(wi−1, ...w1,w0)) (2.20)

The class functionΦ(·) clusters the history based on some criterion and probabilities among
the equivalent classes being shared. This reduces the number of parameters significantly
and allows reliable parameter estimation; e.g.n-gram language model introduced in the
following section clusters histories with the same previousn−1 as equivalent class.

The quality of a language model can be measured directly by perplexity. Given a word
sequenceW includingN words, the PPL of language model can be calculated as,

PPL= 2−
1
N log2(P(W)) = 2−

1
N log2(P(w0,w1,...,wN)) (2.21)

Language model with a lower perplexity means it gives a more accurate prediction, with
less uncertainty and confusion. The improvement in perplexity is expected to reflect in
speech recognition by reducing word error rate, although this is not always true. Hence,
word error rate provides an important metric to evaluate thequality of language model in
speech recognition.

There are a range of language models in the literature. In this chapter, we mainly fo-
cus onn-gram LM, which is probably the most popular language model of the past several
decades. It is a simple model with good generalisation on unseen data and efficient paralleli-
sation algorithm on large amount of training data. Althoughgood performance is achieved
in various tasks,n-gram LM has two well-known issues: data sparsity and long term his-
tory. In order to handle these issues, several variants derived fromn-gram LM are discussed
in Section2.3.4and2.3.5An inherently different type of language model, neural network
based language model, is introduced in Chapter3 to address these two issues.
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2.3.1 n-gram Language Model

As discussed above, classing functionΦ(·) is used to cluster similar histories and share
parameters. Inn-gram language model, the history is clustered according tothe previous
n−1 words, which is,

Φ(w0,w1, ...wi−1) = Φ(wi−n+1, ...,wi−1) =< wi−n+1, ...,wi−1 > (2.22)

wi−1
i−n+1 is used to denote a word sequencewi−n+1, ...,wi−1 for simplicity, which is called the

n-gram history. Then-gram language model probability can be written as

P(wi |wi−1
0 )≈ P(wi|wi−1

i−n+1) (2.23)

In practice, at the begining of a sentence, the sentence start symbol <s> is inserted. In
addition, a sentence end </s> is appended to the end of sentence. Hence, the probability
of the first word is expressed asP(w1| <s> ), and an additional sentence end probability
is estimated.n is normally called the order ofn-gram language model. Whenn is equal
to 1, unigram LM is constructed; and bigram LM is built by setting n equal to 2. Trigram
(3-gram) and 4-gram LMs are used widely in speech recognition systems. Under thisn-
gram approximation, it is straightforward to estimate the probability of n-gram LM using
maximum likelihood (ML) criterion as,

P(wi |wi−1
i−n+1) =

C(wi
i−n+1)

C(wi
i−n+2)

(2.24)

whereC(wi
i−n+1) is the frequency of the word sequencewi

i−n+1 in training data. Equation
2.24gives a valid probability as,

C(wi
i−n+2) = ∑

wi−n+1

C(wi
i−n+1) (2.25)

This simple estimation ofn-gram LM probability has several issues. In order to robustly
estimate the probabilities, sufficient coverage of possible word sequenceC(wi

i−n+1) is re-
quired. However, then-gram LM suffers data sparsity problem even only considering the
previousn− 1 words. Taking trigram (i.e. 3-gram) LM for an example, for amoderate
vocabulary with 20K words, there are as many as 200003−1= 8e12−1 free parameters to
estimate. Furthermore, many words triplets occurring in test time don’t appear in the train-
ing corpus. This results in a zero probability according to Equation2.24. Various smoothing
techniques have been developed for robust parameter estimation, which are introduced in
the next section. The second issue lies in thenth order Markov assumption in Equation2.22.
The predicted word probability is only dependent on the precedingn−1 words, while the
longer range context is ignored. The long term history may contain useful information for
prediction. There are plenty of works to mitigate this issue, which are briefly reviewed in
Section2.3.5.
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2.3.2 Smoothing

Smoothing is applied in then-gram LM to adjust the probability more robust, and avoid zero
probability during estimation. The essential idea of smoothing is taking out some probabil-
ity mass from the frequently seenn-grams and redistributing the mass to the infrequently
seen or unseenn-grams. There are various methods to smooth then-gram LM probabil-
ity. Several popular methods are briefly reviewed here. A more comprehensive study on
smoothing for language model is referred to [35, 255].

• Katz SmoothingKatz smoothing [114] extends the idea of the Good Turing estimate
[77] in language modelling. The Good Turing states that ann-gram count that occurs
r times, should be treated as if it occursr∗ times,

r∗ = (r +1)
nr+1

nr
(2.26)

wherenr+1 is the number ofn-gram appearsr +1 times in the training data. When
this idea is applied in language modelling, Katz smoothing is applied as below: if
an n-gram has been seen in the training data, the probability of the predicted word
is discounted by multiplying a ratio; otherwise, the probability of the predicted word
is calculated with a lower order ofn-gram probability, where the most distant word
is discarded. This scheme is also called back-off. The lowerorder Katz probability
distributions are called back-off distributions. The back-off scheme in a trigram LM
is illustrated in Figure2.6.

P(wi |wi−1,wi−2)

P(wi |wi−1)

P(wi)

γ(wi−1,wi−2)

γ(wi−1)

Fig. 2.6An illustration of back-off scheme in a trigram LM. When the trigram LM probabil-
ity is not existed, it backs off to bi-gram LM probability. Uni-gram LM probability will be
used if the bi-gram LM probability is not existed as well.

A general form of back-off scheme can be written as,
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P(wi |wi−1
i−n+1) =

{

α(w|wi−1
i−n+1) i f C(wwi

i−n+1)> 0
γ(wi−1

i−n+1)β (wi |wi−1
i−n+2) else

(2.27)

whereα(wi |wi−1
i−n+1) is the discountedn-gram probability,β (wi |wi−1

i−n+2) is the back-
off probability from lower order ofn− 1-gram LM. γ(wi−1

i−n+1) is the normalisation
term to guaranteeP(wi |wi−1

i−n+1) be a valid probability.

γ(wi−1
i−n+1) =

1− ∑
wi :C(wi

i−n+1)>0
α(wi |wi−1

i−n+1)

∑
wi :C(w

wi
i−n+1)=0

β (w|wi−1
i−n+1)

(2.28)

Various smoothing techniques discussed next mainly differin the choice of discounted
probabilityα(w|wi−1

i−n+1) (e.g. absolute discounting) and back-off probabilityβ (wi |wi−1
i−n+2)

(e.g. Kneser-Ney smoothing).

• Absolute DiscountingSimilar to Katz smoothing, absolute discounting [167] also
computes the probability using back-off scheme. The main difference lies in the dis-
counting way. Instead of multiplying a ratio, a fixed discount valueC≤ 1 is subtracted
from then-gram count. This discount constantC can be calculated using leave-one-
out [167], where,

C=
n1

n1+2n2
(2.29)

andn1 andn2 are the frequencies ofn-grams appears one and two times respectively.
There are different ways to select the discount valueC [35].

• Kneser-Ney SmoothingKneser-Ney (KN) smoothing [120] is similar to absolute
discounting in that it also subtracts a discount valueC ≤ 1 for nonzeron grams. The
difference lies in the lower back-off order probability. Kneser-Ney smoothing adopts
a smoothed ML estimation for lower ordern-gram based on an important observa-
tion. The back-off should be optimised for lower count or unseen case. Taking “San
Francisco” as an example, The word “Francisco” may have a very high probability in
terms of unigram. However, it always occurs after "San". Hence, for a bigram LM,
it should back off to a low unigram probability when it follows other words except
“San”, where the bigram probability is used directly; even “Francisco” has a high fre-
quency in the training corpus. [78] presents a modified version of KN smoothing by
introducing different discount valueC for differentn-gram counts. This modified KN
smoothing is reported to be the best smoothing technique forword based language
model [78].

The estimation ofn-gram LM mainly involves the collection ofn-gram counts and pa-
rameter smoothing. This is suitable for parallel computation. Hence, a large amount of data
can be used for training. There are many engineering works carried out for efficientn-gram
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LM training on large amounts of data [213, 25, 92, 91]. The advantages of easy implemen-
tation, fast training and good generalisation on unseen data maken-gram language models
the most popular and dominant language model over the last several decades.

2.3.3 Language Model Interpolation

Language model interpolation is widely used for combination of multiple language models.
Individual language model is trained on corpus from different domains. These language
models can be combined in test time. Linear interpolation and log linear interpolation [118,
87] are two common interpolation methods. Linear interpolation is shown as,

P(w|h) =
K

∑
k=1

λkPk(w|h) (2.30)

whereK is the number of language model component andλk is the interpolation weight for
thekth language modelPk(w|h). The parameterλk can be optimised via EM algorithm on a
held-out set [57].

Assuming that the held-out set consists ofN words and there areK language models for
linear interpolation; Then the objective function is,

J(θθθ ) =
N

∑
i=1

log(
K

∑
k=1

λkPk(wi |hi)) (2.31)

whereθθθ is the set of interpolation weightsλk to be optimised. This formula can be viewed
as a mixture model and each mixture component is a separate language model. Based on
the previous discussion of the EM algorithm, the auxiliary function can be written as,

Q(θθθ ;θθθ (t)) =
N

∑
i=1

q(λ (t)
k )

K

∑
k=1

log(λkPk(wi |hi)) (2.32)

whereq(λ (t)
k ) is the posterior probability of thekth language model component given all

training words given the interpolation at thetth iteration, It can be computed as,

q(λ (t)
k ) =

λ (t)
k ∑N

i=1 log(Pk(wi |hi)

∑K
j=1 λ (t)

j ∑N
i=1 log(Pj(wi |hi))

(2.33)

By maximising Equation2.32in terms of interpolation weightsλk, the update of interpola-
tion weights in thet +1th iteration can be obtained as,

λ (t+1)
k =

q(λ (t)
k )

∑K
j=1q(λ (t)

j )
(2.34)
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The above update formula can be used for iterative update until the objective function in
Equation2.31converges.

Log linear interpolation can be written as,

P(w|h) = 1
Z(h)

K

∏
k=1

Pk(w|h)λk (2.35)

whereZ(h) is the normalisation term andλk is the interpolation weight to estimate. The
normalisation termZ(h) can be calculated by summing over the whole vocabularyV,

Z(h) = ∑
w∈V

K

∏
k=1

Pk(w|h)λk (2.36)

This is a typical log-linear model and generalised iterative scaling [52] can be used for
optimisation.

Language model interpolation can be naturally extended forlanguage model adaptation
[11]. The interpolation weights of language component are optimized on the in-domain data
for adaptation purpose. The advantage is that there are onlyfew parameters to be estimated.
These parameters can be estimated robustly given several hundreds of words.

2.3.4 Improvedn-gram Language Model

Despite the sophisticated smoothing technique inn-gram LM, data sparsity is always an
issue with the increasing ofn-gram order. Many attempts have been explored to mitigate
the issue, either by reducing the number of parameters via different clustering or introducing
richer contextual information. Several typical methods are briefly review in this chapter.

• Class based language modelThe class based language model [23, 147] aims to mit-
igate the data sparsity problem by sharing data. In the word basedn-gram LM intro-
duced above, each individual word is viewed different and treated alone. However,
there are many words sharing the same context due to their inherent similarity, such
as Monday and Tuesday, son and daughter. These words with contextual or syntactic
similarities are clustered to one class. Then-gram LM probability is estimated based
on class instead of word. The number of classes is expected tobe largely smaller than
vocabulary size, so as to obtain a more robust parameter estimation. For a class based
trigram language model, the predicted probability can be written as Equation2.37,

P(wi |wi−1,wi−2) = P(wi |ci)P(ci|ci−1,ci−2)P(ci−1,ci−2|wi−1,wi−2) (2.37)

whereci is the class assignment of wordwi . Normally, each word is assigned to a sin-
gle class and one class contains several words. Hence, the third termP(ci−1,ci−2|wi−1,wi−2)
can be viewed as deterministic and always 1. There are many ways to estimate the as-
signment from word to class, either from linguistic knowledge such as POS tag [169],
or purely data driven [23, 119, 175, 12, 147, 246].
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The class basedn-gram LM is normally interpolated with word basedn-gram LM to
get the best performance. The class basedn-gram LM works well on small amounts
of data. However, the improvement disappears with the increase of training data [78].

• Random forest based language modelThe random forest based language model
[245] is derived from decision tree based language model [177]. The historieswi−1

i−n+1
are classified to many equivalent classes by decision tree byasking questions. These
questions can be very general, such as whether the most distant word is some specific
word. Histories in the same class share the distribution over the predicted probability.
An improved decision tree algorithm was proposed in [245] by training a complete
decision tree on the training data and pruning it on the held-out data with the KN
smoothing technique. Several decision trees are constructed by introducing some
randomisation. The probabilities from different decisiontrees are aggregated. The
experiments in [245] show that a 10% PPL reduction and 6% WER reduction is ob-
tained. The training of random forest language model on larger data obtained a 3%
WER improvement [215] .

Random forest based language model has a large potential to work well if the good
partition of history can be found by asking general questions. However, the drawback
is the heavy computation during training, e.g. in [245], and 100 decision trees were
built. Besides, the improvements seem to decrease when there is more training data.

• Structured language modelThe structured language model [30, 29] aims to explore
the syntactic structure in natural language to improve language modelling. It is based
on the assumption that syntactic structure can filter out irrelevant words and the head
words provide better prediction for the next word. The advantage of structured lan-
guage model also comes from long term information instead ofthe lastn−1 words.
A partial parse is adopted on the history to find the syntacticorder of a sentence.

The structured language model is reported to give large perplexity reduction (11%
in [30] and up to 24% in [29]). However, it is questionable when it is applied to
more spontaneous spoken language application as it is difficult to discover proper
syntactic structure. It is also difficult to apply to speech recognition systems when the
recognised result contains many errors. Besides, the improvement diminishes when
linearly interpolating with other long term language models such as the cache based
language model [78] introduced in Section2.3.5.

• Factored language modelThe factored language model was first introduced in 2003
[15]. In the factored language model, each word is represented as a feature vector.
Generalised back-off is used for smoothing in FLM. This language model is very
convenient to incorporate informative features such as root, stem, part-of-speech and
morph. This is quite useful when there is a scarcity of in-domain training data or
morphological information. It is applied widely for language models such as Arabic.
[231] reported 2% absolute WER improvement, and 0.6% absolute improvement was
reported in [212].
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2.3.5 Beyondn-gram Language Model

In this section, the efforts to overcome the other drawback of n-gram LM, i.e. the drop of
long term history, are introduced. Two representative language models are reviewed, which
are cache based and maximum entropy based language models.

• Cache based language modelThe cache based language model was introduced in
1990 [125]. It is based on the hypothesis that the words used recently have a higher
probability to appear soon than either their overall frequencies or the predicted proba-
bilities from standardn-gram LM. To capture this feature, the words appearing in the
recent past are cached and used to estimate the probability for the cache component.
This work was originally carried out on the part-of-speech (POS) based language
model. Each POS maintains a cache with room for 200 words. Each word is assigned
to its POS tag and then stored in the corresponding cache. When there are more
than 5 words classified to the same POS tag, the cache model is activated and used
to estimate the cached probability. The probability from the cache is further interpo-
lated with standardn-gram LM. The word probability consists of two parts: the first
part is fromn-gram LM and the other part is from the cache model. A significant
perplexity reduction was reported in [125]. In [111], the cached based trigram LM
(also known as dynamic model) was estimated based on recent history. The dynamic
model is again interpolated with the static trigram word based LM. This dynamic
model resulted in a 23% reduction in perplexity, and up to 24%WER reduction, after
collecting the first several hundreds of words for the document.

• Maximum entropy based language modelMaximum entropy based language model
[130, 187] belongs to the family of the exponential language model [33]. The general
form of the maximum entropy language model can be written as,

P(w|h) = 1
Z(h)

exp[
K

∑
k=1

λk fk(w,h)] (2.38)

where fk(w,h) is arbitrary feature defined by the wordw and its historyh, andλk is
the set of parameters to estimate.Z(h) is the normalisation term to ensure a valid
probability.

Z(h) = ∑
w∈V

exp[
K

∑
k=1

λk fk(w,h)] (2.39)

It is worth noting that the log linear interpolation discussed in Equation2.35 is a
special case of the maximum entropy language model, where the featurefk(w,h) is
chosen as the log probability of each language component log(Pk(w|h)).
A unique ME solution is guaranteed to exist for this problem.Generalised iterative
scaling [52] can be applied to get the global optimal.

Maximum entropy introduces the trigger pair for feature design. The trigger pair is
defined on two highly correlated sequencesA andB. A → B denotes a trigger pair,
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whereA is the trigger andB is the triggered sequence. WhenA occurs in the history,
it triggersB by affecting its probability. There are a large number of possible trigger
pairs according to this definition. The trigger pair can be filtered out by consider-
ing their co-occurrence frequency. One good measure can be their average mutual
information [130]. An elegant feature of maximum entropy language model is that
when then-gram counts are used as trigger pairs, the unique ME solution is the max-
imum likelihood solution. It was found that the self triggerpairs (A = B) are very
informative [187]. The long term information is captured by using trigger pairs. The
maximum entropy based language model was reported to give 32-39 % PPL reduc-
tion and 10-14% WER reduction in [130, 187]. One drawback of this model is the
computational complexity. Despite the effort on the speedup of training [79], it is
still time-consuming and hard to use a large amount of training data. A regularised
class based maximum entropy based model, also known as modelM, was developed
in 2009 [34]. This model gives state-of-the-art performance on broadcast new tasks
[36].

• Sparse non-negative matrix language modelMore recently, a sparse non-negative
matrix language model using skip-grams was proposed by Google [202, 203]. It is
similar to the maximum entropy based language model as they are both able to model
long term information by applying constraints on various features. However, in the
non-negative matrix language model, the skip-grams feature is used. Additionally,
rather than using log linear function, the non-negative matrix is used as follows,

y = Mf (2.40)

wheref defines a vector of skip-gram features, andM is a non-negative matrix in-
cluding the parameter to be optimised. The outputy is normalised to obtain a valid
probability for thekth word using,

P(k|f) = yk

∑|V|
j=1y j

(2.41)

A significant improvement on perplexity compared ton-gram LM was obtained in
[203], resulting in a comparative performance with recurrent neural network language.
However, this model has not been reported on speech recognition yet, although this
model is able to convert to the standard ARPA back-off based language model [174].

In this chapter, only certain typical language models from the last two decades are briefly
reviewed. For a more comprehensive and thorough review, readers are referred to [188, 78].

2.3.6 Language Model Adaptation

The mismatch between training and test corpus is always an issue. The mismatch might be
introduced from several aspects for language models. First, people have different customs
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for choosing words and expression. Second, a range of speaking styles exist between train-
ing and test data, e.g. written English and spoken English are expected to be very different.
Last but not the least, different domains have an underlyingdifferent vocabulary, even for
the same domain, and the choice of language may evolve with time.

Given the inherent variability, the language model can be adapted to mitigate the effect
of mismatch. Similar to acoustic model adaptation, language model adaptation can be di-
vided into supervised and unsupervised adaptation. When the correct transcription is given,
supervised adaptation is applied. However, in many applications, such as speech recogni-
tion, the reference is not available. The adapted text comesfrom the recognised hypothesis.
In this way, unsupervised adaptation is carried out. Four popular language model adaptation
methods are briefly introduced in this chapter. More detailsabout language model adapta-
tion can be found in [11]. Many of these techniques can be viewed as a natural extension of
improved language model introduced in Chapters2.3.4and2.3.5.

• Interpolation language model interpolation is widely used for language model adap-
tation. An individual language model is trained on corpus from different domains.
These language models are combined in test time with linear interpolation as shown in
Equation2.30. The advantage of interpolation is that there are only a few parameters
to be estimated. These parameters can be estimated robustlygiven several hundreds
of words.

• Context dependent interpolationGlobal and fixed interpolation weightsλk are used
in the above section. [138, 141] studied the context dependent interpolation for adap-
tation, which is written as,

P(w|h) =
K

∑
k=1

λk(h)Pk(w|h) (2.42)

The interpolation weightλk(h) is related to its historyh. It is impractical to esti-
mate an interpolation weight for every possible history. Inorder to robustly estimate
the interpolation weight, MAP weight adaptation and class context dependent weights
were investigated in [138]. The former method uses context independent interpolation
weight as prior and estimates the parameters based on training data under Bayesian
framework. The latter reduces the number of parameters by clustering similar histo-
ries and sharing parameters.

• Cache based LM adaptation[121] extended the idea of cache based language model
for the purpose of adaptation. A cache based language model is estimated based on the
previous recognised words and then interpolated with a background language model.
This cache based language model is able to capture the changeof text by using the
recent words, and good improvement was reported.
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• Topic based LM adaptation Topic based language model was proposed in [76] and
its expression is as below,

P(w|h) = ∑
t

P(w|t)P(t|h) (2.43)

wheret is a latent topic variable which may be assigned to differenttopics,P(w|t) is
word probability given the topic, andP(t|h) is topic posterior probability given history
h. This topic-related model is able to predict word probability based on a long term
history. However, it fails to make good use of the short term history, which is expected
to attribute more to the prediction of the next word. Hence, the probability in Equation
2.43 is normally combined with the staticn-gram language model. The maximum
entropy model can be applied to make the estimated probability satisfy constraints
from bothn-gram LM and topic based language model. Generalised iterative scaling
[52] is applied for optimisation. Various topic models can be used, including latent
semantic analysis (LSA) [10], probabilistic latent semantic analysis (pLSA) [165] and
latent Dirichlet allocation (LDA) [223].

• Maximum entropy based LM adaptation Maximum entropy based language model
described in Chapter2.3.5can be viewed as an adaptive language model inherently
[187]. The incorporation of triggers is able to capture the dynamic change in the use
of words, and affects the predicted probability.

2.4 Search

Search aims to find the best recognition result according to Equation1.1, by integrating
various knowledge sources including the acoustic model, language model and lexicon. A
decoder is implemented for search purpose and it is a crucialcomponent in the speech
recognition system. In academia, searching provides a straightforward way to validate the
improvement of various techniques in speech recognition. In industry, searching is more
crucial as the latency of search affects the custom experience directly. Hence, there is a
strong desire to design a fast and robust decoder.

Two types of searching problems are discussed in this section. If the recognition result
is obtained directly from the acoustic feature from scratch, the process is called first-pass
decoding. A decoder can find the best hypothesis by incorporating acoustic and language
models directly. However, first-pass decoding is computationally expensive due to the huge
search space, especially when a large language model is applied. Lattice rescoring can
mitigate the computational load by using multiple passes. The lattices are first generated
with small models. The lattices define compact but sensitivesearch space. Sophisticated
models are then applied to get more accurate results on lattices, which limits the search
space and largely reduces computation.
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2.4.1 Decoding

Given the acoustic model and language model, the decoder aims to search for the best path
with the highest score as shown in Equation1.1. The acoustic model based on HMM gives
the probability of observations of a given phone (e.g. triphone) sequence. The lexicon
specifies the phone sequence of each word. Language model calculates the probability of a
word sequence. Moreover, one word may have multiple pronunciations. For the same phone
sequence, the state sequences are different due to various state segmentations. By reviewing
the Equation1.2,

Ŵ = argmax
W

p(O|W)P(W)

= argmax
W

(

∑
S

p(O,S|Q)∑
Q

P(Q|W)P(W)
)

(2.44)

whereQ is the possible phone sequence given word sequenceW, andS is the possible state
sequence given phone sequenceQ, P(W) gives the language model probability,P(Q|W) is
determined by the pronunciation probability andp(O,S|Q) can be calculated from acoustic
model.

It is computationally heavy and impractical to enumerate all possible word sequences
considering the variable sentence length and the large vocabulary size. Approximations are
introduced to handle this issue. The first approximation is to substitute the summation with
maximisation as below,

Ŵ = argmax
W

(

max
S

p(O,S|Q)max
Q

P(Q|W)P(W)
)

(2.45)

Under this approximation, the most likely state sequence iskept and the corresponding word
sequence is chosen as the recognised output.

An illustration of the decoding procedure is given in Figure2.7. The recognised sentence
can be broken down to smaller units, where each level of unit can be depicted by a specific
model or constraint. A sentence is formed by a sequence of words depicted by the language
model, each word consists of several phones, where the constraint is derived from lexicon.
Each phone (e.g. triphone) has a few states, which corresponds to the HMM model. The
state emission probability distribution can be modelled byGMM or DNN.

For implementation, a compact graph can be compiled to incorporate the information
from acoustic model, lexicon and language model, which is called the decode network in
the literature. The decode network can be built offline before test time. The aim of search
(i.e. decoding) is to find the best possible path from the decode network. Width first (e.g.
Viterbi) and depth first (A star) search algorithms can be applied [6]. Viterbi decoding
is the most popular algorithm used for decoding. Given the whole observation sequence
O = {o1,o2, ...,oT}, the partial best path (i.e. state sequence) at timet in statesj is defined
as,

Ψ j(t) = max
φ0,..,φt−1

p(o1, ...,ot ,φ1, ...,φt = sj) (2.46)
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State

Phone

Word
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Fig. 2.7A decomposition of sentence in speech recognition. The sentence consists of word
with language model; the word is a sequence of phone constrained by pronunciation lexicon,
the phone is modelled by the state sequence in the HMM model. Each state can be modelled
using GMM or DNN.

The partial best path can be calculated recursively,

Ψ j(t) = max
i
{Ψi(t −1)ai j}b j(ot)

(2.47)

The best state in timet −1 can be obtained via,

φt−1 = argmax
i

{Ψi(t−1)ai j} (2.48)

with an initialisation

Ψ1(0) = 1 (2.49)

Ψ j(1) = a0 jb j(o1) (2.50)

where state 0 is the entry state of HMM model.Sj(T) gives the highest score for state
sj , φt−1 computes the state oft−1 for the partial best path to timet at statesj . The best path
score in timeT can be computed recursively using Equation2.46and its state sequence can
be retrieved based on the recording froms(t) with Equation2.47.

Viterbi algorithm can be extended to continuous speech recognition, and an implemen-
tation of this algorithm is called token-passing algorithm[250, 168]. In this algorithm, each
state maps toj in Viterbi algorithm. And each token contains a history pathincluding the
previous word sequence. Each state can contain multiple tokens with different histories to
this state. The language model score is added between the transition from the end of one
word to new word. Each jump consists of the state transition probability and acoustic like-
lihood from the state output probability. The path with highest likelihood is chosen as the
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recognised result. The word sequence is retrieved by a backward search using Equation
2.47.

The complexity of decoding increases dramatically with thesize of language model, es-
pecially the order ofn-gram LM used. The search is time consuming. It is computationally
unaffordable to use full search by keeping all the possible paths. Therefore, several approx-
imations are introduced to speed up searching. For each state, only a fixed number of the
highest tokens are kept. The other tokens with lower likelihood are discarded, although
these discarded paths are possible to have a high likelihoodwith more observations. Beam
search is used for pruning to reduce computation. A beam width can be specified and to-
kens with lower likelihood than the beam width are discarded. However, if the number of
tokens is small or the beam width is too tight, the most likelypath is probably pruned in
an early stage, which damages performance although the decoding time is reduced signifi-
cantly. Hence, the hyper parameters (beam width and number of tokens per node) control
the tradeoff between decoding speed and accuracy.

In practical application, the log of probability is normally used for numerical stability.
Due to the numerical ranges of the acoustic model and language model probabilities are
quite different. The language model score is much smaller than acoustic model score. To
overcome this issue, a language model scale is added in the log of language model probabil-
ity, such as 14.0. A similar scale is applied for pronunciation probability as well. Besides,
word penalty is introduced to control the number of words. Under these assumptions, the
final recognised output in real speech recognition system isexpressed as,

Ŵ = argmax
W

(

logp(O,S|Q)+α logP(Q|W)+β logP(W)+ γL(W)
)

(2.51)

whereα is the pronunciation probability scale,β is the language model scale andγ is the
word penalty.L(W) is the length of the word sequence.

There are two types of decoders in the literature, which are dynamic and static decoders.
The difference exists that whether the language model scoreis added during decoding or not.
In a dynamic decoder, the decode network is compiled using acoustic model and lexicon,
the language model score is added during decoding on the fly, while for the static decoder,
the language model is compiled into decode network as well, which is often known as
Weighted Finite State Transducer (WFST) based decoder. Forexample, HTK [251] adopted
a dynamic decoder and Kaldi implemented a WFST based decoder[179]. There is also
some work using the static decode network, while compiling the language model on the fly
to reduce memory [100].

2.4.2 Lattice Rescoring

During decoding, the hypothesis with the highest likelihood is generated as output. A side
product of decoding is lattice. Lattice is a compact graph containing possible paths during
recognition. Figure5.1gives an example of lattice with a reference of “well I think that is
true”. Besides the correct path (labelled as a red line) in the lattice, there are a number of
alternative paths with high likelihood. Each node in the lattice is associated with time, word,
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acoustic likelihood and language model score information.In the lattice shown in Figure
5.1, the word information is moved to the edge for simplicity. Inmany applications, it is
computationally difficult or impractical to use first-pass decoding for sophisticated acoustic
and language models. Small models are used for first-pass decoding to generate the lattice.
The lattice gives a large number of possible paths in a constrained search space. The more
sophisticated and accurate models are applied in the constrained search space defined by
the lattice and the improved recognition result can be obtained. Lattice is also very useful
in many applications. For example, in MPE training, latticeis used to approximate all
possible paths as shown in Equation2.12. The lattice can also be used for the estimation of
confidence score and key word spotting [237]. The confusion network decoding based on
lattice can further reduce word error rate by finding the bestpath with lower word error.
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Fig. 2.8An example of lattice with reference “well I think that is true”

2.4.3 Confusion Network Decoding

In Viterbi decoding, the hypothesis is obtained by optimising the objective function in Equa-
tion 1.2, which is rewritten as,

Ŵ = argmax
W

P(W|O) (2.52)

The hypothesisŴ is the most likely word sequence with minimum error rate at the sentence
level. However, word error rate is normally used as the standard evaluation metric in speech
recognition. Hence, there exists a mismatch between the objective function and evaluation
metric. The output of Viterbi decoding is sub-optimal for word error rate.

In order to minimise the error at word level, Minimum Bayes’sRisk on word level
discussed before can be applied, and the word level posterior probability P(w|O) is used.
The word posterior probability can be calculated via the forward-backward algorithm in the
lattice. The posterior probability of a link (i.e. an arc) inlattice can be expressed as,

P(l |O) =
∑q∈Ql

p(q,O)

p(O)
=

∑q∈Ql
p(q,O)

∑q∈Q p(q,O)
(2.53)
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whereQl is all paths through linkl andQ is all paths in the lattice. Each linkl contains
information including the start and end time, word label andacoustic, pronunciation and
LM score.

Each word may occur in multiple links in an overlapped time region in the lattice. Con-
fusion network [145, 63] provides a feasible way to combine these posterior probabilities.
First, the time dependent word posterior is computed as,

P(w|O, t) = ∑
ls<t<le,lw=w

P(l |O) (2.54)

wherels, le is the start and end time of linkl and lw is the word label of linkl . In time t,
the posteriors of links corresponding to wordw are added. The word posteriorP(w|O, t) is
clustered according to their time slots and phonetic similarities. A linear graph can be built
by clustering the links. The phonetic similarity is also considered to form the confusion sets.
Figure2.9 gives an example of the confusion network converted from thelattice shown in
Figure5.1. The confusion network has a parallel structure in each timeslot. The word with
highest posterior probability in each time slot is chosen asoutput. Therefore, the recognised
output in the confusion network shown in Figure2.9 is “um well I think that is true um”.
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Fig. 2.9An example of confusion network for sentence with the reference “well I think that
is true”

Confusion network is very useful in practical application.It helps to further reduce word
error by clustering links in lattice [63]. It can be also used for keyword spotting [256] and
spoken language understanding [93].

2.5 Evaluation

The evaluation of speech recognition is important as it allows various models to be com-
pared. The quality of speech recognition can be measured with word error rate (WER).
WER is calculated by comparing the reference (correct sentence) and hypothesis. Two
sentences can be aligned with dynamic programming for string alignment to minimise the
Levenshtein distance. There are three types of errors, which are insertion, deletion and
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subsection error. The calculation of WER can be expressed as,

WER=
S+D+ I

N
∗100% (2.55)

whereS is the number of substitution error,D is the number of deletion errors andI is the
number of insertion errors.N is the number of words in the reference. A lower WER means
a better speech recognition result. Figure2.10 shows an example of WER computation.
The reference and hypothesis word sequence are aligned. There are 7 words in total in
the reference sentence. For the aligned sentences, there are 1 insertion error, 2 substitution
errors and 1 deletion error. Hence the WER is 4/7= 57.1%.

EVAL: D I S S

REF: I HAVE NEVER              BEEN AROUND A CAMPFIRE

HYP:   HAVE NEVER DREAM   I          AM       A CAMPFIRE

Fig. 2.10An example of WER computation. There are 1 deletion error, 2 substitution errors
and 1 insertion error when compared the reference “I HAVE NEVER BEEN AROUND A
CAMPFIRE” and hypothesis “HAVE NEVER DREAM I AM A CAMPFIRE”.

2.6 Summary

This chapter reviews the fundamentals of speech recognition based on the Hidden Markov
Model. First, the extraction of acoustic features, especially MFCC, PLP and FBank, is dis-
cussed. The preprocessing techniques for acoustic features are also described. The Hidden
Markov Model (HMM) is then detailed, ranging from the model structure to parameter es-
timation. Two popular types of acoustic model, Gaussian mixture model (GMM) and deep
neural network (DNN), are introduced. The adaptation for these two models is also briefly
presented. Another important component in speech recognition, also the research topic in
this thesis, the language model, is introduced. In this chapter, the discussion focuses on
the most popularn-gram language model. There are two well-known issues for the stan-
dardn-gram language model, which are data sparsity and then-gram assumption. Various
smoothing techniques are introduced for robust parameter estimation, and extensions of
standardn-gram LM are also presented to capture the long term information. The adapta-
tion of n-gram language model is also discussed. When the acoustic model and language
model are available, the speech recognition process turns to be a search problem, i.e. how
to find the best hypothesis from the search space defined by theacoustic model, language
model and pronunciation lexicon. Viterbi decoding is introduced as an efficient algorithm
to find the best path. Confusion network decoding is also discussed to minimise word error
rate. Finally, the evaluation of a speech recognition system is presented.
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Neural Network Language Models

Language models are crucial components in many speech and language processing appli-
cations including speech recognition. The aim of the language model is to estimate the
probability of any given sentence as below,

P(W) = P(w0,w1,w2, ...,wN)

=
N

∏
i=1

P(wi |wi−1, ...w1,w0) (3.1)

wherew0 is the sentence start symbol <s> andwN is sentence end symbol </s>. Due to
their good performance and efficient implementation algorithm, n-gram LMs have been
the dominant language modelling approach for several decades. However, there are two
well-known issues associated withn-gram LMs [78]. The first is data sparsity. To address
this problem, sophisticated smoothing techniques have been developed for robust parameter
estimation as described in Chapter2.3.2. The second issue lies in thenth order Markov
assumption. The predicted word probability is only dependent on the precedingn−1 words,
and longer range context dependences are ignored. A range ofwork has been carried out to
overcome these two issues. Many of them are the variants of the n-gram LMs as have been
discussed in Chapters2.3.2and2.3.5.

In this chapter, language models based on neural network arereviewed. Two widely used
neural network language models (NNLMs), feedforward and recurrent neural network , are
presented. Feedforward NNLMs [14] solve the data sparsity issue by projecting each word
into a low-dimension and continuous space. RNNLMs [153] extend the concept to model
long term history using a recurrent connection between input and hidden layers. Both of
these NNLMs provide complementary information to standardn-gram LMs, and are often
combined withn-gram LMs. They have become increasingly popular in recent years and
promising results have been reported in a range of tasks and systems [196, 153, 154, 150,
216, 217, 61, 248].
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3.1 Model Structure

There are various neural network structures that can be usedfor language modelling. In this
section, three typical structures are reviewed, which are feedforward, recurrent and long
short term memory neural network respectively.

3.1.1 Feedforward Neural Network Language Model

Feedforward neural networks (also known as multilayer perceptrons) were first introduced
in the context of word-based language modelling by Bengio in2003 [14]. They were further
developed by Schwenk in terms of efficient training and application to speech recognition
[196]. An n-gram feedforward NNLM can be constructed as shown in Figure3.1 1. It is
still an n-gram language model and the probability of any given sentenceW can be written
as,

P(W) =
N

∏
i=1

P(wi |wi−1, ...w1,w0)

≈
N

∏
i=1

P(wi |wi−1, ...wi−n+1) (3.2)

The input consists of the previousn−1 wordswi−1
i−n+1 and the target is the predicted

word wi . Each word is mapped to a single node in the input and output layer. 1-of-K
coding (also known as one-hot representation) is used in theinput layer, where only the
node corresponding to the word is set to 1, the other nodes are0. Rather than using the
complete vocabulary, shortlists consisting of the most frequent words are normally used for
input and output layers. The mapping between word and node inthe input and output layers
can be expressed as Equation3.3. An out-of-vocabulary (OOV) input node can be used
to represent any input word not in the input shortlist. Similarly, an out-of-shortlist (OOS)
output node is added in the output layer to represent words not in the output shortlist. The
use of shortlist can model the probabilities of OOV and OOS words in the input and output
layers. A valid probability can be obtained via normalisation over the complete vocabulary.
Besides, the shortlist in the output layer only contains themost frequent words, instead of
the large complete vocabulary. The computation occurring in the output layer can then be
reduced. The OOV and OOS nodes will be further discussed later in this section.

In the feedforward NNLM shown in Figure3.1, each word is mapped to one node in
both input and output layers using the following indexing,

φ in(w) = l w ∈ V in

φout(w) = k w∈ Vout

(3.3)

1In this chapter we only consider neural networks with a single hidden layer. Deep neural network based
language models can be built in a similar way [4].
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f(wi−1)

f(wi−2)

f(wi−n+1)

vvvi−1
P(wi |vvvi−1)

Fig. 3.1A 4-gram Feedforward neural network language model. The previous 3 words in
the input layer are projected into a low-dimension vector with the shared projection layer.
Feedforward neural network is applied as classifier to estimate the probability of current
word wi

wherel andk are the index of wordw in the input and output layers. As stated before, the
words not in the input word list are mapped to the OOV node, andwords not in the output
word list are mapped to the OOS node. The indexing functions for the OOV and OOS nodes
can be defined as,

φ in(OOV) = |V in|−1

φout(OOS) = |Vout|−1 (3.4)

where|V in| and|Vout| are the size of input and output word lists respectively. Thelast nodes
in the input and output layers are used to represent OOV and OOS words.

The indexing in the input and output layer may be different due to the difference of input
vocabularyV in and output vocabularyVout. 1-of-K coding is applied for each wordw in the
input layer to obtained the 1-of-K coding vectorr (w), whosejth element is,

r(w)j =

{

1 j = φ in(w)
0 otherwise

(3.2.1)

Thus only one element in the 1-of-K coding vectorr (w) is 1 and all the others are 0.
The 1-of-K coding vectors of then−1 previous words are fed to the linear projection layer.
The projection matrixE is shared over all input word vectors. Each wordw in the input
vocabularyV in can be represented using a low-dimension vectorf(wi) by the projection
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layer, whch is also known as word embedding in literature [157, 156].

f(w) = E⊤rw = e⊤φ in(w) (3.5)

whereei is theith row vector of projection matrixE andφ in(w) is the index of wordw in
the input layer.

The previousn−1 word embedding vectors are concatenated to form the vectorx, writ-
ten as,

x =









f(wi−n+1)
...

f(wi−2)
f(wi−1)









x is fed to the hidden layerA and a non-linear function is applied as

v i−1 = σ(A⊤x+ba) (3.6)

whereba is the bias vector in the hidden layer, andvi−1 is the output vector of the hidden
layer. Sigmoid function is normally chosen as the non-linear function σ(·). The sigmoid
function of thejth element can be written as,

σ(v j) =
1

1+exp(−v j)
(3.7)

The output of the hidden layer is multiplied with matrixU in the output layer,

z= U⊤vi−1+bo (3.8)

whereU is the matrix andbo is the bias vector in the output layer. A softmax function is
used at the output layer to get a positive and valid probability distribution over words in the
output layer.

P(wi |hi)≈ P(wi |wi−1
i−n+1) =

exp(zφ(wi))

∑
w∈Vout

exp(zφ(w))
(3.9)

The probability of the OOS node in the output layer needs to behandled specially to get a
valid probability over the whole vocabulary. Usually, the probability mass of OOS words is
re-distributed among all OOS words [172, 131].

One advantage of feedforward NNLMs is that they mitigate, tosome extent, the data
sparsity problem. The projection layer matrixE in the input layer is shared among history
words. The number of model parameters increases linearly with a ratio of the projection
layer size with the growth of then-gram order, instead of increasing exponentially as in
standardn-gram LM. The dimension of the word embedding vector and hidden layer size
normally lies in the range between 100 and 500. A high order ofn-gram feedforward NNLM
can be constructed; for an example, 7 gram was used in [197]. Additionally, the standard
n-gram LM treats each word as an atomic unit and any semantic connections are ignored. In
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contrast, for neural language models, each word is represented as a vector in a continuous
space and the distance between words is measured in the vector space. Words with similar
context are expected to cluster together in vector space, soas to share parameters implicitly
during training; e.g. “Saturday” and “Sunday” should be close in the vector space.

Based on the previous description, the impacts of input and output layer size on com-
putation can be compared. In the input layer, the main computation is calculating the word
embedding vectors for the previousn−1 words. Due to the use of 1-of-K coding, the com-
putation doesn’t increase when a larger input shortlist is applied. However, in the output
layer, the computation increases significantly with the output layer size due to the matrix
multiplication and softmax function shown in Equations3.8and3.9. Hence, the input short-
list is often chosen to be the same asn-gram LM vocabulary and the output shortlist is
normally a subset of the input layer consisting of the most frequent words.

Feedforward NNLMs can be trained efficiently using back propagation algorithm [189],
which is detailed in Chapter3.2.2.

3.1.2 Recurrent Neural Network Language Model

As previously stated, feedforward NNLMs mitigate the data sparsity issue by projecting
words into a low-dimension, continuous, space with a sharedprojection matrix. However,
they still adopt ann-gram assumption where only the previousn−1 words are considered.
Longer context information is discarded. To deal with this issue, recurrent neural network
provides a feasible solution [153].

The structure of recurrent neural network based language models (RNNLMs) is illus-
trated in Figure3.2. There are several differences compared to feedforward NNLMs. Only
the previous word, instead of the previousn−1 words, is presented at the input layer. How-
ever, a recurrent connection between hidden and input layers is also added. In this way,
RNNLMs [153] are able to represent the complete, non-truncated, history. In the input
layer, a 1-of-K coding vector is again used for the input wordwi−1, similar to feedforward
NNLMs, the 1-of-K coding word vectorr (wi−1) can be obtained according to Equation 3.2.1.
The continuous vectorvi−2 captures long term history from the start of a sequence via the
recurrent connection. For an empty history, this is initialised, for example, to be a vector of
0.1. The probability of any given sentenceW in RNNLMs can be written as,

P(W) =
N

∏
i=1

P(wi |wi−1, ...w1,w0)

≈
K

∏
i=1

P(wi |wi−1,w
i−2
0 )

≈
K

∏
i=1

P(wi |wi−1,vvvi−2)

≈
K

∏
i=1

P(wi |vvvi−1) (3.10)
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It can be seen that the complete history of wordwi can be represented with two forms, one
is the previous wordwi−1 and a continuous history vectorvvvi−2, the other is the continuous
history vectorvvvi−1.

The standard topology of a recurrent neural network language model consists of three
layers. The full history vector, obtained by concatenating1-of-K coding vectorr (wi−1) and
recurrent history vectorvi−2, is fed into the input layer. The hidden layer compresses the
information from these two inputs and computes a new historyrepresentationvi−1 using a
sigmoid activation to achieve non-linearity, as,

vi−1 = σ(A⊤r (wi−1)+B⊤vi−2) (3.11)

The history vectorvi−1 is then passed to the output layer to produce the normalised
RNNLM probabilities using a softmax activation as shown in Equation3.9, as well as re-
cursively fed back into the input layer as the “future” remaining history to compute the LM
probability for the following word. The shared linear projection layer matrixE in feedfor-
ward NNLMs in Figure3.1 is dropped in the RNNLM in this thesis. In the RNNLM, the
linear projection layer and the hidden layer can be integrated into one matrix by simply mul-
tiplicating these two matrices as the input layer only contains the previous word. Hence, in
this thesis, the projection layer for input layer is removedfor RNNLMs and it doesn’t af-
fect performance[150]. For the training of recurrent neural network language models, back
propagation through time (BPTT) is normally applied for optimisation, which is described
in Chapter3.2.

Input layer

...

...
...

...

Output layer

‘OOV’ input node

‘OOS’ output node

Hidden layer

sigmoid softmax

A

B

U

wi−1

vvvi−2

vvvi−1

vvvi−1

P(wi |vvvi−1)

Fig. 3.2Recurrent neural network language model. The previous wordwi−1 is projected
into a low-dimension and continuous space via the projection layer, the complete history is
modelled by a recurrent connection. The probability of wordwi can be obtained from the
output of softmax in the recurrent neural network.

RNNLMs handle the data sparsity and short term history issues by using a continuous
word representation matrixA and recurrent connection matrixB. Promising performance
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has been reported on a range of tasks and applications [153, 154, 217, 248, 149, 32, 38].
Theoretically, the recurrent neural network can store the whole history information from
the start of sentence. However, the gradient vanishes quickly during BPTT when simple
sigmoid units are used in the hidden layer [13], which is discussed later in Chapter3.2.3.
Several amenable solutions are proposed to mitigate this, such as the use of Relu activation
function [124]. A popular solution is to adopt long short term memory (LSTM) unit. LSTM
unit is able to capture longer history than sigmoid, by introducing several gates to control
the flow of information to overcome the gradient vanishing issue. Hence, it is used widely
for recurrent neural networks to further improve performance.

3.1.3 Long Short Term Memory based RNNLM

The long short term memory (LSTM) network was proposed in 1997 [98]. The differences
between LSTM based RNNLM and standard RNNLM lie in that the LSTM adopts a more
complicated hidden unit rather than simple sigmoid. There are several variants for LSTM
unit [84]. In this chapter, the most popular LSTM unit is described [81].

The central idea behind the LSTM is that the memory cell can maintain its state over
time. Non-linear gating functions are added to control the information flow into and out of
the LSTM unit. A typical structure of LSTM is shown in Figure3.3. Three gating functions
are introduced in the input, output and cell, which are called input gate, output gate and
forget gate respectively. The input of the cell unit is scaled by the input gate. The input
from the cell unit in the last step is scaled by the forget gate. The output of the cell unit, is
scaled by the output gate. Peephole connections between thecell unit and the gates can be
introduced into LSTM in [75] to learn the precise timing.

+

peepholes

connection with time−lag

multiplication

input activation function (tanh)

output activation function (tanh)

cell
forget gate

input gate

output gate

Legend

gate activation function (sigmoid)

 

xi

xi

xi

xi

vi

vi−1

vi−1

vi−1

vi−1

o

c

g

q

f

Fig. 3.3Long short-term memory unit. The gating functions, input, forget and output gates,
are introduced into the model to control the signal flow.
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Normally, sigmoid functionσ is used as the non-linear function for various gates. tanh
functionϕ is chosen as non-linear function for the input and output of the unit block. The
signal flow in the LSTM block is defined as

qi = ϕ(Wzxi +Rzvi−1+bz) block input

gi = σ(Wgxi +Rgvi−1+ tg⊙ci−1+bg input gate

f i = σ(W f xi +Rf vi−1+ t f ⊙ci−1+b f f orget gate

ci = gi ⊙qi + f i ⊙ci−1 cell state (3.12)

oi = σ(Woxi +Rovi−1+ to⊙ci +bo) out put gate

vi = oi ⊙ϕ(ci) block out put

where⊙ denotes element-wise multiplication, andtg, t f andto are the vectors for peephole
connection to input, forget and output gates. The input of the LSTM network isxt and
vi−1, which is the input from previous layer and previous time slot. The output of LSTM
networkvi will be used as input for the following prediction. Figure3.4gives an illustration
of the LSTM based language model with a single LSTM layer. Thetraining of LSTM based
RNNLMs is the same as RNNLMs using back propagation through time. However, the
number of parameters in LSTM based RNNLMs is much larger thansimple RNNLMs with
sigmoid. LSTM has been reported to produce better performance than a simple sigmoid
unit in a range of tasks and applications including languagemodels [220, 191, 221].
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Fig. 3.4LSTM based language model with one LSTM layer.

A similar machenism known as gated recurrent unit (GRU) [48] was also proposed re-
cently using two gates (update gate and reset gate) to control the signal flow to avoid gra-
dient vanishing. GRU was reported to give similar performance as LSTM on various tasks
[48, 105]
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It is worth pointing out that we didn’t investigate LSTM and GRU activation based
RNNLMs, we only looked into sigmoid activation based RNNLMs. However, the methods
studied in the following sections (e.g. efficient training and evaluation, lattice rescoring,
adaptation and interpolation) can be easily extended and applied to LSTM and GRU activa-
tion based RNNLMs.

3.2 Training of Neural Network based Language Model

In this section, the training of neural network based language model is described. Cross
entropy is the standard objective function for the trainingof neural networks. Alternative
objective functions will be discussed in Chapter4. Back propagation and back propagation
through time are adopted to optimise feedforward and recurrent neural networks respec-
tively.

3.2.1 Cross Entropy

Cross entropy is a standard criterion used widely for training neural network language mod-
els. The cross entropy of the probability distributions from reference and neural network is
minimised. Given one predicted word and the historyh, the cross entropy criterion can be
written as,

JCE(θθθ ) =− ∑
w j∈Vout

Pr(w j |h) logP(w j |h) (3.13)

whereVout is the vocabulary in the output layer andθθθ is the set of model parameters (i.e.
weight matrices and bias vectors) in the neural network to beoptimised. Pr(w j |h) is the
word probability in the reference for supervised training and only the probability of a single
word is 1 and all other words are 0. Hence the cross entropy based objective function over
the whole training corpus can be written as,

JCE(θθθ ) = − 1
N

N

∑
i=1

logP(wi |hi) (3.14)

whereN is the number of training words. The optimisation of Equation 3.14is equivalent
to minimising the negative log-likelihood of NNLM probabilities over the training data.

3.2.2 Back Propagation

There are several approaches to minimise the cross entropy based objective function defined
in Equation3.14, for example, stochastic gradient descent (SGD) and Hessian free optimi-
sation [146]. In this thesis, only the SGD is described and used. Back propagation is widely
used as efficient SGD implementation in feedforward neural network.

Consider a feedforward neural network withL hidden layers, where the input and output
of the l th layer (after sigmoid function) arex(l) andv(l); The weight matrix in layerl is



44 Neural Network Language Models

denoted asW(l) and the bias vector isb(l). The forward process can be written as,

x(l) = W(l−1)⊤v(l−1)+b(l−1)

v(l) = σ(x(l)) (3.15)

again, whereσ is the sigmoid function as,

σ(v j) =
1

1+exp(−v j)
(3.16)

The output ofkth node in the output layer is,

yk =
exp(x(L)k )

∑|Vout|
j=1 exp(x(L)j )

(3.17)

where|Vout| is the size of output layer.

Given the objective functionJCE(θθθ), the error signal in thel th layerg(l) during back
propagation is written as,

g(l) =
∂JCE(θθθ)

∂x(l)
(3.18)

In the output layer, the error signal in thekth nodeg(L)k is,

g(L)k = δ (kr ,k)−yk (3.19)

whereδ is the Dirac delta function andkr is the reference label. The error inl th layer can
be derived using the following form,

g(l−1)
j =

∂JCE(θθθ)

∂x(l−1)
j

= ∑
t

∂JCE(θθθ )

∂g(l)t

∂g(l)t

∂v(l−1)
j

∂v(l−1)
j

∂x(l−1)
j

(3.20)

It can be written in the vector form as,

g(l−1) = W(l)⊤g(l)⊙σ ′(x(l−1)) (3.21)

where⊙ denotes the element-wise multiplication. The gradient of weightω(l)
jk connecting

the jth node inl −1th layer andkth node inl th layer can be expressed as,

∂JCE(θθθ)

∂ω(l)
jk

=
∂JCE(θθθ )

∂x(l)k

∂x(l)k

∂ω(l)
jk

= g(l)k v(l−1)
j (3.22)
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It can be again written with vetor and matrix form as,

∂JCE(θθθ)
∂W(l)

= v(l−1)g(l)
⊤

(3.23)

Equation3.21and3.23can be used to calculate the error signal and gradient weightfrom
layerL−1, layerL−2, to layer 1 recursively with a backward direction, so this algorithm
is called back propagation in the literature [189].

The above derivation on back propagation algorithm can be applied in all feedforward
neural networks. Neural network language models are a special type of neural network
where the input of the neural network consists of 1-of-K coding vector where only a single
node is 1 and all the others are 0. Hence, computation can be reduced significantly in the
input layer. Only the weight vector associated with the input word needs to be computed
and updated.

3.2.3 Back Propagation Through Time

Training of neural networks with recurrent connection (e.g. standard RNNLM and LSTM
based RNNLM), requires an extension to the standard back propagation, back propagation
through time [190]. In addition to the error from the upper layer in standard back propaga-
tion, the error is also propagated through the recurrent connection. The recurrent connection
can be unfolded in time as shown in Figure3.5. The network can also be viewed as a deep
network in time, with shared weight matricesA andB.

However, it is computationally expensive to unfold the RNN to the begin of sentence
for every prediction. Assuming the computational complexity of the back propagation and
update ofA andB is C, for a sentence withN words, the whole computation happening on
the hidden layer for BPTT is

(1+2+ ...+N)×C=
N(N+1)

2
C (3.24)

In order to reduce computation, a truncated version of BPTT [236, 238, 153] was adopted
in many works. Instead of tracing back to the start of sentence, only a fixed and finite stepT
is back propagated, e.g. 5. The computation complexity for updating the hidden layer turns
out to beN×T ×C. The computation can be reduced significantly compared to Equation
3.24when the length sentence is long enough (N >> T).

vvv0 is the initial history vector at the sentence start as discussed before. During the
computation of gradient, the error signal is back propagated as the flow of grey arrows
shown in Figure3.5. The gradients are average over time due to the shared weightmatrices
A andB. This sharing effectively limits the number of model parameters.

In RNNLMs with sigmoid activation function as discussed in Chapter3.1.2, the error is
back propagated using Equation3.21, which can be rewritten as below,

g(l−1) = W(l)⊤g(l)⊙σ ′(x(l−1)) (3.25)
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Fig. 3.5Back propagation through time for Recurrent NNLM. The RNNLMcan be unfolded
through time and the projection layer A and recurrent layer Bare shared in different time
steps.

σ is sigmoid function and its derivation to inputx(l−1) can be written as,

σ ′(x(l−1)) = x(l−1)⊙ (1−x(l−1))) (3.26)

The output of sigmoid function is positive and smaller than 1according to the definition in
Equation3.7. Hence, the error signal is decayed exponentially and closeto 0 after several
back propagations. The gradient is calculated according toEquation3.23and also close to
0 [13]. To address this issue, LSTM network introduces a gating function, which helps to
avoid the gradient decay existing in standard RNNLMs. BPTT can be applied in the training
of LSTM based RNNLM as well in a similar way.

3.3 Application of RNNLMs for Speech Recognition

In many speech recognition systems, RNNLMs are normally trained on a small amount of
in-domain data (e.g. acoustic model transcription) with a small hidden layer size (e.g. 200)
and output layer (e.g. 20K). The standardn-gram LMs are first used in the decoding and
lattices are generated. Then, the N-best lists are extracted from the lattices and rescored
by combining the RNNLMs andn-gram LMs. Linear interpolation is the most popular ap-
proach to combine RNNLMs andn-gram LMs. Despite the success achieved for RNNLMs
in speech recognition [217, 151, 235, 123, 38], there are still several issues to be addressed
and aspects to be explored.
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The training of RNNLMs can be computationally heavy, especially when a large vocab-
ulary in the output layer is applied. In order to reduce the computational cost, in previous
work, a shortlist [196, 62] on the output layer limited to the most frequent words was used.
Class based output layer [154, 164] was also proposed for neural network language models.
However, it is difficult to parallel the training of RNNLMs and slow to train large RNNLM
model on the corpus with a large amount of words. The efficienttraining and inference of
RNNLMs will be discussed in Chapter4.

As mentioned above, N-best rescoring ,instead of lattice rescoring, is normally used for
RNNLMs in speech recognition. The N-best lists only containa small subset of hypotheses
in the lattice and largely limit the search space for RNNLMs.It is of practical value for
RNNLMs to support lattice rescoring and be able to generate lattices, Lattices are useful for
many downstream applications, such as consensus decoding and keyword spotting. Lattice
rescoring methods using RNNLMs will be described in Chapter5.

In most speech recognition systems, RNNLMs are applied without adaptation. Similar
to the acoustic model adaptation, the mismatch also exists in language model. As described
in Chapter2.3.6, there are many works have been done in standardn-gram LMs [11]. It is
also important to investigate the adaptation of RNNLMs for speech recognition, which is
discussed in Chapter6.

In state-of-the-art ASR systems, RNNLMs are often linearlyinterpolated withn-gram
LMs to obtain both a good context coverage and strong generalisation [153, 196, 172, 131].
The interpolated LM probability is given by,

P(w|h) = λPNG(w|h)+(1−λ )PNN(w|h) (3.27)

whereλ is the interpolation weight ofn-gram LM, andλ can be optimised via EM algo-
rithm on a held-out set as discussed in Chapter2.3.3. In the above interpolation, the proba-
bility mass of OOS words assigned by the RNNLM component is re-distributed with equal
probabilities among all OOS words to guarantee a valid probability. A better but more com-
plicated way is to use unigram or higher ordern-gram LM probability for rescaling [172].
The interpolation between RNNLMs andn-gram LMs is studied in Chapter7.

3.4 Summary

Neural network based language models (NNLMs) have been discussed in this chapter. Three
types of neural networks used to construct language models in the literature are introduced,
including feedforward, recurrent and long short term memory (LSTM) recurrent neural net-
work language models. Standardn-gram LMs have issues with data sparsity andn-gram
history. Feedforward NNLMs mitigate the data sparsity issue by representing each word
with a low-dimension and continuous vector. Recurrent NNLMs are able to model the long
term history via the recurrent connection. LSTM based RNNLMs are more capable of
modelling longer history by introducing gating functions to control information flow. The
training of NNLMs are detailed, such as back propagation algorithm for feedforward neu-
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ral networks and back propagation through time for recurrent neural networks. Finally, the
application of NNLMs in speech recognition is also discussed in this chapter.



Chapter 4

Efficient Training and Inference of
RNNLMs

One practical issue associated with RNNLMs is the computational cost incurred in model
training and inference. The training time increases linearly with the amount of training
data. Additionally as the model size grows, especially whena large output vocabulary
is chosen, the training and decoding time increase. This limits the potential applications
of RNNLMs especially in the scenario where there are large quantities of data available.
Hence, it is of great practical value to develop techniques for rapid RNNLM training and
efficient inference. Unlike most previous work, where RNNLMs were trained on CPUs
with a factorised output layer, in this chapter we explore the efficient RNNLM training on
GPU with full output layer. In order to facilitate bunch1 mode during RNNLM training,
a novel data structure, sentence splice, is proposed to minimise redundant computation. In
addition to the conventional cross entropy based training,two improved training criteria are
investigated for fast RNNLM training and inference [46].

This chapter is organised as follows. In Chapter4.1 recurrent neural network LMs are
reviewed and two RNNLM architectures (i.e. full output and class output layer RNNLMs)
are presented. In addition to the conventional cross entropy criterion, variance regularisation
and noise contrastive estimation are introduced for training of RNNLMs in Chapter4.2. In
Chapter4.3, the computational complexities among different model structures and training
criteria are discussed. In order to apply bunch (i.e. minibatch) based training for RNNLMs,
a novel spliced sentence bunch mode parallelisation algorithm for RNNLM training is pro-
posed and its GPU based implementation described in Chapter4.4. Pipelined RNNLM
training is discussed in Chapter4.5 to further speed up training by using multiple GPUs. In
Chapter4.6the performance of the proposed F-RNNLMs training and efficiency improving
techniques are evaluated on a large vocabulary conversational telephone speech transcrip-
tion system and Google’s one billion word benchmark task. Finally, conclusions are drawn
in Chapter4.7 .

1also known as minibatch in the literature
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4.1 Recurrent Neural Network LMs Structures

There are two types of structure used for RNNLMs in the literature [153, 154]. The dif-
ference lies in the output layer. The two types are called full output and class output layer
based RNNLMs. Class output layer based RNNLMs [154] were originally introduced to
reduce computational load at both training and test time by using a factorised output layer.
Hence, it is very popular and used widely in previous work [154, 257, 26]. Conventionally
a direct implementation of RNNLM yields a full output layer RNNLM.

Based on the discussion in Chapter3, the computation of probability over a sentence
given RNNLMs can be written as,

P(W) =
N

∏
i=1

P(wi |wi−1, ...,w1,w0)

≈
N

∏
i=1

P(wi |wi−1,vvvi−2) (4.1)

whereN is the number of words, andvvvi−2 is the history vector representing previous
words{w0,w1, ...,wi−2}.

4.1.1 Full output layer based RNNLMs (F-RNNLMs)

Input layer

...

Output layer

...
...

Hidden layer

sigmoid

...

softmax

OOV input node

OOS output node

wi−1

vvvi−2

vvvi−1

vvvi−1

PRNN(wi |wi−1, vvvi−2)

Fig. 4.1An example RNNLM with an full output layer, An out-of-vocabulary (OOV) node
is added in the input layer and out-of-shortlist (OOS) nodesis added in the output layer to
model unseen words.
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The direct application of RNNs to language modelling is illustrated in Figure4.1. The
topology of the recurrent neural network used to compute LM probabilitiesPRNN(wi |wi−1,vvvi−2)
consists of three layers. The history vector ofwi , obtained by concatenatingwi−1 andvvvi−2,
is fed into the input layer. The hidden layer compresses the information of these two in-
puts and computes a new representationvvvi−1 using sigmoid activation functionσ to achieve
non-linearity. The sigmoid function is expressed as,

σ(x) =
1

1+exp(−x)
(4.2)

In order to compute the word predicted probabilityPRNN(wi |wi−1,vvvi−2), softmax function
is used in the output layer for normalisation, which is givenas,

P(wi|wi−1,vvvi−2) =
exp(ywi)

∑|Vout|
j=1 exp(yw j )

(4.3)

whereyw j is the output forw j and|Vout| is the output layer size.
The output layer of RNNLMs is normally quite large, which causes heavy computation

during the probability estimation. To reduce the computational cost, a shortlist [196, 62]
based output layer vocabulary limited to the most frequent words is used. A similar approach
may also be used at the input layer. To reduce the bias to in-shortlist words during RNNLM
training and improve robustness, an additional node is added at the output layer to model
the probability mass of out-of-shortlist (OOS) words [172, 131, 142].

4.1.2 Class Based RNNLMs (C-RNNLMs)

As stated above, training F-RNNLMs is computationally expensive, and the major part
of cost is incurred in the output layer. Existing techniqueshave focused on class based
RNNLMs (C-RNNLMs), an architecture with a class based factorised output layer [154,
164]. An example C-RNNLM is illustrated in Figure4.2. There are two matrices in the out-
put layer, which are class and word output layer respectively. Each word in the output layer
vocabulary is attributed to a unique class and each class contains a group of words, which
is a subset of the output vocabulary. The weight matrix of class output layer is randomly
initialised in the same way as other weight matrices. The predicted LM probability assigned
to a word is factorised into two individual terms,

PRNN(wi |hi) = P(wi|wi−1,vvvi−2) = P(wi |ci,vvvi−1)P(ci|vvvi−1) (4.4)

wherehi andvvvi−1 = {wi−1,vvvi−2} both represent the history of wordwi .
The class probabilityP(ci |vvvi−1) is calculated first, andP(wi |ci ,vvvi−1) then calculates the

word probabilitywi within classci . The calculation of word probabilityP(wi |ci ,vvvi−1) is
based on a small subset of words from the same class, and the number of classes is normally
significantly smaller than the full output layer size. Classoutput layer based RNNLM pro-
vides significant speedup compared to full output layer bothin train and decode stages [154].
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When further combined with parallelised model training [205] and multi-stage classing at
the output layer [103], training time speedup to 10 fold were reported compared toprevious
research for C-RNNLMs. A special case of C-RNNLM with a single class is equivalent to
a traditional, full output layer based F-RNNLM.

Input layer

...
Class node for
  OOS word

Output layer

...
... ...

...

Hidden layer

sigmoid

softmax

softmax

OOV input node

wi−1

vvvi−2

vvvi−1

vvvi−1

P(wi |ci , vvvi−1)

×

P(ci |vvvi−1)

PRNN(wi |wi−1, vvvi−2)

Fig. 4.2An example RNNLM with a class-based output layer. An out-of-vocabulary (OOV)
node is added in the input layer and out-of-shortlist (OOS) nodes is added in the output
layer to model unseen words.

The speedup of C-RNNLMs is based on the assumption that hidden layer sizeH is
significantly smaller than output layer sizeV = |Vout|. However, there are several issues
associated with these approaches. First, the use of class based output layer limits the poten-
tial speedup from bunch2 mode training parallelisation [217]. Words from the same bunch
may be from different classes, which requires the call of different submatrices in the word
output layer. This complicates the implementation, especially when GPUs are used since
GPU is more suitable and better optimised for regular matrixoperation. Second, the un-
derlying word to class assignment scheme at the output layermay also affect the resulting
C-RNNLM’s performance [154, 257, 43, 128]. Finally, most previous work focus on CPU
based speedup techniques [154, 217, 205, 103]. Hence, it is preferable to also exploit the
parallelisation power of GPUs.

It is worth noting that the output layer in the class based RNNLM shown in Figure4.2
can be viewed as a two-layer hierarchical output layer. A more genral hierarchical output
layer gives more speedup since the computation could be further reduced, which gives a
computation complexity ofO(log(V) ∗H ∗N) in the output layer. This is out of the scope
of this thesis and more details about the hierarchical output layer can be found in [164].

2It is also sometimes referred as “minibatch” in literature [37, 199]. For clarity, the term “bunch” is used
throughout this thesis.
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4.2 RNNLM Training Criteria

Cross entropy (CE) is the conventional criterion used for RNNLM training as discussed in
Chapter3.2.1. The log likelihood is maximised during training. However,for RNNLMs, it
requires the calculation of the normalised probability both in the train and test time, which
is computationally heavy. To improve efficiency, two alternative criteria will be discussed.
They are variance regularisation [208] and noise contrastive estimation respectively [159].
Conventional F-RNNLMs are chosen for discussion in this section. These criteria can also
be applied to C-RNNLMs.

4.2.1 Cross Entropy

Conventional RNNLM training [153] was discussed in Chapter3.2.1, which aims to max-
imise the log-likelihood, or equivalently minimise the cross entropy (CE) measure of the
training data. For a train corpus containingN words, the objective function is given by,

JCE(θθθ) = − 1
N

N

∑
i=1

lnPRNN(wi |hi) (4.5)

where

PRNN(wi |hi) =
exp
(

θθθ⊤
i vvvi−1

)

∑|Vout|
j=1 exp

(

θθθ⊤
j vvvi−1

) =
exp
(

θθθ⊤
i vvvi−1

)

Z(hi)
(4.6)

is the probability of wordwi given historyhi . θθθ i is the weight vector associated with word
wi at the output layer.vvvi−1 is the hidden history vector computed, and|Vout| is the size
of output layer vocabulary. The gradient used in the conventional CE based training for
RNNLMs is,

∂JCE(θθθ )
∂θθθ

=− 1
N

N

∑
i=1





∂
(

θθθ⊤
i vvvi−1

)

∂θθθ
−

|Vout|
∑
j=1

PRNN(w j |hi)
∂
(

θθθ⊤
j vvvi−1

)

∂θθθ



 (4.7)

The denominator termZ(hi) in Equation4.6 performs a normalisation over the full output
layer, which is given as,

Z(hi) =
|Vout|
∑
j=1

exp
(

θθθ⊤
j vvvi−1

)

(4.8)

This operation is computationally expensive when computing the RNNLM probabilities
during both test time and CE based training when the gradientinformation of Equation4.7is
calculated. As discussed in Chapter4.4, the efficient bunch mode GPU based parallelisation
with sentence splicing is used to improve the speed of conventional CE training.
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4.2.2 Variance Regularisation

In many applications, RNNLMs are required to be efficiently evaluated in test time. The
softmax calculation is computationally heavy for full output layer RNNLMs given the large
output layer size, especially when CPUs are used. One technique that can be used to improve
the testing speed is introducing the variance of the normalisation term into the conventional
cross entropy based objective function of Equation4.6. In previous research, variance reg-
ularisation (VR) (or called self-normalisation) has been applied to training of feedforward
NNLMs and class based RNNLMs [61, 208, 209]. By explicitly minimising the variance of
the softmax normalisation term during training, the normalisation term at the output layer
can be viewed as constant and ignored during test time, thus significant improvement in
speed is achieved. The conventional CE objective function of Equation4.5could be written
as below in VR based training,

JVR(θθθ) = JCE(θθθ)+
γ

2N

N

∑
i=1

(

lnZ(hi)− lnZ
)2

(4.9)

whereJCE(θθθ) andZ(hi) are the cross entropy based training criterion and the softmax nor-
malisation term associated with a historyhi in Equation4.6 respectively, andlnZ is the
mean of the log scale normalisation term computed as,

lnZ =
1
N

N

∑
i=1

(lnZ(hi)) (4.10)

Although according to this equation,lnZ is a function of model parameter in RNNLMs,
lnZ is viewed as constant and fixed for each minibatch as an approximation. γ is a tunable
parameter to adjust the contribution of the variance regularisation term. Directly maximising
the above objective function in Equation4.9 could explicitly minimise the variance of the
softmax normalisation term. The gradient used in the variance regularisation based training
is given by,

∂JVR(θθθ)
∂θθθ

=
∂JCE(θθθ )

∂θθθ
+

γ
N

N

∑
i=1

(

(lnZ(hi)− lnZ)×
|Vout|
∑
j=1

PRNN(w j |hi)
∂ (θθθ⊤

j vvvi−1)

∂θθθ
)

(4.11)

where∂JCE(θθθ)
∂θθθ is the CE gradient given in Equation4.7, andPRNN(·|hi) is the conventional

RNNLM probabilities computed from Equation4.6. From Equation4.11, the computational
load required for the update of VR is the same as CE since the normalisation termZ(hi) can
be cached during the softmax calculation. Hence, the computation during training in VR is
the same as CE.

However, in test time, variance regularisation allows a history independent, constant
softmax normalisation term to be used. The RNNLM probabilities are thus approximated
as,

PVR

RNN
(wi |hi) ≈ exp(θθθ⊤

i vvvi−1)

Z
=

exp(θθθ⊤
i vvvi−1)

exp(lnZ)
. (4.12)
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where
Z = exp(lnZ) (4.13)

is the constant normalisation term obtained during training. The computation oflnZ is
given in Equation4.10. This significantly reduces the computation at the output layer as the
normalisation is no longer required. This means that the computational load is less sensitive
to the size of output layer vocabulary|Vout|, a maximum|Vout| times speedup at the output
layer can be achieved in test time.

In this thesis, variance regularisation based training is used to improve the inference
efficiency [43, 201] and can be integrated with the bunch mode based training introduced
in Chapter4.4. In contrast to setting the mean of log normalisation termlnZ to zero as
previous research for C-RNNLMs [208] and feedforward NNLM in [61], it is found that
calculatinglnZ separately for individual bunches gave improved convergence speed and
stability in F-RNNLM training. During test time, the approximated normalisation termZ
is computed on the validation set, and remains fixed during performance evaluation for all
experiments.

4.2.3 Noise Contrastive Estimation

The explicit computation of normalisation term required atthe output layer significantly
impacts both the training and testing speed of RNNLMs. Variance regularisation can signif-
icantly reduce the associated computation during test time. However, the explicit computa-
tion of this normalisation term is still required in training and used to compute the variance
regularised gradient information in Equation4.11. This train speed of variance regulari-
sation is the same as cross entropy based training and is still limited when a large output
layer is used. A more general solution to this problem is to use techniques that remove the
need to compute such normalisation term in both training andtesting. One such technique
investigated in this thesis is based on noise contrastive estimation (NCE) [44, 88, 239, 201].

NCE provides an alternative solution to estimate normalised statistical models when the
exact computation of the normalisation term is either computationally impossible or highly
expensive to perform; for example, in feedforward and recurrent NNLMs, when a large
output layer vocabulary is used. The central idea of NCE is toperform nonlinear logis-
tic regression classification to discriminate between the observed data and some artificially
generated noise data. The variance of the normalisation term is minimised implicitly during
training due to the normalisation of noise distribution. Hence, it allows normalised statis-
tical models, for example, NNLMs, to use “unnormalised” probabilities without explicitly
computing the normalisation term during both training and testing. In common with the use
of a class based output layer, the NCE algorithm presents a dual purpose solution to improve
both the training and inference efficiency for RNNLMs.

In the NCE training of RNNLMs, for a given full history context h, data samples are
generated from a mixture of two distributions: the NCE estimated RNNLM distribution
PRNN(·|h), and some known noise distributionPn(·|h), such as uniform distribution or uni-
gram distribution. Assuming the noise samples arek times more frequent than true RNNLM
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data samples, the distribution of data could be described as,

1
k+1

PRNN(·|h)+
k

k+1
Pn(·|h). (4.14)

Given historyh, The posterior probability of wordw is generated from the RNNLM is,

P(w∈ D|w,h) = PRNN(w|h)
PRNN(w|h)+kPn(w|h)

(4.15)

The posterior probability of wordw is generated from a noise distribution is,

P(w∈ N|w,h) = kPn(w|h)
PRNN(w|h)+kPn(w|h)

(4.16)

wherew ∈ D andw ∈ N indicate the wordw is generated by data and noise distribution
respectively. In NCE training, for each train samplewi and its historyhi , k noise samples
w̌i, j( j = 1,2, ...k) are randomly sampled from a specified noise distribution (e.g. unigram
distribution). The objective function is to minimise the log negative posterior probabilities
of all samples, which is given as,

JNCE(θθθ) =− 1
N

N

∑
i=1

(

lnP(wi ∈ D|wi ,hi)+
k

∑
j=1

lnP(w̌i, j ∈ N|w̌i, j ,hi)
)

(4.17)

The derivation of the gradient in the above equation could befound in AppendixA, which
is computed as,

∂JNCE(θθθ )
∂θθθ

= − 1
N

N

∑
i=1

(

P(wi ∈ N|wi ,hi)
∂ lnPRNN(wi |hi)

∂θθθ

−
k

∑
j=1

P(w̌i, j ∈ D|w̌i, j ,hi)
∂ lnPRNN(w̌i, j |hi)

∂θθθ

)

(4.18)

The NCE trained RNNLM distribution is given by,

PRNN(wi |hi) ≈
exp
(

θθθ⊤
i vvvi−1

)

Z
(4.19)

NCE training learns a constant, history context independent normalisation termZ, in con-
trast to the explicitly normalised RNNLM distribution thatused during CE and variance
regularisation training3. The normalisation termZ in NCE training is a constant and similar
to that defined in Equation4.13 for variance regularisation. This crucial feature not only
allows the resulting RNNLM to learn the desired sum-to-one constraint of conventional CE

3A more general case of NCE training also allows the normalisation term to vary across different histories,
thus incurring the same cost as in conventional CE based training [88].
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estimated RNNLMs, but also to be efficiently computed duringboth training and test time
without requiring explicit computation of the softmax normalisation term at the output layer.

Figure 4.3 gives an example of noise samples generated during NCE training. The
unigram distribution obtained from the training corpus is used as noise distribution. For
a given sentence “eating at home”, sentence start <s> and sentence end </s> are added.
For each predicted word in the sentence, 10 “noisy” words arerandomly sampled from
the unigram distribution. NCE training aims to discriminate the reference sentence from
training data from noisy sentence generated from noise distribution (unigram distribution
here).

EATING AT HOME </S><S>

AND
HOUSE

PARENTS
THERE

ALL
HOUR

I
EVERYTHING

THAT’S
OUT

THIS
AT
I

ACTUALLY
DOWN

ATTACK
YEAH
BIG
</s>

I

SHOULD
THINK

SHOULD’VE
JUST
WITH
</s>

TOWERS
BUT

THERE
</s>

THAT’S
</s>

VERSUS
SHE

TAMPA
THAT

SO
HIGH

STARTED
AND

Train sentence

Noise Samples

Fig. 4.3Noise samples generated for sentence "<s> eating at home </s>“ by a unigram
noise model for NCE training.

The NCE objective function in Equation4.17is optimised on the training set and cross
entropy is computed on the validation set with the normalised RNNLM probabilities shown
in Equation4.6. The cross entropy in validation set is used to control the learning rate. There
are a number of parameters that need to be appropriately set.First, a noise distribution is
required to generate noise samples. As suggested in earlierresearch [159, 230], a context
independent unigram LM distribution is used to draw the noise samples. Second, the setting
of k controls the bias towards the characteristics of the noise distribution. It also balances
the trade-off between training efficiency and performance.For each target wordw, a total
of k noise samples are sampled independently from the noise distribution. It is worth noting
that the noise sample could be the predicted word and the samenoise sample may appear
more than once. Finally, NCE training also requires a constant normalisation termZ as in
Equation4.19. In previous research on NCE training of log-bilinear LMs [159] and feed-
forward NNLMs [230], the constant normalisation term was set aslnZ = 0. For RNNLMs,
an empirically adjusted setting oflnZ = 9, which is close to the mean of the log scale nor-
malisation term computed on the training data using a randomly initialised RNNLM 4. This
setting was found to give a good balance between convergencespeed and performance and
used in all experiments.

4Other values were also tried, e.g. 6, 7, 8, 10. They gave similar results. But a value of 0 hurted perfor-
mance.
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The main advantages of RNNLMs training with NCE are summarised below. First, the
computational load in the output layer is reduced dramatically as it only needs to considerate
k noise samples and target word, instead of the whole output layer. Compared with the
CE based training gradient given in Equation4.5, NCE gradient calculation in Equation

4.18 is |Vout|
k+1 times faster. Second, the train speed is less sensitive to output layer size,

which allows RNNLMs with larger vocabulary to be trained. Finally, the normalisation term
can be approximated as constant during NCE training. This can avoid the re-computation
of the normalisation term for different histories, therefore allows the normalised RNNLM
probabilities to calculated in test time with the same efficiency as unnormalised probabilities.
In common with variance regularisation based training, a|Vout| times speedup at the output
layer during test time can thus be achieved.

4.3 Computation Complexity Analysis

In previous sections, two different RNNLM structures, i.e.full and class output layer
RNNLMs, were presented, and three train criteria were described for efficient training and
inference. In this section, a quantitive analysis is given to illustrate the computation load
associated with model structure and train criteria.

Assuming that RNNLM contains a single hidden layer withH hidden nodes, and the
output layer size isV = |Vout|, when cross entropy is used as objective function, in full
output layer based RNNLM, for the prediction of each word, the computational complexity
during forward pass is proportional to,

(H +1)×H +H ×V, (4.20)

The non-linear computation in hidden layer and output layeris not counted in this com-
putation analysis as it is proportional toH or V. During update, when the truncated back
propagation through time (BPTT) [236] is applied, the computational complexity is propor-
tional to,

(H +1)×H × τ +H ×V, (4.21)

whereτ is BPTT step for each word. Normally, the output layer sizeV is significantly
larger than hidden layer sizeH (i.e. V >> H). Under this assumption , the computational
complexity over one epoch is propotional toO(H ×V ×N), which is linearly related to
hidden layer sizeH, output layer sizeV and number of training wordsN.

While for class based RNNLMs withC classes in the output layer, where each class has
V
C words on average, the computational complexity during forward for each training word
is proportional to,

(H +1)×H +(C+
V
C
)×H (4.22)
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Table 4.1 Computational complexities for each RNNLM forward in the output layer during
training and testing using different model structures and training criteria.

CE VR NCE
full class full class full class

Train
H ×V (C+ V

C)×H H ×V
(C+ V

C)×H H ×k H ×k
Test H H H

The computational complexity over one train epoch is then proportional toO((C+ V
C)×

H). The minimum computation is obtained whenC equals
√

V, a computational reduction
of

√
V could be obtained compared to F-RNNLMs in Equation4.20when output vocabu-

lary is significantly larger than hidden layer sizeH (i.e. V >> H). Similar computational
reductions on error backpropagation and update in the output layer are also achieved. This
structure gives a large speedup on both training and inference stages for RNNLMs [154].

When variance regularisation is used for training criterion, the computational load in
the train stage is the same for each sample. In the test time, the computational complexity
for each sample in the output layer becomesH, which is the hidden layer size. For noise
contrastive estimation, the computational complexity during the train stage in the output
layer is proportional to,

H ×k (4.23)

wherek is the number of noise sample. The test computation is the same as variance reg-
ularisation, which isH. Table4.1 gives the computational complexities of RNNLM using
different output layer structures and training criteria for one sample in the forward process.
The computational loads in the hidden layer are not shown in the table since they are the
same regardless of the output layer structure and training criteria.

4.4 Implementation

In order to facilitate parallelisation on GPU, a bunch mode can be applied to neural networks.
This technique has previously been used for feedforward NNLMs [195, 196]. A fixed num-
ber (i.e. bunch) ofn-grams could be collected from the training data. They are propagated
through the network and accumulated the gradients. The update of weight parameters is
based on the gradient over the whole bunch. The fixed number oftraining samples, or
bunch size, is normally chosen between 2 and 256 for feedforward NNLMs [196]. This
form of bunch based training facilitates the matrix operation, thus making it more suitable
for the implementation of GPU and giving significant speedupin train speed. However,
there is scarce work on applying bunch mode for the training of RNNLMs. In this thesis, a
novel sentence splice method is proposed to arrange the datastructure, which is more suit-
able for bunch model based training. The strong parallel power of GPU is also explored and
significant acceleration can be obtained.
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4.4.1 RNNLM training word by word

In terms of implementation, back propagation through time (BPTT) [236] can operate on
sentence level or word level. In the former case, after seeing the complete sentence, the
error computed for each word is back propagated to the beginning of the sentence. This is
the implementation in Tensorflow [1] and RWTH LM [218]. An alternative way of imple-
mentating BPTT for RNNLMs is to update word by word. RNNLM toolkit [ 155] provides
an example of this implementation. Instead of updating based on complete sentences, in this
fashion, update is word by word. For each word, forward is carried out first, then followed
by back propagating error through time and updating model parameters. These two types of
implementation are described in this section.

RNNLM training sentence by sentence: The blue flow in Figure4.4 illustrates the
forwarding process associated with a sentence, where,h(I) is the initial recurrent vector.
The recurrent vectorshi(i = 0,1, ...,8) are computed and stored during the process. These
recurrent vectors will be used in the following BPTT and model update. The updated model
parameters are then used for the next sentence.

<s> </s>

Model update

w1 w2 w3 w4 w5 w6 w7

h(I)

h(I)

h0

h0

h1

h1

h2

h2

h3

h3 h4 h5 h6 h7

h̄4 h̄5 h̄6 h̄7

h(I) h̃0 h̃1 h̃2 h̃3 h̃4 h̃5 h̃6 h̃7

Fig. 4.4RNNLM training in one sentence. The blue line shows the process of sentence by
sentence update and the recurrent vectors are computed by the same model without update
until seeing the complete sentence; the green and read line are for word by word update.
The green line shows the update of word w5 using approximate recurrent vectors generated
by old model parameters. The red line shows the correct way for word by word update, all
history recurrent vectors are re-computed after each update

RNNLM training word by word : consider now updating model parameters in word
by word basis. Figure4.4 illustrates this for wordw5. After processing wordw4, the recur-
rent vectorh̄4 is computed. In order to use the correct statistics for BPTT and update, the
previous recurrent vectors should be re-calculated from the sentence start. These recurrent
vectors are indicated ash̃i(i = 0,1,2,3) and this process is shown as red flow in Figure4.4.

However, the re-computation of all previous recurrent vectors from sentence start is com-
putationally expensive for the update of each word. Hence, an approximation is introduced,
where the recurrent vectorshi(i = 0,1,2,3) are obtained using the old model parametersM
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to yield the approximate history recurrent vectorsh̃i(i = 0,1,2,3). Although, they are not
the correct recurrent vectors due to the mismatch betweenhi andh̃i , this approximation was
empirically found not to hurt performance [150]. This process is illustrated as green flow in
Figure4.4.

In this thesis, we adopted RNNLM training word by word. This implementation facili-
tates parallelisation and allows more sentences to be processed in parallel during training as
will be shown in the Section4.4.4.

4.4.2 Conventional Bunch Mode RNNLM Training

It is easy to apply bunch mode training to feedforward NNLM since then-grams can be
collected before training. However, it is not so straightforward for RNNLMs training to
use bunch mode training. As RNNLMs use a vector to represent the complete history, the
predicted probability of the current word depends on the whole history information. Hence,
each sentence has to be processed in order from the begining to end. Instead of operating
at then-gram level, a sentence level bunch is used [207, 217]. This form of parallelisation
requires each sentence to be regarded as independent in RNNLM training by re-initialising
the recurrent hidden history vector at the start of every sentence.
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Fig. 4.5An example of bunched RNNLM training without sentence splicing. NULL tokens
are added in the end of sentences to get the same sentence length for all sentences

The basic idea of bunch mode training is shown in Figure4.5. Assuming the bunch size
is M and the whole corpus containsSsentences, a total ofM sentences are aligned from left
to right. During parallelisation, a regular structured input matrix is formed. The element at
the j th row andith column in the input matrix, associated with timei+1 and an output word

w( j)
i+1, represents a vector[w( j)

i ,v( j)
i−1]

⊤, wherew( j)
t andv( j)

i−1 are the 1-of-k vector encoding of
the ith word of the j th sentence in the bunch, and the corresponding recurrent history vector

at wordw( j)
i respectively.
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Two issues arise when directly using the above sentence bunch mode training. First,
the variation of sentence length in the training data requires the number of columns of the
input matrix to be the maximum sentence length in the training corpus. To handle this
issue,NULL “words” are then appended to the end of other shorter sentences in the bunch,
as shown in Figure4.5. These redundantNULL words are ignored during BPTT. As the
ratio between the maximum and average sentence length of thetraining data increases, its
potential speed up from parallelisation is descreased. Second, the conventional sentence
bunch mode training also interacts with the use of class based RNNLMs [154, 217]. As
words aligned at the same position across different sentences can belong to different classes,
the associated output layer submatrices of irregular sizeswill be used at the same time
instance. This can also result in inefficiency during training.

4.4.3 Bunch Mode RNNLM Training with Sentence Splicing

To improve efficiency, bunch mode based on spliced sentencesis proposed in this thesis.
Instead of a single sentence, each stream in the bunch now contains a sequence of concate-
nated sentences, as illustrated in Figure4.6. Sentences in the training corpus now can be
concatenated into streams that are more comparable in length. Individual sentence bound-
aries within each stream are marked in order to appropriately reset the recurrent history
vector as required. As the streams are more comparable in length, the insertion ofNULL
tokens at the stream end is minimised. This approach can thussignificantly reduce the
synchronisation overhead and improve the efficiency in parallelisation.

The bunch mode training of C-RNNLMs requires the use of different submatrices as
words within the same bunch maybe from different classes, which complicates implemen-
tation. The non-class based, full output layer RNNLMs (F-RNNLMs) introduced in Chap-
ter 4.1.1 are chosen to avoid this issue. F-RNNLMs use the entire output layer both in
training and LM probability calculation, therefore allowing the speed improvements from
parallelisation techniques to be fully exploited.

It is also worth noting that, we can not apply sentence splicetechnique for the sentence
by sentence update. Otherwise, the sentence boundary will appear in the middle of spliced
sequence randomly as shown in Figure4.6. Another solution to improve parallelisation
efficiency for the sentence by sentence RNNLM training is to choose multiple sentence with
similar sentence length. However, we found this may affect the performance by clustering
sentences with similar length.

4.4.4 Analysis of the Efficiency of Parallelisation

As discussed in Section4.4.1, the RNNLMs could be updated either a sentence by sentence,
or word by word basis. Both of these two implementations can be parallelised by aligning
multiple sentences. In this section, we will compare the efficiency of these two implemen-
tations. For simplicity, we assume thatM sentences are parallelised for computation and all
sentences have the same sentence lengthN as shown in Figure4.7

In our implementation, model parameters are updated on the word by word basis. There-
for N updates are required to processM×N words shown in Figure4.7. Each update collects
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Fig. 4.6An example of bunched RNNLM training with sentence splicing. All sentences from
the training corpus are concatenated into M long streams andNULL tokens are only needed
at the end of the training corpus.

gradients ofM words from the same column as shown in Equation4.24.

▽=
∂

∂θθθ

M

∑
i

lnP(w(i)
j |h(i)j ;θθθ) (4.24)

For the sentence by sentence update, only 1 update is required and the gradients are
collected fromM sentences as shown in Equation4.25. However, the computation is only
parallelised overM sentences as words in a sentence still need to be processed from left to
right.

▽=
∂

∂θθθ

M

∑
i

lnP(W(i);θθθ ) =
∂

∂θθθ

N

∑
j

M

∑
i

lnP(w(i)
j |h(i))j ;θθθ) (4.25)

When applying SGD for RNNLM training, a proper minibatch size needs to be set. A
small minibatch size may cause slow training and take longertime to train; a large minibatch
may hurt convergence and degrade performance. For example,128 was empirically found
optimal minibatch size for a range of tasks [40, 239, 112]. During word by word based
update, we can setM to be 128 and parallel 128 sentences for training. During sentence by
sentence based updating, if we assume that the sentence lengthN is 10 and still useM = 128.
A total of 1280 words will be used for each update. This will result in a bad convergence.
A comparable value forM in the sentence by sentence update mode should be about 13. In
this case, only 13 sentences will be parallelised during RNNLM training. Hence, we can
see that our implementation is more beneficial for parallelisation.
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Fig. 4.7An example of M sentences with the same sentence length N.

4.4.5 Efficient Softmax Calculation and Parameter Tuning

To improve efficiency, graphics processing units (GPUs), which have been previously em-
ployed to train deep neural network based acoustic models inspeech recognition [37, 199],
are used to train RNNLMs. CUBLAS from CUDA 5.0, the basic linear algebra subprograms
(BLAS) library optimised for Nvidia GPUs, is used for fast matrix operation. As discussed
in Chapters4.1.2, when a large number of output layer nodes is used, the softmax compu-
tation during gradient calculation is very expensive. To handle this problem, a fast GPU
implementation of the softmax function is used. Instead of summing the sufficient statistics
sequentially over all output layer nodes, they are processed in one block. Shared memory is
also used to facilitate rapid address access time. An array in each block with a fixed length
(1024 used in this work) is allocated in the shared memory. Partial accumulates are stored
in the array elements. A binary tree structured summation performed over the array reduces
the execution time fromM to logM, for example, from 1024 down to 10 parallelised GPU
cycles.

In order to obtain a fast and stable convergence during RNNLMtraining, the appropriate
setting and scheduling of the learning rate parameter are necessary. For the F-RNNLMs
trained with bunch mode, the initial learning rate is empirically adjusted in proportion to
the underlying bunch size. When the bunch size is set to 1 and no form of parallelisation
is used, the initial learning rate is set to 0.1, in common with the default setting used in the
RNNLM toolkit [155]. The initial learning rate settings used for various otherbunch sizes
are also given in Table4.2. When the bunch size increases to 128, the initial learning rate is
set to 0.0078 per sample.
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Table 4.2 The empirical value for initial learning rate per sample with different bunch size
for RNNLM training.

bunch size 1 8 32 64 128 256

learning rate 0.1 0.0375 0.025 0.0156 0.0156 0.0078

4.5 Pipelined Training of RNNLMs

A practical way to further speedup training is using more machines (CPUs or GPUs) for
parallel computation. The parallel training of neural network can be split into two categories:
model parallelism and data parallelism [200]. The difference lies in whether the model
or data is split across multiple machines or cores. Pipelined training is a type of model
parallelism. It was first proposed to speedup the training ofdeep neural network (DNN)
based acoustic models in [37]. Layers of the network are distributed across different GPUs.
Operations on these layers such as the forward pass and errorback propagation are executed
on their own GPUs. It allows each GPU to proceed independently and simultaneously. The
communication between different layers is performed aftereach parameter update step. In
this thesis the idea of pipelined training is to be applied inthe training of RNNLMs.

An example of RNNLM with one hidden layer and associated dataflow of pipelined
training is shown in Figure4.8. The hidden layer (denoted by Weight 0) and output layer
weight (denoted by Weight 1) matrices are kept in two GPUs (denoted by GPU 0 and GPU
1). For the first bunch in each epoch, the input is forwarded tothe hidden layer and the
output of hidden layer is copied from GPU 0 to GPU 1. For the 2ndbunch, the input is
forwarded to hidden layer in GPU 0. Simultaneously, GPU 1 forwards the previous bunch
obtained from hidden layer to the output layer. This is followed in sequence by error back
propagation, parameter update, and the communication between GPUs in the form of a
copying operation. For the following bunches, GPU 0 updatesthe model parameters using
the corresponding error signal and input with BPTT, before forwarding the new input data
for the next bunch. GPU 1 performs successively a forward pass, error back propagation
and parameter update again.
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Fig. 4.8An example of data flow in pipelined RNNLM training using 2 GPUs



66 Efficient Training and Inference of RNNLMs

4.6 Experiments

In this section, the performance of the proposed techniquesto improve RNNLM training
and inference efficiency are evaluated on two tasks: a HTK-based large vocabulary speech
recognition system developed for English conversational telephone speech (CTS) used in the
2004 DARPA EARS evaluation [64]; and Google’s one billion word benchmark corpus [32]
for language modelling.

4.6.1 CTS-English ASR Experiment

In this section, RNNLMs are evaluated on the CU-HTK LVCSR system for conversational
telephone speech (CTS) used in the 2004 DARPA EARS evaluation. The MPE [178] acous-
tic models were trained on approximately 2000 hours of Fisher conversational speech re-
leased by the LDC. A 59k recognition word list was used in decoding. The system uses a
multi-pass recognition framework. The initial lattice generation used adapted gender depen-
dent cross-word triphone MPE acoustic models with HLDA projected, conversational side
level normalised PLP features, and unsupervised MLLR [68] speaker adaptation. A pruned
interpolated 3-gram LM was used for lattice generation and followed by lattice rescoring
using an unpruned 4-gram LM. A more detailed description of the baseline system can be
found in [65]. It is worth mentioning that the system was built in CUED forevaluation
in about 10 years before, which cannot reflect the performance of state-of-the-art acous-
tic model. For the performance of RNNLM on advanced acousticmodels, the readers are
referred to Chapter8, where meeting data is used to construct state-of-the-art ASR system.
The 3 hourdev04data, which includes 72 Fisher conversations and contains on average 10.8
words per segment, was used as a test set. For results presented in this chapter, matched pairs
sentence-segment word error (MAPSSWE) based statistical significance test was performed
at a significance levelα = 0.05 to ensure the improvement is statistically significant. The
baseline 4-gram LM was trained using a total of 545 million words from two text sources:
the LDC Fisher acoustic transcriptions,Fisher, of 20 million words (weight 0.75), and
the University Washington conversational web data [24], UWWeb, of 525 million words
(weight 0.25). TheFisher data was used to train various RNNLMs. A 38k word input layer
vocabulary and 20k word output layer shortlist were used. RNNLMs were interpolated with
the baseline 4-gram LM using a fixed weight 0.5. This baselineLM gave a WER of 16.7%
on dev04measured using lattice rescoring.

The baseline class based RNNLMs were trained on CPU with the modified RNNLM
toolkit [155] compiled with g++5. The number of BPTT steps was set as 5. A computer
with dual Intel Xeon E5-2670 2.6GHz processors with a total of 16 physical cores was used
for CPU-based training. The number of classes was fixed as 200. The number of hidden
layer nodes was varied from 100 to 800. 12 epochs were required for RNNLMs training
to get convergence in this task. The 100-best hypotheses extracted from the baseline 4-

5A speedup of 1.7 times for CPU based training could be obtained by the Intel MKL CUBLAS implementa-
tion with multi-threading (compiled with icc version 14.0.2) over the baseline RNNLM toolkit for C-RNNLMs
with 512 hidden layer nodes and 200 classes.
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gram LM lattices were rescored for performance evaluation.The perplexity and error rates
of various RNNLMs are shown in Table4.3. The C-RNNLM with 512 hidden layer nodes
gave the lowest WER of 15.3% and serves as the baseline C-RNNLM in all the experiments.

Table 4.3 Training speed, perplexity and WER results of CPU trained C-RNNLMs on the
CTS task with varying hidden nodes with cross entropy based training.

hidden speed train time dev04
nodes (w/s) (hours) PPL WER

4glm (baseline) 51.8 16.72
100 7.6k 9.8 50.7 16.13
200 2.1k 35.6 48.6 15.82
512 0.37k 202.1 46.5 15.32
800 0.11k 679.9 45.8 15.40

Experiment on bunch mode training on GPU

The next experiment was to examine the efficiency of bunch mode GPU based RNNLM
training with sentence splicing. The Nvidia GeForce GTX TITAN GPU was used to train
various F-RNNLMs. The spliced sentence bunch mode parallelisation algorithm and its
GPU implementation described in Chapters4.4were used. A range of different bunch size
settings from 8 to 256 were used. Consistent with the above C-RNNLM baseline, all F-
RNNLMs have 512 hidden layer nodes and a comparable number ofweight parameters.
Their performance measured in terms of training speed, perplexity and WER are shown in
the 2nd Section of Table4.4. To illustrate the performance differences among RNNLMs,
WERs are shown with accuracy of 2 decimal places. The performance of the baseline C-
RNNLM with 512 hidden nodes (shown in the 4th line in Table4.3) is again shown in
the 1st line of Table4.4. Setting the bunch size to 8, a 4 times speed up is achieved. Im-
provements in perplexity and WER over the C-RNNLM baseline are also obtained. Further
improvements in training speed can be consistently achieved by increasing the bunch size
to 128 without performance degradation. The best performance in terms of training speed
and WER was obtained by using a bunch size of 128. This gives a 27 times speed up and a
0.1% absolute reduction in WER over the C-RNNLM baseline.

Examining the breakdown of the training time suggests the output and hidden layers
account for the majority of computation during BPTT (44.8% and 39.4% respectively), due
to the heavy matrix multiplications required. The remaining computation is shared by other
operations such as resetting F-RNNLM hidden vectors at the sentence start, and data transfer
between the CPU and GPU. This breakdown of training time suggests that further speedup is
possible via pipelined training by allocating the computation of the hidden layer and output
layer into different GPUs, as shown latter in Table4.10. A further speed up is possible, for
example, by increasing the bunch size to 256. However, the convergence becomes unstable
and leads to performance degradation.
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Table 4.4 Training speed, perplexity and WER results of GPU trained F-RNNLMs ondev04
with varying bunch sizes and a fixed hidden layer size of 500.

model bunch #parameter speed time dev04
type size (w/s) (hours) PPL WER

C-RNN - 26.9M 0.37k 202.1 46.5 15.32

F-RNN

8

26.8M

1.4k 53.4 45.7 15.22
32 4.6k 16.3 45.6 15.25
64 7.6k 9.8 45.7 15.16
128 10.1k 7.4 46.3 15.22
256 12.9k 5.7 46.5 15.38
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Fig. 4.9F-RNNLM training speed with and without sentence splicing on the CTS task. The
red line is the train speed with spliced sentence bunch training and the green line is without
sentence bunch but only aligning multiple sentences.

An analysis of number ofNULL tokens with and without sentence splicing was carried
out. With bunch size 128, by simply aligning the sentences, 72M NULL tokens are appended
at the end of sentence in one epoch. In contrast, only 60KNULL tokens are necessary
at the end of each epoch when sentence splicing is adopted. Itcould been seen that the
number ofNULL token can be reduced dramatically. As a major contribution factor to the
above speed improvements,the importance of using sentencesplicing in bunch mode based
GPU implementation is shown in Figure4.9, where a contrast in speed with and without
sentence splicing is drawn. When using the conventional bunch model training with no
sentence splicing as shown in Figure4.5, only limited speed improvements were obtained
by increasing the bunch size. This is due to the large number of insertedNULL tokens
and the resulting inefficiency, as discussed in Section4.4. These results suggest that the
proposed sentence splicing technique is important for improving the efficiency of bunch
mode RNNLM training.

The spliced sentence bunch based parallelisation can also be used for RNNLM perfor-
mance evaluation on GPU. Table4.5 shows the speed information measured for N-best
rescoring using the baseline C-RNNLM and the F-RNNLM of Table 4.4. As expected, it
is very expensive to use F-RNNLM on CPU, which is discussed inthe following section.
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C-RNNLMs can improve the speed by 43 times. A further speedupof 9 times over the
CPU C-RNNLM baseline was obtained using the bunch mode (bunch size 512) parallelised
F-RNNLM.

Table 4.5 Evaluation speed of C-RNNLMs (class based RNNLMs)and F-RNNLMs (full
output layer RNNLMs) for N-Best scoring ondev04. The F-RNNLM is trained with bunch
size 128.

model device bunch test speed WER
type size (words/sec)

C-RNN
CPU N/A

5.9k 15.32
F-RNN 0.14k 15.22

F-RNN GPU
1 1.1k

15.2264 41.3k
512 56.3k

Experiment on variance regularisation

In this section, the performance of F-RNNLMs trained with variance regularisation are eval-
uated. These experimental results with various settings ofthe regularisation constantγ in
equation (4.9) are shown in Table4.6. The word error rates withZ(h) in the table are the
WER scores measured using the conventional normalised RNNLM probabilities computed
using Equation4.6. WERs withZ in the last column are obtained using the more efficiently
approximated RNNLM probabilities given in Equation4.12. The first row of Table4.6
shows the results without variance regularisation by setting γ to 0, the same to the conven-
tional CE based training. As expected, the WER was increasedfrom 15.22% (conventional
fully normalised F-RNNLMs) to 16.24% without performing the normalisation. This con-
firms that the normalisation term computation for the softmax function is crucial for using
cross entropy (CE) trained RNNLMs in decoding.

When the variance regularisation term is applied in F-RNNLMtraining, there is only
a small difference in terms of WER between using the accuratenormalisation termZ(h)
or approximate normalisation termZ. As expected, when the setting ofγ is the increased,
the variance of the log normalisation term is decreasing. When γ is set as 0.4, it gave a
WER of 15.28%, insignificant to the WER of the baseline CE trained F-RNNLM (1st line
in Table4.6 and also 5th line in Table4.4). At the same time, significant improvements in
evaluation speed were also obtained. This is shown in Table4.7. The CPU based F-RNNLM
evaluation speed was increased by a factor of 56 over the CE trained F-RNNLM baseline
using variance regularisation, while retaining the same training speed.

Experiment on NCE training

The next experiment was using NCE for RNNLM training, where accelerations in both
training and decoding are expected since the computation inthe output layer can be reduced
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Table 4.6 Perplexity and WER performance of F-RNNLMs trained with variance regulari-
sation ondev04. The mean and variance of log normalisation term were computed over the
validation data. The two columns under WER (Z(h) and Z) denote word error rates using
normalised or approximated RNNLM probabilities computed using Equations4.6and4.12.

γ log-norm
PPL

WER
mean var Z(h) lnZ

0.0 15.4 1.67 46.3 15.22 16.24

0.1 14.2 0.12 46.5 15.21 15.34
0.2 13.9 0.08 46.6 15.33 15.35
0.3 14.0 0.06 46.5 15.40 15.30
0.4 14.2 0.05 46.6 15.29 15.28
0.5 14.4 0.04 46.5 15.40 15.42

Table 4.7 Training and evaluation speed of F-RNNLMs trainedwith variance regularisation
on the CTS task. C-RNNLMs were trained on CPU and F-RNNLMs on GPU. Both were
evaluated on CPU.

model train train train time test
type crit speed(w/s) (hours) speed(w/s)

C-RNN CE 0.37k 202.1 5.9k

F-RNN
CE 10.1k 7.4 0.14k
VR 10.1k 7.4 7.9k
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significantly. As discussed in Chapters4.2.3, an important attribute of NCE training is that
the variance of the RNNLM output layer normalisation termZ can be implicitly constrained
to during parameter estimation. This effect is illustratedin Figure4.10on the log scale over
a total of 12 epochs on the validation data set. The variance of the normalisation term is
slightly increased from 0.035 to 0.06 in the first 4 epochs, then gradually reduced to 0.043
at the last epoch.
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Fig. 4.10Variance of the output layer log normalisation termlnZ on the validation data on
CTS task at different epochs during NCE based RNNLM training.

The WER and PPL results of NCE trained RNNLM are given in Table4.8. 12 epochs
were required for both the conventional CE and NCE based training to converge. As dis-
cussed in Chapter4.2.3, the log normalisation termlnZ in Equation4.19was fixed as 9.
The perplexity scores in Table4.8 were obtained by explicitly computing the output layer
normalisation term. During N-best rescoring, normalised RNNLM probabilities were used
for the CE trained RNNLM baseline, while unnormalised probabilities were used for the
NCE trained RNNLM. As is shown in Table4.8, the NCE trained RNNLM gave slightly
worse performance than the CE trained baseline. At the same time, the train speed was
doubled. This is expected as the time consumed on output layer is approximately half of the
total training time required for conventional CE training.

Similarly a large testing time speedup of 56 times over the CEtrained RNNLM on
CPUs was also obtained, as is shown in Table4.8. This improvement is comparable to the
speedup obtained using variance regularisation based RNNLM training previously shown
in Table4.7. As the computation of the normalisation term is no longer necessary for NCE
trained RNNLMs, the computational cost incurred at the output layer can be significantly
reduced.

As expected, the NCE training speed is also largely invariant to the size of the output
layer, and thus improves the scalability of RNNLM training when a very large output vocab-
ulary is used. This highly useful feature is clearly shown inTable4.9, where CE training
speed decreases rapidly when the output layer size increases. In contrast, the NCE training
speed remains constant against different output layer vocabulary sizes.
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Table 4.8 Perplexity and WER performance, training and evaluation speed of NCE trained
F-RNNLMs on the CTS task. C-RNNLMs trained on CPU and F-RNNLMs on GPU. Both
evaluated on CPU.

model train train train test dev04
type crit speed(w/s) time(hr) speed(w/s) PPL WER

C-RNN CE 0.37k 202.1 5.9K 46.5 15.32

F-RNN
CE 10.1k 7.4 0.14k 46.3 15.22
VR 10.1k 7.4 7.9k 46.6 15.28

NCE 19.7k 3.8 7.9k 46.8 15.37

Table 4.9 The training speeds (w/s) using cross entropy (CE)and noise contrastive estima-
tion (NCE) with different output layer size for F-RNNLMs on CTS task

train #output layer nodes
crit 20k 35k 30k

CE 10.1k 9.1k 8.0k
NCE 19.7k

Experiment on Dual GPU pipelined training

In this section, the performance of a dual GPU based pipelined F-RNNLM training algo-
rithm is evaluated. In the previous experiments, a single Nvidia GeForce GTX TITAN GPU
(designed for a workstation) was used. For the pipelined training experiments, two slightly
slower NVidia Tesla K20m GPUs housed in the same server were used. Table4.10shows
the training speed, perplexity and WER results of pipelinedCE training for F-RNNLMs.
As is shown in the table, pipelined training gave a speedup ofa factor of 1.6 times and
performance comparable to a single GPU based training.

Table 4.10 Training speed, perplexity and WER performance of F-RNNLMs ondev04using
pipelined CE training on CTS task.

model train dev04
type GPU speed(w/s) PPL WER

C-RNN - 0.37k 46.5 15.32

F-RNN
1xTITAN 10.1k 46.3 15.22
1xK20m 6.9k 46.3 15.22
2xK20m 11.0k 46.3 15.23

4.6.2 Google’s One Billion Word Experiment

A new benchmark corpus was released by Google for measuring performance of statistical
language models [32]. Two categories of text normalisation are provided. One isfor ma-
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chine translation (StatMT) and the other is for ASR providedby Cantab Research6. The
latter was used to further evaluate the performance and scalability of NCE based RNNLM
training in this experiment for training RNNLMs on large corpus. The former will be used
to build language model in the next experiment. A total of 800million words were used
in LM training. A test set of 160k words (obtained from the first split from held-out data)
was used for perplexity evaluation. A modified KN smoothed 5-gram LM was trained using
the SRILM toolkit [213] with zero cut-offs and no pruning. In order to reduce the computa-
tional cost in training, an input layer vocabulary of 60k most frequent words and a 20k word
output layer shortlist were used. RNNLMs with 1024 hidden layer nodes were either CE or
NCE trained on a GPU using a bunch size of 128. The other training configurations were
the same as the experiments presented in Chapter4.6.1. A total of 10 epochs were required
to reach convergence for both CE and NCE based training. The perplexity performance of
these two RNNLMs are shown in Table4.11. Consistent with the trend found in Table4.8,
the CE and NCE trained RNNLMs gave comparable perplexity when interpolated with the
5-gram LM. A large perplexity reduction of 21% relative overthe 5-gram LM was obtained.

Table 4.11 Perplexity performance of RNNLMs on Google’s onebillion (for ASR (provided
by Cantab Research) corpus) word corpus.

LM train train PPL
crit speed(w/s) +5glm

5glm - - 83.7 -

F-RNN
CE 6.7k 104.4 65.8

NCE 11.3k 107.3 66.0

In order to further investigate the scalability of NCE basedRNNLM training, an addi-
tional set of experiments comparable to those presented in Table4.11were conducted using
a much larger, full output layer vocabulary of 793k words as used in previous research [52].
It is worth mentioning that the corpus used in this experiment is for machine translation,
which is different to the corpus used for ASR provided by Cantab Research in previous ex-
periments. Due to the large size of such output layer vocabulary, the speed of standard cross
entropy training of a full output layer based RNNLM is as slowas 200 words per second.
It is therefore computationally infeasible in practice to train such a baseline RNNLM. The
training speed and perplexity score of a NCE trained RNNLM with a 793k vocabulary are
presented in Table4.12, together with the baseline 5-gram LM’s perplexity performance.
A total of 1024 hidden nodes and a bunch size of 128 were used. The stand alone NCE
trained RNNLM gave a perplexity score of 77.3. This was further reduced to 52.6 after an
interpolation with the 5-gram LM7. Note that in order to ensure stable convergence during
NCE training, an additional gradient clipping step was alsoapplied. In combination with
drawing noise samples over a much larger output layer, this additional operation led to only

6All sources are available in https://code.google.com/p/1-billion-word-language-modeling-benchmark/.
The machine translation normalised version of this data waspreviously used in [32] for RNNLM training.

7The log file for perplexity computation is also available in http://mi.eng.cam.ac.uk/projects/cued-
rnnlm/ppl.h1024.log
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a moderate decrease in the training speed from 11.3k to 6.5k words per second, when com-
pared with the NCE trained 20k vocabulary RNNLM in Table4.11. The relative increase in
training time is much lower than that of the output layer vocabulary size, by approximately
40 times.

Table 4.12 Perplexity performance of RNNLMs on Google’s onebillion word corpus using
793K vocabulary. The train is run on GPU and test is on CPU.

LM
train train test PPL
crit speed(w/s) speed(w/s) +5glm

5glm - - - 70.9 -

F-RNN NCE 6.5k 37.1 77.3 52.6

4.7 Conclusions

This chapter studies the efficient training and inference ofRNNLMs. A sentence splicing
based bunch mode training is proposed to facilitate the bunch (i.e. minibatch) based training
on GPUs. Compared to the popular RNNLM toolkit trained on CPU, a speedup of 27
times is obtained on a CTS task by training RNNLMs with bunch mode on GPU. Pipelined
training using 2 GPUs is also investigated for the training of RNNLMs, which gives 1.6
times speedup. Besides the traditional cross entropy, variance regularisation (VR) and noise
contrastive estimation (NCE) are also introduced into the training of RNNLMs to further
improve the training and inference efficiency. RNNLMs trained by either VR and NCE give
much faster inference speed than C-RNNLMs due to the use of unnormalised probability.
Furthermore, NCE based training doubles the train speed. The experiment on Google one
billion corpus indicates that the training scales well on a large amount of data.



Chapter 5

Efficient Lattice Rescoring of RNNLMs

The standard back-offn-gram language model (LM) is suitable for first-pass decoding and
lattice rescoring due to its finite history character. The prediction of current word is only
related to the previousn-1 words. During the search, histories from different pathscan be
combined according to their validn-gram history, which reduces computation and mem-
ory demand significantly. However, for RNNLM, first-pass decoding and lattice rescoring
become difficult for its long term character. There is no straightforward way to combine his-
tories directly since the prediction of current word is associated with the complete history.

In order to address this issue, a range of techniques have been studied in recent years.
Among these earlier works, a sampling based approach was used to generate text data from
an RNNLM and a back-offn-gram LM is trained to approximate the RNNLM [59, 60]. A
discrete quantisation of RNNLMs into a weighted finite statetransducer (WFST) represen-
tation was proposed in [132]. An iterative lattice rescoring approach was first proposed and
further investigated in [58]. However, these earlier schemes were unable to produce 1-best
error rates comparable to the conventional N-best rescoring approach [59, 132] or generate
a compact lattice representation of the hypothesis space that is suitable for downstream ap-
plications such as confusion network (CN) decoding [58, 107] or keyword search. Several
latter works that were more successful in exploiting the lattice internal hypothesis ranking
produced by an earlier decoding pass. This allows an approximate partial expansion of
the underlying word graph to be performed during RNNLM rescoring [219, 220]. In this
chapter, the lattice rescoring of RNNLM is studied and two algorithms for RNNLM lattice
rescore are proposed1. This work enables efficient lattice rescoring using RNNLMs. Fur-
thermore, compact lattices are generated after RNNLM rescoring and these lattices can be
used by other applications such as confusion network decoding to get further word error rate
improvement.

The chapter is organised as follow. Two widely used approaches,n-gram LM based
approximation and N-best rescoring, for incorporation of RNNLM into speech recognition,
are introduced in Chapter5.1 and5.2. The use ofn-gram LM for history combination is
reviewed in Chapter5.3. Two proposed RNNLM lattice rescore methods are presented in

1This is a collaborative work with Dr Xunying Liu, who also co-supervised this work. The code for lattice
expansion during RNNLM rescoring is mainly implemented by Dr Xunying Liu. The ideas are proposed
during discussion.



76 Efficient Lattice Rescoring of RNNLMs

Chapter5.4, which aren-gram and history vector distance based clustering respectively.
Experiments examine the proposed methods in Chapter5.5 and the conclusion is given in
Chapter5.6.

5.1 n-gram LM approximation of RNNLM

RNNLM is difficult to directly apply to lattice rescoring dueto its complete history char-
acter. One feasible approach is to build a language model to approximate the probability
distribution of RNNLM and this language model is suitable for lattice rescoring, such asn-
gram LM. The approximated language model can be optimised bymaximising the following
cross entropy objective function,

JCE(θθθ) = ∑
(w,h)∈D

PRNN(w|h) logP̃(w|h) (5.1)

whereD is the training data,PRNN(w|h) is the RNNLM probability andP̃(w|h) is the prob-
ability of the approximated language model. This approximated language model can be
any form of language model which is suitable for lattice rescoring. It is computationally
intractable to optimise the parameter ofP̃(w|h) over all possible word and history(w,h).
Sampling technique is used as approximation and the objective function shown in Equation
5.1can be written as,

JCE(θθθ ) = ∑
(w,h)∈D

logP̃(w|h) (5.2)

whereD is the set of sentences randomly sampled from RNNLMPRNN(w|h). Equation5.2
is the standard maximum likelihood (ML) objective function. In previous work [59], n-gram
LM is chosen as the form of the approximated language model due to its finite history and
easy incorporation for lattice rescoring.

In this method, RNNLM is used to randomly sample sentences. At the beginning of
a sentence, the first input word is sentence start <s>, with a fixed and initialised history
vector (e.g. all set to 0.1). A word is sampled according to the output layer distribution
PRNN(w|h). The sampled word is used as input word for next sampling. This procedure
can be applied repeatly until the sentence end symbol </s> issampled. In this way, a large
quantity of sentences can be generated from a well-trained RNNLM [ 60, 5]. An n-gram
LM can be constructed on these sampled sentences which is then interpolated with the
baselinen-gram LM. The resulting LM can be applied directly for first-pass decoding or
lattice rescoring as an approximation to the original RNNLM. Previous research has shown
that this approximated language model provides moderate gain over the baselinen-gram
LM, but worse than the exact probability calculated using RNNLM [ 60].
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5.2 N-best Rescoring of RNNLM

A nice feature of the approximation approach introduced above is that ann-gram language
model with finite history can be constructed. However, a degradation of performance for
speech recognition is observed compared to using exact probability from RNNLM. An alter-
native approach is to modify the lattice structure to make itsuitable for RNNLM rescoring.
Lattice is a direct acyclic graph (DAG) with compact representation of multiple hypotheses
as shown in Figure5.1. Each arc (i.e. word) in the lattice may have different histories. A
parallel structure of the lattice can be constructed by unfolding all paths as shown in Figure
5.2. However, it is computationally intractable to list all possible paths in the lattice. N-best
list only maintains the highest N paths from the lattice and allows the exact RNNLM proba-
bility PRNN to be used. N-best rescoring is normally applied in speech recognition systems
with an additional pass. The language model probability of these N-best hypotheses are sub-
stituted by the interpolated probabilities of then-gram LMs and RNNLMs. The hypotheses
are then reranked with the interpolated language model probability.

<s> there is a cat

here

mat

hat

</s>

Fig. 5.1Example lattice for rescoring

<s> is a catthere

there

there

is a

ais

hat

mat

here is a cat

is

is

a

ahere

here

mat

hat

</s>

Fig. 5.2Example N-best list for rescoring

N-best rescoring provides a straightforward way to incorporate RNNLM and promising
performance can be obtained [154, 123]. However, only the top N-best sentences in the
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lattice are possible decoding output and other possible hypotheses are ignored as the growth
of N introduces a linear increase of computational load. A more computationally efficient
way is to convert N-best into prefix for RNNLM rescoring [211]. The N-best list in Figure
5.2can be converted to a prefix tree as shown in Figure5.6, where the paths with the same
history can be merged. However, it is still impractical to take into account all paths in the
lattice given the vast amount of potential paths. Furthermore, N-best rescoring only updates
the information for the N-best list, instead of the whole lattice. The output is 1-best hy-
pothesis and it cannot generate lattice after N-best rescoring. The rich information of lattice
is lost. Lattice is of practical value for various applications. Confusion network decoding
[145] applied on lattice can obtain further recognition performance gain; the confidence
score estimated from lattice is useful for for keyword search. Hence, RNNLM rescoring
based on lattice is very useful for real applications.

<s> is a catthere

hat

mat

a catis

mat

hat

here

</s>

Fig. 5.3Example prefix tree for rescoring

5.3 History Combination of n-gram LM

Before entering the discussion of RNNLM lattice rescoring,the history combination us-
ing n-gram LM based lattice rescoring is reviewed. In speech recognition, there is a large
amount of possible paths during searching. In order to keep these candidates with a low
computation and memory cost, the paths with the samen-gram LM history are merged as
early as possible. As an example, when 2-gram LM is used, for the following two paths
ending with words(wi−1,wi), their likelihoods are written as,

L1 = p(ot
1|wi−2

0 ,wi−1,wi)P(w
i−2
0 ,wi−1)P(wi |wi−2

0 ,wi−1) (5.3)

L2 = p(ot
1|w̃i−2

0 ,wi−1,wi)P(w̃
i−2
0 ,wi−1)P(wi |w̃i−2

0 ,wi−1)

The first item on the right of the above equation is acoustic model probability, the remaining
two items are language model probability2. In a 2-gram LM, the language model probabil-

2language model scale and insertion penalty are ignored here
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ities of the current wordwi are the same.

P(wi |wi−2
0 ,wi−1) = P(wi |w̃i−2

0 ,wi−1) (5.4)

It is worth noting that the two history word sequences (wi−2
0 ,wi−1) and (w̃i−2

0 ,wi−1) are not
required to have the same length. Moreover, for any words in the future, they also share the
same language model probability. These two paths can be merged based on the discussion
of Viterbi decoding in Chapter2.4.1. The path with higher likelihood is kept and the other
path is removed. This process is illustrated in Figure5.4.

wi−1,SA

wi−1,SB

wi

Fig. 5.4An example of combining two paths ending with (wi−1,wi) when 2-gram LM is used.
SA and SB are the history states (e.g. acoustic model and language model likelihood, valid
n-gram history) of these two paths.

5.4 Lattice Rescoring of RNNLM

As stated above, it is impractical to compute the exact RNNLMprobability for every possi-
ble path in a lattice, as it requires significant computational effort and results in prefix tree
ultimately. Hence, some approximation is necessary to compress the search space.

Motivated by the path combination ofn-gram LM discussed in Chapter5.3, compact
lattice is generated due to then-gram assumption. This thought can also be applied on
RNNLM to cluster similar histories so as to shrink the searchspace and reduce computation.
The condition of combination of two paths in RNNLM can be written as,

PRNN(wi |wi−1
0 )≈ PRNN(wi |w̃i−1

0 ) (5.5)

Given two distinct historieswi−1
0 andw̃i−1

0 , if their probability distributions on current word
wi could be viewed equivalently, these two paths can be combined as an approximation.

The methods proposed in this thesis are inspired by two RNNLMassumptions. First, the
history has a gradually diminishing effect on the predictedword probability in RNNLMs as
the distance to the current word increases. This allows partial histories that are the same
to share predicted word distribution. More precisely, if two finite histories share the same
recent words, they are viewed as equivalent. It is thus possible to represent the infinite
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history of RNNLMs using a truncated history with fixed and finite length, which is similar
to n-gram LM. The 3-gram approximation for the RNNLM history combination can be
shown as,

PRNN(wi |wi−3
0 ,wi−2,wi−1)≈ PRNN(wi |w̃i−3

0 ,wi−2,wi−1) (5.6)

The probabilities of RNNLMs can be viewed as the same if the previous two words in the
history are the same. Second, recalling to Equation3.10, in a more general case, RNNLM
probabilities can be represented by the previous wordwi−1 and its history vectorvvvi−2

3,

PRNN(wi |wi−1
0 ) = PRNN(wi |wi−1,vvvi−2) (5.7)

wherevvvi−2 is the hidden history vector. Hence, it is also possible to explicitly use a hidden
history vector distance based measure to determine the sharing of RNNLM probabilities.
This method can be written as,

PRNN(wi |wi−1,vvvi−2)≈ PRNN(wi |w̃i−1, ṽvvi−2) when wi−1 = w̃i−1,D(vvvi−2, ṽvvi−2)< γ (5.8)

D(vvvi−2, ṽvvi−2) denotes some distance measure to evaluate the similarity ofthese two hidden
history vectors, which will be detailed below.

Motivated by these hypotheses, two efficient RNNLM lattice rescoring methods are
proposed and investigated. The first uses ann-gram based clustering of history contexts
[142, 104] and the second method exploits the distance measure between recurrent history
vectors [142].

5.4.1 n-gram based History Clustering

Thisn-gram based history clustering is motivated by the assumption that the effect of distant
history gradually vanishes, and only the most recent words have a large impact on predicting
the next word. Two histories sharing the commonn− 1 previous words are viewed as
equivalent. It is thus possible to merge these two paths intoa single path for the following
word predictions. Recalling the approximation ofn-gram LM shown as Equation2.22, a
similar approximated RNNLM state for the complete historywi−1

0 can be written as,

ΦRNN(w
i−1
0 ) = wi−1

i−n+1 =<wi−1, . . .,wi−n+1> (5.9)

The history state of RNNLMΦRNN(w
i−1
0 ) during searching is decided by its previousn−1

words. When two paths are considered to be merged, their history states are compared. If
their history states are equivalent, i.e. sharing the same previousn−1 words, these two paths
are merged by keeping the path with higher likelihood and removing the other path with
lower likelihood. This approximation reduces the computation and memory significantly.
As the truncated history lengthn− 1 increases, the approximated RNNLM probabilities
are expected to be increasingly close to the true ones, whilewith a growth of computation.
Figure5.5 illustrates the history combination using 2-gram approximation. For the word

3The continuous history vectorvvvi−1 can also be used to represent its complete history.
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“a”, it has two distinct history paths “<s> there is” and “<s>here is”. The most recent word
for both paths is “is”. Hence these two paths could be combined and the history state of
above path (“<s> these is”) is kept due to its higher likelihood4.

cat

hat

mat

ishere

</s><s>

ac=−13.0
lm=−3.4

ac=−11.0

ac=−14.0
lm=−2.0

ac=−10.0
lm=−3.0

there is

ac=−9.0
lm=−2.3
<s> there a

ac=−14.0

rnn hist: <s> <s> there is
lm=−1.5

rnn hist: <s>

lm=−1.5

<s> here is

rnn hist: <s> there is a

...

...

<s> here

Fig. 5.5An example of n-gram based history clustering. For the node with word “a”, its
two history paths “<s> there is” and “<s> here is” has the samerecent word “is”. When
2-gram approximation is applied, these two paths can be merged and only the history path (

“<s> there is”) giving higher probability is kept and will beused for computing new history
vector.

The above history clustering algorithm in practice operates as a LM state cache that
stores the RNNLM probabilities over the output vocabulary associated with distinct trun-
catedn-gram histories derived fromΦNG(·). By default, if a particular truncated history
stateΦNG(w

i−1
0 ) is not found in the cache, the full historywi−1

0 that subsumes the truncated
context is used to create a new entry in the cache. As this algorithm uses similar informa-
tion as conventionaln-gram LM, it can be easily adapted and used by both beam search
decoders [170, 168] where RNNLM probabilities can be computed on-the-fly by request
and accessed via the cache. WFST [163] style lattice rescoring where a previously gener-
ated network can be used to build all possible shared RNNLM states into a WFST. In this
thesis, only the lattice rescoring case is studied.

5.4.2 History Vector Distance based Clustering

The strong generalisation power of RNNLM is rooted in the continuous vector representa-
tion of word and history context. When clustering histories, it is also possible to make use of
the similarity in their vector representation. The contextstate of an RNNLM is represented
by an ordered pair that encodes the full, complete historywi−1

0 =< wi−1, . . .,w0 >.

ΦRNN(w
i−1
0 ) = <wi−1,vvvi−2> (5.10)

4the language model scale and insertion penalty is ignored here.
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The internal state of RNNLM here consists of two terms. The first item is the previous word
wi−1. The second itemvvvi−2 gives a compact vector representation of historywi−2

0 . The
history clustering can be based on this history representation directly. For two pathswi−1

0

andw j−1
0 , they will be clustered if the following constraints are satisfied:

wi−1 = w j−1 & D(vvvi−2,vvv j−2)6 γ (5.11)

whereγ is a threshold and can be viewed as a hidden history vector distance beam.D(·, ·)
can be any distance measure such as Euclidean distance. It can be tuned flexibly to adjust
the trade-off between precision and computation of this approximation.

Under this approximation, two paths with the common most recent word, and their dis-
tance of full history vector below a thresholdγ are merged. For example, in the prefix tree
shown in Figure5.6, for the two nodes with word “a”, its two histories “<s> thereis” and
“<s> here is” share the same previous word “is” and their hidden vectors are close enough.
Hence, these two paths will be merged and the history vector of the above path which has a
higher likelihood is kept.

cat

hat

mat

ishere

</s><s>

ac=−13.0
lm=−3.4

ac=−11.0

ac=−14.0
lm=−2.0

ac=−10.0
lm=−3.0

there is

ac=−9.0
lm=−2.3
<s> there a

ac=−14.0

rnn hist: <s> <s> there is
lm=−1.5

rnn hist: <s>

lm=−1.5

<s> here is

rnn hist: <s> there is a

...

...

<s> here

Fig. 5.6An example of history vector distance based clustering. Forthe node with word “a”,
its two history paths “<s> there is” and “<s> here is” can be represented by two history
vectors in RNNLMs. These two paths can be merged as the Euclidean distance of these
two vectors is smaller than a threshold. The history path ( “<s> there is”) giving higher
probability is kept and will be used for computing new history vector.

In similar form to then-gram based clustering scheme introduced before, this history
vector distance based clustering method is also implemented as a cache during lattice rescor-
ing. This method can also be applied for beam search based decoder. However, due to
the introduction of the distance beamγ, this technique is non-trivial to be directly used in
generic WFST based decoding approaches.

There is a range of choices available for the distance measure D(vvvi−2,vvv j−2) over the
two history vectors. The history vector is a vector with elements from the output of sigmoid
function, which is bounded from 0 to 1. Here, the normalised Euclidean distance is used in



5.4 Lattice Rescoring of RNNLM 83

this thesis, which is given by,

D(vvvi−2,vvv j−2) =
1
d

√

√

√

√

d

∑
k=1

(vi−2,k−v j−2,k)2 (5.12)

whered is the dimension of the history vector.

5.4.3 Algorithm Implementation

The options discussed above determine which paths to merge among different histories
based on the prefix tree. However, a lattice is a more common data structure for a com-
pact representation of multiple paths. Hence, in practice,it turns to expend the path for each
node in the lattice, until the histories are equivalent according to either Equation5.9or 5.10.

It is worth pointing out, during RNNLM lattice rescoring, RNNLMs are applied on
the the existed lattice generated byn-gram LMs, instead of prefix tree. Then-gram based
clustering and history vector based clustering described in Section5.4.1and5.4.2are used to
determine whether two history paths are equivalent or not. If not, the node will be expended.
The extreme case is all merging node are expended and the prefix tree is generated. However,
it won’t generate new path in the new lattice compared with the inputn-gram lattice.

All the lattice rescoring experiments in this thesis use an on-the-fly lattice expansion
algorithm [141] suitable for a wide range of language models including back-off n-grams,
feedforward NNLMs, recurrent NNLMs and their interpolatedform [139]. A central part
of this algorithm requires the LM state representation for the underlying model being used.
For example, for back-offn-gram LM, this is given by Equation2.22. For approximated
RNNLMs, this is based on Equation5.9 or 5.10depending on the history clustering tech-
nique being used. The interpolated LM’s state representation is derived from a union of
those component LMs. The corresponding pseudo-code for thealgorithm is given below5.

1: for every nodeni in the networkdo
2: initialise its expanded node listN′

i = {};
3: initialise its expanded outbound arc listA′

i = {};
4: end for
5: addn0 to its expanded node list,N′

0 = {n0};
6: add alln0’s outbound arcs to its expanded arc list,A′

0 = A0;
7: Start depth first network traversal from the initial noden0;
8: for every nodeni being visiteddo
9: for every expanded noden′j ∈ N′

i of nodeni do
10: for every outbound arcak from ni do
11: find the destination nodenk of arcak;

12: find the LM stateΦ(h
n′j
n0) of expanded noden′j ;

13: compute LM probabilityP(nk|Φ(h
n′j
n0));

5The pseudo-code is from [144] provided by Xunying Liu
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14: find a new LM stateΦ(hnk
n0) for nodenk;

15: if ∃ noden′l ∈ N′
k representing stateΦ(hnk

n0) then
16: return the found noden′l ;
17: else
18: add a new noden′l to N′

k to represent stateΦ(hnk
n0);

19: end if
20: create a new arca′l from n′j to n′l ;

21: assign score lnP(nk|Φ(h
n′j
n0)) to a′l ;

22: add arca′l to the expanded outbound arc listA′
i .

23: end for
24: end for
25: end for
26: Rebuild new network using{N′

i } and{A′
i}.

The above on-the-fly lattice expansion algorithm is implemented as an extension of
HLRescore in HTK toolkit and also incorporated into the latest HTK v3.5 [252].

5.5 Experiments

In this section the performance of the proposed RNNLM lattice rescoring methods are eval-
uated using two HTK-based large vocabulary speech recognition systems. The first was de-
veloped for English conversational telephone speech (CTS)used in the 2004 DARPA EARS
evaluation [64]. The second system for Mandarin Chinese conversational speech was used
in the 2014 DARPA BOLT evaluation [143]. A series of experiments were conducted on
these two tasks.

5.5.1 Experiments on English CTS Data

The 2004 CU English CTS LVCSR system was also used for experiments in Chapter4.
A pruned interpolated 3-gram LM was used for lattice generation and followed by lattice
rescoring with an unpruned 4-gram LM. The 3 hourdev04data, which includes 72 Fisher
conversations and contains on average 10.8 words per segment, was used as a test set. The
3 houreval04set of a comparable number of Fisher conversations was also used. For all
results presented in this chapter, matched pairs sentence-segment word error (MAPSSWE)
based statistical significance test was performed at a significance levelα = 0.05.

The baseline 4-gram back-off LM was trained using a total of 545 million words from
2 text sources: the LDC Fisher acoustic transcriptions,Fisher, of 20 million words (weight
0.75), and the University Washington conversational web data [24], UWWeb, of 525 million
words (weight 0.25). TheFisher data of 20M words contains on average 12.7 words per
sentence, and was used to train a feedforward 4-gram NNLM using the OOS architecture
proposed in [172], and an RNNLM using the comparable class-based OOS architecture
in Figure4.2 of Chapter4 with 500 output layer classes. The same 38k word input layer
vocabulary and 20k word output layer shortlist were used forboth feedforward and recurrent
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NNLMs both with 500 hidden layer nodes. A total of 1 billion words of text data were
generated from this RNNLM using the sampling technique described in [59] to train a 4-
gram back-off LM as an approximation to the original RNNLM. These three LMs were
then interpolated with the baseline 4-gram LM and used for Viterbi. Confusion network
(CN) decoding [145] is used on lattice for better performance.

LM N best PPL 1best CN LatDensity

4glm 51.8 16.7 16.1 421
+NN.4g 50.0 16.3 15.8 555
+RNN.sample.4g 50.9 16.2 15.9 462

+RNN

50

46.3

15.4 15.4 188(97)
100 15.3 15.3 365(175)
1000 15.3 15.1 3416(1298)
10000 15.3 15.0 32277(10212)

Table 5.1 Performance of 4-gram LM approximation of RNNLM bysampling and N-best
rescoring on the English CTSdev04task

Table5.1 gives the experimental results of the 1-best and CN word error rates (WER)
of the baseline back-off 4-gram LM (the 1st line), the feedforward NNLM system (the
2nd line), and the approximated 4-gram LM of RNNLM trained onsampling sentences
(the 3rd line) on thedev04set. The RNNLM system was evaluated by re-ranking N-best
lists of various depth from top 50 up to 10k entries, as shown from 4th to 7th line. The
RNNLM rescored N-best lists were also converted to prefix tree structured lattices [211]
and used for CN decoding. The HTK formatted lattice density (Arcs/Sec) measure for the
baseline systems are also shown in the Table5.1. For the RNNLM N-best rescoring results,
the lattice density measures before and after prefix tree structuring of N-best lists are both
given. As expected, the prefix tree structuring of N-best lists significantly reduced the size
of the N-best lists (shown in brackets in the same column). AsCN decoding favours a more
efficient lattice representation that encodes rich alternative hypotheses. To achieve the same
improvements from CN decoding, RNNLM rescored N-best list needs to be as deep as 10k.
This 10k-best RNNLM rescoring baseline gave the lowest 1-best and CN WER of 15.3%
and 15.0% ondev04set, with a density of 10.2k arcs/sec measured on the lattices after
converting the N-best list to the prefix tree.

The performance of lattice rescoring using RNNLMs is given in Table5.2. The results
of then-gram approximation based RNNLM lattice rescoring methodsare given in the first
block. When the truncated history is increased to the previous 5 words, the resulting 6-gram
approximated RNNLM system produced 1-best and CN error rates of 15.4% and 15.0%
on dev04set, comparable with the standard RNNLM 10k-best rescoringbaseline, and a
significant 70% reduction in lattice size from 10k to 3k arcs/sec. Further increasing the
truncated history length to 6 words via a 7-gram approximation gave no further improvement
while only increasing the size of the resulting lattices. This confirms the hypothesis raised in
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Chapter5.4over the decaying effect from remote history contexts on RNNLM probabilities.

history clustering config. PPL 1best CN LatDensity

4glm baseline 51.8 16.7 16.1 421

n-gram

3 46.4 15.8 15.4 428
4 46.3 15.7 15.2 555
5 46.3 15.6 15.1 1266
6 46.3 15.4 15.0 3025
7 46.3 15.4 15.0 7140

0.00450 46.4 15.8 15.4 465
0.00300 46.3 15.6 15.2 539

history 0.00200 46.3 15.6 15.1 699
vector 0.00100 46.3 15.6 15.1 1345

distance 0.00075 46.3 15.5 15.1 1842
0.00050 46.3 15.4 15.0 2818
0.00025 46.3 15.4 15.0 4725
0.00001 46.3 15.4 15.0 6836

Table 5.2 Performance of RNNLM lattice rescoring usingn-gram based history and history
vector distance based clustering ondev04set

The results of the hidden history vector distance based RNNLM lattice rescoring are
shown in the bottom section of Table5.2. By adjusting the hidden vector distance beam
γ in Equation5.10, a range of approximated RNNLM comparable in error rates with the
truncated history based approach but more compact latticeswere produced. For example,
settingγ = 0.002 produced equivalent 1-best and CN error rates of 15.6% and 15.1% as the
5-gram history approximated system fordev04 set, and a 45% reduction in lattice size from
1266 down to 699 arcs/sec. The best performance was obtainedby settingγ = 0.00050,
which gave 1-best and CN error rates of 15.4% and 15.0%, with a72.4% and 7% reduction
in lattice size over the 10k-best rescoring baseline, and the best 6-gram history clustering
rescoring system respectively. In practice, a system setting of history vector distance to
0.00050 can be used to rescore more heavily pruned lattices at 0.9 time real time (RT) while
producing comparable 1best and CN error rates of 15.4% and 15.1%. In contrast, the 1k-
best and 10k-best rescoring systems used 1.8 and 17 times RT respectively. The similar
trend was observed oneval04set, which is given in Table5.3.

5.5.2 Experiments on Mandarin CTS Data

The 2014 CU CTS Mandarin Chinese LVCSR system [143] was used to further evaluate
the two proposed RNNLM lattice rescoring methods. The system was trained on 300 hours
of Mandarin Chinese conversational telephone speech data released by the LDC for the
DARPA BOLT program. A 63k recognition word list was used in decoding. The system
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LM type usage config. PPL 1best CN LatDensity

4glm 52.1 19.1 18.7 430
+NN.4g 50.9 18.7 18.2 574
+RNN.4g sample 51.1 18.9 18.4 472

+RNN
Nbest

50

46.6

17.9 17.9 200(98)
100 17.9 17.7 389(177)
1000 17.8 17.6 3607(1313)
10000 17.8 17.5 33607(10275)

Table 5.3 Performance of N-best rescoring and sampling withRNNLM on the English CTS
task oneval04
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Fig. 5.7WER and lattice density for n-gram approximation based RNNLM lattice rescoring
on the English CTS task oneval04
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Fig. 5.8WER and lattice density for history vector distance based RNNLM lattice rescoring
on the English CTS task oneval04

uses the same multi-pass recognition framework but with a more advanced acoustic model
compared the the above experiment.

The initial lattice generation stage used CMLLR [68] based speaker adaptively trained
cross-word triphone Tandem [95] HMM acoustic models with MPE [178] based parame-
ter estimation and unsupervised MLLR [133] speaker adaptation. HLDA [127, 137], pro-
jected and speaker level normalised PLP [241] features augmented with pitch features were
used. 26 dimensional DNN bottle neck features [253] extracted from a deep neural network
[51, 198] consisting of 4 hidden layers of 1k nodes each and modelling6k context depen-
dent states at the output layer, were also used. An interpolated 4-gram baseline LM was
used. A 4.5 hour test set of Mandarin Chinese conversationaltelephone speech data used in
the BOLT program,dev14, consisting of 57 speakers from 19 conversations, was used for
performance evaluation. An additional 1.6 hour test set,eval97, consisting of 49 speakers
from 20 conversations, was also used. Manual audio segmentation was also used to allow
translation outputs to be accurately scored.

The baseline 4-gram back-off LM was trained using a total of 1billion words from the
following two types of text sources: 2.6M words of acoustic transcripts including the LDC
Call Home Mandarin (CHM), Call Friend Mandarin (CFM) and HKUST collected conver-
sational Mandarin telephone speech data (weight 0.78); 1 billion words of additional web
data collected under the DARPA EARS and GALE programs (weight 0.22). The acoustic
transcripts contain on average 7.5 words per sentence. Thisbaseline 4-gram LM has a total
of 48M 2-grams, 133M 3-grams and 143M 4-grams. It gave a perplexity score of 151.4, 1-
best and CN character error rates (CER) of 35.7% and 35.3% respectively ondev14, 140.0,
31.3 and 31.1 oneval97. These results are shown in the 1st line in Table5.4.

In order to further improve the RNNLM’s coverage and generalisation, the 2.6M words
of acoustic transcripts data were augmented with 15M words of its paraphrase variants.
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These were automatically produced using the statistical paraphrase induction and genera-
tion method described in [140]. The above combined data set was then used to train a
paraphrastic RNNLM [136] “rnn” on a GPU in bunch mode [40]. The full output layer with
an OOS node based RNNLM architecture in Figure3.2 was used. A total of 512 hidden
layer nodes were used. A 27k word input layer vocabulary and 20k word output layer short-
list were also used. In common with the previous experimentsof Chapter5.5.1, a total of
1 billion words of text data were also generated from the RNNLM “rnn” using the same
sampling technique described in [59] to train a 4-gram back-off LM as an approximation.
Both the RNNLM and the sampled data trained 4-gram LM were then interpolated with the
baseline 4-gram LM for performance evaluation. The perplexity, 1-best and CN decoding
CER performance of the baseline RNNLM and various approximation schemes are shown
in Table5.4. Consistent with the trend previously found in Table5.1, the sampling approach
based RNNLM approximation (line 2 in Table5.4) only retained a part of the improvement
of the original RNNLM (lines 3 to 6 in Table5.4) over the baseline 4-gram LM in terms
of both perplexity and error rate. Using the prefix tree structured N-best lists again signifi-
cantly reduced the density of the resulting lattices. The best CN decoding performance was
obtained using a 10k-best RNNLM rescoring baseline system.On thedev14data, it gave a
1-best and CN CER of 34.6% and 34.3%. It had a density of 11k arcs/sec measured on the
lattices converted from the prefix tree structured 10k-bestlists.

LM type N best PPL 1-best CN LatDensity

4glm 151.4 35.7 35.3 273
+RNN.sample.4g 140.6 35.2 34.8 310

+RNN

50

127.1

34.7 34.6 185(102)
100 34.6 34.5 360(187)
1000 34.5 34.4 3329(1417)
10000 34.6 34.3 30597(11007)

Table 5.4 Performance of N-best rescoring and sampling withRNNLM on Mandarin CTS
dev14testset

The results of RNNLM lattice rescoring on thedev14set are given in Table5.5. The
performance of then-gram history clustering based RNNLM lattice rescoring of Chapter5.4
is shown from in the first block. A 6-gram approximate RNNLM system produced 1-best
and CN error rates of 34.7% and 34.2% respectively ondev14. Both results are comparable
to the 10k-best RNNLM rescoring in Table5.4. It also gave a significant 74% reduction
in lattice density from 11k to 2852 arcs/sec. Further increasing the truncated history to
6 words or more gave no improvement but only increasing the resulting lattice size. The
performance of the hidden history vector distance based RNNLM lattice rescoring is shown
in the bottom block of Table5.5. The hidden vector distance beamγ = 0.00195 gave the
best CER performance among all systems. This approximate system gave a 1-best and CN
error rates of 34.6% and 34.2% respectively. It also gave a 68.2% relative reduction in lattice
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density over the prefix tree structured 10k-best rescoring system in Table5.4from 11k down
to 3501 arcs/sec.

history clustering config. PPL 1-best CN LatDensity

4glm baseline 151.4 35.7 35.3 273

n-gram

3 127.5 34.8 34.5 305
4 127.1 34.8 34.4 554
5 127.1 34.7 34.3 1285
6 127.1 34.7 34.2 2852
7 127.1 34.6 34.3 6012
8 127.1 34.7 34.2 12695

0.00900 127.3 34.8 34.5 500
0.00800 127.1 34.8 34.4 564
0.00700 127.1 34.9 34.3 658
0.00600 127.1 34.8 34.4 802

history 0.00500 127.1 34.8 34.3 1034
vector 0.00400 127.1 34.7 34.3 1430

distance 0.00300 127.1 34.7 34.3 2112
0.00195 127.1 34.6 34.2 3501
0.00185 127.1 34.6 34.2 3705
0.00175 127.1 34.6 34.2 3905
0.00150 127.1 34.6 34.2 4427
0.00100 127.1 34.6 34.2 5652
0.00010 127.1 34.6 34.2 8098
0.00001 127.1 34.6 34.2 8215

Table 5.5 Performance of RNNLM lattice rescoring usingn-gram based history and history
vector distance based clustering on Mandarin CTSdev14testset.

A similar trend was also found on theeval97data in Table5.6.

5.5.3 Experiments on Babel Corpus

The next experiment is conducted on the Babel corpora [72, 50], which consist of transcribed
telephone conversations in a range of languages for speech recognition and keyword search
(KWS). The aim of the Babel Program is “developing agile and robust speech recognition
technology that can be rapidly applied to any human languagein order to provide effective
search capability for analysts to efficiently process massive amounts of real-world recorded
speech”6. Keyword search, also known as spoken term detection, is a speech processing

6quoted from https://www.iarpa.gov/Programs/ia/Babel/babel.html. The corpora ids used in this section
in the Babel language releases are Pashto (104) IARPA-babel104b-v0.4bY, Igbo (306) IARPA-babel306b-
v2.0c, Mongolian (401) IARPA-babel401b-v2.0b, Javanese (402) IARPA-babel402b-v1.0b and Georgian
(404) IARPA-babel404b-v1.0a.
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LM type usage config. PPL 1-best CN LatDensity

4glm 140.0 31.3 31.1 273
+RNN sample 135.0 31.2 30.9 326

+RNN nbest

50

125.0

30.5 30.5 238(128)
100 30.5 30.5 458(232)
1000 30.5 30.4 3861(1610)
10000 30.5 30.4 31423 (10848)

Table 5.6 Performance of N-best rescoring and sampling withRNNLM on the Mandarin
CTSeval97testset.
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Fig. 5.10WER and lattice density for history vector distance based RNNLM lattice rescoring
on the Mandarin CTSeval97.

task to find all occurrences of a word or word sequence, in a large audio corpus [122, 117].
Figure5.11gives an example framework of keyword search system. Lattices are generated
from the ASR system and the query (i.e. keyword) is searched among all possible paths in
lattices. The posterior of the keyword in lattices can be computed based on their acoustic
model and language model probabilities [237].
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Fig. 5.11A framework of keyword search system.

Given the keyword list containing the set of keywords of interest, two types of errors
are defined in the keyword search system: miss error and falsealarm error. The miss error
refers to the case that the keyword indeed appears in the speech but the KWS system doesn’t
spot it. The false alarm error means that there is no keyword in the speech while the KWS
system outputs it as a keyword. The rates of miss and false alarm errors can be computed as
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below,

Pmiss(wkw,θ) = 1− Ncorr(wkw,θ)
Nre f(wkw)

Pf a(wkw,θ) =
Nincorr(wkw,θ)

Ntrial (wkw)
(5.13)

where Nre f(wkw) is the number of reference occurrence of keywordwkw, Ncorr(wkw,θ)
is the number of correctly hypothesised occurrence ofwkw at the detection thresholdθ ,
Nincorr(wkw,θ) is the number of incorrectly hypothesised occurrence ofwkw at thresholdθ ,
andNtrial (wkw) is the number of trials forwkw. Ntrial (wkw) is defined by,

Ntrial (wkw) = Tspeech−Nre f (wkw) (5.14)

whereTspeechis the total speech duration in seconds and a rate of one trialper second is
assumed [117].

In the spoken term detection (STD) 2006 evaluation, a metric, “term-weighted value”
(TWV), is defined by NIST as,

TWV(θ) = 1− 1
|Q| ∑

wkw∈Q

(Pmiss(wkw,θ)+βPf a(wkw,θ)) (5.15)

where|Q| is the number of keywords in the keyword listQ, andβ = 999.9 to reflect the rela-
tive cost of miss and false alarm errors. The value of TWV(θ) lies in the range of(−∞,1.0].
The reference of keyword gives a TMW of 1.0 and an empty outputis corresponding to 0.0
for TMW. The maximum term-weighted value (MTWV)7 is used in the the experiment,
which is the best term-weighted value with an optimised detection thresholdθ .

The full language pack (FLP) in the Babel Program has about 100-200 hours of tran-
scribed audio training data (∼60-80 hours speech) for the training of acoustic model. Tan-
dem and Hybrid systems are built with speaker adaptation using CMLLR transferred feature
[68]. To obtain better performance, a total of four acoustic models, two Tandem and two
Hybrid systems, are build using HTK toolkit [252], based on the multi-lingual feature [229]
provided by IBM and Aachen University. Joint decoding [233] discussed in Chapter2.2.4
was used to combine these 4 acoustic models. A brief description of joint decoding can be
found in Chapter8.2. The corpus to build language model consists of two sources:one is
from the acoustic transcription, which is referred as FLP data; the other one is from the web
using a search engine, e.g. Wikipedia, Ted talk, Tweets. Theamount of the FLP data is
significantly smaller than that of the WEB data. A total of 5 languages were examined in
this experiment. The information of these 5 languages is shown in Table5.7. The vocabu-
lary size varies from 28K in Igbo to 376K in Pahto and the amount of the WEB data also
varies from 2M in Igbo to 141M in Mongolian. The size of FLP data is stable among these 5
languages, which lies in the range of 400K to 500K. For each language, the vocabulary size
is larger than 200K and the amount of web data is about 100M, except Igbo. The 3-gram

7 “NIST Tools”: http://www.itl.nist.gov/ iad/mig/tools/
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LMs were used in this experiment as 4-gram LMs didn’t give performance improvement.
The 3-gram LMs and RNNLMs were built for the 5 languages and their perplexity results
are also given in the table. For the training of RNNLMs, the WEB data is first used. The
model trained on the WEB data is then fine-tuned on the FLP data. All RNNLMs are trained
with slipced bunch mode on GPU as introduced in Chapter4. The 3-gram approximation
described in Chapter5.4.1is used for RNNLM lattice rescoring based on lattices generated
by the 3-gram LMs. All RNNLMs shown in Table5.7 were trained with cross entropy
with a single hidden layer with 100 nodes. It can be seen that RNNLMs gave significant
improvements over 3-gram LMs in terms of perplexity on each language.

Table 5.7 Statistics and perplexity results for 5 languagesin the Babel corpora.

Language Vocab #Train Word PPL
Size WEB FLP 3-gram LM +RNNLM

Pashto 376,271 104M 535K 171.6 135.8
Igbo 28,097 2M 549K 109.9 94.3

Mongolian 246,831 141M 512K 133.6 105.4
Javanese 268,099 73M 409K 218.8 172.1
Georgian 278,623 137M 406K 472.4 377.2

Pashto is used to investigate the WER and MTWV performance first and Table5.8gives
the WER results of the 3-gram LM and RNNLM on Pashto. RNNLM gave a reduction of
1.0% in WER. However, in the RNNLM for Pashto, an output shortlist consisting of 282k
words is used. The CE training is very slow due to the large output layer, which takes up
to one week. Furthermore, a full output layer RNNLM was trained from CE based criterion
and the evaluation is also time-consuming as the explicit normalisation in the large output
layer is required.

Table 5.8 WER results of RNNLM on Pashto.

LM WER

3-gram 43.8
+RNN 42.8

One solution to improve the evaluation efficiency is adopting RNNLMs with class based
output layer. However, as discussed in Chapter4, it is difficult to parallel the training of
class based RNNLMs. In this section, various training criteria described in Chapter4 are
investigated. As mentioned above, there are two stages for the RNNLM training, which are
on the WEB and FLP data successively. Noise contrastive estimation (NCE) [44] is suitable
for the training of the WEB data. However, there is an issue for the fine-tune on the FLP
data. Given the large output layer size and small amount of FLP data, there are many words
in the output layer that do not appear in the FLP data, and the unigram probability of these
words turns to be 0. As a result, the weight associated with these words in the output layer
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won’t be trained as target word or noise word during the NCE training on the FLP data. Poor
performance was obtained by using this unigram for NCE training8.

Three methods were proposed to address the above issues, andtheir WER and MTWV
results are presented in Table5.9. The first approach applies CE on the WEB data, and
variance regularisation (VR) [43] on the FLP data for fine-tuning. The model trained with
variance regularisation was used for lattice rescoring without normalisation in the output
layer, which speeded up the evaluation significantly. The WER and MTWV results are
shown in the 3rd line of Table5.9. It gave a small degradation in terms of performance
compared to RNNLMs trained with CE in the 2nd line, while muchbetter than the 3-gram
LM shown in the 1st line. However, it took long time to train the CE based RNNLM on the
WEB data. The second method is to apply NCE training on the WEBdata and then adopt
VR on the FLP data. In addition to solve the evaluation efficiency issue by using RNNLM
trained with VR, it also has a much faster train speed on the large amount of WEB data
by NCE training, which only takes about 6 hours for training.The results can be found
in the 4th line of Table5.9. It gave a comparable WER and MTWV performance as the
RNNLM trained with CE, while much faster for RNNLM train and evaluation. The third
method aims to use NCE for the whole training, in order to avoid the unigram issue in the
NCE training mentioned above: 9 copies of the FLP data are appended to the end of the
WEB data to construct a “extended” corpus, and the NCE training is then applied to this
“extended” corpus. The results are shown in the last line in the table, which gave fast train
and evaluation, but with a degraded performance.

Table 5.9 WER and KWS results of RNNLM trained with various criteria on Pashto.

LM Train Crit WER MTWV
WEB FLP IV OOV Total

3-gram - 43.8 0.4828 0.4083 0.4750

+RNN

CE CE 42.8 0.4975 0.4048 0.4871
CE VR 43.0 0.4958 0.4010 0.4853

NCE VR 43.0 0.4975 0.3953 0.4862
NCE - 43.2 0.4936 0.4038 0.4835

Considering the balance of performance and efficiency, the second method (NCE+VR)
provides the best solution among the three approaches. Thismethod was then applied to the
remaining 4 languages. The WER and KWS performance can be found in Table5.10. The
RNNLMs were trained efficiently (all less than 8 hours) and consistent improvements were
obtained on the 4 languages in terms of WER and MTWV.

8Unigram from the WEB data or interpolated with the unigram from WEB data were also tried, which
gave degraded performance
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Table 5.10 WER and KWS results of RNNLM trained on different languages.

Language LM WER MTWV
IV OOV Total

Igbo 3-gram 54.6 0.4079 0.3635 0.4030
+RNN 53.7 0.4101 0.3718 0.4061

Mongolian 3-gram 47.0 0.5606 0.5171 0.5559
+RNN 46.0 0.5708 0.5343 0.5666

Javanese 3-gram 50.1 0.5182 0.4801 0.5138
+RNN 49.3 0.5229 0.4768 0.5173

Georgian 3-gram 37.8 0.7325 0.7300 0.7322
+RNN 37.1 0.7386 0.7309 0.7375

5.6 Summary

In this chapter, lattice rescore using RNNLM is studied. Twoefficient lattice rescoring
methods for RNNLMs were proposed. Unlike previous work which generated an approx-
imatedn-gram LM or only rescored the top N-best lists, RNNLM probability is used to
rescore the whole lattice. The proposed techniques produced 1-best and confusion network
decoding performance comparable with a 10k-best rescoringRNNLM baseline systems on
two large vocabulary conversational telephone speech recognition tasks for US English and
Mandarin Chinese. These methods also produced highly compact lattice representation after
RNNLM rescoring. Consistent compression in lattice size was obtained over the prefix tree
structured N-best rescoring RNNLM baseline systems. Theseresults demonstrate the advan-
tages of the proposed techniques over the traditional methods to incorporate RNNLM, such
as N-best rescoring andn-gram LM approximation through sentence sampling. Consistent
improvements are also obtained for the keyword search system by using lattices generated
by RNNLM lattice rescoring.



Chapter 6

Adaptation of RNNLMs

Acoustic model adaptation is a crucial technique in speech recognition to mitigate the acous-
tic mismatch that may exist between training and test data, such as unexpected speaker,
background noise and channel. Significant improvement in performance has been reported
from acoustic model adaptation. Mismatch can also occur in the nature of language to be
modelled. Normally the training corpus for a language modelis collected from a variety
of sources with different content, written or speaking form, genre or topic. The style of
corpus can heavily influence words to be used. When applied tounseen test data, mismatch
arises in various aspects including speaking style and topic, which degrades performance as
a result. Hence, language model adaptation is an important research area and very useful for
practical application. Approaches for adaptingn-gram LMs was discussed in Chapter2.3.6.
In this chapter, the adaptation of neural network based language models will be detailed.
There are two approaches to adapt RNNLMs described in the literature: fine-tuning; and
incorporation of informative feature. In this chapter, a detailed study of RNNLM adaptation
is carried out on a multi-genre broadcast news task using a strong ASR system, where the
adaptation can be operated at different levels, such as genre and show level. A range of topic
models are used to extract topic representation for each show.

This chapter is organised as follows. RNNLM adaptation methods are reviewed in Chap-
ter6.1. Genre dependent RNNLM adaptation is described in Chapter6.2, followed by topic
representation on show level for adaptation in Chapter6.3. The experimental results are
presented in Chapter6.4. Finally, Chapter6.5concludes this chapter.

6.1 Review of RNNLM Adaptation

A standard framework for unsupervised RNNLM adaptation forspeech recognition is illus-
trated in Figure6.1 [151, 45]. The blue part is the conventional speech recognition without
language model adaptation and the red part denotes the pipeline for RNNLM adaptation.
1-best hypothesis and lattice are generated during searching given the input utterance. The
1-best hypothesis is used to adapt RNNLM and the adapted RNNLM obtained. The adapted
RNNLM can be used to rescore lattice generated from the ASR system and the adapted 1-
best hypothesis obtained. The gray block in Figure6.1gives an example of RNNLM adap-
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tation using the output of speech recogniser and there are other options to adapt RNNLMs.
For example, the adapted RNNLM can be obtained by fine-tuningthe model on in-domain
data and applied directly on lattice.

    1−best
hypothesis

waveform
Speech

recognizer
 speech

hypothesis
    1−best

adaptation

adapted RNNLMlattice

RNNLM

RNNLM adaptation

Fig. 6.1A standard framework for unsupervised RNNLM adaptation in speech recognition.

Adaptation methods of RNNLMs are divided into two broad categories in the literature,
which are fine-tuning and incorporation of informative features.

6.1.1 Fine-tuning

RNNLMs are initially trained on all available training data. If this initial RNNLM is to be
applied to a specific target domain, then fine-tuning with thein-domain data can be applied.
These in-domain data may come from a subset of training data,where the prior information
about the domain (or genre) of data is available. The adaptedmodel can then be applied to
the corresponding test data according to their domain (i.e.genre) labels [206, 172]. In many
applications, the reference of adaptation data is not easily available. The hypothesis from
ASR is used instead for fine-tuning to improve the model [123] in an unsupervised mode.
Depending on the amount and accuracy of the adaptation data,the whole or partial model
parameters are updated. Figure6.2illustrates the fine-tuning of RNNLMs.

Fine-tuning provides a straightforward way to tune the well-trained universal model
into specific domain. If the prior information (e.g. domain label) and sufficient amount
of adaptation data are available, the model could be improved by adaptation and obtain
better performance. However, in many situations, sufficient in-domain data and their domain
information are difficult to obtain. Furthermore, it requires storing one model for each
domain, which requires large disk space when a range of domains are used.

6.1.2 Incorporating Auxiliary Feature

An alternative approach to adapt RNNLMs is to incorporate auxiliary features, which carry
information about the speech and topics. This informative feature could be incorporated
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Fig. 6.2RNNLM adaptation with genre information based on fine-tuning.

into the training of RNNLMs for adaptation in a more compact and efficient way compared
to fine-tuning. Figure6.3illustrates the adaptation scheme. The feature vectorf is appended
to the input layer. It is fed into the hidden layer and output layer1 as introduced in [152].

A range of auxiliary features have been investigated for adaptating RNNLMs in earlier
research. For example, morphological and lexical featureshave been modelled in factored
RNNLMs [244] on the 930k word WSJ portion of Penn Treebank data; topic information
derived from latent Dirichlet allocation (LDA) [18] models was used in [151] on a corpus
of 37 million words; personalized user information such as demographic features was ex-
ploited in [235] for RNNLMs on a social media corpus of approximately 25 million words;
sentence length information and lexical features were usedin [204] on lecture transcripts of
9 million words; and domain information was used in mutli-domain RNNLMs [227] on a
10 million word medical report corpus.

There are two important issues that directly impact the auxiliary feature based RNNLM
adaptation approach: the form of input feature representation to use; and the scalability
when larger amounts of training data are used. In this chapter, both of these issues are
explored. Genre and topic based RNNLM adaptation techniques are investigated on a multi-
genre BBC broadcast transcription task. The BBC provided uswith genre information for
each broadcast show and this information is used for adaptation. A range of techniques
including LDA, probabilistic latent semantic analysis (PLSA) [99] and hierarchical Dirichlet
processes (HDP) [226] are used to extract a show-level topic representation as continuous

1According to our experimental results, the connection between input (blockf) and output layer is crucial
when the hidden layer size is small (e.g.< 50). When the size of hidden layer becomes large (e.g.> 100),
there is no difference between using and not using the connection with the output layer. In this work, the
output layer connection is used.
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Input layer

...

...
...

OOV input node

sigmoid

...

OOS output node

softmax

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

f

PRNN(wi |wi−1,vi−2)

Fig. 6.3An example RNNLM with an additional input feature vectorf.

valued vectors. These additional topic vectors are used forRNNLM training and then to
facilitate adaptation at test time.

6.2 Adaptation using Genre Information

In some applications, the text data for training contains a mix of different genres, and genre
information is available, such as the broadcast news data where the genre information (e.g.
news, sports, documentary) can be obtained easily. RNNLMs can be refined by making
use of this genre information. The first and most straightforward way is to fine-tune a
well-trained genre-independent RNNLM using genre-specific data as discussed in Chapter
6.1.1. This yields a set of genre-dependent RNNLMs, one for each genre. At test time,
for each utterance, the genre-specific RNNLM is applied according to its genre label. The
potential drawbacks of this method are that a RNNLM for each genre needs to be stored
and sufficient data for each genre is required for robust training. An alternative approach
to construct genre-dependent RNNLMs is to incorporate the genre label into the training
of RNNLM as discussed in Chapter6.1.2. The genre label can be represented as a 1-of-k
encoding feature vector in the input layer as shown in Figure6.3. Compared to the fine-
tuning scheme, only one RNNLM model is trained and stored. Different genre models are
obtained by using the 1-of-k encoding vectors. Both of theseapproaches yield genre-level
adapted RNNLMs. Their performances are investigated and compared in Chapter6.4.

However, in many situations, the genre label is unknown and possibly difficult to ro-
bustly estimate. Furthermore, the genre label is normally acoarse representation of the type
of topic. It may be not able to classify data accurately. Hence, a more refined representation
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is preferred to automatically derive a topic representation for each show (i.e. document).
This show-level topic representationf, will be concatenated with the standard input layer
for RNNLM training and testing as shown in Figure6.3.

6.3 Topic Space based Adaptation

Contextual factors, such as speaking style, genre and topicheavily influence the use of word
in spoken language. A complex combination of these factors define a specific target situ-
ation of interest. The variabilities introduced by these hidden factors are only implicitly
learned in conventional RNNLMs. Since it is problematic to draw upon related and sim-
ilar events occurring in the training data, direct adaptation of RNNLM parameters given
limited data at test time to a target situation is difficult toobtain good generalisation perfor-
mance. One solution to this problem is to explicitly model these influencing factors during
RNNLM training, for example, by adding auxiliary features into the input layer. This al-
lows RNNLMs to better exploit commonalities and specialties among diverse data. It also
facilitates adaptation at test time to any target situationdefined by these factors.

Various topic models have been proposed for topic representation of documents, includ-
ing probabilistic latent semantic analysis (PLSA), latentDirichlet allocation (LDA) and
hierarchical Dirichlet processes (HDP). Both PLSA and LDA use a fixed number of latent
topics. In contrast, HDP is able to estimate the posterior ofthe number of topics during
training and choose the number of topics automatically.

LetD= {d1, ...,dN} denote the training corpus, wheredi is a document.V = {w1, ...,wV}
is the set of all distinct words in the vocabulary,T = {z1, ...,zK} is the set of latent topics,
andn(di,w j) is the word count ofw j appearing in documentdi . For each documentdi , a
vector of posterior probabilities among topics

f =













P(z1|di)
...

P(zk|di)
...

P(zK|di)













is derived from the specified topic model̂MT , where each topic has a multinomial
distribution over the given vocabulary.

When incorporating the feature vectorf into RNNLM training as shown in Figure6.3, a
Bayesian interpretation of the RNNLM probability for wordwi given historyhi in a docu-
mentd′ is given by,

PRNN(wi |hi,D,d′) =
∫∫

PRNN(wi |hi, f)P(f|MT ,d
′)P(MT |D)dfdMT (6.1)

whereP(f|MT ,d′) is the topic posterior ofd′ given a modelMT trained on corpusD. The
exact calculation of the above integral is intractable in general. Hence, approximations are
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required to make it feasible. For topic modelMT , a MAP estimate is used instead,

M̂T = argmax
MT

P(MT |D) = argmax
MT

P(D|MT) (6.2)

when a uniform priorP(MT) is used. A further approximation is made,

P(f|M̂T ,d
′)≈ δ (f− f̂

M̂T ,d′), (6.3)

the topic posterior̂f
M̂T ,d′ can be obtained by maximisingP(d′|M̂T).

Hence, the process in Equation6.1 is be simplified as,

1) train a topic modelM̂T to maximise the data likelihood in Equation6.2;

2) computing the topic posterior vectorf̂
M̂T ,d′ for documentd′ given topic modelM̂T .

3) f̂
M̂T ,d′ is used in RNNLM training and applied in the adaptation stageas shown in

Figure6.1.

6.3.1 Probabilistic Latent Semantic Analysis

PLSA [99, 165, 76] is a generative model defined over a given set of documents. Each
document is assumed to be generated from a mixture of latent topics{zk} (k = 1, ...,K).
Each topiczk is defined by a word distributionP(wi |zk). The EM algorithm is applied to
maximise the following likelihood criterion,

lnP(D|MT) =
N

∑
i=1

M

∑
j=1

n(di ,w j) ln
K

∑
k=1

P(zk|di)P(w j |zk) (6.4)

wheren(di,w j) is the count of wordw j occurring in documentdi , P(zk|di) is the probability
of the documentdi assigned to topiczk and P(w j |zk) is the word distribution associated
with topic zk. Given a test documentd′, the topic probabilityP(zk|d′) is obtained by fixing
P(w j |zk) and maximising

lnP(d′|M̂T) =
M

∑
j=1

n(d′,w j) ln
K

∑
k=1

P(zk|d′)P(w j |zk), (6.5)

whereP(zk|d′) is found as,

P(d′|zk)

∑K
m=1P(d′|zm)

=
∏M

j=1P(w j |zk)
n(d′,w j)

∑K
m=1∏M

j=1P(w j |zm)
n(d′,w j)

. (6.6)

6.3.2 Latent Dirichlet Allocation

LDA [ 18, 224] adds a prior distribution over the model parameters,p(θ ;α), to relax the
constraint of using a fixed set of document level topic posteriors{P(zk|di)} in PLSA. Given
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a hyper-parameterα, a multinomial parameter distributionp(θ ;α) is defined. LDA is a
generative model. For each wordw j in each documentdi , topiczk is sampled from the topic
distributionθ to generate wordw j . The following likelihood is maximised during training,

lnP(D|MT) =
N

∑
i=1

ln
∫ M

∏
j=1

(

K

∑
k=1

P(w j |zk)P(zk|θ)
)n(di ,w j)

p(θ ;α)dθ (6.7)

Again whereN is the number of document andM is the number of distinct words in vocab-
ulary. The number of topic in LDA is set toK and fixed during both training and inference.
The exact posterior inference using LDA is intractable, anda variational approximation
or sample based approach can be used instead. A Gibbs sampling based implementation
in [176] is used in this work. The posterior probability of each topic zk given documentd′

is computed as,

P(zk|d′) =
n(d′,zk)+α

∑K
m=1(n(d

′,zm)+α)
(6.8)

wheren(d′,zk) is the number of words assigned to topiczk in documentd′.

6.3.3 Hierarchical Dirichlet Process

HDP [226] is a nonparametric Bayesian model for clustering problemswith multiple groups
of data. Its modelling hierarchy consists of two levels. Thefirst level samples the number
of topics and topic-specific parameters. The bottom level samples the topic assignment for
each word in each document based on the samples drawn from thetop level. In PLSA and
LDA, the number of topics is chosen empirically, while HDP can estimate the posterior
probability over the number of topics. Equation6.1can be rewritten by sampling the topic
modelMk

T with k topics fromMk
T ∼ P(MT |D) as,

PRNN(wi |hi,D,d′) =
1

NMT

NMT

∑
n=1

PRNN(wi |hi, f̂
Mk(n)

T ,d′
), (6.9)

where the topic posterior̂f
Mk

T ,d
′ can be obtained by maximisingP(d′|Mk

T). However, di-
rectly computing Equation6.9 is not practical as it requires training multiple RNNLMs for
varying numbers of topics. To address this issue, the MAP estimateM̂T =argmaxP(D|Mk

T)
is used as an approximation. The open-source toolkit2 for HDP based on MCMC sampling
is used in this work. The topic posterior probabilitiesP(zk|d′) on test documentd′ are
computed as in Equation6.8.

2http://www.cs.princeton.edu/ chongw/resource.html
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6.4 Experiments

6.4.1 Experimental Setup

An archive of multi-genre broadcast television shows was supplied by the British Broad-
casting Corporation (BBC) and used for these experiments. Atotal of seven weeks of BBC
broadcasts with original subtitles were available, which gave about 1000 hours of training
data after suitable processing and alignment. A carefully transcribed test set containing 16.8
hours of data from 40 shows broadcast from one week was used.

A baseline acoustic model was built using standard PLP cepstral and differentials trans-
formed, with HLDA and modelled with decision tree clusteredcross-word triphones, fol-
lowed by MPE training. An improved Tandem model used 26 additional features generated
by a deep neural network (DNN) with a bottleneck [85] layer. Both a speaker indepen-
dent version of this system (Tandem-MPE) and one with CMLLR-based adaptive training
(Tandem-SAT) were used. The hypotheses from the Tandem-MPEmodel were used as adap-
tation supervision. Details of the construction of Tandem acoustic models can be found in
[129].

The baseline 4-gram (4g) language model was trained on about1 billion words of text
collected from US English broadcast news and the 11 million words of BBC acoustic model
transcription with slight prunning, which includes 145M 3-gram and 164M 4-gram entries.
These 11 million words are from the transcription of 6 weeks BBC data, consisting of 2231
shows. A 64K word list was used for decoding and language model construction. The
RNNLM was trained on the 11M words using a 46K word input shortlist and 35K output
shortlist. The 2231 BBC shows are labelled with 8 different genres (advice, children, com-
edy, competition, documentary, drama, event and news).

Genre
Train Test

#token #show #token #show

advice 1.8M 269 24.4K 3
children 1.0M 418 20.8K 7
comedy 0.5M 154 27.2K 5

competition 1.6M 271 25.8K 6
documentary 1.6M 302 57.8K 6

drama 0.8M 149 20.3K 3
events 1.2M 180 28.7K 5
news 3.1M 488 22.2K 5
Total 11.5M 2231 227.1K 40

Table 6.1 Statistics of the BBC training and test data.

Table6.1 gives the statistics of the 11M BBC data. The average sentence length (with
sentence start and end) on the subtitle training set and the test set with manual segmenta-
tion are 19.3 and 9.7 respectively and the OOV rate is 1.39%. The corpus is shuffled at
the sentence level for RNNLM training. Stop words are filtered out for training of topic
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representations3 as they are usually refer to the most common, short function words in a
language, such as “a”, “the”, “is”, and “on” in English. For training of genre dependent
RNNLMs, a genre independent model is first trained on all 11M data, then followed by
fine-tuning on genre-specific data or the use of a genre input code. To allow the use of show-
level topic adaptation, RNNLMs were trained from scratch with the topic representation as
an additional input.

The RNNLMs had a single hidden layer with 512 hidden nodes andwere trained on a
GPU with a 128 bunch size [39]. RNNLMs were used in lattice rescoring with a 4-gram
approximation as described in Chapter5. All word error rate (WER) numbers are obtained
using confusion network (CN) decoding [145]. For all results presented in this chapter,
matched pairs sentence-segment word error (MAPSSWE) basedstatistical significance test
was performed at a significance level ofα = 0.05.

6.4.2 Results for RNNLMs trained on 11M words

Table6.2 gives the PPL and WERs for genre dependent RNNLMs. Tandem-SAT system
was used as acoustic model. From the results, the use of genreindependent RNNLMs gives
a significant WER reduction of 0.7% absolute. Genre dependent RNNLMs trained using
both fine-tuning and genre-codes both gave small statistically significant WER reductions.
The use of a genre-code is preferred since only one RNNLM needs to be stored.

LM
PPL

WER
RNN +4glm

4glm - 123.4 32.07
RNN 152.5 113.5 31.38

+fine-tuning 148.7 110.4 31.29
+genre-code 144.2 109.3 31.24

Table 6.2 PPL and WER results for genre dependent RNNLMs on 1 week BBC test data.
The genre dependent RNNLMs were constructed based on the well-trained genre indepen-
dent RNNLM. Tandem-SAT system was used as acoustic model.

In the next experiment, RNNLMs trained with show-level topic representations were
evaluated. In [151], each sentence was viewed as a document in the training of LDA, and a
marginal (0.1%) performance gain was reported on a system using an MPE-trained acoustic
model. In this work, each show is processed as a document for robust topic representation.
The test-set topic representation is found from the recognition hypotheses using the 4-gram
LM after CN decoding. For comparison purposes the referencetranscription is also used.
For PLSA and LDA, the number of topics is 30 unless otherwise stated.

An initial experiment used the baseline MPE acoustic model.The RNNLM gave 0.7%
absolute WER reduction over the 4-gram LM, and the LDA based unsupervised adaptation
gave a further 0.4% WER reduction. The experimental resultsusing Tandem-SAT acoustic

3Using stop words didn’t affect performance in our experiments.
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models are shown in Table6.3. PLSA and LDA gives comparable PPL and WER results.
A 0.2% to 0.3% WER improvement4 and 8% PPL reduction were achieved. This is con-
sistently better than genre-dependent RNNLMs. It is worth noting that the PLSA and LDA
derived from reference (supervised) and hypotheses (unsupervised) gave comparable per-
formances. This indicates that the topic representation inference is quite robust even when
the WER is higher than 30%. The number of topics chosen by HDP is 24, giving a slightly
poorer PPL and WER than LDA and PLSA. It is maybe related to parameter tuning since
the number of topics chosen by HDP was found to be sensitive toinitial parameters. Table

Topic M Sup
PPL

WER
RNN +4glm

- - 152.5 113.5 31.38

PLSA
hyp 137.8 106.3 31.16
ref 137.3 105.1 31.08

LDA
hyp 133.7 105.0 31.14
ref 134.1 104.2 31.07

HDP
hyp 138.9 106.6 31.19
ref 138.0 105.2 31.10

Table 6.3 PPL and WER results for RNNLMs with various topic representation on 1 week
BBC test data. The RNNLMs with topic representation were trained from scratch. The
number of topics is set to 30 for all topic models. The hypotheses were obtained using the
4-gram LM.

6.4gives the PPL and WER results with different numbers of LDA topics derived from the
reference. The results show that the performance is fairly insensitive to the number of topics
and 30 gives the best performance in terms of PPL and WER.

Topic Dim
PPL

WER
RNN +4glm

20 138.7 106.4 31.13
24 139.3 105.8 31.16
30 134.1 104.2 31.07
40 137.1 104.3 31.11

Table 6.4 PPL and WER results for RNNLM adaptation with LDA using different numbers
of topics on 1 week BBC test data

6.4.3 Results for RNNLM trained with additional Subtitle Data

The baseline RNNLMs with the previous seting were rebuilt using an additional 620M of
BBC subtitle data. A 4-gram LM trained on the 620M BBC subtitle data was interpolated

4WER improvements are statistically significant.
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LM #hidden Topic PPL WER
node Model

4glm - 103.1 25.61

+RNN
512

- 93.0 25.03
LDA 85.1 24.71

1024 LDA 81.0 24.36
Table 6.5 PPL and WER on 1 week BBC test data using RNNLM trained on additional
subtitle data.

with the 4-gram LM trained on 1.6 billion words including the620M BBC subtitle data.
More advanced acoustic model techniques were used to improve the baseline system, which
was used for the ASRU2015 MGB challenge [242]. RNNLMs were trained on all 630M of
text, consisting of the 620M BBC subtitles and the 11M of acoustic model transcription5.
RNNLMs with 512 and 1024 hidden nodes were used and compared.

Table6.5 presents the PPL and WER results with the additional 620M words of BBC
subtitles. RNNLM with 512 hidden nodes trained on 630M givesa further 0.6% reduction
in WER. RNNLMs with LDA topic features provided an additional 0.3% WER reduction6

and a 8.5% PPL reduction with unsupervised topic adaptation. Furthermore, RNNLM with
1024 hidden nodes, adapted by LDA gives further 0.3% WER improvement. RNNLM gives
a total of 1.2% WER reduction over the baseline ASR system.

6.5 Summary

In this chapter, RNNLM adaptation at the genre and show levelwere compared on a multi-
genre broadcast transcription task. A number of adaptationapproaches were examined.
Simple fine-tuning on genre specific training data and the useof a genre code as an addi-
tional input give comparable performances. Continuous vector topic representations includ-
ing PLSA, LDA and HDP were incorporated into the training of RNNLMs for show-level
adaptation, and consistently outperformed genre level adaptation. Significant perplexity and
moderate WER reductions were achieved for speech recognition. Furthermore, the use of
LDA based topic adaptation was also effective and offered consistent improvement when
RNNLMs were trained on a much larger corpus.

5The 11M acoustic transcription was placed after 620M subtitle data in the training data.
6WER reduction is statistically significant.





Chapter 7

Interpolating RNNLMs and n-gram LMs

The characteristics and generalisation patterns ofn-gram LMs and RNNLMs are expected
to be different and possible complementary to each other. Inorder to take a advantage of the
strengths of these different models,n-gram LMs and RNNLMs are usually combined using
a context independent, fixed weighting based linear interpolation in state-of-the-art ASR
systems [153, 154, 217, 32, 38]. The same approach was previously used to combine mul-
tiple n-gram LMs trained on a diverse collection of data sources. Asdiscussed in Chapter
2.3.3, in order to reduce the mismatch between the interpolated LMand the data of inter-
est, interpolation weights are often tuned by minimizing the perplexity on data from target
domain [110, 119, 106, 187, 49]. These interpolation weights indicate the “importance” of
individual component LMs for a particular task.

In order to fully exploit the locally varying complementaryattributes among component
LMs during interpolation, a more general history dependentform of interpolation can be
used to combinen-gram LMs [141] where the interpolation weights depend on the word his-
tory. A similar local variation of probabilistic contribution fromn-gram LMs and RNNLMs
across different contexts during interpolation has been also reported [171]. The perplexity
analysis overn-gram LMs and RNNLMs in [171] suggests this variation is heavily cor-
related with the underlying context resolution of component n-gram LMs. For example,
RNNLMs assign higher probabilities when then-gram LMs’ context resolution is signifi-
cantly reduced via the back-off recursion to a lower order, and conversely when a longer
history can be modelled by then-gram LMs without using back-off. Inspired by these find-
ings, a back-off based compact representation ofn-gram dependent interpolation weights
is described in this chapter. This approach allows robust weight parameter estimation on
limited data. Experiments are conducted on the three tasks with varying amounts of train-
ing data. Small and consistent improvements in both perplexity and WER were obtained
using the proposed interpolation approach over the baseline fixed weighting based linear
interpolation.

This chapter is organised as follows. Linear interpolationis first briefly reviewed in
Chapter7.1. Back-off based interpolation is investigated in Chapter7.2 and two methods
for back-off based interpolation are proposed and compared. Experiments are conducted in
Chapter7.3and this chapter is concluded in Chapter7.4.
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7.1 Linear Interpolation

Methods to combine multiple language models had been studied and compared in [22, 141,
101]. These techniques are investigated onn-gram LMs and their derivations, such as topic
basedn-gram LM and cached basedn-gram LM as discussed in Chapter2.3.6. RNNLMs
are inherently different fromn-gram LMs in terms of their generalisation patterns. For this
reason, RNNLMs are usually linearly interpolated withn-gram LMs to obtain both a better
context coverage and strong generalisation [153, 217, 196, 62, 172, 131]. The interpolated
LM probability is given by,

P(wi |wi−1
0 ) =

1
Z(hi)

(

λPNG(wi |wi−1
0 )+(1−λ )PRN(wi |wi−1

0 )
)

(7.1)

whereZ(hi) is the normalisation term,hi = wi−1
0 represents the complete history ofwi , and

λ is the global weight of then-gram LM distributionPNG(·), which can be optimised using
the EM algorithm on a held-out set.

To guarantee the interpolated probabilityP(wi |wi−1
0 ) be a valid probability, the sum to

one constraint needs to be satisfied,

∑
wi∈V

P(wi |wi−1
0 ) = 1 (7.2)

whereV is the vocabulary. For linear interpolation shown in Equation7.1, the normalisation
term can be written as,

Z(hi) = ∑
wi∈V

(

λPNG(wi |wi−1
0 )+(1−λ )PRN(wi |wi−1

0 )
)

= λ +(1−λ ) = 1 (7.3)

The normalisation termZ(hi) is always 1 in linear interpolation. Hence it provides a simple
way to combine two language models.

7.2 Back-off Based LM Interpolation

7.2.1 Generalised LM Interpolation using Weight Clustering

As discussed in Chapter2.3.3, in order to fully exploit the complementary attributes among
different language model architechtures, a more general form of linear probability interpola-
tion betweenn-gram LMs and RNNLMs based on word and history dependent weights can
be considered as below,

P(wi |wi−1
0 ) =

1
Z(hi)

(

λ (NG)

(wi ,w
i−1
0 )

PNG(wi |wi−1
0 )+λ (RN)

(wi,w
i−1
0 )

PRN(wi |wi−1
0 )

)

(7.4)
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whereλ (NG)

(wi ,w
i−1
0 )

is the interpolation weight forn-gram LM andλ (RN)

(wi ,w
i−1
0 )

is the interpolation

weight for RNNLM given the predicted wordwi and historywi−1
0 . This term is computed

as,
Z(hi) = ∑

w′∈V

(

λ (NG)

(w′,wi−1
0 )

PNG(w
′|wi−1

0 )+λ (RN)

(w′,wi−1
0 )

PRN(w
′|wi−1

0 )
)

(7.5)

Z(hi) is the normalisation term to ensure that the predicted word probability mass is a valid
function. This approach requires a large number of interpolation weight parameters to be
robustly estimated and therefore leads to a data sparsity issue for limited data, which is
similar to simply estimatingn-gram LMs. A general solution to handle this problem is
to share weights within groups of contexts where the contributions fromn-gram LMs and
RNNLMs are similar. Using this approach a more compact representation of then-gram
dependent interpolation weights can be derived. The weighting based linear interpolation in
Equation7.1 is thus modified to,

P(wi |wi−1
0 ) =

1
Z(hi)

(

λ (NG)

Φ(wi ,w
i−1
0 )

PNG(wi |wi−1
0 )+λ (RN)

Φ(wi ,w
i−1
0 )

PRN(wi |wi−1
0 )

)

(7.6)

where then-gram dependent interpolation weightsλ (NG)

Φ(wi ,w
i−1
0 )

andλ (RN)

Φ(wi ,w
i−1
0 )

are positive

values and shared using ann-gram clustering functionΦ(·). A normalisation termZ(hi) is
also required to ensure the interpolated LM probabilities are valid. This normalisation term
is computationally heavy as it no longer always equal to 1 as linear interpolation in Equation
7.3.

The above form of interpolation based onn-gram weight classing is illustrated in Fig-
ure7.1. Usually, the interpolation weights ofn-gram LM and RNNLM satisfy,

λ (NG)

Φ(wi ,w
i−1
0 )

+λ (RN)

Φ(wi ,w
i−1
0 )

= 1. (7.7)

By definition, the standard fixed weight based linear interpolation in Equation7.1 is
subsumed by the more general form of linear interpolation inEquation7.6, and is equivalent
to assigning all contexts to a single class and fixed interpolation weights are used.

7.2.2 Interpolation using Back-off for Weight Clustering

A central part of then-gram class dependent interpolation approach given in Equation 7.6
is to derive an appropriate form of context class mappingΦ(·). For interpolation between
back-offn-gram LMs and RNNLMs, a suitable weight classing scheme is expected to reflect
the variation of the probabilistic contribution from thesetwo component LMs. In previous
research it was found that this variation was heavily correlated with then-gram LM’s un-
derlying context resolution [171]. This is represented by the highest availablen-gram order
obtained through the back-off recursion inn-gram LM in Equation2.27.

The back-off scheme inn-gram LM was first discussed in Chapter2.3.2and is recalled
here. An example back-off recursion for a 3-gram LM is illustrated in Figure7.2. When
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Fig. 7.1n-gram dependent interpolation of n-gram LM and RNNLM.

the trigram probabilityP(wi |wi−1,wi−2) is estimated directly in the 3-gram LM, there is no
back-off and the back-off level is 3. When theP(wi |wi−1,wi−2) does not exist and its back-
off 2-gram LM probability is used instead, the back-off level is 2. Similarly, when it backs
off to unigram, then the back-off level is 1.

back−off level

3

2

1

P(wi |wi−1,wi−2)

P(wi |wi−1)

P(wi)

γ(wi−1,wi−2)

γ(wi−1)

Fig. 7.2An illustration of back-off scheme in a trigram LM.

This correlation in perplexity is presented again in this chapter based on the Penn Tree-
Bank (PTB) corpus as in [171]. A detailed breakdown of the perplexity performance of the
baseline 5-gram LM, RNNLM and their linear interpolation over differentn-gram context
groups of varying back-off orders on the PTB test data is shown in Table7.1. The 5-gram
LM outperformed the RNNLM in terms of the overall perplexity. As expected, significant
perplexity reduction can be obtained using standard optimised linear interpolation as shown
in 7.1 (3rd line in Table7.1). A large variation in the 5-gram LM’s contribution charac-
terised by the rank ordering in perplexity against the RNNLMover different back-off orders
is also clearly shown in Table7.1. This is due to the fact thatn-gram LMs and RNNLMs
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employ inherently different mechanisms to acquire generalisation. n-gram LMs are more
powerful in predicting the probabilities of frequently occurring n-grams using higher order
context modelling, while RNNLMs’ strength lies in their ability to predict rare events.

Table 7.1 Perplexity performance of baseline 5-gram LM, RNNLM and their linear interpo-
lation over varying back-offn-gram orders on PTB test set.

n-gram LM back-off level
LM 1g 2g 3g 4g 5g Overall

#words 15594 33646 19655 9502 4033 82430

5glm 9157.3 198.0 26.4 8.3 2.5 141.5
RNN 4633.7 183.4 38.7 17.9 6.0 150.8

5glm+RNN 4697.6 161.6 26.9 9.4 3.0 118.3

The above analysis suggests that the back-off order can provide an indication ofn-gram
level varying probabilistic contribution. The interpolation weights can be clustered into
a small number of classes based on their back-off orders. Theweight parameters can be
robustly estimated even on a small amount of held-out data. The associated interpolation
weight classing is thus computed as,

Γ(wi ,w
i−1
0 ) = ΓNG

(

wi ,w
i−1
i−n+1

)

=

{

n if <wi ,w
i−1
i−n+1>∈ GNG

ΓNG

(

wi ,w
i−1
i−n+2

)

otherwise
(7.8)

whereGNG = {...,<w′,h′>,...} contains all the unique observedn-gram contexts that the
n-gram LM PNG(·) models.Γ(wi ,w

i−1
0 ) can be viewed as the back-off order in then-gram

LM for word wi with history wi−1
0 . However, the optimisation of interpolation weights is

not easy due to the normalisation termZ(hi) in Equation7.5. Stochastic gradient descent
is applied for the optimisation on a held-out set. The interpolation weight forn-gram LM

and RNNLMλ (NG)

Γ(wi ,w
i−1
0 )

andλ (RN)

Γ(wi ,w
i−1
0 )

can be any positive value in theory. Normally the

following condition is retained for each back-off level during optimisation.

λ (NG)

Γ(wi ,w
i−1
0 )

+λ (RN)

Γ(wi ,w
i−1
0 )

= 1 (7.9)

This form of interpolation will be denoted asn-gram LM⊕ RNNLM and the interpolated
probability can be written as,

P⊕(wi |wi−1
0 ) =

1
Z(hi)

(

λ (NG)

Γ(wi ,w
i−1
0 )

PNG(wi |wi−1
0 )+λ (RN)

Γ(wi ,w
i−1
0 )

PRN(wi |wi−1
0 )

)

(7.10)

7.2.3 Back-off based Interpolation with Rescaling

The n-gram class dependent interpolation approach given in Equation 7.10requires a nor-
malisation termZ(hi) to be computed for each distinct history over multiple weight classes.
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As such term is also dependent on the interpolation weights,a direct optimisation of the
weight parameters by maximising the interpolated LM probabilities in Equation7.10 is a
non-trivial problem. Computationally expensive numerical optimisation methods are re-
quired.

In order to improve efficiency, an alternative novel form ofn-gram class dependent
interpolation between back-off LMs and RNNLMs is considered. This is given by,

P⊗(wi |wi−1
0 ) = λΓ(wi ,w

i−1
0 )PNG(wi |wi−1

0 )+
(

1−λΓ(wi ,w
i−1
0 )

)

βΓ(wi ,w
i−1
0 )(w

i−1
0 )PRN(wi |wi−1

0 )

where then-gram context class and history dependent normalisation term βΓ(wi ,w
i−1
0 )(w

i−1
0 )

is independent of interpolation weight parameters and computed as below,
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∑
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wherek= Γ(wi ,w
i−1
0 ), andψ(k)

wi−1
0

is the set of wordw′ whose back-off level equal tok, given

historywi−1
0 .

ψ(k)

wi−1
0

= {w′ : Γ(w′,wi−1
0 ) = k} (7.12)

The whole vocabularyV can be written as,

V =
K
⋃

k=1

ψ(k)

wi−1
0

(7.13)

whereK is the highestn-gram level.
Recalling the general form of interpolation in Equation7.6, Equation7.11is a specific

case under the following conditions,

λ (NG)

Γ(wi ,w
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= λΓ(wi ,w
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0 )
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βΓ(wi ,w
i−1
0 ),wi−1

0
(7.14)

Z(hi) = 1

As the above normalisation term is no longer dependent on theinterpolation weights,
weight parameters associated with different classes can beoptimised independently of each
other using the conventional EM algorithm on held-out data.During evaluation, this nor-
malisation term can be computed for each pairing of the underlying weight class and history
only once and cached for efficiency. In common with the interpolation approach given in
Equation7.6, the form of interpolation in Equation7.11also requires a suitable interpolation
weight class assignment among differentn-gram contexts. The back-off based interpolation
weight classing given in Equation7.8 is used.
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The resulting back-off based interpolation given in Equation7.11retains the probability
mass of alln-grams sharing a common history and the same back-off based weight class.
This probability mass is then be redistributed using the RNNLM distribution during inter-
polation. In this process, potential bias to then-gram LM distribution may be introduced
in the final interpolated LM probabilities. In order to address this issue, it is possible to
further improve generalisation performance by combining the interpolated LM probabilities
obtained using Equation7.11with RNNLMs using the conventional fixed weighting based
interpolation.

P(wi |wi−1
0 ) = λP⊗(wi |wi−1

0 )+(1−λ )PRN(wi |wi−1
0 ) (7.15)

The back-off class dependent interpolation weights
{

λΓ(wi ,w
i−1
0 )

}

and the top level linear

interpolation weightλ can be optimised iteratively using the EM algorithm on a held-out
set. This form of interpolation will be denoted as (n-gram LM⊗ RNNLM) + RNNLM.

7.3 Experiments

Experiments were conducted on three tasks with different amounts of training data to show
the effect of back-off based interpolation. These three corpora are refered as Penn TreeBank
(PTB), Babel and Multi-Genra Broadcase (MGB) data. The datain Babel project was used
in Chapter5.5.3but with different languages and the MGB data used in Chapter6.4.3. The
statistics of the three corpora are given in the following table.

Table 7.2 Statistics of the three corpora used for experiments

Corpus #Voc Train Eval

PTB 10k 860k 79k
Babel 24k 290k 52k
MGB 64k 650M 180k

7.3.1 Experiment on Penn TreeBank Corpus

First, the Penn TreeBank (PTB) corpus was initially used to validate the previous findings
reported in [171]. The 860k word PTB training data and a 10k vocabulary were used. A
development data set of 70k words was used for parameter tuning. A separate 79k word
test test was used for performance evaluation. The perplexity (PPL) results of the 5-gram
LM and RNNLM are shown in Table7.3. The PPL scores of the two LMs over different
context groups associated with varying back-offn-gram orders are shown in the first two
rows. These results were previously presented and discussed in Table7.1. The third line
(5G+RNN) shows the PPL score breakdown of the final linear interpolated LM. The linear
interpolation weightλ was perplexity optimised on the development set. Accordingto these
results, the conventional form of linear interpolation gave good generalisation performance
on each back-off order context group via a simple probability averaging. The overall PPL
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was reduced from 141.5 to 118.3. In particular, this standard fixed weighting based interpo-
lated LM gave significant improvements in PPL for the group ofcontexts where the 5-gram
LM backed off to 1-gram.

Table 7.3 PPL results on test set of PTB corpus.

n-gram LM back-off level
LM 1 2 3 4 5 Overall

#words 15594 33646 19655 9502 4033 82430
5glm 9157.3 198.0 26.4 8.3 2.5 141.5
RNN 4633.7 183.4 38.7 17.9 6.0 150.8

5glm+RNN 4697.6 161.6 26.9 9.4 3.0 118.3
5glm⊕RNN 4568.1 163.0 27.4 9.1 2.9 117.8
5glm⊗RNN 5472.1 170.0 24.3 7.9 2.4 117.6

(RNN⊗5glm)+RNN 5230.7 167.8 24.7 8.1 2.5 117.0

The fourth line (5glm⊕RNN) gives the results of the first back-off based interpola-
tion method introduced in Chapter7.2.2, where the interpolation weights were optimised
with stochastic gradient descent. It gave a slight overall PPL improvement. The fifth line
(5glm⊗RNN) presents the results of the back-off based interpolation approach of Chap-
ter 7.2.3. As discussed, this form of back-off based interpolation retains then-gram LM’s
probability mass of alln-grams sharing a common history and the same back-off order based
weight class, and re-distributes it using the RNNLM distribution during interpolation. It can
be seen from Table7.3that the PPL score was improved on each back-off level compared to
the baseline 5-gram LM. The interpolation weightλn on each back-off level was efficiently
optimised independently via the EM algorithm on the development data. The optimal in-
terpolation weights{λn} for the 5-gram LM were{0.25,0.4,0.5,0.55,0.55} for varying
back-off levels from 1 to 5. As expected, a general trend could be found that then-gram
weight increases with the back-off order. The back-off based interpolated LM probabilities
could be further linearly interpolated with the RNNLM (witha weighting 0.9:0.1) using
Equation7.15. This gave further small improvements in perplexity.

7.3.2 Experiments on Babel Corpus

The next experiment was conducted on the BABEL corpus (i.e. IARPA-babel202b-v1.0d)
and used Full Language Pack (FLP) of the Swahili language. A 3-gram LM (3glm) with
slight pruning and RNNLM were both trained on 290K words of text data1. The test set
includes 52K words. The vocabulary size is 24K. All vocabulary words were used in
RNNLM input and output word listst during training. A total of 200 hidden units were
used. RNNLMs were trained on GPU as described in [40]. The PPL and WER results
are shown in Table7.4. A pattern similar to that observed on the PTB task in Table7.3
was found. Standard linear interpolation reduced the overall PPL score by 7% relative com-
pared with the 3-gram LM. A detailed analysis on each back-off level showed that linear

1A 4-gram LM gave no further improvements of ASR performance given the small amount of training data
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interpolation improved the PPL score by 25% relative on the words where the 3-gram LM
backs off to 1-gram, while no improvements were obtained forthe other two back off levels.
The back-off based interpolation by simply clustering (3glm⊕RNN) provided slight PPL
reduction and obtained the same WER as linear interpolation. The back-off based interpola-
tion (3glm⊗RNN) reduced the PPL consistently on each back-off level compared with the
3-gram LM. A small overall PPL reduction was also obtained over the conventional fixed
weight based linear interpolation. The optimal interpolation weights assigned to the 3-gram
LM were (0.25, 0.6, 0.65) for the back-off levels from 1-gramto 3-gram.

Table 7.4 PPL and WER results on Swahili for Babel

LM PPL WER
n-gram LM back-off level Overall

1 2 3

#words 19687 28355 7156 55198
3glm 3510.4 107.1 19.0 297.2 47.3
RNN 2387.3 145.6 29.9 321.6 -

3glm+RNNLM 2618.3 107.9 21.5 273.0 46.8
3glm⊕RNN 2602.6 107.6 21.6 272.2 46.8
3glm⊗RNN 2933.9 102.0 18.7 271.3 46.9

(3glm⊗RNN)+RNN 2850.4 103.0 19.2 270.7 46.7

ASR experiments were then conducted on the same BABEL task. The acoustic models
were trained on 46 hours of speech. Tandem and hybrid DNN systems were trained sepa-
rately. A frame level joint decoding was then applied to combine the acoustic scores of the
two systems [233]. The baseline 3-gram LM was used in the first decoding stage for lattice
generation. N-best (N=50) rescoring was then applied usingthe interpolation between the
RNNLM and 3-gram LM. The word error rate (WER) results are shown in Table7.4. The
baseline 4-gram gave a WER score of 47.3%. Standard linear interpolation gave an absolute
0.5% WER reduction. the back-off based interpolation gave acomparable WER score of
46.9%. A further linear interpolation using Equation7.15between the back-off based inter-
polated LM and the RNNLM (with a weighting 0.9:0.1) gave the lowest WER of 46.7% in
the table. A statistical significance test was carried out and it indicated that the improvement
from back-off based interpolation was statistically insignificant.

7.3.3 Experiments on MGB Corpus

The previous experiments were conducted on a relatively small amount of training data. In
the next experiment a much larger training set based on the BBC Multi-Genre Broadcast
(MGB) challenge task was used2. 650M words of text data were used in the baseline 4-
gram LM (4glm) and RNNLM training. The hybrid DNN acoustic model was trained on
700 hours of data. A 64K vocabulary was used. A total of 500 hidden nodes were used in

2The detail of MGB challenge could be found from http://www.mgb-challenge.org/
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the RNNLM. A 46K input shortlist and 40K output shortlist were used in RNNLM training.
The results are shown in Table7.5. The complementary attributes of 4-gram LM (4glm)
and the RNNLM on each back-off level were consistent with theprevious two tasks. There
was only 3.6% of alln-gram requests that back off to 1-gram due to the large amountof
training data being used and low pruning threshold. In common with the previous two tasks,
RNNLM was found to perform better than 4-gram LM when the latter backs off to 1-gram
or 2-gram probabilities, while vice versa when it retained a3-gram or 4-gram modelling res-
olution. The baseline linear interpolation gave a significant overall reduction in perplexity.
On each back-off level, the reduction in perplexity increases when the back-off level de-
creases. Again the back-off based interpolation with simply clustering (4glm⊕RNN) gave
slight PPL improvement and the same WER compared to linear interpolation. The back-
off based interpolation with rescaling (4glm⊗RNN) slightly outperformed the conventional
linear interpolation. In terms of WER results, the linear interpolation reduced the WER by
0.7% absolutely. 4glm⊗RNN and 4glm⊗RNN+RNN gave a small further reduction of of
0.1% absolute and gave an overall improvement 0.8% absoluteover the baseline 4-gram
LM. Again, the improvement from back-off based interpolation is statistically insignificant
according to the result of a statistical significance test.

Table 7.5 PPL and WER results on MGB task

LM PPL WER
n-gram LM back-off level Overall

1 2 3 4

#words 7362 60578 78528 56291 202759
4glm 18731.7 733.2 76.0 11.7 108.7 26.2
RNN 5868.1 564.3 79.0 21.8 116.2 -

4glm+RNN 6782.0 560.3 68.2 13.4 96.3 25.5
4glm⊕RNN 6440.7 563.0 68.7 12.7 95.1 25.5
4glm⊗RNN 7145.7 593.5 70.0 11.5 94.9 25.4

(4glm⊗RNN)+RNN 6800.4 584.2 69.5 11.8 94.7 25.4

7.4 Conclusion and Discussion

In order to exploit the complementary features amongn-gram LMs and RNNLMs, a stan-
dard form of linear interpolation based on fixed weights is widely used. Motivated by their
inherently different generalisation patterns that are correlated with the variation of the un-
derlyingn-gram LM context resolution, a novel back-off based compactrepresentation of
n-gram dependent interpolation weights is proposed. The proposed technique allows the
interpolation weights shared at each back-off level to be estimated both efficiently and ro-
bustly. Experimental results on three tasks of varying amounts of training data show that the
proposed back-off based linear interpolation betweenn-gram LMs and RNNLMs provided
a simple but powerful way to combine them. Small but consistent improvements in terms of
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both perplexity and WER reductions were obtained over the conventional fixed weighting
based linear interpolation.





Chapter 8

Experiments on Meeting Transcription

In this chapter, the techniques discussed in the previous chapters will be applied to a meeting
transcription task. Meeting transcription is a very useful, and highly challenging, task. Many
researches have examined a range of approaches for automatically transcribing meeting
data [184, 89, 20, 90]. These have normally been applied to standard corpora, such as
those used for NIST evaluations [66, 67]. The well-known AMI corpus and related public
meeting data are used in this work to allow a contrast with theprevious published results.
In addition to this publicly available meeting data, the Speech Group at Toshiba Research
Europe Ltd, Cambridge Research Laboratory, undertook the recording of meetings, related
to speech recognition and synthesis projects, over a numberof months. This corpus will
be referred to as the Toshiba Technical Meeting (TTM) data. The performance on TTM
data is expected to reflect the performance on real-life meeting with mismatched acoustic
condition. The ASR system is constructed with HTK [252] on the public meeting corpora.
Various language models includingn-gram LMs, feedforward and recurrent NNLMs are
evaluated and compared.

8.1 Data Description

Two corpora are used in this chapter. The first is from the AMI project [27]. This data
is used for training acoustic and language models, and as stated to allow comparason with
existing systems. The second is the TTM data, which is used asevaluation test set to reflect
the performance on a less mismatched meeting data. For both corpora only the multiple
distant microphone (MDM) data is used. Beamforming is performed using theBeamformIt
tool [158] to yield a single audio channel1.

8.1.1 AMI Corpus

The Augmented Multi-party Interaction (AMI) corpus [27] was collected for research and
development of technology that may help groups interact better. As part of this corpus,

1Currently there is no Wiener filtering in the front-end processing, as used for example in [89], which
should yield performance gains.
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speech data was collected in close-talking and far-field microphones, and high quality tran-
scriptions generated. This data was collected in a scenarioset-up where 4 people were
allocated roles and asked to discuss the design of a remote control unit [27]. In this thesis
only the far-field microphones, multiple distant microphone data (MDM) was used as this
is felt to be the scenario for meeting transcription application. Additionally, the overlapping
speech data was removed from both training and test data. This yielded about 59 hours of
data. In addition to the AMI corpus, 52 hours from the ICSI corpus [108] and 10 hours
from the NIST corpus were also used [73] for training. ICSI meeting data was recorded in
the conference room in ICSI. These meetings were recorded aswell as the group meeting,
discussing research at ICSI. NIST also provides a pilot meeting data corpus.

Table 8.1 Summary of the AMI Test Data

Test-Set Meeting # Hours
id Speakers Duration Ref. SegAuto. Seg

Dev
IS09 4 1.82 1.28 1.49
ES09 4 1.92 1.37 1.62

Eval
IS08 4 1.59 1.12 1.25
ES08 4 2.22 1.52 1.77

Totals 7.55 5.29 6.14

Table 8.2 Summary of the Meeting Training Data

Corpus # Session # Speaker Ref. Seg (Hours)

AMI 152 175 59
ICSI 52 75 52
NIST 19 51 10
Totals 223 301 121

Four meetings were held back from the AMI data to provide an AMI dev and eval set,
each contains two meetings, with 4 speakers per meeting. Thedetailed analysis of this data
is given in Table8.1. The two meetings labelled as IS09 and ES09 were chosen as devtest
set; IS08 and ES08 were used as eval test set. As overlapping speech was not evaluated
this yielded a total test set size of about 5.29 hours, as shown in theRef. Segcolumn in the
above table. The quantity of automatic segmented data is larger than that in the reference as
it includes overlapping speech which is ignored for scoring.

The total available data for training, after removing the 4 test meetings, was about 121
hours of data. The breakdown of the training data can be seen in Table8.2. This is the same
configuration, and held-out test sets, as used in [20].
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8.1.2 Toshiba Technical Meeting Data

The second corpus was collected at Toshiba Research Europe Ltd’s Cambridge Lab. The
corpus was collected in a meeting room (shown in Figure8.1) with between 6 and 9 partic-
ipating in each meeting. The data was recorded using a microphone array. A single micro-
phone array was placed in the centre of a meeting room2. This limited the nature of the data
that can be collected: no close-talking microphone data is available; individuals were able
to sit where they wanted; and move to give presentations or have “side” conversations. The
Toshiba ASR and TTS technical meetings were recorded, theseinvolved discussion of the
on-going research projects and future plans. Compared to the AMI corpus, the TTM data
has a greater distance from the microphone to the speaker anda higher level of noise. The
level of background noise is also much higher in this meetingcompared to both the training
data and the AMI testsets. A subjective estimate of SNR of themeeting is around 0 to 5dB
but it varies by speaker. These differences will be reflectedin a higher baseline WER than
for a typical meeting from the AMI corpus. Additionally it was agreed that this data would
never be made publicly available or used to assess the performance of individuals.

              Spk1
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Fig. 8.1Toshiba Technical Meeting Recording Configuration

A sequence of TTM meetings were recorded over two years. 158 shows are collected,
which are 179 hours in length. All meetings were truly held inToshiba, including 15 shows
(20 hours) for ASR project, 61 shows (57 hours) for TTS project, 33 shows (44 hours)
about discussion on acoustic modelling, 35 shows from the group meeting (41 hours) and
meetings with outside parties, etc. Neither speaker nor reference information is available.
This corpus was explored for long-term adaptation as described in [38].

An initial group of seven shows (8.88 hours) were selected asthe TTM testset to evaluate
performance. Table8.3 shows the details of these seven meetings3. Note that overlapping
speech was again removed from the reference.

2Multiple microphone arrays could address some of the issuesobserved with distance from the microphone.
3Meeting T0004 had a large amount of silence at the end of the recording (0.63 hours) as the recording

equipment was not turned off. This silence was correctly detected by the automatic segmenter. The statistics
in table8.3are after this data has been ignored.
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Table 8.3 Summary of the Toshiba Technical Meeting (TTM) Data

Genre Meeting # Hours
Speakers Duration Ref. Seg Auto. Seg

ASR
A0001 7 1.83 1.47 1.50
A0002 7 2.27 2.10 1.72
A0006 6 1.67 1.59 1.30

TTS

T0001 9 1.08 0.99 0.82
T0002 8 1.23 0.99 0.91
T0003 9 1.19 1.01 0.88
T0004 9 2.11 2.00 1.74

Totals 11.38 10.16 8.88

Comparing the statistics in Table8.3 and Table8.1 indicates that the performance of
the automatic segmenter was different on the TTM data than the AMI data, with significant
amounts of speech data being missed. This may partly be explained by the larger room and
additional noise from a fan in the meeting room in the TTM data.

Manual transcriptions were provided as reference for evaluation. As this data was tran-
scribed early in the collection, it is related to meeting during the intial phase of data col-
lection. To assess the quality of the professional transcriptions, the first recorded meeting
(denoted as A0001) was also transcribed by people who were present at the meeting and
familiar with the attendees and their accents. This will be referred to as the “gold-standard”.
Table8.4shows both the microphone distance and word error rate of theprofessional (man-

Table 8.4 Microphone distance and WER results of manual transcription and ASR result
compared to “gold-standard” on meeting A0001

Speaker A B C D E Avg

Dist (m) 2.1 2.1 1.2 1.6 1.2 —

Manual 16.4 15.7 8.2 7.6 2.9 10.6
ASR 68.6 66.4 74.9 70.2 55.4 64.8

ual) transcriptions, compared to the “gold-standard”, andperformance of an initial ASR
system. Speakers C, D and E are native UK English speakers, while speakers A and B
are non-native. The professional transcribers sometimes chose an incorrect word sequence,
though the transcriptions were phonetically similar to thecorrect word sequence. The over-
all WER is 10.6%, which indicates the TTM data is a highly challenging task. The tran-
scribers had difficulty with non-native speakers (A and B), Japanese and Chinese names,
technical jargon and abbreviations. These are not issues for people familiar with the partic-
ipants and topics. For example, these are able to generate “gold-standard”. However, these
“gold-standard” transcriptions are very difficult to obtain as they require transcribers with
expert in-domain knowledge of both the meeting topic and participants. For this work the
“gold-standard” was used as the reference for meeting A0001, and the manual transcriptions
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were used for the other six meetings. The lowest WER speaker for the ASR system was the
same as the manual transcribers, a speaker close to the microphone. However, there was no
consistent pattern over the other speakers.

8.2 Baseline System

The ASR system was constructed using the HTK v3.5 from Cambridge University [252].
First of all, in order to validate the performance of the HTK toolkit, both Kaldi and HTK
toolkits were used to build the Hybrid system using the standard AMI train and test set as
Kaldi recipe4. The same language model was used for decoding. The experimental results
show that they gave comparable performances. More details can be found in AppendixB.
All experiments in this chapter are based on the HTK toolkit.

8.2.1 Acoustic Modelling

Two forms of acoustic model were examined for meeting transcription. These will be re-
ferred as,

• Tandem System [85]: GMM-based systems using PLP and bottleneck (BN) features;

• Hybrid System [51]: combining HMMs and DNN posteriors.

All systems were based on state-clustered decision-tree triphone models. The same 6000
distinct states were used for both the GMM and neural networkbased systems.

A GMM system with PLP feature was built to initialise the baseline system and make
use of the publicly available combilex dictionary [185]. The system was built in a similar
fashion to that described in [20]. 13-dimensional PLP features were extracted from the
data and delta, delta-delta and triples appended. CMN, CVN and Heteroscedastic linear
discriminant (HLDA) [127] were then used for feature normalisation and projection. On
average each state had 36 Gaussian components. This yieldeda 39-dimension feature vector.
The minimum phone error (MPE) [178] criterion was used to train these initial acoustic
models. Speaker adaptive training (SAT) [3] based on constrained maximum likelihood
regression (CMLLR) [68] was also used. Additionally MLLR was used to adapt to the
target test speaker for the GMM-based systems. For all systems using speaker adaptation
the supervision for the adaptation was obtained from the speaker independent (SI) MPE
baseline PLP-based GMM system. Note that adaptation was performed for each speaker
per meeting. Thus, though the same speaker appears in multiple meetings this knowledge is
not used.

This initial system, was then extended to a Tandem system by appending bottleneck fea-
tures [85] to the PLP. A deep neural network with four hidden layers (2000 nodes per layer)
was constructed. Discriminative pretraining used in [198] was used to train the neural net-
works. For all systems, 9 frames were spliced together to form the input layer to the MLPs.

4The Kaldi recipe for AMI system can be found at https://github.com/kaldi-
asr/kaldi/tree/master/egs/ami/s5
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For the Tandem feature used in the Tandem system, the bottleneck feature was extracted
from the deep neural network using Fbank feature as input feature. The bottleneck feature
was appended to the standard PLP feature. The dimension of the bottleneck feature is se-
lected to be 26. A semi-tied covariance (STC) [69] transform was applied to the bottleneck
features prior to concatenation with the PLP features. Thusthe dimensionality of the Tan-
dem feature here is 65. The Tandem acoustic models were builtusing the rapid construction
approach described in [173]. Again MPE training and SAT models were constructed, with
an average of 36 Gaussian components per state.

The second acoustic model was based on a Hybrid system, also known as DNN-HMM
systems [51]. The training of neural network in Hybrid system is similarto the training
of the BN features in the Tandem system. 9 consecutive framesare concatenated together
as input to the neural networks. The DNN is trained in a supervised fashion and discrim-
inatively layer by layer in pretraining, then it is fine-tuned with several epochs until the
frame accuracy converges in cross validation set. The alignment for the targets was ob-
tained from the SAT Tandem system. The Tandem feature used inthe Tandem system was
adopted as input static feature of the deep neural work in theHybrid system. sequence
training [115, 214, 232] was applied for deep neural network (DNN) training.

Joint decoding2.2.4 is used to combine Tandem and Hybrid systems for better base-
line performance. Lattices from joint decoding are then adopted for lattice rescoring using
various language models, e.g. RNNLMs [42].

8.2.2 Language Modelling

A variety of sources including the acoustic model transcriptions (from AMI, ICSI, NIST),
ISL, Callhome, Switchboard, Gigaword and web data collected by the University of Wash-
ington were used for training language model. Language model interpolation weights were
tuned on the AMI dev set. A 41K word list was used as the LM vocabulary. 3-gram and
4-gram LMs were trained on a mixture of text corpora. A summary of the LM training cor-
pora can be in in Table8.5. In total, 2.6G words of language model training data were used.
It can be seen that the AMI transcription is the most important corpus, giving a interpolation
weight of 0.651. Although the Gigaword corpus contains 1.71G words, it contribute 0.015
in terms of interpolation weight.

Table 8.5 Statistics of the train corpora for the language model. The linear interpolation
weights on each corpus were optimised on the AMI dev set.

Text Source # Words interpolate weight

Gigaword 1.71G 0.015
University of Washington 910M 0.234
Fisher 21M 0.100
Acoustic Transcription 2.0M 0.651
Callhome+SWB 0.60M 0.001
Total 2.62G
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Table8.6 gives the out-of-vocabulary (OOV) rates on AMI dev, eval andthe TTM test
sets. Interestingly the OOV rates for the TTM data were lowerthan that for the AMI,
scenario-based, data.

Table 8.6 Out of Vocabulary (OOV) % for AMI and TTM test data

AMI
TTM

dev eval

2.23% 2.17% 1.24%

8.2.3 Baseline Results

Table8.7 gives the word error results of the baseline with various acoustic models. A 3-
gram language model was used for decoding. The results of Tandem and Hybrid systems
are shown in the first block, labelled AMI. It can be seen that Hybrid system outperforms
Tandem system on the AMI test set and gives the same performance on the TTM test set.
Both joint decoding and confusion network decoding (CNC) were applied to combine the
Tandem and Hybrid systems. Joint decoding gave slightly better performance than CNC
on these three test sets as it combines the acoustic model scores in the early stage. The
joint decoding system was served as the baseline system and the lattices generated by joint
decoding were used for lattice rescoring to verify the effect of various language models.

Table 8.7 WERs of baseline ASR system on AMI and TTM test sets with a 3-gram language
model

AM AMI
dev eval TTM

Tandem 32.4 33.5 55.4
Hybrid 31.4 31.9 55.4

Joint decode 30.4 31.0 52.8
CNC 30.5 31.3 53.6

8.3 Experiments with RNNLMs

In addition to the baselinen-gram language models, both feed-forward [196] and recurrent
neural network (RNN) [153] language models were built. Initially, both neural network
based language models (NNLMs) were trained on about 2 million words, the acoustic tran-
scription in Table8.5. The 41k decoding vocabulary is used as input shortlist and the most
frequent 31K words in all train data is chosen as output layershortlist. An out of shortlist
(OOS) symbol was also used on the output layer [196] to represent all OOS words. The
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probability of the OOS word is divided by the number of all OOSnodes to get a valid proba-
bility over the whole decode vocabulary. Cross entropy is used for the training of RNNLMs
in this chapter as the output layer size is not very large.

The feedforward NNLM has two hidden layers with 600 and 400 nodes respectively.
The RNNLM was trained using the CUED-RNNLM toolkit [41] with cross entropy criterion.
The model was trained on GPU with a bunch size of 64 as discussed in Chapter4. The size
of hidden layer was set to be 256. All the neural network basedlanguage models are linearly
interpolated with the standardn-gram language model and the weight was fixed to be 0.5.

Table 8.8 The perplexity for AMI and TTM test data using various language models. The
feedforward and recurrent NNLMs were trained on 2M acoustictranscription.

LM
NNLM

AMI
TTM

Order dev eval

3-gram
— 117.1 110.6 128.8

Feedforward 98.8 92.8 122.2
Recurrent 82.8 77.7 112.3

4-gram
— 114.0 108.3 126.7

Feedforward 90.4 85.4 116.6
Recurrent 81.5 76.5 110.9

Table8.8 gives the perplexities of various language models. 3-gram and 4-gram LMs
were combined with the feedforward and recurrent NNLMs withlinear interpolation. The
4-gram LM gave slight improvement in terms of perplexity compared with the 3-gram LM.
It can be seen that both feedforward and recurrent NNLMs helped to reduce the perplexity
compared with the baselinen-gram LM. RNNLM yielded the lowest perplexity on all three
test sets. Comparing the three test sets the TTM data has the highest perplexity. However
the increase does not explain the performance degradation in Table8.7. The impact of the
topics associated with the TTM data has not caused a large mismatch with language models.

The word error rate results of these language models are presented in Table8.9. The
WER results are reported on the confusion network decoding [145]. The lattice rescoring
using RNNLMs was carried out as described in Chapter5. The 4-gram LM improved WER
by 0.3% to 0.6% on AMI and TTM test sets. Feedforward NNLM gavean additional WER
reduction of 0.3% to 0.6%. RNNLM obtained the best performance in terms of WER.

Table8.10shows the PPL and WER results of different RNNLM structures and rescor-
ing methods. 256 hidden layer nodes were chosen for both C-RNNLMs and F-RNNLMs.
and 200 classes were used for the C-RNNLMs. The WER results ofViterbi decoding is
presented in the table. It can be seen that F-RNNLMs gave improved PPL results on AMI
dev and eval test sets, as well as better WER results with 100-best rescoring. The lattice
rescoring gave comparable WER results with 100-best rescoring. The WERs of RNNLM
lattice rescoring can be further reduced to 28.7% and 29.4% on AMI dev and eval sets by
applying confusion network decoding on lattice generated from lattice rescoring.

The next experiment was to investigate the LDA based RNNLM adaptation. The ex-
periment were conducted on the 2M AMI acoustic model transcription. According to the
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Table 8.9 The WERs for AMI and TTM test data using various language models. The
feedforward and recurrent NNLMs were trained on 2M acoustictranscription.

LM NNLM AMI
TTM

Order dev eval

3-glm - 30.4 31.0 52.8

4-gram
- 29.8 30.7 52.5

Feedforward 29.3 30.1 52.2
Recurrent 28.7 29.4 51.9

Table 8.10 PPL and WER results of C-RNNLMs (class based RNNLMs) and F-RNNLMs
(full output layer RNNLMs) with N-best and lattice rescoring on AMI corpus. The
RNNLMs are trained on AMI acoustic model transcription only, which is about 2M and
cross entropy is used for RNNLM training. The WER results of Viterbi decoding is pre-
sented in the table

LM rescore PPL WER
dev eval dev eval

4-gram - 114.0 108.3 30.4 31.0
+C-RNN 100-best 85.8 81.6 29.0 30.1

+F-RNN
100-best

81.5 76.5
29.5 29.9

lattice rescore 29.1 30.0

statistics shown in Table8.2, there are only 223 shows for the whole meeting corpus. The
number of meetings is too small to robustly build a topic model. Hence, the sentences from
the same speaker in each meeting are regarded as a document. In this way, 1014 documents
are collected to estimate the LDA model with 20 topics. In thetraining of RNNLMs, the
posterior probability over topics for each document is computed and used as auxiliary input
feature during the LDA based RNNLM training. In test time, the hypothesis from the same
speaker in the same meeting is collected as a document and fedto the trained LDA model.
The posterior probability vector can be obtained and used for unsupervised adaptation.

Table8.11gives the WER results for LDA based RNNLM adaptation. The perplexity
results are not given as automatic segmentation was used forevaluation. It is difficult to
associate each utterance from automatic segmentation withthe reference segmentaion. It
can be seen from the table that, for AMI test sets, the WER performance was degraded by
0.1% absolute for both dev and test sets. A degradation of 0.4% was obtained in the TTM
test set. The possible reason for the degradation is that theAMI meeting is not as diverse
as the MGB data used in Chapter6. The discussing topics in the meeting data are more
homogeneous. And the amount of training data for topic modelling was smaller as well5.
This phenomenon also needs to be further investigated in thefuture work. Hence, in the
following experiments in this chapter, RNNLMs without adaptation were applied.

5using Fisher data don’t help to improve performance
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Table 8.11 WERs on AMI and TTM test data using 2M transcription using LDA based
RNNLM adaptation

Adaptation
AMI

TTM
dev eval

- 28.7 29.4 51.9
LDA 28.8 29.5 52.3

Besides the 2M acoustic model transcription, the additional data for the training of the
n-gram language model was also used for training RNNLMs. Whenadditional data is used
for training, the AMI transcription is always put at the end of the whole train file. Hence,
for each epoch, the last seen sentences during training are from AMI transcription, which
gave better performance in experiments. Table8.12presents the PPL and WER results for
RNNLMs with more training data and increased hidden layer size. The first line in Table
8.12is the performance using RNNLM trained on 2M acoustic model transcription. With ad-
ditional 24M train words from Fisher, Callhome and Switchboard transcription, the perplex-
ity and word error rate were be reduced slightly. 0.2% WER improvement were obtained
on both AMI and TTM test sets. The use of 930M WU data gave good improvement on
TTM data. However, in AMI corpus, it helps to eval set, while degrade the WER of dev set.
The increase of hidden layer gave consistent PPL and WER improvements. When the layer
size size was set to 2048. The WER of TTM test set was 51.1%. Thedomain adaptation
can be carried out by fine-tuning the RNNLMs on the AMI data, which is in-domain data
for AMI test sets. The WER on AMI test set can be further improved by fine-tuning, which
gives a WER of 27.8% and 28.4% on test and dev set respectively. Hence, the increase of
training data and model size gave an additional 0.8% to 1.0% WER reduction compared to
the RNNLM trained on 2M transcription.

Table 8.12 PPL and WER results on AMI and TTM test sets with RNNLMs trained on
different amounts of training data.

Train # train #hidden PPL WER
Corpus words node AMI

TTM
AMI

TTM
dev eval dev eval

AMI 2M 256 81.5 76.5 110.9 28.7 29.4 51.9
+Fisher,Callhome,SWB 24M 512 78.5 74.5 108.1 28.5 29.2 51.7

512 79.4 75.7 103.4 28.6 29.0 51.3
+WU 930M 1024 74.5 70.8 100.3 28.1 28.9 51.2

2048 71.8 68.0 98.1 27.9 28.7 51.1
Adapt. 512 73.1 68.8 101.6 28.2 28.4 51.3

(+AMI.finetune) 930M 1024 69.5 65.2 99.5 28.0 28.5 51.2
2048 67.7 63.0 97.3 27.8 28.4 51.2

The back-off interpolation described in Chapter7 was not investigated on the meeting
data since the improvement over linear interpolation is notstatistically significant.
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8.4 Summary

In this chapter, RNNLMs were evaluated in the meeting data. The acoustic model was
trained on public meeting corpora and two matched test sets from AMI corpus and one
mismatched corpus from Toshiba Technical Meeting were usedas test sets. The ASR sys-
tem based on HTK was constructed. Tandem and Hybrid based acoustic models were con-
structed and then combined using joint decoding in the framelevel to get better performance.
Various language models including 4-gram LM, feedforward and recurrent NNLMs were
evaluated on this system. RNNLMs were trained efficiently onGPU using bunch mode as
described in Chapter4. In test time, lattice rescoring discussed in Chapter5 was applied and
followed by confusion network decoding to get better performance. RNNLMs trained on
different amounts of data were investigated and compared. The experimental results show
that RNNLMs gave the best performance among these language models. RNNLM trained
on 2M acoustic model transcription gave 0.6% to 1.0% WER reduction. The use of addi-
tional data allows larger RNNLM to be applied, which furtherimproved the word error rate
by 0.7% to 1.0%.





Chapter 9

Conclusion and Future Work

9.1 Conclusion

Language models are crucial components in many applications including speech recognition.
n-gram LMs have been the dominant language models for many years. However, there are
two well-known issues in the standardn-gram LMs, which are data sparsity and then-gram
assumption. Many sophisticated smoothing techniques [35] have been developed to address
the data sparsity issue, and various modifications [130, 125, 187] based on the standard
n-gram LMs have been proposed to capture longer context for language modelling.

More recently, recurrent neural network was applied to construct word based language
model [153] and promising results have been reported on a range of applications and tasks
during last several years [154, 61, 216, 55, 123]. Recurrent neural network language models
(RNNLMs) provide a good solution for these two problems in the standardn-gram LMs.
Each word in the input layer of RNNLMs is projected into a low-dimension continuous
space, which facilitates the implicit sharing of model parameters. The number of parameters
doesn’t increase exponentially with the growth of vocabulary size as in then-gram LMs. For
the long term history issue in then-gram LMs, the recurrent connection between the hidden
layer and input layer is able to model the complete history.

Despite the above advantages of RNNLMs, their long term history characters also bring
some problems, especially when they are used in speech recognition. For example, it is
difficult to parallel the training using bunch (i.e. minibatch) mode and also hard to apply
lattice rescoring as the complete history is required to predict the next word. In this thesis,
the application of RNNLMs in speech recognition system is studied in various aspects. The
efficient training and inference are investigated in Chapter 4 and the lattice rescoring of
RNNLMs is studied in Chapter5. Researches on adaptation of RNNLMs and interpolation
between RNNLMs and standardn-gram LMs are discussed in Chapter6 and7 respectively.

9.2 Review of Work

In Chapter4, the efficient RNNLM training and inference are studied. Thetraining of
RNNLMs is computationally heavy due to the large output layer and difficulty of paralleli-
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sation. The class based output layer was used widely for RNNLM training on CPUs in
most previous work. A novel sentence splicing method is proposed in this thesis, which
enables RNNLMs to be trained more efficiently with bunch mode. GPU is also used to fully
explore its parallelisation power for fast computation. Besides the standard cross entropy
based training criterion, two improved training criteria:variance regularisation and noise
contrastive estimation, are studied for rapid RNNLM training and inference. Experiments
on a conversational telephone speech task show that up to 50 times speedup in terms of train-
ing is obtained. The experiments on Google 1 Billion corpus also indicate the scalablity of
NCE based RNNLM training.

In Chapter5, the lattice rescoring of RNNLMs is explored for speech recognition. Due
to the long term history, the exact lattice rescoring of RNNLMs is computationally in-
tractable. Previous work used N-best list or prefix tree for RNNLM rescoring, which only
rescore the topN hypotheses and can not generate the compact lattice. Approximations are
made for RNNLM lattice rescoring to cluster similar histories. n-gram and recurrent vec-
tor based clustering are proposed and used as criteria to cluster history and combine paths
in lattices. Both of these two approaches are able to generate compact lattices, which can
be used in applications including confusion network decoding. Experiments on a conver-
sational telephone speech task and Babel task reveal that performance gain is obtained by
applying RNNLM lattice rescoring compared to N-best rescoring.

Chapter6 describes the work on RNNLM adaptation. Two popular approaches for
RNNLM adaptation: model fine-tuning and incorporation of informative feature, are in-
vestigated and compared. A range of topic models are used to extract topic representation
for efficient adaptation. Experiments on a multi-genre broadcast corpus are conducted to
show the performance of RNNLM adaptation.

Chapter7 investigates the interpolation between RNNLMs andn-gram LMs. Based
on an experimental analysis of interpolation between RNNLMs andn-gram LMs, back-off
level is used as a feature to cluster and share parameters forinterpolation. Two back-off
based interpolation algorithms are proposed and investigated. The experiments on three
corpora with different amounts of training words show that the back-off based interpolation
gives small but consistent performance improvement.

9.3 Future Work

This thesis mainly focuses on the applications of RNNLMs in speech recognition. The effi-
cient training and inference, lattice rescoring, adaptation of RNNLMs and their interpolation
with n-gram LMs are studied. However, there are still many areas worthwhile for further
investigation. Here a number of suggestions for future directions are listed.

• More efficient training of RNNLMs using multiple GPUs. The work discussed in
this thesis focuses on RNNLMs trained on one or two GPUs (pipelined training). For
the training ofn-gram LMs, it is possible to use many CPUs in parallel to speed
up the training. Nowadays, it is not difficult to get multipleGPUs for computation.
The training of RNNLMs using multiple GPUs is important and of practical value.
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Asychronised training [56] and Hessian free optimization [116] are two promising
choices to utilise multiple GPUs for training.

• Modelling context cross sentence. RNNLMs (and LSTM RNNLMs) are able to cap-
ture long context. The complete history is used to estimate the word probability. It
normally captures history from the beginning of the sentence. However, in many sit-
uations, the longer history beyond the current sentence maycontain information for
prediction, especially in situations where the sentence isquite short, such as voice
searching.

• Language model with semantic information. Currently, thestatistical language model
is applied widely, which is purely data-driven. The semantic information of the sen-
tence is ignored. However, the semantic and grammer knowledge contain informa-
tion about the structure of sentence, which is also helpful for language understand-
ing. There are also extensive research interests in parsingtechniques [228] and word
embedding [156]. Hence, these sources of information should be incorporated in lan-
guage model.

• Multi-language RNNLMs. [182] proposed the training of multi-language RNNLMs.
The training corpus consists of sentences from different languages. The input and
output layers of RNNLMs are language dependent, while the hidden layer and recur-
rent connection is shared among different languages. The multi-language RNNLMs
outperformed RNNLMs trained on mono language. Under this framework, the multi-
language RNNLM allows words from different languages to project into the same low
and continuous space. Hence, many aspects can be further explored. such as word
embedding for multiple languages and RNNLM adaptation based on multi-language
RNNLMs.
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Appendix A

Calculation of Gradient in Noise

Contrastive Estimation

The aim of noise contrastive estimation training is to discriminate data generated from data

distribution (i.e. RNNLM) from some known noise distribution. There is an prior assump-

tion that the noise samples arek times more frequent than data samples.

Given a wordw and its historyh, let’s denote the probability from data distribution

(i.e. RNNLM) PRNN(w|h) and the probability from noise distributionPn(w|h). Hence, the

posterior probability ofw generated by RNNLM is,

P(w∈ D|w,h) = PRNN(w|h)
PRNN(w|h)+kPn(w|h)

(A.1)

The posterior probability of wordw generated by noise distribution is,

P(w∈ N|w,h) = 1−P(w∈ D|w,h) = kPn(w|h)
PRNN(w|h)+kPn(w|h)

(A.2)

During NCE training, for each train samplewi and its historyhi , k noise samples ˇwi, j( j =

1,2, ...k) are randomly sampled from a specified noise distribution (e.g. unigram distribu-

tion). The objective function is to minimize the negative log posterior probabilities over all

samples, which can be written as,

JNCE(θθθ) =− 1
Nw

Nw

∑
i=1

(

lnP(wi ∈ D|wi ,hi)+
k

∑
j=1

lnP(w̌i, j ∈ N|w̌i, j ,hi)
)

(A.3)
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The gradient of the above objective function is,

∂JNCE(θθθ)
∂θθθ

=− 1
Nw

Nw

∑
i=1

(∂ lnP(wi ∈ D|wi ,hi)

∂θθθ
+

k

∑
j=1

∂ lnP(w̌i, j ∈ N|w̌i, j ,hi)

∂θθθ

)

(A.4)

Recalling EquationA.1 andA.2, the first term in the above equation is,

∂ lnP(wi ∈ D|wi ,hi)

∂θθθ
=

∂ lnP(wi ∈ D|wi ,hi)

∂θθθ

=
∂ lnPRNN(wi |hi)

∂θθθ
− ∂ ln(PRNN(wi |hi)+kPn(wi |hi))

∂θθθ

=
1

PRNN(wi |hi)

∂PRNN(wi |hi)

∂θθθ
− 1

PRNN(wi |hi)+kPn(wi |hi)

∂PRNN(wi |hi)

∂θθθ

=
kPn(wi |hi)

PRNN(wi |hi)(PRNN(wi |hi)+kPn(wi |hi))

∂PRNN(wi |hi)

∂θθθ

=
kPn(wi |hi)

(PRNN(wi |hi)+kPn(wi |hi))

∂ lnPRNN(wi |hi)

∂θθθ

= P(wi ∈ N|wi ,hi)
∂ lnPRNN(wi |hi)

∂θθθ
(A.5)

Similarly, the second term in EquationA.4 is,

∂ lnP(w̌i, j ∈ N|w̌i, j ,hi)

∂θθθ
=−P(w̌i, j ∈ D|w̌i, j ,hi)

∂ lnPRNN(w̌i, j |hi)

∂θθθ
(A.6)

Hence, the gradient of NCE objective function becomes,

∂JNCE(θθθ )
∂θθθ

=− 1
Nw

Nw

∑
i=1

(

P(wi ∈N|wi ,hi)
∂ lnPRNN(wi |hi)

∂θθθ
−

k

∑
j=1

P(w̌i, j ∈D|w̌i, j ,hi)
∂ lnPRNN(w̌i, j |hi)

∂θθθ

)

(A.7)

The gradient∂ lnPRNN(wi |hi)
∂θθθ and ∂ lnPRNN(w̌i, j |hi)

∂θθθ can be computed via back-propagation

easily.



Appendix B

Experiment on AMI IHM corpus

In this appendix, HTK and Kaldi toolkits were used to build acoustic models based on Hy-

brid system on the same data set to allow fair comparison The well-known AMI [27] corpus

is chosen for experiment. Three microphone conditions wereused to build the acoustic

model and evaluate performance, which are IHM (Individual Headset Microphones), SDM

(Single Distant Microphone), MDM (Multiple Distant Microphones) respectively. The

Kaldi AMI recipe was adopted to build Kaldi system.1. The train, dev, and eval sets are

consistent with the Kaldi AMI recipe. A 4-gram LM model was trained on text corpus in-

cluding 12M words, which consists of 1M AMI transcriptions and 11M Fisher data(part 1).

Sequence training were applied for the training of acousticmodels for both of HTK and

Kaldi Toolkits. The experimental results are shown in TableB.1. The WER results of HTK

are reported on output from confusion network decoding and that of Kaldi are reported on

MBR decoding.

According to the results in TabelB.1, HTK gave better results with cross entropy train-

ing. For the MPE based sequence training, HTK and Kaldi gave comparable performances.

Table B.1 WER results of AMI eval set using HTK and Kaldi Toolkits. A 4-gram language
model was used and CN (HTK), MBR (Kaldi) decoding were applied.

Train
Toolkit

WER
Crit IHM MDM SDM

CE
HTK 27.7 49.0 54.7
Kaldi 28.3 50.5 57.2

MPE
HTK 26.3 47.0 52.4
Kaldi 25.9 46.9 53.5

1The Kaldi recipe for AMI system can be found at
https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5
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