Scalable Recurrent Neural Network
Language Models for Speech
Recognition

Xie Chen

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Clare Hall College March 2017






I would like to dedicate this thesis to my loving parents ...






Declaration

This dissertation is the result of my own work carried outhegt University of Cambridge
and includes nothing which is the outcome of any work donellaboration except where
explicitly stated. It has not been submitted in whole or intjar a degree at any other
university. Some of the work has been previously presentedternational conferences
[142 40, 38, 41, 43, 44, 42, 45] and workshops, or published as a journal artidlé4 46].
The length of this thesis including footnotes, appendices r@ferences is approximately
63000 words. This thesis contains 48 figures and 44 tables.

Xie Chen
March 2017






Acknowledgements

First of all, I would like to express my utmost gratitude to sypervisor, Professor Mark
Gales, for his mentorship and support over the past foursyehtearned a lot from the
regular discussion every week and his wisdom, insightgeiice and passion in research
always encourage me. | believe this inspiration will be ¢heith me for my whole life.

| am also in debt of Dr Xunying Liu, who brought me into the fieidanguage models.
He always stood by me throughout my work in recurrent neugdvark language models.
I will miss the regular discussion every Wednesday.

Special thanks go to Toshiba Research Europe Ltd. and Cdgeb@verseas Trusts for
the financial support, allowing me to attend many intermati@onferences and workshops.

| also want to thank my advisor, Professor Phil Woodland fsrdonstructive sugges-
tions. | owe my thanks to my colleagues in the Machine Irgelice Lab for the help and
encouragement they have given to me. Particular thanks goust Dr Kate Knill, Dr An-
ton Ragni, Dr Rogier Dalen, Dr Yu Wang, Dr Linlin Wang, Dr Yarm®ian, Dr Yonggiang
Wang, Dr Shixiong Zhang, Dr Pierre Lanchantin, Dr Penny Kasau, Dr Jingzhou Yang,
Dr Takuya Yoshioka, Chao Zhang, Chunyang Wu, Moquan WarendgMWong, Andrey
Malinin and Jake Vasilakes, for the scintillating discossi, whether it be speech recogni-
tion, machine learning, or subjects less directly relatedur research. All have enriched
my time here. | also would like to thank Patrick Gosling anchArLangley for their excel-
lent work in maintaining the computing facilities. Thesgeitigent and kind people make
the group an interesting place to work in.

The friends | met in Cambridge will be a treasure forever. €kperience in the Chi-
nese society also enriched my life and | have had the chanceake many great friends
there. The accommodation | stayed in Cambridge for theastears, HOA, has brought
countless happy moments and make me feel at home. | woultblitkeank all people | met
there.

| also want to thank Zhen Tong for her company and supportchvitieans a lot to me.
Finally, the biggest thanks go to my parents. For many ye¢hey, have offered everything
possible to support me. Without their encouragements, lldvoat be here. This thesis is
dedicated to them.






Abstract

Language Modelling is a crucial component in many areas pptications including auto-
matic speech recognition (ASR)-gram language models (LMs) have been the dominant
technology during the last few decades, due to their easyeimgntation and good gen-
eralism on unseen data. However, there are two well knowhl@nes withn-gram LMs:
data sparsity; and theorder Markov assumption. Previous research has explaedus
options to mitigate these issues. Recently, recurrentah@atwork LMs (RNNLMs) have
been found to offer a solution for both of these issues. Tha siaarsity issue is solved by
projecting each word into a low, continuous, space, andaihg ferm history is modelled via
the recurrent connection between hidden and input layencéleRNNLMs have become
increasingly popular and promising results have been tegan a range of tasks. However,
there are still several issues to be solved in area to appNLRM to the ASR task. Due to
the long term history, the training of RNNLMs is difficult t@pllelise and slow to train on
large quantities of training data and large model size. dtisy to apply Viterbi decoding or
lattice rescoring for standargdgram LMs as they have limited history, while it is difficult
for RNNLMs because of their long term history. This thesmmsito facilitate the applica-
tion of RNNLMs in ASR. First, efficient training and evaluaiof RNNLMs are developed.
By splicing multiple sentences, RNNLMs could be trainedoedfitly with bunch (i.e. mini-
batch) mode on GPUs. Several improved training criteriaaése investigated to further
improve the efficiency of training and evaluation. Secoma), &lgorithms are proposed for
efficient lattice rescoring and compact lattices are ablgetterate. Third, the adaptation of
RNNLMs is investigated. Model fine-tune and incorporatiénnformative feature based
adaptation are investigated. Various topic models areegpd extract topic representation
for efficient adaptation. Finally, the different modellipgwer of RNNLMs andn-gram
LMs are explored and the interpolation of these two types adats is studied.

The first contribution of this thesis is the efficient traigiand inference of RNNLMs.
The training of RNNLMs is computationally heavy due to thegioutput layer and dif-
ficulty of parallelisation. In most previous works, RNNLMsere trained on CPU with
class based RNNLMs. In this thesis, a novel sentence sglioethod is proposed, which
allows RNNLMs to be trained much more efficiently with buncbae. GPU is also used



to fully explore its parallelisation power for fast compida. In addition to the standard
cross entropy based training criterion, two improved irajrcriteria: variance regularisa-
tion and noise contrastive estimation, are studied fordrl&NNLM training and inference.
Experiments show that significant speedup can be obtaimdxbth training and testing.

The second contribution of this thesis is the lattice reasgoof RNNLMs. Due to the
long term history, lattice rescoring of RNNLMs is difficuNlost previous work used N-best
or prefix tree, which only rescore top N hypotheses using RMElIland can not generate
compact lattices. In this thesis, we aims to apply RNNLMslétdtice rescoring. Approx-
imations are made for RNNLM lattice rescoring to clusteri@mhistories. n-gram and
history vector based clustering are proposed and usedtesatp cluster history and com-
bine paths in lattices. Both of these two approaches aretalgenerate compact lattices,
which can be used for applications including confusion ekwdecoding and key word
spotting with performance improvement.

The third contribution of this thesis is the study of effidieaptation for RNNLMs.
Two popular approaches for RNNLM adaptation: model fingrtgrand incorporation of
informative feature, are investigated and compared. Aegarfgopic models are used to
extract topic representation for efficient adaptation. &kgeriments show that the unsuper-
vised RNNLM adaptation yield significant perplexity redoatand moderate word error
rate improvement on a large quantities of data comparectmlatd RNNLMs.

Another contribution of this thesis lies in the interpatetibetweem-gram LMs and
RNNLMs. Based on an experimental analysis of interpolabetween RNNLM and-
gram LM, back-off level is used as a feature to cluster andesparameters for interpolation.
Two back-off based interpolation algorithms are proposetiiavestigated.

It is also worth mentioning that the work described in thissiis has been developed
to an open source toolkit: CUED-RNNLML]. This toolkit supports efficient RNNLM
training on GPU, evaluation on CPU, RNNLM lattice rescorargl adaptation. It has been
used by a number of speech groups from universities andutesti
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N

a scalar is denoted by a plain lowercase letter

a column vector is denoted by a bold lowercase letter
a matrix is denoted by a bold uppercase letter
probability density function

probability mass distribution

word sentence

optimal word sentence

obervation sequence

acoustic feature vector

delta acoustic feature vector

initial state distribution

state transiotion probability matrix

state output probability distribution

HMM model parameters

objective function for the training of acoustic model
Language model parameters

objective function for the training of language model



XXiv Nomenclature

u mean vector in the Gaussian distribution

2 covariance matrix in the Gaussian distribution

W mixture weight of component in the GMM model

S state sequence

Q phone sequence

Q(-,-) auxiliary function for expectation maximum

&j(t) probability of being in statg at timet and states; at timet + 1
yj(t) posterior probability of being stasg in at timet
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A interpolation weight for language model interpolation
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U output layer matrix in RNNLM
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JE(.) objective function of cross entropy

JNCE(.) objective function of noise contranstive estimation
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Mt  topic model
Mt  optimal topic model
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0

r(Wo,Wil_l) back-off level for wordw; given historyvv"l_1 in then-gram LMs
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Chapter 1

Introduction

Speech is one of the most natural ways to communicate betpezie. It plays an impor-
tant role in our daily lives. To make machines able to talkhwgeople is a challenging but
very useful task. A crucial step is to enable machines togeise and understand what peo-
ple are saying. Hence, speech recognition becomes a kayiqeehproviding an interface
for communication between machines and humans. There leasadeng research history
on speech recognitiod 2.

The first speech recognition system, a digit recogniser, imanted in 1952 in Bell
lab [53]. Since then, research on speech recognition has beerdaut in both academia
and industry and gained vast attentid®®. Hidden Markov models (HMMs)9, 109
were introduced into speech recognition in the 1970s, awdrbe the cornerstone in the
area of speech recognition. The standard HMM has been rafiredumber of ways such
as state clustering, adaptation and discriminative tngim subsequent yearg]]. Signif-
icant progress has been achieved in speech recognitiontludast several decades. In
the early years, speech recognition was studied on isolabed recognition, with small
vocabulary size (e.g. several hundreds). Native speakeiseesunder clean environment,
such as reading speech. Nowadays, large vocabulary (ldsdfethousands of words),
continues speech recognition becomes the main reseaerhshtsuch as voice sear@i]
and conversational telephone speech recognifi®d)[ The speech is spontaneous under di-
verse acoustic environments, which is more similar to hosppebehave in their daily lives.
Advance in computer hardware (multi-core CPU and GPU) amdllghalgorithms also fa-
cilitate the use of dramatically increasing amount of tirgrdata. Nowadays, thousands of
hours of speech and billions of text data can be used to te@iognition systems. Various
adaptation technique3]] are also developed to address the acoustic mismatch caysed
speaker, noise, channel and so on. The improvement in pefare can be also obtained
from multi-microphone by overcoming reverberation andudg noise 249. Recently,
deep learning has attracted extensive research interas$igrasented significant improve-
ment in performance over a range of tas®@| With the big advance in speech recognition
techniques, many companies have integrated speech rdoognto products, such as Siri
from Apple, Google watch from Google and speech translatiddkype from Microsoft.

It is clear that the speech recognition techniques areiagteur daily lives and gradually
changing the way of life.
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1.1 Overview of Automatic Speech Recognition Systems

Modern ASR systems are mainly based on statistical appesachder a Bayesian frame-
work [71]. Mathematically, given the obervatidd = {01,0o,...07} (i.e. feature extracted
from raw speech signal), the probability of the specific weedquenc@V = {wq,wo, ..., Wy}
can be written a®(WW|0O). According to Bayesian decision rules, the most likely weed-
tencelV can be obtained as,
W = argmaP(W|0) (1.2)
w

This can be rewritten based on Bayes’ formula,

W = argma®(W|0)
w

 argma P CVIPOY)

W P(O)
= argmayp(O|W)P(W) (1.2)
W

where the probability of the observati@iO) can be omitted since it is independent of the
word sequenc®). The posterior probability?(V/|O) can be split into two components in
the Equationl.2 p(O|W) andP(W). p(O|W) is the likelihood of observatio® given
word sequenc@V, which is called the acoustic model in the literatuR)V) is the prior
probability of the word sequendd’, which is called the language model. The acoustic
model is usually trained on audio corpus where the speecltanwrd sequence label (i.e.
transcription) are given, and language model is traineaégricorpus where a large number
of word sequences are available. Given the acoustic moddbaiguage model, the poste-
rior probability of a specific word sequent® can be calculated. The word sequence with
the highest posterior probability is chosen as the recmgniesult as shown in Equation
1.2

Figurel.1shows a standard framework of ASR system. The acoustic agddge mod-
els are prepared before recognition. The lexicon (also knasvpronunciations dictionary)
specifies the pronunciation of each word in the vocabulatye pronunciation of a word
can be generated manually by experts or automatically byhgrae to phoneme (g2p) al-
gorithms [L7]. The information from the acoustic model, language model le@xicon are
integrated in a decoder. For each utterance to be recograsedstic features can be ex-
tracted from the raw speech waveform using front-end pging4210. The decoder takes
the acoustic feature as input, searches from the searck spastraint by acoustic model,
language model and lexicon, and finally generates the masilge hypothesis based on
Equationl.2

This thesis mainly focuses on the language model. The layegoeodel aims to model
the probability of any given word sequence. A range of lagguaodels have been pro-
posed for speech recognition-gram language modelsgram LMs) are the most popu-
lar language model and have been the dominating languagelrdodng the last several
decades. More recently, recurrent neural network langoagels (RNNLMs) have shown
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Fig. 1.1A framework of speech recognition system.

promising performance in a range of applications includgpgech recognitionlp4, 61,
216 55, 123. However, some issues still exist when RNNLMs are appliesfieech recog-
nition, such as long training time for large training com@¢d9] and difficulty of lattice
rescoring 142. In this thesis, the application of RNNLMs in state-of-thg speech recog-
nition systems is studied.

1.2 Thesis Organisation

This thesis is organised as follows,

Chapter2 introduces the key techniques in speech recognition syst&ime extraction
of acoustic feature from speech signal, training of the atoumodel and language model,
as well as the search (i.e. decoding) are described.

The neural network based language model is the researahitopbiis thesis. Chapt&
reviews three popular types of neural network based larggymaglel, including feedforward,
recurrent and LSTM based neural network language model.

The efficient RNNLM training and inference are explored ira@ter4. The training of
RNNLMs is computationally heavy due to the large output tayed difficulty of paralleli-
sation. A novel sentence splicing method is proposed, wdlickvs RNNLMs to be trained
much more efficiently with bunch mode. GPU is also used ty fesiplore its parallelisation
power for fast computation. In addition to the standard€srgropy based training criterion,
two improved training criteria: variance regularisatiordanoise contrastive estimation, are
studied for rapid RNNLM training and inference.

Latticie rescoring using RNNLMs is studied in Chap$eDue to the long term history,
lattice rescoring of RNNLMs is difficult. Most previous wotsed N-best or prefix tree,
which only rescore top N hypotheses using RNNLM and can noégee compact lattices.
Approximations are made for RNNLM lattice rescoring to ¢dussimilar histories in this
thesis. n-gram and recurrent vector based clustering are proposgdisad as criteria to
cluster history and combine paths in lattices. Both of th@se approaches are able to
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generate compact lattices, which can be used for applicatieluding confusion network
decoding and key word spotting.

Chapter6 studies the adaptation of RNNLMs. Two popular approache®RféNLM
adaptation: model fine-tuning and incorporation of infotivefeature, are investigated and
compared. A range of topic models are used to extract topiesentation for efficient
adaptation.

Chapter7 investigates the interpolation between RNNLMs angiam LMs. Based on
an experimental analysis of interpolation between RNNLM aigram LM, back-off level
is used as a feature to cluster and share parameters fquatggon. Two back-off based
interpolation algorithms are proposed and investigated.

Chapter8 examines the techniques discussed in the thesis on a méetirsgription
task. Several sources of public meeting data including AREI and NIST meetings are
used for training, and two sets of test data are used. Thefiests from the standard AMI
test data and the other test set is a series of real meetifigsted by Toshiba.

Finally, this thesis concludes in Chap@ewith a summary of contribution and a discus-
sion of future work.

1.3 Contributions and Collaborations

This thesis covers a wide range of topics concerning RNNLdispeech recognition. This
thesis has benefited from the help of various collaboratoris section, | will give a brief
summary of contributions made by these collaborators. . Pvkdrk Gales is my supervi-
sor and he has involved in idea discussion, experiments apédrpvritting for all papers
associated with this thesis.

(a) The work on efficient RNNLM training and evaluation in @ker 4 has been pub-
lished in 3 conference papers and 1 journal artid® 43, 44, 46]. | was responsible for the
original ideas, code implementation, experiments andpap#ting. The collaborators pro-
vided baseline ASR systems and helped on paper correctamygdyang had been attending
most of the related discussions till he joined Microsoft @12.

(b) The work on RNNLM lattice rescoring in Chapthas been published 2 conference
papers and 1 journal articl&42 47, 144]. The original ideas came from weekly discussions
between Xunying, Yonggiang and |I. We have equal contrilmgtion the idea. Xunying
was the person who implemented the lattice expansion codéRescore (HTK [29]) and
provided all baseline ASR systems. | was responsible forcthee related to RNNLM
training, model input, probability computation and expents. Anton Ragni and Jake
Vasilakes provided baseline ASR systems for keyword seddct?, 144 were written by
Xunying Liu and | wrote 47].

(c) The work on RNNLM adaptation in Chapt&rhas been published in 1 conference
paper fi5]. | contributed the original idea and was responsible foplementing RNNLM
adaptation code, experiments and paper writting. The lootktors helped to train PLSA
models and extract PLSA features; provided baseline ASRes\s and extracted HDP
features.



1.3 Contributions and Collaborations 5

(d) The work on language model interpolation in Chafteas been published in 1 con-
ference paperd2). | contributed the original ideas, was responsible for lenpentation of
the RNNLM interpolation code, experiments and paper wigitiThe collaborators provided
baseline ASR systems and helped on paper correction.






Chapter 2

Automatic Speech Recognition

This chapter describes key components of the standard atitospeech recognition (ASR)
system. As shown in Figurk.l, these include acoustic feature extraction, acoustic inode
language model and decoder.

2.1 Front-End Feature

In speech recognition, acoustic features are extractedtine raw speech signal. The acous-
tic features are expected to carry sufficient informati@amfrspeech as well as to be a suit-
able form for modelling. Mel frequency cepstral coeffici@ui-CC) [148 54], perceptual
linear predictive (PLP)94], filter bank (FBANK) [160, Tandem 5] are popular acoustic
feature.

2.2 Hidden Markov Model based Acoustic Model

Hidden Markov Model (HMM) has been the most popular modeldpeech recognition
systems since the 198031, 180. HMM provides an elegant way to model the continuous
and dynamic character in speech signal. ASR systems coedidethis thesis are based
on the Hidden Markov Model (HMM}. In this section, the basic concept of HMM will be
presented.

Two assumptions are made to allow HMM to be suitable for modgspeech.

* Quasi-stationarity: Speech can be split into short segments or states, in whéch th
speech signal is stationary. The transition between s&tastantaneous.

» Conditional independence: The acoustic feature vector is only dependent on the
current state. Given the state, the feature vector is dondily independent from the
previous or following feature vectors. And the transitionlpability of the next state
depends only on the current state, irrelevant of the featectors.

1 The recent proposed alternatives of HMM to model the spe&gtakbased on LSTM-CTC models
[82, 80, 197 and attention model}8] are not discussed in this thesis.
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Neither of these assumptions is true for speech signal ictipea The speech signal is
not stationary and varies quickly with time. The succestature vectors are also highly
correlated. Much works has been carried out to alleviateghessumptions. However,
HMM is still a successful model and gives good performancesfeech recognition under
these assumptions.

Figure2.1shows a typical left-to-right HMM model with five states. $ta finite state
machine with one entry state 1, one exit state 5 and thrediegngtates. The entry state
1 and exit state 5 are non-emitting states. The emittingstat 3 and 4 allow self-loop
transitions. The acoustic feature vectpis generated at each time stampts probability
density function (PDF) depends on the current state; elgenwhe current state is 2, the
PDF of o; is bo(or). In the next time step, the state is 2 with probabibigy and 3 with
probabilityays. In this way, a variable length speech signal can be modbifeétie HMM.
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Fig. 2.1A left-to-right HMM model with 3 emitting states, states H&nare non-emitting
states and 2,3,4 are emitting states

There are several parameters to be estimated.

1 T initial state distribution
The initial state probability is,

m=P@=s) (2.1)

whereq@ denotes the state at timeFor = {7, b, ...7y } to be a valid distribution,
it must satisfy,

N
;m =1 (2.2)

whereN is the number of states. For the left-to-right HMM shown iglte 2.1, the
initial state is state 2 with probability 1.
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2 A: state transition probability matrix
A = {a;j} defines transition probabilities from stageo states;

aj=P(@ =sjl@a-1=5) (2.3)

which satisfies the following constraintsifis a full matrix, transitions between each
pair of states are allowed.

N
> aj=1 (2.4)
=1

In many applicationsd4 does not need to be full. For a left-to-right HMM shown in
Figure2.1, the transition probability matrix is written as,

ERE N
S|ap a3 0 0
3| 0 a3 azs O
S| 0 0 aws ags

where each state is constrained to jump to itself or the rext.ss; andss are non-
emitting states, they will jump to the next state immediatel

3 B: state output probability distribution
B ={bi(ot),b2(a),...,bn(0r) } are PDFs of acoustic feature vectors given states. The
PDF of acoustic feature vector in states at timet can be written as,

bi(or) = p(ot|@a =s) (2.5)

The PDFbi(o) is also called a likelihood. There are mainly two popularuestic
models to compute likelihoods in ASR systems. One is a Ganddixture Model
(GMM). The GMM-HMM system is constructed using this form ddP. The other

is a Deep Neural Network (DNNY[7], which yields a so-called DNN-HMM system
(also known as a Hybrid systen99. The GMM and DNN will be introduced in
Chapter2.2.1and2.2.2respectively. There are also other variants such as returre
neural network for acoustic modelling§(]. They are out of the scope of this thesis.

2.2.1 Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a mixture of finite multivate Gaussian distribution.
Theoretically, GMM is able to approximate any distributishen there are sufficient Gaus-
sian components. GMM is widely used for modelling state smarsprobabilities in speech

recognition. Given statg, the output PDF of observatiag is computed as below,

K
p(olAi) = 5wV (o Mik, Zik), (2.6)
&
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where state parametefs= {Ai} = {wk, Mj, Zik} consist of mixture weight$wy }, mean
vectors{; } and covariance matricZix}. The mixture weights for each stagemust
satisfy the following constraints:

wk=1 and wx>0 (2.7)

The multivariate Gaussian distribution for each comporantbe written as,

Mo %) = (2m) 415 Fexp{— (0 1) 'S o~ )} (2.8)

whered is the dimension of feature vector. Typically, the diagar@tariance matrices are
used. To reduce the number of parameters for estimation iamglify the computation,
there have been also efforts on incorporating more powenddr, 69]. In this work, we
only consider the diagonal covariance matrix for GMM.

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is one of the most poaulkraining criteria for

HMM parameter estimation. The aim is to find the optimal mquleilameter to maximize
the observation likelihood given the reference transinptThe objective function of MLE
can be written as,

FuL(M) = log(p(O|W; M)) (2.9)

where)V is a word transcription for acoustic observatidds The ML objective function
can be rewritten as,

FuL(M) =log(p(O[W; M))
~ log %mo,aq;mmqm}

_ 'Og{é(%ﬂtﬁ p(ot|@; M)agg,,) D(QIW)} (2.10)

wheret is frame index and is the state index at tinte p(o¢|@; M) is the GMM likelihood

as shown in Equatio2.6. Q is a particular phone sequence corresponding to the word
sequencé/V. Although it is possible that there are multiple pronurioias, usually only

the highest likely pronunciation is used for MLE estimatiadence, the sum oved in
Equation2.10can be removedSis any possible state alignment given the phone sequence
derived from the word sequence. The length of the state sequs the same as that of the
observation sequene®. Hence, the objective function of Equati@rilOcan be simplified

as

./—"ML(M>=|OQ{ZD(O,S|W;M)} (2.11)
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There are two hidden variables during the above estimatlmn stateg and the GMM
componenty in each state. Expectation Maximum (EM) algorithm can bel tis®ptimise
Equation2.11[16].

Discriminative Training

Maximum Likelihood is the optimal criterion when two condits are satisfied, i.e. suffi-
cient training data and correct model assumption. Howexather of these two conditions
is satisfied. Hence, discriminative techniques were intced into acoustic model training
as these do not assume infinite amount of data or the corret#lmr®ather than maximising
the likelihood of observation given the correct transeoipin MLE training, discriminative
training aims to maximise the posterior probability givee bbservation. The recognition
accuracy metric can also be taken into account. There arege raf discriminative crite-
ria proposed for speech recognition. Significant and ctersiperformance improvements
were reported in various task$q8. Hence, discriminative training is widely used in the
state-of-the-art speech recognition systems. In thistelnageveral common discriminative
criteria are reviewed briefly, including maximum mutualarrhation (MMI) and minimum
Bayers’ risk (MBR).

Maximum Mutual Information

MMI [ 8, 17§ training attempts to maximum the mutual information bedweeference
sentencé@V and observation sequenCe The objective function can be written as below,

Fumi (M) =1(W,0|M)
p(W,0|M)
(W)p(O|M

= 2.12
og (5 )) (2.12)
Normally the language model probabiliB()V) is not jointly trained with the acoustic
model since the language model is trained on a far largewsoi@iven thaP()V) is fixed,
MMI objective function is equivalent to maximising the aage log-posterior probability

for the reference sentence BNV |0, M), which is normally written as below,

p(O|W, M)kP(W)

Fummi (M) = log (V%/p(O\W’,M)ﬁP(W’)

) (2.13)

The denominator term is the probability of observation segesp(O|M), which sums
over all possible word sequenc&g’. In practice, a lattice containing highest probable
word sequences as used to approximate all possible woreesees! k is the language
model scale factor, which aims to scale down the dynamice@ahg@coustic score to yield a
broader posterior probability distribution.
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Minimum Bayes’s Risk

The Minimum Bayes’ Risk (MBR) aims to minimise the expectesls. The expected loss
can be expressed as,

Fmer(M) = 3 P(W[O; M)LOW', W) (2.14)
W/

whereL(W', W) is the loss function for the output hypothesisgiven the reference word
sequencéV. A number of loss functions can be found in the literature esénhdiffer in
terms of minimising error at different levels such as secgemword and phone.

» Sentence: this form is shown in Equatidris It aims to minimise error at the sen-
tence level.

(1t WEW
LW,W_{ o it W W (2.15)

» Word: The loss function can be defined at a word level. It$aaccriterion as called
minimum word error (MWE) rate.

* Phone: When phone is selected as the unit to compute losfidanit results in a
minimum phone error (MPE) criterion, which is applied wiglé@h large vocabulary
speech recognition systerh7g.

2.2.2 Deep Neural Network

An alternative state output distribution can be obtainedgia neural network. This ap-
proach can be traced back to 1980s. Feedforwad Neural retmarrecurrent Neural net-
work were proposed to substitute GMM based acoustic mowglli83 19, 186, 21], where

a single hidden layer was normally used and monophone wasenhas the target during
training. However, due to their long train time and diffiqutif adaptation, GMM-HMM
has been the state-of-the-art for the last two decades.aNeetwork revives with the ad-
vance of deep neural network containing many hidden layace 2006. 96] proposed a
novel pretraining method to construct a deep neural netwark obtained significant im-
provement on image task. This model was introduced intockpeecognition in $1] and
promising results were reported on a range of LVCSR syst&8% 97]. The system using
DNN to yield state output distributions is called DNN-HMMhiE is also known as hybrid
system in the literature.

Figure2.2illustrates the structure of deep neural network (DNN)Y.

Input features consist of observations from several carnsecframes. These are fed
into a sequence of hidden layers, where each hidden laydiegs@plinear transform, fol-
lowed by an element-wise non-linear transform, such asa@igifunction. Softmax func-
tion is used in the output layer to yield a valid probabilityed triphone states derived from
decision tree are used as target.
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input layer hidden layers

output layer

Fig. 2.2 An illustration of deep neural network with multiple hiddexyers. The input is
acoustic feature and output is the tied states.

Training of DNNs consists of two stages, pretraining and-fureéng. Pretraining aims
to find a good initialisation for the following fine-tuningagje. There are two types of
pretraining used for acoustic model training. The first tigoeased on Restricted Boltzman
Machine P6]. The other type is based on discriminative layer-wisedrpnmeing. The later
method was found to converge faster in the fine-tuning sth@8.[In the fine-tuning stage,
cross entropy is used as objective function and standaod leackpropagation algorithm is
adopted based on stochastic gradient descent.

The state posterior probability(s|o) is calculated from DNN. However, in speech
recognition, the observation likelihogr{o; |s )is required, which can be obtained by,

P(si|ot)p(ot)
P(s)

wherep(o;) can be ignored during decoding(s) is the prior probability of stats.

There have been a lot of efforts to improve performance oDXIN&I-HMM systems in
recent years. Lattice based sequence training using MMIBRMriteria were investigated
in [115 214, 232, second order (Hessian free) optimisation was examinefilitq. In
addition, filter bank feature were found to outperform feesuike MFCC [L6]] for acoustic
modelling. Recently, recurrent neural networks were fotmgield gains over DNNs{3,
191, 162). Deep neural network and recurrent neural network cantasased for language
modelling, which will be introduced in Chapt8r

p(afs) = (2.16)

2.2.3 Tandem System

Instead of using the output of neural network to calcul&telilnood directly, there is another
branch in acoustic modelling that makes use of neural n&twiandem system9p, 253.
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The neural network is used to extract acoustic features;iwéiie concatenated with stan-
dard acoustic features to form “new” acoustic featurestdbssequent GMM-HMM training.
Figure2.3 shows an example of Tandem system. The neural network rettddased on
input feature vectors consisting of several consecutaés and output targets being con-
text independent (Cl) phones or context dependent (CDg¢stathis is the same as the
neural network in a Hybrid system, except that there is adodtk layer for extracting
features. The acoustic features used in Tandem systemistcohwvo parts. One are tra-
ditional acoustic features such as MFCC, PLP. The other aitéeheck features extracted
from neural network.

oL e
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Fig. 2.3An illustration of deep neural network. Neural network ied$o extract bottleneck
feature from the output of hidden layer and this bottleneekure will be concatenated with
the standard acoustic feature to form Tandem feature anthtedsMM-HMM systems

In [95], the Tandem system is first introduced into speech reciogniThe posterior of
phone is modelled and combined with the traditional acodsttures to form high dimen-
sional Tandem features. These features are also callddrmatk features in the literatures.
In [86], bottleneck features from the output of a hidden layerdlethe non-linear function
in the hidden nodes) were used to substitute posteriorresand it yielded performance
gain. The dimensionality of bottleneck features, typic@b, is relatively low compared
with the number of nodes in the output or other hidden layd@tse GMM-HMM system
trained using this kind of feature is called a Tandem systethe literatures. Traditional
technigues such as MLE and discriminative training can Ipdieghto Tandem systems with-
out modification.
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2.2.4 Joint Decoding

In many systems, various acoustic models are trained depaamd then combined for bet-
ter performance. Joint decoding3d3 and Confusion network combination (CN@®J are
two popular methods to combine systems together for imgrgesformance. Joint decod-
ing combines systems during decoding. Taking Tandem andii¢tHgipstem combination as
an example, given a speech framethe log-likelihood of statg in joint decoding can be
computed as,

Ly(at|s) OZ(s)+ AnLn(at|s) +ArLt(ar[s) (2.17)

whereZ(s) is normalisation term and normally set to IG5 (o;|s) andLy (ot|s) are the
log-likelihood from Tandem and Hybrid systems for statgiven observatiow.

The joint decoding system used in this chapter is shown iareig.4.

[ speaker Dependent
Tandem

HMM-GMM

Pitch —’I Log-Likelihoods
Bottleneck |

Layer

Stacked Hybrid
Bottleneck

PLP ——— Log-Posteriors

FBank — —— Score

uoisn4g

Fig. 2.4 An illustration of joint decoding system for acoustic mdidgl A Tandem and
Hybrid systems can be combined on score level.

At andAy denote weights for Tandem and Hybrid systems. In this chhapeefollowing
empirical values were used for joint decoding.

At =0.25
An =10 (2.18)

In confusion network decodind 45, 63], confusion networks are obtained by decoding
Hybrid and Tandem systems first. The confusion networks fiwmor more systems are
aligned and combined, and the hypothesis word with highestiepior probability is chosen
for output. These two methods normally give comparablegoerdnce 233. However,
joint decoding saves the compute time as it only requiresgleidecoding. Furthermore,
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compact lattices can be generated by joint decoding, wtaatbe used for lattice rescoring
with better models to further improve performance.

2.2.5 Acoustic Model Adaptation

For statistical pattern classification, it is importanttttiee training data is representative of
the testing data. Otherwise, a serious performance degyadaay be caused due to the
mismatch. In speech recognition, test data always contaiegpected factors such as new
speakers. In order to make acoustic model more suitableciorspeakers, speaker adap-
tation is applied widely to transform the speaker indepahdeoustic models into speaker
adapted models. It helps to reduce the mismatch between dkelrand the test data. It
is worth noting that in this section, only speaker adaptatsodiscussed. However, these
methods can aslo be applied to adaptation with other fastarls as gender, environments,
and so on.

Speaker adaptation can be divided into supervised and anssed adaptation accord-
ing to whether references for adaptation data are availabh®t. In the supervised adap-
tation, the correct transcription is given and used for atagn. However, in most applica-
tions, it is very costly or impractical to obtain referenéesadaptation data. Unsupervised
adaptation is adopted instead where these hypothesesrasetgel by an ASR system. In
this thesis, the unsupervised adaptation is considerexlibedt is more practical and useful
in real life.

A number of adaptation algorithms have been proposed for GMWM system with
consistent and significant performance gains. There age ttmoad categories of adaptation
methods 240, maximum a posterior (MAP)74] which estimates the model parameters
using Bayesian inference, linear transform techniquebl ssanmaximum likelihood linear
regression (MLLR) 133, and techniques using subspace to represent speaker,reodel
as cluster adaptive training (CATJ(Q] and eigen voice adaptatiohZ6|.

Speaker Adaptation on DNN-HMM System

There is also a strong interest in speaker adaptation for {IBINNM systems to improve
performance. One of the earliest works on adaptating DNNMHBystems in ASR can
be traced back to the 1990kg6. Along with the revived interests in Hybrid system, the
adaptation of DNNs has been studied intensively during et peveral years. Several
methods for speaker adaptation with DNN-HMMs are reviewe h

One method is to transform input features. These featuaesformed by CMLLR
from GMM-HMM systems were used for normalisation of diffetspeakers in19§. In
[234], FE-CMLLR [135 added on Tandem system was investigated. In FE-CMLLR, the
linear transform is determined by the posterior from GMMheg than regression tree when
multiple transforms are used. The transformed featurebgilised as input for the training
of DNN to get a speaker adapted DNN-HMM system.

Another method is to append a speaker related feature adiaufeature, such as i-
vector feature for speaker recognitidi®B 113 and speaker code], to standard acoustic
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features. The acoustic adaptation using i-vector is iletl in Figure2.5. The blue block
in the input layer represents the speaker related i-vector.

Otk —— N ... — P(atls)
o
(;t+k

input layer hidden layers

output layer

Fig. 2.5An illustration of deep neural network based acoustic madkptation using i-
vector. The i-vector feature is used as appended featureannput layer of deep neural
network for speaker adaptation.

The i-vector is estimated on the training data for each sgdaist. During training, the
i-vector is appended to the standard acoustic featurestdr gpeaker. At test time, for each
speaker, its i-vector is estimated, and appended with thestic features. The speaker code
approach adopts a similar structure, but the speaker N vector is derived from
the DNN. This structure is also adopted for the neural nétiamguage model adaptation
and more details can be found in Chagger

The DNN model can also be adapted direct®8 247, 254. In [199, feature-space
Discriminative Linear Regression (fDLR) was applied, wehan additional adaptation layer
is added directly after the input layer. The adaptationdéipearly transforms input feature,
which is a CMLLR-like transform. Because of adaptation dgtarsity, the transform is
shared between different frames. During adaptation, dvdyataptation layer is updated. In
case of very limited adaptation data, diagonal transforririmean be applied19§. As an
improvement, 134 adds L2 regularisation using weight decay and updatesfhe, output
layer or all layers. In254], a KL-divergence based regularised adaptation was peubds
[225, 243, a cluster adaptive adaptation was investigated22¥], the output of activation
is used for speaker adaptation.

2.3 Language Model

Language modelling aims to compute the probability of arvegiword sequencB(W).
Language models play an important role in many applicatiookiding speech recogni-
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tion, machine translation and spoken language understgnBor speech recognition, they
impose constraints on the possible word sequence by congptite probabilities of the
sequence.

The probability of a word sequend®’ = {wp, w1, Ws,...wN} can be decomposed into
cascading probabilities using the chain rule. The overalbability can be written as prod-
ucts of conditional probabilities for each word given itstory.

P(W) = P(Wo,W]_,Wz, WN)
N
= r!P(Wi|Wi—17---W17WO) (2.19)
i=

whereN is the valid length of word sequent®, wy is always the symbol of sentence start,
e.g. <s>andvy is always the sentence end symbol, e.g. </s>. Language madetrained
on a set of training corpus to estimate the probabilitPof; |w;_1,...w1,Wp). However, for
any applications with even a moderate vocabulary size, timeber of parameters for this
model is prohibitively large and impractical to store andhpaoite all combinations of word
w; and history(w;_1,...w1,Wp). Hence, the historyw;_1,...w1,Wp) is normally grouped to
an equivalent class. Assumidgdenotes the function used for clustering histories, thedwor
probability can be rewritten as,

P(Wi|Wi_1,...W1,Wp) ~ P(W;| @ (Wi_1,...W1,Wp)) (2.20)

The class functiom®(-) clusters the history based on some criterion and probiaisisimong
the equivalent classes being shared. This reduces the mwhparameters significantly
and allows reliable parameter estimation; etggram language model introduced in the
following section clusters histories with the same presioy 1 as equivalent class.

The quality of a language model can be measured directly iplgoaty. Given a word
sequenc@V includingN words, the PPL of language model can be calculated as,

PPL — 2-%'092(P(W)) _ 2-%'092(P(W07W17---7WN)) (2.21)

Language model with a lower perplexity means it gives a moweii@ate prediction, with
less uncertainty and confusion. The improvement in peryleg expected to reflect in
speech recognition by reducing word error rate, althoughithnot always true. Hence,
word error rate provides an important metric to evaluateqnaity of language model in
speech recognition.

There are a range of language models in the literature. #nctimapter, we mainly fo-
cus onn-gram LM, which is probably the most popular language modéhe past several
decades. Itis a simple model with good generalisation oeemdata and efficient paralleli-
sation algorithm on large amount of training data. Althogglod performance is achieved
in various tasksn-gram LM has two well-known issues: data sparsity and lomign tieis-
tory. In order to handle these issues, several variantgaetefiomn-gram LM are discussed
in Section2.3.4and2.3.5An inherently different type of language model, neural ratw
based language model, is introduced in Chapteraddress these two issues.
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2.3.1 n-gram Language Model

As discussed above, classing functidx-) is used to cluster similar histories and share
parameters. Im-gram language model, the history is clustered accordirtherevious
n— 1 words, which is,

D (Wo, W1, .. Wi—1) = DP(Wi_ni1, ., Wii1) =< Wipi1, ..o Wi_1 > (2.22)

vvi:#rl is used to denote a word sequemge,, . 1, ..., W;_1 for simplicity, which is called the
n-gram history. Then-gram language model probability can be written as

P(wi[wh 1) ~ P(w WL, ) (2.23)

In practice, at the begining of a sentence, the sentendesgtabol <s> is inserted. In
addition, a sentence end </s> is appended to the end of sentéfence, the probability
of the first word is expressed &w;| <s>), and an additional sentence end probability
is estimated.n is normally called the order af-gram language model. Whenis equal
to 1, unigram LM is constructed; and bigram LM is built by segtn equal to 2. Trigram
(3-gram) and 4-gram LMs are used widely in speech recogngistems. Under this-
gram approximation, it is straightforward to estimate thebability of n-gram LM using
maximum likelihood (ML) criterion as,

= ﬂ (2.24)

whereC(w_,.,) is the frequency of the word sequenge ., in training data. Equation

2.24qives a valid probability as,

| n+2 Z C i— n+1 (2-25)

Wi—n+1

This simple estimation af-gram LM probability has several issues. In order to rolyustl
estimate the probabilities, sufficient coverage of possitbrd sequenc@(w‘ ni1) IS re-
quired. However, th@-gram LM suffers data sparsity problem even only considgtite
previousn — 1 words. Taking trigram (i.e. 3-gram) LM for an example, fomaderate
vocabulary with 20K words, there are as many as 2800D= 8e'?2 — 1 free parameters to
estimate. Furthermore, many words triplets occurring &t tiene don’t appear in the train-
ing corpus. This results in a zero probability accordinggoi&ion2.24 Various smoothing
techniques have been developed for robust parameter éstimahich are introduced in
the next section. The second issue lies infAerder Markov assumption in Equati@22
The predicted word probability is only dependent on the gadatgn — 1 words, while the
longer range context is ignored. The long term history maytaia useful information for
prediction. There are plenty of works to mitigate this isswbich are briefly reviewed in
Section2.3.5
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2.3.2 Smoothing

Smoothing is applied in the.gram LM to adjust the probability more robust, and avoicdzer
probability during estimation. The essential idea of srhowj is taking out some probabil-
ity mass from the frequently seengrams and redistributing the mass to the infrequently
seen or unseen-grams. There are various methods to smoothrdgeam LM probabil-
ity. Several popular methods are briefly reviewed here. Aammamprehensive study on
smoothing for language model is referred 35,[255.

» Katz Smoothing Katz smoothing114] extends the idea of the Good Turing estimate
[77] in language modelling. The Good Turing states thaha&mam count that occurs
r times, should be treated as if it occufgimes,

= (r+1) ”;]“ (2.26)
r

wheren;, 1 is the number oh-gram appears+ 1 times in the training data. When
this idea is applied in language modelling, Katz smoothmgpplied as below: if
ann-gram has been seen in the training data, the probabilitheptredicted word
is discounted by multiplying a ratio; otherwise, the prabgbof the predicted word
is calculated with a lower order oFgram probability, where the most distant word
is discarded. This scheme is also called back-off. The leoweer Katz probability
distributions are called back-off distributions. The batkscheme in a trigram LM
is illustrated in Figure?.6.

[ P(Wi|Wi_1,Wi_2) ]

y(Wi—1,Wi_2)

[ P(wi|wi_1) ]

y(Wi—1)

]

Fig. 2.6An illustration of back-off scheme in a trigram LM. When thgram LM probabil-
ity is not existed, it backs off to bi-gram LM probability. ilgram LM probability will be
used if the bi-gram LM probability is not existed as well.

A general form of back-off scheme can be written as,
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wi—t) if cw' _ ,)>0
W W (W|_ —n+1 . i—n+1 (2_27)
P = { S T ) el
Wherea(w.|vv‘ n+1) is the discounted-gram probabllltyB(W.\vv' n+2) is the back-
off probability from lower order oh — 1-gram LM. y(vv: ﬁﬂ) is the normalisation
term to guaranteB(w |W n+1) be a valid probability.

1- C(WZ 10 (Wl |W n+1)
wi-1 _ Wi-C(Wi_nsa 228
W) B Ly 229

WO )=

Various smoothing technlques discussed next mainly diifdre choice of discounted
probabilitya (w|w~ n+1) (e.g. absolute discounting) and back-off probabyH(yv.\vv' n+2)
(e.g. Kneser-Ney smoothing).

» Absolute Discounting Similar to Katz smoothing, absolute discountirigf] also
computes the probability using back-off scheme. The mdferéince lies in the dis-
counting way. Instead of multiplying a ratio, a fixed discouasueC < 1 is subtracted
from then-gram count. This discount constdbitcan be calculated using leave-one-

out [167], where,
m

- Ny + 2Ny
andn; andn; are the frequencies ofgrams appears one and two times respectively.
There are different ways to select the discount valyids].

(2.29)

» Kneser-Ney SmoothingKneser-Ney (KN) smoothingl(Q is similar to absolute
discounting in that it also subtracts a discount v&u€ 1 for nonzeran grams. The
difference lies in the lower back-off order probability. €er-Ney smoothing adopts
a smoothed ML estimation for lower ordefrgram based on an important observa-
tion. The back-off should be optimised for lower count oreers case. Taking “San
Francisco” as an example, The word “Francisco” may have yahigh probability in
terms of unigram. However, it always occurs after "San". ¢¢grior a bigram LM,
it should back off to a low unigram probability when it follewther words except
“San”, where the bigram probability is used directly; ev&ndnhcisco” has a high fre-
quency in the training corpus7§| presents a modified version of KN smoothing by
introducing different discount valu@ for differentn-gram counts. This modified KN
smoothing is reported to be the best smoothing techniquevéod based language
model [78].

The estimation oh-gram LM mainly involves the collection af-gram counts and pa-
rameter smoothing. This is suitable for parallel compotatHence, a large amount of data
can be used for training. There are many engineering workgdaout for efficienin-gram
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LM training on large amounts of data13 25, 92, 91]. The advantages of easy implemen-
tation, fast training and good generalisation on unseem whaken-gram language models
the most popular and dominant language model over the lastaalecades.

2.3.3 Language Model Interpolation

Language model interpolation is widely used for combimatémultiple language models.
Individual language model is trained on corpus from differdomains. These language
models can be combined in test time. Linear interpolatiahlag linear interpolation]18
87] are two common interpolation methods. Linear interpolais shown as,

K
P(h) = 5 AR(wi) (2.30)

whereK is the number of language model component &ni the interpolation weight for
thekth language modd¥(w|h). The parameteky can be optimised via EM algorithm on a
held-out set$7].

Assuming that the held-out set consistdNoivords and there arn€ language models for
linear interpolation; Then the objective function is,

N K
J(0) = Z\'Og(kz AP (wilhi)) (2.31)
E= =1

where® is the set of interpolation weighfg to be optimised. This formula can be viewed
as a mixture model and each mixture component is a separajedge model. Based on
the previous discussion of the EM algorithm, the auxiliamgdtion can be written as,

N K
Q(8;0") = ziquk“)) S log(AdP(wilh)) (2.32)
i= k=1

Whereq()\lft)) is the posterior probability of thkth language model component given all
training words given the interpolation at ttté iteration, It can be computed as,

o, AYSN log(Rwih)
q(Ak )_ K (t) N
Sic1A) Yitqlog(Py(wilhi))

By maximising Equatior2.32in terms of interpolation weighty, the update of interpola-
tion weights in the + 1th iteration can be obtained as,

(2.33)

AW
Y . (2.34)

5% a(AY)
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The above update formula can be used for iterative updatetheatobjective function in
Equation2.31converges.
Log linear interpolation can be written as,

K

P(wih) = ﬁ 1 A (2.35)

whereZ(h) is the normalisation term ankj is the interpolation weight to estimate. The
normalisation ternZ(h) can be calculated by summing over the whole vocabulary

K

Z(h) = ZVkUlﬂ(Mh)Ak (2.36)

This is a typical log-linear model and generalised itemtealing $2] can be used for
optimisation.

Language model interpolation can be naturally extendethfiguage model adaptation
[11]. The interpolation weights of language component arenaged on the in-domain data
for adaptation purpose. The advantage is that there ard@mlgarameters to be estimated.
These parameters can be estimated robustly given severdidus of words.

2.3.4 Improvedn-gram Language Model

Despite the sophisticated smoothing technique-gram LM, data sparsity is always an
issue with the increasing oFgram order. Many attempts have been explored to mitigate
the issue, either by reducing the number of parameters ff@eint clustering or introducing
richer contextual information. Several typical methodslaniefly review in this chapter.

» Class based language moddihe class based language mod3, [147] aims to mit-
igate the data sparsity problem by sharing data. In the wasedn-gram LM intro-
duced above, each individual word is viewed different aedted alone. However,
there are many words sharing the same context due to th&ranhsimilarity, such
as Monday and Tuesday, son and daughter. These words wittxtaal or syntactic
similarities are clustered to one class. Thgram LM probability is estimated based
on class instead of word. The number of classes is expecteglltogely smaller than
vocabulary size, so as to obtain a more robust parameteragin. For a class based
trigram language model, the predicted probability can b#aevras Equatio2.37,

P(wi|wi_1,Wi_2) = P(W;|Gi)P(Ci|Ci—1,Ci—2)P(Ci_1,Ci—2|Wi—1,Wi_2) (2.37)

whereg; is the class assignment of wongl. Normally, each word is assigned to a sin-
gle class and one class contains several words. HencejrthesttmP(c;_1,Ci_2|Wi_1,W;_2)
can be viewed as deterministic and always 1. There are mayy wwastimate the as-
signment from word to class, either from linguistic knowgedsuch as POS ta@§9,

or purely data drivenZ3, 119, 175 12, 147, 244.
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The class basealgram LM is normally interpolated with word basaejram LM to
get the best performance. The class basgdam LM works well on small amounts
of data. However, the improvement disappears with the asg®f training data/g].

Random forest based language modeThe random forest based language model
[249 is derived from decision tree based language mabél][ The historiesm}:#rl
are classified to many equivalent classes by decision treskng questions. These
guestions can be very general, such as whether the mogsitdisied is some specific
word. Histories in the same class share the distribution thespredicted probability.
An improved decision tree algorithm was proposed2dq by training a complete
decision tree on the training data and pruning it on the beiliddata with the KN
smoothing technique. Several decision trees are consttunt introducing some
randomisation. The probabilities from different decistoees are aggregated. The
experiments in245 show that a 10% PPL reduction and 6% WER reduction is ob-
tained. The training of random forest language model oreladgta obtained a 3%
WER improvement215 .

Random forest based language model has a large potentiartowell if the good
partition of history can be found by asking general questittowever, the drawback
is the heavy computation during training, e.g. 249, and 100 decision trees were
built. Besides, the improvements seem to decrease whemitherore training data.

Structured language modelThe structured language mod80[ 29] aims to explore
the syntactic structure in natural language to improveuagg modelling. It is based
on the assumption that syntactic structure can filter oatewant words and the head
words provide better prediction for the next word. The adage of structured lan-
guage model also comes from long term information insteatiefastn — 1 words.
A patrtial parse is adopted on the history to find the syntawtier of a sentence.

The structured language model is reported to give largelgaty reduction (11%
in [30] and up to 24% in 29]). However, it is questionable when it is applied to
more spontaneous spoken language application as it isulliffw discover proper
syntactic structure. It is also difficult to apply to speeebagnition systems when the
recognised result contains many errors. Besides, the waprent diminishes when
linearly interpolating with other long term language mad&lich as the cache based
language model78] introduced in Sectio2.3.5

Factored language modeT he factored language model was first introduced in 2003
[15]. In the factored language model, each word is represergedfaature vector.
Generalised back-off is used for smoothing in FLM. This laage model is very
convenient to incorporate informative features such ag stem, part-of-speech and
morph. This is quite useful when there is a scarcity of in-dontraining data or
morphological information. It is applied widely for langgemodels such as Arabic.
[23]] reported 2% absolute WER improvement, and 0.6% absolyteovement was
reported in 17.
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2.3.5 Beyondn-gram Language Model

In this section, the efforts to overcome the other drawbdakgram LM, i.e. the drop of
long term history, are introduced. Two representative lagg models are reviewed, which
are cache based and maximum entropy based language models.

» Cache based language moddlhe cache based language model was introduced in
1990 [125. It is based on the hypothesis that the words used receatlg h higher
probability to appear soon than either their overall fregues or the predicted proba-
bilities from standareh-gram LM. To capture this feature, the words appearing in the
recent past are cached and used to estimate the probadbilityef cache component.
This work was originally carried out on the part-of-speeBIOE) based language
model. Each POS maintains a cache with room for 200 word<h ®acd is assigned
to its POS tag and then stored in the corresponding cache.n\ieee are more
than 5 words classified to the same POS tag, the cache modgivated and used
to estimate the cached probability. The probability from tache is further interpo-
lated with standard-gram LM. The word probability consists of two parts: thetfirs
part is fromn-gram LM and the other part is from the cache model. A sigmifica
perplexity reduction was reported i6g5. In [111], the cached based trigram LM
(also known as dynamic model) was estimated based on reistotyh The dynamic
model is again interpolated with the static trigram worddaa&M. This dynamic
model resulted in a 23% reduction in perplexity, and up to 24#R reduction, after
collecting the first several hundreds of words for the doaume

* Maximum entropy based language modeMaximum entropy based language model
[130, 187] belongs to the family of the exponential language mo@8].[The general
form of the maximum entropy language model can be written as,

K
P(wlh) = ﬁexp[kzl)\kfk(w, h)] (2.38)

where fy(w, h) is arbitrary feature defined by the wordand its historyh, andA is
the set of parameters to estimat&(h) is the normalisation term to ensure a valid
probability.

K
Z(h) = Zvexp[ Z Ak f(w, h)] (2.39)

we k=1
It is worth noting that the log linear interpolation discedsn Equation2.35is a
special case of the maximum entropy language model, wheréetiurefy(w,h) is
chosen as the log probability of each language compone(®iogh)).

A unique ME solution is guaranteed to exist for this proble@eneralised iterative
scaling b2 can be applied to get the global optimal.

Maximum entropy introduces the trigger pair for featureigies The trigger pair is
defined on two highly correlated sequenéeandB. A — B denotes a trigger pair,
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whereA is the trigger and is the triggered sequence. Wharoccurs in the history,
it triggersB by affecting its probability. There are a large number ofgilole trigger
pairs according to this definition. The trigger pair can beerfdd out by consider-
ing their co-occurrence frequency. One good measure cahdieaverage mutual
information [L3(. An elegant feature of maximum entropy language modelas th
when then-gram counts are used as trigger pairs, the unique ME saligithe max-
imum likelihood solution. It was found that the self triggeatirs A = B) are very
informative [L87). The long term information is captured by using triggenrpailhe
maximum entropy based language model was reported to gh8932 PPL reduc-
tion and 10-14% WER reduction id80 187. One drawback of this model is the
computational complexity. Despite the effort on the spgeditraining [79], it is
still time-consuming and hard to use a large amount of tngimiata. A regularised
class based maximum entropy based model, also known as iMoeels developed
in 2009 B4]. This model gives state-of-the-art performance on braatlnew tasks

[36].

Sparse non-negative matrix language modeVlore recently, a sparse non-negative
matrix language model using skip-grams was proposed by 89292 203. It is
similar to the maximum entropy based language model as tiedyath able to model
long term information by applying constraints on variouatéees. However, in the
non-negative matrix language model, the skip-grams feasiused. Additionally,
rather than using log linear function, the non-negativerix& used as follows,

y = Mf (2.40)

wheref defines a vector of skip-gram features, avidis a non-negative matrix in-
cluding the parameter to be optimised. The outpig normalised to obtain a valid
probability for thekth word using,

PKIF) = (2.41)
2j=1Y]

A significant improvement on perplexity comparedrtgram LM was obtained in

[203, resulting in a comparative performance with recurrentrabnetwork language.

However, this model has not been reported on speech retmyggét, although this

model is able to convert to the standard ARPA back-off bageduage modell[74].

In this chapter, only certain typical language models fromlast two decades are briefly

reviewed. For a more comprehensive and thorough reviedersare referred tdB8 78|.

2.3.6 Language Model Adaptation

The mismatch between training and test corpus is alwayssae.is'he mismatch might be
introduced from several aspects for language models., pesiple have different customs
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for choosing words and expression. Second, a range of speakiles exist between train-
ing and test data, e.g. written English and spoken Englislegpected to be very different.
Last but not the least, different domains have an underlgliffgrent vocabulary, even for

the same domain, and the choice of language may evolve with ti

Given the inherent variability, the language model can lBptetl to mitigate the effect
of mismatch. Similar to acoustic model adaptation, languagdel adaptation can be di-
vided into supervised and unsupervised adaptation. Wheeodirect transcription is given,
supervised adaptation is applied. However, in many appdics, such as speech recogni-
tion, the reference is not available. The adapted text cdroesthe recognised hypothesis.
In this way, unsupervised adaptation is carried out. Fopufar language model adaptation
methods are briefly introduced in this chapter. More dethisut language model adapta-
tion can be found inJ1]. Many of these techniques can be viewed as a natural extensi
improved language model introduced in Chap&&4and2.3.5

* Interpolation language model interpolation is widely used for languagdehadap-
tation. An individual language model is trained on corpusfrdifferent domains.
These language models are combined in test time with liméargolation as shown in
Equation2.30 The advantage of interpolation is that there are only a fetampeters
to be estimated. These parameters can be estimated robwethlyseveral hundreds
of words.

» Context dependent interpolationGlobal and fixed interpolation weightg are used
in the above section1B8 141] studied the context dependent interpolation for adap-
tation, which is written as,

P(wlh) = Z Ak(h)R(wih) (2.42)

The interpolation weighf(h) is related to its histonh. It is impractical to esti-
mate an interpolation weight for every possible historyoilder to robustly estimate
the interpolation weight, MAP weight adaptation and clasgext dependent weights
were investigated inl38. The former method uses context independent interpaiatio
weight as prior and estimates the parameters based omtyadata under Bayesian
framework. The latter reduces the number of parametersusgezing similar histo-
ries and sharing parameters.

» Cache based LM adaptation121] extended the idea of cache based language model
for the purpose of adaptation. A cache based language nsoelgimated based on the
previous recognised words and then interpolated with adracikd language model.
This cache based language model is able to capture the cohénge by using the
recent words, and good improvement was reported.
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» Topic based LM adaptation Topic based language model was proposed 6 &nd
its expression is as below,

P(wlh) = ¥ PWit)P(t]h) (2.43)

wheret is a latent topic variable which may be assigned to diffetepics,P(wi|t) is
word probability given the topic, arf(t|h) is topic posterior probability given history
h. This topic-related model is able to predict word prob#&pitiased on a long term
history. However, it fails to make good use of the short terstany, which is expected
to attribute more to the prediction of the next word. Henlke grobability in Equation
2.43is normally combined with the statiegram language model. The maximum
entropy model can be applied to make the estimated probabdtisfy constraints
from bothn-gram LM and topic based language model. Generalisediiterstaling
[52] is applied for optimisation. Various topic models can bedjsncluding latent
semantic analysis (LSALD], probabilistic latent semantic analysis (pLSABH and
latent Dirichlet allocation (LDA) 223.

» Maximum entropy based LM adaptation Maximum entropy based language model
described in Chapte2.3.5can be viewed as an adaptive language model inherently
[187]. The incorporation of triggers is able to capture the dyitarthange in the use
of words, and affects the predicted probability.

2.4 Search

Search aims to find the best recognition result accordinggieaBon1.1, by integrating
various knowledge sources including the acoustic modegjuage model and lexicon. A
decoder is implemented for search purpose and it is a craomlponent in the speech
recognition system. In academia, searching provides mbtfarward way to validate the
improvement of various techniques in speech recognitionindustry, searching is more
crucial as the latency of search affects the custom expmridirectly. Hence, there is a
strong desire to design a fast and robust decoder.

Two types of searching problems are discussed in this sedfithe recognition result
is obtained directly from the acoustic feature from scratble process is called first-pass
decoding. A decoder can find the best hypothesis by incotipgracoustic and language
models directly. However, first-pass decoding is compotetily expensive due to the huge
search space, especially when a large language model ie@pplattice rescoring can
mitigate the computational load by using multiple passese [ttices are first generated
with small models. The lattices define compact but sens#@agch space. Sophisticated
models are then applied to get more accurate results ondsttivhich limits the search
space and largely reduces computation.
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2.4.1 Decoding

Given the acoustic model and language model, the decodertaisearch for the best path
with the highest score as shown in Equatioh The acoustic model based on HMM gives
the probability of observations of a given phone (e.g. wipd) sequence. The lexicon
specifies the phone sequence of each word. Language modelatat the probability of a
word sequence. Moreover, one word may have multiple praations. For the same phone
sequence, the state sequences are different due to valabeissgmentations. By reviewing
the Equatiori.2,

A

W = argmayp(O|W)P(W)
w
= argy;na{gp<o,s4Q>gP<Q|w>P<w>) (2.44)

whereQ is the possible phone sequence given word sequahandSis the possible state
sequence given phone seque@Gé()V) gives the language model probabiliB(Q|V) is
determined by the pronunciation probability o@D, S Q) can be calculated from acoustic
model.

It is computationally heavy and impractical to enumeratgassible word sequences
considering the variable sentence length and the largebutany size. Approximations are
introduced to handle this issue. The first approximation substitute the summation with
maximisation as below,

W= arnga><mgxp(O, S|Q)mQa>P(Q|W)P(W)> (2.45)

Under this approximation, the most likely state sequenkeps and the corresponding word
sequence is chosen as the recognised output.

An illustration of the decoding procedure is given in Fig2ré The recognised sentence
can be broken down to smaller units, where each level of amte depicted by a specific
model or constraint. A sentence is formed by a sequence afsm®picted by the language
model, each word consists of several phones, where theraoriss derived from lexicon.
Each phone (e.g. triphone) has a few states, which corresponthe HMM model. The
state emission probability distribution can be modelled3yM or DNN.

For implementation, a compact graph can be compiled to purate the information
from acoustic model, lexicon and language model, which ieddhe decode network in
the literature. The decode network can be built offline keetest time. The aim of search
(i.e. decoding) is to find the best possible path from the deaeetwork. Width first (e.g.
Viterbi) and depth first (A star) search algorithms can belieagd6]. Viterbi decoding
is the most popular algorithm used for decoding. Given thele/lobservation sequence
O ={01,02,...,07}, the partial best path (i.e. state sequence) at timestates; is defined
as,

le(t):%m?ﬂxlp(ol,...,ot,(pl,...,(n:sj) (2.46)
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Fig. 2.7A decomposition of sentence in speech recognition. Thersentonsists of word
with language model; the word is a sequence of phone congttlddy pronunciation lexicon,
the phone is modelled by the state sequence in the HMM moaleh. $Eate can be modelled
using GMM or DNN.

The partial best path can be calculated recursively,

Wi(t) = miax{lPi (t—1)ajj tbj(or)

(2.47)
The best state in time— 1 can be obtained via,
@B-1= argimawi (t—1Daij} (2.48)
with an initialisation
Wi(0)=1 (2.49)
Wj(1) = agjbj(01) (2.50)

where state 0 is the entry state of HMM mod8|(T) gives the highest score for state
Sj, @—1 computes the state bf- 1 for the partial best path to tinieat states;. The best path
score in timel can be computed recursively using Equatof6and its state sequence can
be retrieved based on the recording freff) with Equation2.47.

Viterbi algorithm can be extended to continuous speechgm@tion, and an implemen-
tation of this algorithm is called token-passing algoritf#80 169. In this algorithm, each
state maps tg in Viterbi algorithm. And each token contains a history pattiuding the
previous word sequence. Each state can contain multipensowith different histories to
this state. The language model score is added between tistiva from the end of one
word to new word. Each jump consists of the state transitiobgbility and acoustic like-
lihood from the state output probability. The path with heghlikelihood is chosen as the
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recognised result. The word sequence is retrieved by a madkeearch using Equation
2.47.

The complexity of decoding increases dramatically withgtze of language model, es-
pecially the order oh-gram LM used. The search is time consuming. It is computatlyp
unaffordable to use full search by keeping all the possibtég Therefore, several approx-
imations are introduced to speed up searching. For eadh staly a fixed number of the
highest tokens are kept. The other tokens with lower likedih are discarded, although
these discarded paths are possible to have a high likelitvitbdmore observations. Beam
search is used for pruning to reduce computation. A beamhvadh be specified and to-
kens with lower likelihood than the beam width are discardddwever, if the number of
tokens is small or the beam width is too tight, the most likgdgh is probably pruned in
an early stage, which damages performance although thelidectme is reduced signifi-
cantly. Hence, the hyper parameters (beam width and nuniliekens per node) control
the tradeoff between decoding speed and accuracy.

In practical application, the log of probability is normalised for numerical stability.
Due to the numerical ranges of the acoustic model and largoaaglel probabilities are
quite different. The language model score is much smalkan #rcoustic model score. To
overcome this issue, a language model scale is added inglué language model probabil-
ity, such as 14.0. A similar scale is applied for pronunoiafprobability as well. Besides,
word penalty is introduced to control the number of words.démthese assumptions, the
final recognised output in real speech recognition systesrpsessed as,

W= arnga>< logp(O,SQ) + alogP(QW) + BlogP(W) + yL(W)> (2.51)

wherea is the pronunciation probability scalB,is the language model scale apds the
word penaltyL (W) is the length of the word sequence.

There are two types of decoders in the literature, which gnaihic and static decoders.
The difference exists that whether the language model ssaddled during decoding or not.
In a dynamic decoder, the decode network is compiled usingsiic model and lexicon,
the language model score is added during decoding on theflig Yor the static decoder,
the language model is compiled into decode network as wdillclwis often known as
Weighted Finite State Transducer (WFST) based decodeexXamnple, HTK 51] adopted
a dynamic decoder and Kaldi implemented a WFST based de¢bddr There is also
some work using the static decode network, while compilivglanguage model on the fly
to reduce memoryl[0Q.

2.4.2 Lattice Rescoring

During decoding, the hypothesis with the highest likelitia®generated as output. A side
product of decoding is lattice. Lattice is a compact grapft@ming possible paths during
recognition. Figureés.1gives an example of lattice with a reference of “well | thitlat is

true”. Besides the correct path (labelled as a red line) enldktice, there are a number of
alternative paths with high likelihood. Each node in thédatis associated with time, word,
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acoustic likelihood and language model score informationthe lattice shown in Figure
5.1, the word information is moved to the edge for simplicity. fiany applications, it is
computationally difficult or impractical to use first-passcdding for sophisticated acoustic
and language models. Small models are used for first-passlidgcto generate the lattice.
The lattice gives a large number of possible paths in a caingtl search space. The more
sophisticated and accurate models are applied in the eomstk search space defined by
the lattice and the improved recognition result can be abthi Lattice is also very useful
in many applications. For example, in MPE training, lattiseused to approximate all
possible paths as shown in Equatd2 The lattice can also be used for the estimation of
confidence score and key word spotti@37]. The confusion network decoding based on
lattice can further reduce word error rate by finding the pash with lower word error.

0.00 0.02 0.07 0.08 0.10 0.16  0.17 0.18 0.20 0.21 0.24 0.28 0.46 0.70 0.76 1.00 1.01 1.02 1.031.04 . 1.05 1.06 1.08 1.38 1.40
s —

Fig. 2.8An example of lattice with reference “well | think that is &u

2.4.3 Confusion Network Decoding

In Viterbi decoding, the hypothesis is obtained by optimggihe objective function in Equa-
tion 1.2 which is rewritten as,

W = argmaP(W|0) (2.52)
w

The hypothesiﬁV Is the most likely word sequence with minimum error rate atdéntence
level. However, word error rate is normally used as the stethdvaluation metric in speech
recognition. Hence, there exists a mismatch between thextibg function and evaluation
metric. The output of Viterbi decoding is sub-optimal fornde@rror rate.

In order to minimise the error at word level, Minimum BayeRgsk on word level
discussed before can be applied, and the word level postaabability P(w|O) is used.
The word posterior probability can be calculated via theveod-backward algorithm in the
lattice. The posterior probability of a link (i.e. an arc)lattice can be expressed as,

. ZQGQ| p(q,O) o ZQEQI p(q,O)
PUO=" 00 - S qeqP(g,0)

(2.53)
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whereQ is all paths through link andQ is all paths in the lattice. Each linkcontains
information including the start and end time, word label aedustic, pronunciation and
LM score.

Each word may occur in multiple links in an overlapped timgioa in the lattice. Con-
fusion network 145 63] provides a feasible way to combine these posterior prditiabi
First, the time dependent word posterior is computed as,

P(w|O,t) = Z P(110) (2.54)
ls<t<le,lw=w

wherels, le is the start and end time of linkandly, is the word label of link. In timet,
the posteriors of links corresponding to wavdare added. The word posteriBfw|O,t) is
clustered according to their time slots and phonetic siitigs. A linear graph can be built
by clustering the links. The phonetic similarity is also smiered to form the confusion sets.
Figure2.9 gives an example of the confusion network converted fromatiee shown in
Figure5.1 The confusion network has a parallel structure in each sioie The word with
highest posterior probability in each time slot is choseawdput. Therefore, the recognised
output in the confusion network shown in Fig@®is “um well | think that is true um”.

0.00 0.02 0.17 0.28 0.46 0.70 1.01 1.38 1.40

no 0.04

um 0.84
<s> 1 mm 0.01 i1l.0 think 1.0 that’s 1.0
INULL 0.15

Fig. 2.9An example of confusion network for sentence with the neferéwell | think that
is true”

even 0.01

Confusion network is very useful in practical applicatitirhelps to further reduce word
error by clustering links in lattice5f3]. It can be also used for keyword spottirizpg and
spoken language understandifg][

2.5 Evaluation

The evaluation of speech recognition is important as itvedlearious models to be com-
pared. The quality of speech recognition can be measurddwatd error rate (WER).
WER is calculated by comparing the reference (correct ses)eand hypothesis. Two
sentences can be aligned with dynamic programming forgsalignment to minimise the
Levenshtein distance. There are three types of errors,hwdmie insertion, deletion and
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subsection error. The calculation of WER can be expressed as

D+|
WER= SJFTJF «100% (2.55)

whereSis the number of substitution errdD, is the number of deletion errors ahds the
number of insertion errord\ is the number of words in the reference. A lower WER means
a better speech recognition result. Fig@r&0 shows an example of WER computation.
The reference and hypothesis word sequence are alignede a@he 7 words in total in
the reference sentence. For the aligned sentences, tleetdragertion error, 2 substitution
errors and 1 deletion error. Hence the WER i3 4 57.1%.

REF: | HAVE NEVER BEEN AROUND A CAMPFIRE
HYP: HAVE NEVER DREAM | AM A CAMPFIRE
EVAL: D S S

Fig. 2.10An example of WER computation. There are 1 deletion errarpatgution errors
and 1 insertion error when compared the reference “I HAVE MIRVBEEN AROUND A
CAMPFIRE” and hypothesis “HAVE NEVER DREAM | AM A CAMPFIRE".

2.6 Summary

This chapter reviews the fundamentals of speech recogritised on the Hidden Markov
Model. First, the extraction of acoustic features, esplgdd-CC, PLP and FBank, is dis-
cussed. The preprocessing techniques for acoustic feadueealso described. The Hidden
Markov Model (HMM) is then detailed, ranging from the modelsture to parameter es-
timation. Two popular types of acoustic model, Gaussiantunémodel (GMM) and deep
neural network (DNN), are introduced. The adaptation festhtwo models is also briefly
presented. Another important component in speech regogndlso the research topic in
this thesis, the language model, is introduced. In this @rathe discussion focuses on
the most populan-gram language model. There are two well-known issues ®rstan-
dardn-gram language model, which are data sparsity anchitpeam assumption. Various
smoothing techniques are introduced for robust paramesté@nation, and extensions of
standarch-gram LM are also presented to capture the long term infaonafThe adapta-
tion of n-gram language model is also discussed. When the acoustielrand language
model are available, the speech recognition process tarbe & search problem, i.e. how
to find the best hypothesis from the search space defined gcthestic model, language
model and pronunciation lexicon. Viterbi decoding is inlwoed as an efficient algorithm
to find the best path. Confusion network decoding is alscudised to minimise word error
rate. Finally, the evaluation of a speech recognition sgsgepresented.



Chapter 3

Neural Network Language Models

Language models are crucial components in many speech agdage processing appli-
cations including speech recognition. The aim of the lagguaodel is to estimate the
probability of any given sentence as below,

PW) = P(wo, W1, Wo, ..., Wy)

N
= .I_lP(Wi|Wi,1,...W1,W0) (3.1)

wherew is the sentence start symbol <s> amg is sentence end symbol </s>. Due to
their good performance and efficient implementation atari n-gram LMs have been
the dominant language modelling approach for several dscatiowever, there are two
well-known issues associated witkgram LMs [78]. The first is data sparsity. To address
this problem, sophisticated smoothing techniques have teeeloped for robust parameter
estimation as described in ChapB.2 The second issue lies in tm& order Markov
assumption. The predicted word probability is only dep&nde the preceding— 1 words,
and longer range context dependences are ignored. A ranvgerkhas been carried out to
overcome these two issues. Many of them are the varianteof¢inam LMs as have been
discussed in Chaptegs3.2and2.3.5

In this chapter, language models based on neural networkvassved. Two widely used
neural network language models (NNLMs), feedforward amdment neural network , are
presented. Feedforward NNLM#%4] solve the data sparsity issue by projecting each word
into a low-dimension and continuous space. RNNLKSJ extend the concept to model
long term history using a recurrent connection betweentiapd hidden layers. Both of
these NNLMs provide complementary information to standagtam LMs, and are often
combined withn-gram LMs. They have become increasingly popular in receats and
promising results have been reported in a range of tasksyateinss 196, 153 154, 150,
216,217, 61, 248,
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3.1 Model Structure

There are various neural network structures that can befoasé&hguage modelling. In this
section, three typical structures are reviewed, which aeglfbrward, recurrent and long
short term memory neural network respectively.

3.1.1 Feedforward Neural Network Language Model

Feedforward neural networks (also known as multilayer gq@grons) were first introduced
in the context of word-based language modelling by BengR0id3 [L4]. They were further
developed by Schwenk in terms of efficient training and ajapion to speech recognition
[196]. An n-gram feedforward NNLM can be constructed as shown in Figute. It is
still an n-gram language model and the probability of any given set@hcan be written
as,

N
PW) = l] P(Wi |Wi_1, ...W1,Wo)
N
~ l_l P(Wi |Wi_1,...Wj _nt1) (3.2)

The input consists of the previous— 1 wordswt%+1 and the target is the predicted
word w;. Each word is mapped to a single node in the input and outyet.lal-of-K
coding (also known as one-hot representation) is used imnghe layer, where only the
node corresponding to the word is set to 1, the other node8.aRather than using the
complete vocabulary, shortlists consisting of the mogjuent words are normally used for
input and output layers. The mapping between word and nottheimput and output layers
can be expressed as Equati®3. An out-of-vocabulary (OOV) input node can be used
to represent any input word not in the input shortlist. Samyl, an out-of-shortlist (OOS)
output node is added in the output layer to represent wortlsrtbe output shortlist. The
use of shortlist can model the probabilities of OOV and OO$%dw&an the input and output
layers. A valid probability can be obtained via normalisatover the complete vocabulary.
Besides, the shortlist in the output layer only containsmtiwst frequent words, instead of
the large complete vocabulary. The computation occurmnipé output layer can then be
reduced. The OOV and OOS nodes will be further discusseditatkis section.

In the feedforward NNLM shown in Figurg.1, each word is mapped to one node in
both input and output layers using the following indexing,

wepn

" (w) =1
k  we o

(pout (W)

(3.3)

1In this chapter we only consider neural networks with a sirigtiden layer. Deep neural network based
language models can be built in a similar way. [
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Fig. 3.1A 4-gram Feedforward neural network language model. Theiptes 3 words in

the input layer are projected into a low-dimension vectothwvthe shared projection layer.
Feedforward neural network is applied as classifier to eatarthe probability of current
word w

wherel andk are the index of wordv in the input and output layers. As stated before, the
words not in the input word list are mapped to the OOV node,waoidis not in the output
word list are mapped to the OOS node. The indexing functiongie OOV and OOS nodes
can be defined as,

" (00V) = V" -1
¢°"'(008 = V| -1 (3.4)

where|V'""| and|V°Y| are the size of input and output word lists respectively. [Asenodes
in the input and output layers are used to represent OOV arfsl W@ds.

The indexing in the input and output layer may be differerg thithe difference of input
vocabulary)'™ and output vocabulary®". 1-of-K coding is applied for each wosain the
input layer to obtained the 1-of-K coding vectd¥, whosejth element i,

w_ [ 1 j=¢"(w)
i _{O otherwise (3-2.1)

Thus only one element in the 1-of-K coding vectd? is 1 and all the others are 0.
The 1-of-K coding vectors of the— 1 previous words are fed to the linear projection layer.
The projection matriXE is shared over all input word vectors. Each waevdn the input
vocabularyy™™ can be represented using a low-dimension vetfar) by the projection
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layer, whch is also known as word embedding in literatd&e/[ 156.

T T
whereg is theith row vector of projection matri€ and @™ (w) is the index of wordw in
the input layer.

The previousr— 1 word embedding vectors are concatenated to form the vectanit-
ten as,
f<Wi—n+1)
-
f(wi_2)
f(Wifl)
x is fed to the hidden layek and a non-linear function is applied as

Vio1=0(ATx+by) (3.6)

whereb, is the bias vector in the hidden layer, and; is the output vector of the hidden
layer. Sigmoid function is normally chosen as the non-lirfeaction o(-). The sigmoid
function of thejth element can be written as,

1
o(vj) = 1+ex—p(—vj) (3.7)

The output of the hidden layer is multiplied with matkikin the output layer,
z=U"vi_1+bo (3.8)

whereU is the matrix and, is the bias vector in the output layer. A softmax function is
used at the output layer to get a positive and valid prolgtalistribution over words in the
output layer.

expZp(w;))

we pout SXPZ)

The probability of the OOS node in the output layer needs tharelled specially to get a
valid probability over the whole vocabulary. Usually, thelpability mass of OOS words is
re-distributed among all OOS wordk7q2 131].

One advantage of feedforward NNLMs is that they mitigatesdme extent, the data
sparsity problem. The projection layer matExn the input layer is shared among history
words. The number of model parameters increases lineatly avratio of the projection
layer size with the growth of the-gram order, instead of increasing exponentially as in
standarch-gram LM. The dimension of the word embedding vector and éididyer size
normally lies in the range between 100 and 500. A high ordargram feedforward NNLM
can be constructed; for an example, 7 gram was usetld].[ Additionally, the standard
n-gram LM treats each word as an atomic unit and any semantitemtions are ignored. In

P(wi|h) ~ P(wiwj 1, ;) =

(3.9)
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contrast, for neural language models, each word is repie$ers a vector in a continuous
space and the distance between words is measured in the spatte. Words with similar
context are expected to cluster together in vector spaces smshare parameters implicitly
during training; e.g. “Saturday” and “Sunday” should beselin the vector space.

Based on the previous description, the impacts of input andut layer size on com-
putation can be compared. In the input layer, the main coatjoutis calculating the word
embedding vectors for the previons- 1 words. Due to the use of 1-of-K coding, the com-
putation doesn't increase when a larger input shortlispggiad. However, in the output
layer, the computation increases significantly with thepattayer size due to the matrix
multiplication and softmax function shown in Equatiédh8and3.9. Hence, the input short-
list is often chosen to be the sameragram LM vocabulary and the output shortlist is
normally a subset of the input layer consisting of the masjdient words.

Feedforward NNLMs can be trained efficiently using back pigadion algorithm189,
which is detailed in Chapte3.2.2

3.1.2 Recurrent Neural Network Language Model

As previously stated, feedforward NNLMs mitigate the dagtarsity issue by projecting
words into a low-dimension, continuous, space with a shpregection matrix. However,
they still adopt am-gram assumption where only the previous 1 words are considered.
Longer context information is discarded. To deal with tisisuie, recurrent neural network
provides a feasible solutiod$3.

The structure of recurrent neural network based languagiel®@dRNNLMS) is illus-
trated in Figure8.2 There are several differences compared to feedforwardNANLONly
the previous word, instead of the previous 1 words, is presented at the input layer. How-
ever, a recurrent connection between hidden and inputdagealso added. In this way,
RNNLMs [153 are able to represent the complete, non-truncated, kistior the input
layer, a 1-of-K coding vector is again used for the input weyd;, similar to feedforward
NNLMs, the 1-of-K coding word vectar™i-2) can be obtained according to Equation 3.2.1.
The continuous vector;_» captures long term history from the start of a sequence @a th
recurrent connection. For an empty history, this is iniedl, for example, to be a vector of
0.1. The probability of any given sentenké in RNNLMs can be written as,

N
PW) = r!P(Wi |Wi_1,...W1, Wo)

K

~ |_|P<Wi|""i1"”62)

=
K

A I_lP(Wi |Wi—1,Vi_2)

=
K

R r! P(wi|Vi-1) (3.10)
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It can be seen that the complete history of waradtan be represented with two forms, one
is the previous wordv;_1 and a continuous history vecter », the other is the continuous
history vectow;_;.

The standard topology of a recurrent neural network langumagdel consists of three
layers. The full history vector, obtained by concatenafingf-K coding vector -1 and
recurrent history vectov;_», is fed into the input layer. The hidden layer compresses the
information from these two inputs and computes a new histepyesentation;_1 using a
sigmoid activation to achieve non-linearity, as,

Viia=0(ATrW-1) 1 BTy ,) (3.11)

The history vectow;_1 is then passed to the output layer to produce the normalised
RNNLM probabilities using a softmax activation as shown gugtion3.9, as well as re-
cursively fed back into the input layer as the “future” remag history to compute the LM
probability for the following word. The shared linear projen layer matrixe in feedfor-
ward NNLMs in Figure3.1is dropped in the RNNLM in this thesis. In the RNNLM, the
linear projection layer and the hidden layer can be integratto one matrix by simply mul-
tiplicating these two matrices as the input layer only covgtéhe previous word. Hence, in
this thesis, the projection layer for input layer is remo¥@dRNNLMs and it doesn’t af-
fect performancd[50. For the training of recurrent neural network language etgdback
propagation through time (BPTT) is normally applied foriopsation, which is described
in Chapter3.2

Input layer Output layer
(]
(]
Hidden layer .
U (]
(]
Vi1
- - : P(wi|vi_
+|sigmoid softmax( I’ ! l)
- °
(]
h (]
\
\ (]
\ Vi I
\ i—1, OF ‘O0S’ output node
\ /
~N e

Fig. 3.2Recurrent neural network language model. The previous werd is projected
into a low-dimension and continuous space via the projedager, the complete history is
modelled by a recurrent connection. The probability of wayccan be obtained from the
output of softmax in the recurrent neural network.

RNNLMs handle the data sparsity and short term history s$yeusing a continuous
word representation matrik and recurrent connection matix Promising performance
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has been reported on a range of tasks and applicatid® 154, 217, 248 149, 32, 38].
Theoretically, the recurrent neural network can store theles history information from
the start of sentence. However, the gradient vanishes lguiitking BPTT when simple
sigmoid units are used in the hidden lay&8][ which is discussed later in Chapt&r2.3
Several amenable solutions are proposed to mitigate thih, &s the use of Relu activation
function [124]. A popular solution is to adopt long short term memory (LS)Tivit. LSTM
unit is able to capture longer history than sigmoid, by idtroing several gates to control
the flow of information to overcome the gradient vanishirgyes Hence, it is used widely
for recurrent neural networks to further improve perforegn

3.1.3 Long Short Term Memory based RNNLM

The long short term memory (LSTM) network was proposed in71[@8]. The differences
between LSTM based RNNLM and standard RNNLM lie in that thd MSadopts a more
complicated hidden unit rather than simple sigmoid. Theeesaveral variants for LSTM
unit [84]. In this chapter, the most popular LSTM unit is describ@&] [

The central idea behind the LSTM is that the memory cell camtaia its state over
time. Non-linear gating functions are added to control tifermation flow into and out of
the LSTM unit. A typical structure of LSTM is shown in FiguBe3. Three gating functions
are introduced in the input, output and cell, which are caifgut gate, output gate and
forget gate respectively. The input of the cell unit is sdddg the input gate. The input
from the cell unit in the last step is scaled by the forget g@tee output of the cell unit, is
scaled by the output gate. Peephole connections betweeeltheit and the gates can be
introduced into LSTM inT5] to learn the precise timing.

Vi

Xi
output ga |
(o} p }%‘V Vi
. -1 Legend

peepholes .

I connection with time-lag

multiplication

gate activation function (sigmoid

q input gate

/

Xi Vi-1

o
() input activation function (tanh)

output activation function (tanh)

Fig. 3.3Long short-term memory unit. The gating functions, inpagét and output gates,
are introduced into the model to control the signal flow.
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Normally, sigmoid functioro is used as the non-linear function for various gates. tanh
function ¢ is chosen as non-linear function for the input and outpuhefunit block. The
signal flow in the LSTM block is defined as

gi = ¢(WyXi + Ryvi_1+by) block input
0i = 0(WgXi + RgVi—1 +tg©® Ci_1 + bg input gate
fi=o(WsX +RsVi—1+t; ©Ci_1+Dbs forget gate
CG=0 00 +fioc 1 cell state (3.12)
0 = 0(WoX; + RoVi—1 +to® Ci + bo) out put gate
Vi=006¢(c) block out put

where® denotes element-wise multiplication, aigts andt, are the vectors for peephole
connection to input, forget and output gates. The input ef tBTM network isx; and
Vi_1, which is the input from previous layer and previous timé.slthe output of LSTM
networkv; will be used as input for the following prediction. FiguBelgives an illustration
of the LSTM based language model with a single LSTM layer. {fai@ing of LSTM based
RNNLMs is the same as RNNLMs using back propagation througke.t However, the
number of parameters in LSTM based RNNLMs is much larger sivaple RNNLMs with
sigmoid. LSTM has been reported to produce better perfocmdman a simple sigmoid
unit in a range of tasks and applications including languagdels P20, 191, 221].

Input layer Output layer
d [ ]
o Projection layer o
° °
E Xi-1 vier .
Wi_ . - P(W| ‘Vi—l)
=L linear LST™M - | softmax
Vi-2 °
¢ [ ]
° [ ]
: g
0 -
T .
‘OOV’ input node ‘O0S’ output node

Fig. 3.4LSTM based language model with one LSTM layer.

A similar machenism known as gated recurrent unit (GRA8] fvas also proposed re-
cently using two gates (update gate and reset gate) to ¢dnérsignal flow to avoid gra-

dient vanishing. GRU was reported to give similar perforoeas LSTM on various tasks
[48, 105



3.2 Training of Neural Network based Language Model 43

It is worth pointing out that we didn't investigate LSTM andRQG activation based
RNNLMs, we only looked into sigmoid activation based RNNLM#owever, the methods
studied in the following sections (e.g. efficient trainingdaevaluation, lattice rescoring,
adaptation and interpolation) can be easily extended apliedpo LSTM and GRU activa-
tion based RNNLMs.

3.2 Training of Neural Network based Language Model

In this section, the training of neural network based lagguanodel is described. Cross
entropy is the standard objective function for the trainifigneural networks. Alternative
objective functions will be discussed in ChapfeBack propagation and back propagation
through time are adopted to optimise feedforward and reatimeural networks respec-
tively.

3.2.1 Cross Entropy

Cross entropy is a standard criterion used widely for tregmeural network language mod-
els. The cross entropy of the probability distributionsirceference and neural network is
minimised. Given one predicted word and the histioryhe cross entropy criterion can be
written as,

IE@)=— 5 R(wjlh)logP(w;|h) (3.13)

wjepout

whereV°!" is the vocabulary in the output layer afdis the set of model parameters (i.e.
weight matrices and bias vectors) in the neural network togtenised. P (wj|h) is the
word probability in the reference for supervised training anly the probability of a single
word is 1 and all other words are 0. Hence the cross entropgdbalsjective function over
the whole training corpus can be written as,

JE(9) = —%_ilogP(wﬂhi) (3.14)

whereN is the number of training words. The optimisation of EquaBol4is equivalent
to minimising the negative log-likelihood of NNLM probaitiés over the training data.

3.2.2 Back Propagation

There are several approaches to minimise the cross entagggmbjective function defined
in Equation3.14 for example, stochastic gradient descent (SGD) and He§sa optimi-
sation [L44. In this thesis, only the SGD is described and used. Bacgggation is widely
used as efficient SGD implementation in feedforward neustdvark.

Consider a feedforward neural network witlidden layers, where the input and output
of theIth layer (after sigmoid function) are') andv(!); The weight matrix in layet is
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denoted a®V(") and the bias vector is!"). The forward process can be written as,

xO = wi-D"y(-1) L p(-1)
vih = g (x() (3.15)

again, whereg is the sigmoid function as,

1
o(vj) = 1+ex—p(—vj) (3.16)
The output okth node in the output layer is,
(L)
exp(xk )
Yk = [you] (L) (317)
e exp(xj )

where| Vo' is the size of output layer.

Given the objective functiod“E(8), the error signal in théth layerg() during back

propagation is written as,
dJE(0
o) — (M() ) (3.18)

In the output layer, the error signal in tkth nodegl((L) is,

— 3(ke,K) — i (3.19)

whered is the Dirac delta function ank} is the reference label. The errorlith layer can
be derived using the following form,

(1-1) 0JCE 0J°E(8) g 5V§|_1)
Z p T 0D (3.20)
gt dv 0X;
It can be written in the vector form as,
g1y = w0 g0 o g’ (x(1-D) (3.21)

where® denotes the element-wise multiplication. The gradient eigit wj(ll() connecting
the jth node inl — 1th layer andkth node inlth layer can be expressed as,

[
0IE(8) _ 03F(B) 0% gyt (3.22)
| [ [ j '
dwj(k) dxl(() dwj(k)
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It can be again written with vetor and matrix form as,

9I°(8) _ 0-nq0"
ow (")

Equation3.21and3.23can be used to calculate the error signal and gradient wéignt
layerL — 1, layerL — 2, to layer 1 recursively with a backward direction, so thgoathm
is called back propagation in the literatudef.

The above derivation on back propagation algorithm can Ipdeapin all feedforward
neural networks. Neural network language models are a apigie of neural network
where the input of the neural network consists of 1-of-K agdrector where only a single
node is 1 and all the others are 0. Hence, computation candoeed significantly in the
input layer. Only the weight vector associated with the inpard needs to be computed
and updated.

(3.23)

3.2.3 Back Propagation Through Time

Training of neural networks with recurrent connection (estandard RNNLM and LSTM
based RNNLM), requires an extension to the standard bagkagatiion, back propagation
through time 190. In addition to the error from the upper layer in standardkoaropaga-
tion, the error is also propagated through the recurremection. The recurrent connection
can be unfolded in time as shown in Fig®. The network can also be viewed as a deep
network in time, with shared weight matricAsandB.

However, it is computationally expensive to unfold the RNiNthie begin of sentence
for every prediction. Assuming the computational compieri the back propagation and
update ofA andB is C, for a sentence witN words, the whole computation happening on
the hidden layer for BPTT is

N(N+1)

(1+2+..+N)xC=——

C (3.24)
In order to reduce computation, a truncated version of BPZ36[238 153 was adopted
in many works. Instead of tracing back to the start of sergeoily a fixed and finite step
is back propagated, e.g. 5. The computation complexity fiolating the hidden layer turns
out to beN x T x C. The computation can be reduced significantly compared t@atmn
3.24when the length sentence is long enouyh>(> T).

Vo is the initial history vector at the sentence start as dseddefore. During the
computation of gradient, the error signal is back propabate the flow of grey arrows
shown in Figure8.5. The gradients are average over time due to the shared weaghtes
A andB. This sharing effectively limits the number of model paraens.

In RNNLMs with sigmoid activation function as discussed inapter3.1.2 the error is
back propagated using Equati8r21, which can be rewritten as below,

T

gD —w g o g (x0-1) (3.25)
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Fig. 3.5Back propagation through time for Recurrent NNLM. The RNNiavi be unfolded
through time and the projection layer A and recurrent layea® shared in different time
steps.

o is sigmoid function and its derivation to inpxf ~1 can be written as,
o' (xI=D) =xI=V o (1—x(-Dy) (3.26)

The output of sigmoid function is positive and smaller thaactording to the definition in
Equation3.7. Hence, the error signal is decayed exponentially and ¢tofeafter several
back propagations. The gradient is calculated accordifgt@tion3.23and also close to
0 [13]. To address this issue, LSTM network introduces a gatimgtion, which helps to
avoid the gradient decay existing in standard RNNLMs. BPaiT loe applied in the training
of LSTM based RNNLM as well in a similar way.

3.3 Application of RNNLMs for Speech Recognition

In many speech recognition systems, RNNLMs are normalipechon a small amount of
in-domain data (e.g. acoustic model transcription) witimak hidden layer size (e.g. 200)
and output layer (e.g. 20K). The standardram LMs are first used in the decoding and
lattices are generated. Then, the N-best lists are extrdaien the lattices and rescored
by combining the RNNLMs and-gram LMs. Linear interpolation is the most popular ap-
proach to combine RNNLMs angdtgram LMs. Despite the success achieved for RNNLMs
in speech recognitior2[L7, 151, 235 123 38|, there are still several issues to be addressed
and aspects to be explored.
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The training of RNNLMs can be computationally heavy, esaécivhen a large vocab-
ulary in the output layer is applied. In order to reduce thenpotational cost, in previous
work, a shortlist 196, 62] on the output layer limited to the most frequent words wasdus
Class based output layetq4, 164 was also proposed for neural network language models.
However, it is difficult to parallel the training of RNNLMs drslow to train large RNNLM
model on the corpus with a large amount of words. The effidieming and inference of
RNNLMs will be discussed in Chaptdr

As mentioned above, N-best rescoring ,instead of lattiseaieng, is normally used for
RNNLMs in speech recognition. The N-best lists only contasmall subset of hypotheses
in the lattice and largely limit the search space for RNNLMisis of practical value for
RNNLMs to support lattice rescoring and be able to genesdtets, Lattices are useful for
many downstream applications, such as consensus decauirigegword spotting. Lattice
rescoring methods using RNNLMs will be described in Chapter

In most speech recognition systems, RNNLMs are appliedouvitadaptation. Similar
to the acoustic model adaptation, the mismatch also exisésguage model. As described
in Chapter2.3.6 there are many works have been done in standaychm LMs [L1]. It is
also important to investigate the adaptation of RNNLMs feeexh recognition, which is
discussed in Chapté:

In state-of-the-art ASR systems, RNNLMs are often lineartgrpolated withn-gram
LMs to obtain both a good context coverage and strong gesatiain [L53 196 172 131].
The interpolated LM probability is given by,

P(wh) = APRyg(wh)+(1—A)Pun(wih) (3.27)

whereA is the interpolation weight afi-gram LM, andA can be optimised via EM algo-
rithm on a held-out set as discussed in Chapt8r3 In the above interpolation, the proba-
bility mass of OOS words assigned by the RNNLM component-dis&ibuted with equal
probabilities among all OOS words to guarantee a valid driiba A better but more com-
plicated way is to use unigram or higher oragiegram LM probability for rescalingd72].
The interpolation between RNNLMs amegram LMs is studied in Chapté&t

3.4 Summary

Neural network based language models (NNLMs) have beensBed in this chapter. Three
types of neural networks used to construct language modéheiliterature are introduced,
including feedforward, recurrent and long short term mentb&TM) recurrent neural net-
work language models. Standameram LMs have issues with data sparsity angram
history. Feedforward NNLMs mitigate the data sparsity ésby representing each word
with a low-dimension and continuous vector. Recurrent NNLavle able to model the long
term history via the recurrent connection. LSTM based RNNL&e more capable of
modelling longer history by introducing gating functiomsdontrol information flow. The
training of NNLMs are detailed, such as back propagatioorittlyn for feedforward neu-
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ral networks and back propagation through time for recumenral networks. Finally, the
application of NNLMs in speech recognition is also discdssethis chapter.



Chapter 4

Efficient Training and Inference of
RNNLMs

One practical issue associated with RNNLMs is the comparaticost incurred in model
training and inference. The training time increases lityeaith the amount of training
data. Additionally as the model size grows, especially whearge output vocabulary
is chosen, the training and decoding time increase. Thigdlithe potential applications
of RNNLMs especially in the scenario where there are largantjties of data available.
Hence, it is of great practical value to develop techniquesdpid RNNLM training and
efficient inference. Unlike most previous work, where RNN&Mere trained on CPUs
with a factorised output layer, in this chapter we explome ¢fficient RNNLM training on
GPU with full output layer. In order to facilitate bunéhmode during RNNLM training,
a novel data structure, sentence splice, is proposed toms@iredundant computation. In
addition to the conventional cross entropy based trairtimg,jmproved training criteria are
investigated for fast RNNLM training and inferenct.

This chapter is organised as follows. In Chapterrecurrent neural network LMs are
reviewed and two RNNLM architectures (i.e. full output a@ss output layer RNNLMSs)
are presented. In addition to the conventional cross eptiogerion, variance regularisation
and noise contrastive estimation are introduced for tngiwf RNNLMs in Chapted.2 In
Chapterd.3, the computational complexities among different modelctires and training
criteria are discussed. In order to apply bunch (i.e. micipgbased training for RNNLMs,
a novel spliced sentence bunch mode parallelisation dfgorior RNNLM training is pro-
posed and its GPU based implementation described in ChdpterPipelined RNNLM
training is discussed in Chaptér5to further speed up training by using multiple GPUs. In
Chapterd.6the performance of the proposed F-RNNLMs training and eificy improving
techniques are evaluated on a large vocabulary convemshtielephone speech transcrip-
tion system and Google’s one billion word benchmark taskaly, conclusions are drawn
in Chapte4.7.

lalso known as minibatch in the literature
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4.1 Recurrent Neural Network LMs Structures

There are two types of structure used for RNNLMs in the lien@[153 154. The dif-
ference lies in the output layer. The two types are calleldouput and class output layer
based RNNLMs. Class output layer based RNNLNIS4 were originally introduced to
reduce computational load at both training and test timediygua factorised output layer.
Hence, it is very popular and used widely in previous wdrk4 257, 26]. Conventionally
a direct implementation of RNNLM yields a full output layeNRILM.

Based on the discussion in Chap8rthe computation of probability over a sentence
given RNNLMs can be written as,

N
PW) = 'HP(WﬂWi,l, cery W1, Wo)

N
~ _l_lP(Wi‘Wi_l,Vi_z) (4.2)

whereN is the number of words, amng_» is the history vector representing previous
words{Wo, Wy, ..., W;_2}.

4.1.1 Full output layer based RNNLMs (F-RNNLMSs)

Input layer  Hidden layer  Output layer

Wi—1

~ softmax
[ ]
(M sigmoid |®
[ ) [ ]
@ °
'4 [ )
OOV input node =i Prn (Wi[Wi—1,vi—2)
[ ]
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vi—2 AN
/ \ [ J
| ! \@
\ . I N
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\ . 0OS output node
N e
~ -~
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Fig. 4.1An example RNNLM with an full output layer, An out-of-vodabu(OOV) node

is added in the input layer and out-of-shortlist (OOS) nodesdded in the output layer to
model unseen words.
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The direct application of RNNs to language modelling issthated in Figurel.1 The
topology of the recurrent neural network used to compute kdbabilitiesPryn (Wi |Wi—1,Vi—2)
consists of three layers. The history vectomgf obtained by concatenativg 1 andv;_»,
is fed into the input layer. The hidden layer compressesnf@rmation of these two in-
puts and computes a new representattan using sigmoid activation functioa to achieve
non-linearity. The sigmoid function is expressed as,

1

O'(X) = HTF(—X) (42)

In order to compute the word predicted probabifan(wi|wi—1,Vi_2), softmax function
is used in the output layer for normalisation, which is giesn

exp(Yw)
|.VOUt‘

Z,:l exmij)

P(Wi|Wi_1,Vi_2) = (4.3)

whereyy, is the output fow; and|V°"| is the output layer size.

The output layer of RNNLMs is normally quite large, which sas heavy computation
during the probability estimation. To reduce the compaotadl cost, a shortlistl96 62]
based output layer vocabulary limited to the most frequamtizis used. A similar approach
may also be used at the input layer. To reduce the bias toarthsitwords during RNNLM
training and improve robustness, an additional node isddti¢he output layer to model
the probability mass of out-of-shortlist (OOS) wordg®, 131, 147.

4.1.2 Class Based RNNLMs (C-RNNLMs)

As stated above, training F-RNNLMs is computationally exgiee, and the major part
of cost is incurred in the output layer. Existing technighese focused on class based
RNNLMs (C-RNNLMs), an architecture with a class based faseal output layer 154,
164]. An example C-RNNLM is illustrated in Figur4.2 There are two matrices in the out-
put layer, which are class and word output layer respegtitch word in the output layer
vocabulary is attributed to a unique class and each clagsiosma group of words, which
is a subset of the output vocabulary. The weight matrix a<lautput layer is randomly
initialised in the same way as other weight matrices. Thdipted LM probability assigned
to a word is factorised into two individual terms,

Prnn(Wi[hi) = P(Wi|wi—1,Vi—2) = P(wici, Vi—1)P(Ci|Vi-1) (4.4)

whereh; andv;_; = {wi_1,V;_2} both represent the history of wovg.

The class probabilit?(ci|vi_1) is calculated first, anB(wi|ci,vi_1) then calculates the
word probabilityw; within classc;. The calculation of word probabilitl(w;|ci,vi_1) is
based on a small subset of words from the same class, andrtiieenof classes is normally
significantly smaller than the full output layer size. Classput layer based RNNLM pro-
vides significant speedup compared to full output layer botrain and decode stagek34).
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When further combined with parallelised model traini2@% and multi-stage classing at
the output layer103, training time speedup to 10 fold were reported comparqud¢gious
research for C-RNNLMs. A special case of C-RNNLM with a senglass is equivalent to
a traditional, full output layer based F-RNNLM.

Input layer  Hidden layer  Output layer

softmax
Wi—1
L P(Wi|Ci,vi—1)
:
oov iﬁput node X —PRnN (Wi ‘Wifla ‘472)
° softmax
Vi—2 WhN
/ \ P(Cilvi—1)
I \
1
‘\ vi-1 @ - Class node for
N y: OO0S word
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Fig. 4.2An example RNNLM with a class-based output layer. An owboébulary (OOV)
node is added in the input layer and out-of-shortlist (OO&(les is added in the output
layer to model unseen words.

The speedup of C-RNNLMs is based on the assumption that hithder sizeH is
significantly smaller than output layer si¥e= [V°"|. However, there are several issues
associated with these approaches. First, the use of clasd batput layer limits the poten-
tial speedup from bunémode training parallelisatior2Ll 7. Words from the same bunch
may be from different classes, which requires the call ded#nt submatrices in the word
output layer. This complicates the implementation, eslycivhen GPUs are used since
GPU is more suitable and better optimised for regular matp&ration. Second, the un-
derlying word to class assignment scheme at the output faggralso affect the resulting
C-RNNLM'’s performance154, 257, 43, 12§. Finally, most previous work focus on CPU
based speedup techniquds4, 217, 205 103. Hence, it is preferable to also exploit the
parallelisation power of GPUs.

It is worth noting that the output layer in the class based RMNshown in Figure4.2
can be viewed as a two-layer hierarchical output layer. Aevgenral hierarchical output
layer gives more speedup since the computation could beeiureduced, which gives a
computation complexity o©(log(V) « H « N) in the output layer. This is out of the scope
of this thesis and more details about the hierarchical dugyer can be found inlj64.

2|t is also sometimes referred as “minibatch” in literatud@, [199. For clarity, the term “bunch” is used
throughout this thesis.
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4.2 RNNLM Training Criteria

Cross entropy (CE) is the conventional criterion used folNRNI training as discussed in
Chapter3.2.1 The log likelihood is maximised during training. Howevier, RNNLMs, it
requires the calculation of the normalised probabilityrbiatthe train and test time, which
is computationally heavy. To improve efficiency, two alt#ive criteria will be discussed.
They are variance regularisatioddJg and noise contrastive estimation respectivdl§q.
Conventional F-RNNLMs are chosen for discussion in thigisac These criteria can also
be applied to C-RNNLMs.

4.2.1 Cross Entropy

Conventional RNNLM training153 was discussed in Chapt8r2.1, which aims to max-
imise the log-likelihood, or equivalently minimise the ssoentropy (CE) measure of the
training data. For a train corpus containiNgvords, the objective function is given by,

N
IE(8) = —%_zllnPRNmthi) (4.5)
where
iy — —olv) _ eolerv @6
Wilhi) = out = :
NN 5 |exp(eiji_1> Z(hi)

is the probability of wordy; given historyh;. 0; is the weight vector associated with word
w; at the output layeryv;_; is the hidden history vector computed, anif'| is the size
of output layer vocabulary. The gradient used in the conwaat CE based training for
RNNLMs is,

0JCE(9) 1 N 0<9iTVi_1> [yeu n 0(9}|—Vi_1>
50~ N2 (09 — j; PRNN(WJ|hI)706 (4.7)

The denominator terréd(h;) in Equation4.6 performs a normalisation over the full output
layer, which is given as,
‘Vout|

Z(h) = gl exp(Giji_1> (4.8)

This operation is computationally expensive when compyitie RNNLM probabilities
during both test time and CE based training when the gragitrmation of Equatiod.7is
calculated. As discussed in Chapfet, the efficient bunch mode GPU based parallelisation
with sentence splicing is used to improve the speed of cdiovead CE training.
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4.2.2 Variance Regularisation

In many applications, RNNLMs are required to be efficientilaated in test time. The
softmax calculation is computationally heavy for full outpayer RNNLMs given the large
output layer size, especially when CPUs are used. One mpaohitiat can be used to improve
the testing speed is introducing the variance of the nosa@din term into the conventional
cross entropy based objective function of Equadd® In previous research, variance reg-
ularisation (VR) (or called self-normalisation) has beepleed to training of feedforward
NNLMs and class based RNNLMS6Z, 208 209. By explicitly minimising the variance of
the softmax normalisation term during training, the notisalon term at the output layer
can be viewed as constant and ignored during test time, fgagisant improvement in
speed is achieved. The conventional CE objective functidgoation4.5could be written
as below in VR based training,

N

IR(6) = JCE<6)+% (InZ(h) —Tnz)? 4.9)

whereJ°E(8) andZ(h;) are the cross entropy based training criterion and the softmor-
malisation term associated with a histdryin Equation4.6 respectively, andnZ is the
mean of the log scale normalisation term computed as,

1N
InZ = Ni;(an(hi)) (4.10)

Although according to this equatiomZ is a function of model parameter in RNNLMs,
InZ is viewed as constant and fixed for each minibatch as an ajppation. y is a tunable
parameter to adjust the contribution of the variance regaton term. Directly maximising
the above objective function in Equatidm could explicitly minimise the variance of the
softmax normalisation term. The gradient used in the vagaegularisation based training
is given by,

03%(8) _ 03 (0) 'V"“" (6,-Tvi_1)

Wherem;ze) is the CE gradient given in Equati@n7, andPgyn(:|hi) is the conventional
RNNLM probabilities computed from Equati@n6. From Equatior.11, the computational
load required for the update of VR is the same as CE since theaiisation tern(h;) can
be cached during the softmax calculation. Hence, the caatipatduring training in VR is
the same as CE.

However, in test time, variance regularisation allows ddmsindependent, constant
softmax normalisation term to be used. The RNNLM probabsgiare thus approximated
as,

exp(6;i' vi_1) _ exp(8;'vi 1)

P (Wilhi) ~ - = expinZ) (4.12)
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where
Z=expnZ) (4.13)

is the constant normalisation term obtained during traniiThe computation onZ is
given in Equatiort.1Q This significantly reduces the computation at the outpgeras the
normalisation is no longer required. This means that thepeaational load is less sensitive
to the size of output layer vocabulapy®“t|, a maximumV°"| times speedup at the output
layer can be achieved in test time.

In this thesis, variance regularisation based trainingsesduto improve the inference
efficiency @3, 201 and can be integrated with the bunch mode based trainingdated
in Chapter4.4. In contrast to setting the mean of log normalisation tém# to zero as
previous research for C-RNNLM208 and feedforward NNLM in §1], it is found that
calculatinginZ separately for individual bunches gave improved convergespeed and
stability in F-RNNLM training. During test time, the appiliaxated normalisation terréd
is computed on the validation set, and remains fixed durimfppeance evaluation for all
experiments.

4.2.3 Noise Contrastive Estimation

The explicit computation of normalisation term requiredfa output layer significantly
impacts both the training and testing speed of RNNLMs. Vargaregularisation can signif-
icantly reduce the associated computation during test tihosvever, the explicit computa-
tion of this normalisation term is still required in traigimnd used to compute the variance
regularised gradient information in Equatidrill This train speed of variance regulari-
sation is the same as cross entropy based training andlisnsiied when a large output
layer is used. A more general solution to this problem is ®teshniques that remove the
need to compute such normalisation term in both trainingtasting. One such technique
investigated in this thesis is based on noise contrastiv@aton (NCE) @4, 88, 239, 201].

NCE provides an alternative solution to estimate normdlgtatistical models when the
exact computation of the normalisation term is either cotafanally impossible or highly
expensive to perform; for example, in feedforward and nesurNNLMs, when a large
output layer vocabulary is used. The central idea of NCE ipeidorm nonlinear logis-
tic regression classification to discriminate between theeoved data and some artificially
generated noise data. The variance of the normalisationigaminimised implicitly during
training due to the normalisation of noise distribution.nide, it allows normalised statis-
tical models, for example, NNLMs, to use “unnormalised” paibilities without explicitly
computing the normalisation term during both training aexting. In common with the use
of a class based output layer, the NCE algorithm presentalgpdtpose solution to improve
both the training and inference efficiency for RNNLMs.

In the NCE training of RNNLMs, for a given full history conteR, data samples are
generated from a mixture of two distributions: the NCE eatd RNNLM distribution
Pran(¢|h), and some known noise distributih(-|h), such as uniform distribution or uni-
gram distribution. Assuming the noise samplesiaimes more frequent than true RNNLM
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data samples, the distribution of data could be described as

PR )+ P, 414)

k-|— 1
Given historyh, The posterior probability of words is generated from the RNNLM is,

Prn (Wh)
P(w e Dlw, h) = 4.15
(& D) = W)+ KRy (wih) @19
The posterior probability of word/ is generated from a noise distribution is,
kP (wih)
P(w e Njw, h) = 4.16
(N = ST KRy (@19

wherew € D andw € N indicate the wordw is generated by data and noise distribution
respectively. In NCE training, for each train sampeand its historyh;, k noise samples
Wi j(j = 1,2,...k) are randomly sampled from a specified noise distributiog. (gnigram
distribution). The objective function is to minimise theyloegative posterior probabilities
of all samples, which is given as,

1 N k . .
JNCE(G) = —Ni;(ln P(w; € D|wi, hy) + jlen P(W j € N|Wi7j,hi)> (4.17)

The derivation of the gradient in the above equation coultbbad in AppendixA, which
is computed as,

0‘]'\:;(6) - % i( (wj € N|wi,hi)0|nPR;';(W”hi>
i PV} € DV, J,h.)‘9'nPRNa'\'EgW""|h‘)> (4.18)
The NCE trained RNNLM distribution is given by,
exp(67 v
Praun (Wi [hi) =~ ————+ (4.19)

Z

NCE training learns a constant, history context independermalisation tern¥, in con-
trast to the explicitly normalised RNNLM distribution thased during CE and variance
regularisation training. The normalisation terrd in NCE training is a constant and similar
to that defined in Equatiod.13for variance regularisation. This crucial feature not only
allows the resulting RNNLM to learn the desired sum-to-omiestraint of conventional CE

3A more general case of NCE training also allows the normiadisaerm to vary across different histories,
thus incurring the same cost as in conventional CE basednggj8g].
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estimated RNNLMs, but also to be efficiently computed duboth training and test time
without requiring explicit computation of the softmax naiisation term at the output layer.
Figure 4.3 gives an example of noise samples generated during NCEnigainlrhe

unigram distribution obtained from the training corpus s&d as noise distribution. For
a given sentence “eating at home”, sentence start <s> andnsenend </s> are added.
For each predicted word in the sentence, 10 “noisy” wordsrameomly sampled from
the unigram distribution. NCE training aims to discrimedhe reference sentence from
training data from noisy sentence generated from noiseilaliion (unigram distribution
here).

Train sentence <S> EATING AT HOME </S>
AND THIS SHOULD THAT'S
HOUSE AT THINK </s>
PARENTS | SHOULD'VE VERSUS
THERE ACTUALLY JUST SHE
ALL DOWN WITH TAMPA
Noise Samples HOUR ATTACK </s> THAT
| YEAH TOWERS SO
EVERYTHING BIG BUT HIGH
THAT'S </s> THERE STARTED
ouT | </s> AND

Fig. 4.3Noise samples generated for sentence "<s> eating at honwe" ¥/ a unigram
noise model for NCE training.

The NCE objective function in Equatidh17is optimised on the training set and cross
entropy is computed on the validation set with the normdlRBINLM probabilities shown
in Equatiord.6. The cross entropy in validation set is used to control tamlieg rate. There
are a number of parameters that need to be appropriatelysst, a noise distribution is
required to generate noise samples. As suggested in eadiearch 159, 230, a context
independent unigram LM distribution is used to draw the @ssmples. Second, the setting
of k controls the bias towards the characteristics of the naselaltion. It also balances
the trade-off between training efficiency and performartéa:. each target word, a total
of k noise samples are sampled independently from the noigédisdn. It is worth noting
that the noise sample could be the predicted word and the sarse sample may appear
more than once. Finally, NCE training also requires a constarmalisation ternZ as in
Equation4.19 In previous research on NCE training of log-bilinear LM$9 and feed-
forward NNLMs [230, the constant normalisation term was setred = 0. For RNNLMs,
an empirically adjusted setting 6fZ = 9, which is close to the mean of the log scale nor-
malisation term computed on the training data using a ramglortialised RNNLM 4. This
setting was found to give a good balance between converggassl and performance and
used in all experiments.

4Other values were also tried, e.g. 6, 7, 8, 10. They gaveaimglsults. But a value of 0 hurted perfor-
mance.
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The main advantages of RNNLMs training with NCE are sumnedriselow. First, the
computational load in the output layer is reduced dramiiaa it only needs to considerate
k noise samples and target word, instead of the whole outyet.laCompared with the
CE based training gradient given in Equati®, NCE gradient calculation in Equation

4.18is %ilt‘ times faster. Second, the train speed is less sensitivetpublayer size,
which allows RNNLMs with larger vocabulary to be trainedn&lly, the normalisation term
can be approximated as constant during NCE training. Thisawaid the re-computation
of the normalisation term for different histories, therefallows the normalised RNNLM
probabilities to calculated in test time with the same adficly as unnormalised probabilities.
In common with variance regularisation based training;%"| times speedup at the output
layer during test time can thus be achieved.

4.3 Computation Complexity Analysis

In previous sections, two different RNNLM structures, i.&ll and class output layer
RNNLMs, were presented, and three train criteria were desdrfor efficient training and
inference. In this section, a quantitive analysis is givemrlustrate the computation load
associated with model structure and train criteria.

Assuming that RNNLM contains a single hidden layer withhidden nodes, and the
output layer size i/ = |[V°"|, when cross entropy is used as objective function, in full
output layer based RNNLM, for the prediction of each wor&, tbmputational complexity
during forward pass is proportional to,

(H+1) xH+H xV, (4.20)

The non-linear computation in hidden layer and output lagerot counted in this com-
putation analysis as it is proportional kbor V. During update, when the truncated back
propagation through time (BPTT2386 is applied, the computational complexity is propor-
tional to,

(H+1) xHxT+HxV, (4.21)

wheret is BPTT step for each word. Normally, the output layer Sizés significantly
larger than hidden layer siz¢ (i.e. V >> H). Under this assumption , the computational
complexity over one epoch is propotional @H x V x N), which is linearly related to
hidden layer sizé1, output layer siz& and number of training words.

While for class based RNNLMs wit@ classes in the output layer, where each class has
\C’ words on average, the computational complexity during &dafor each training word
is proportional to,

(H+1)><H+(C+\6/)><H (4.22)
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Table 4.1 Computational complexities for each RNNLM fordvar the output layer during
training and testing using different model structures aaching criteria.

CE VR NCE
full | class full | class full | class
Train N (C+%)xH | Hxk|[HxKk
Test HxV | (C+g)xH || HxV ¥ 5 ¥

The computational complexity over one train epoch is thepertional toO((C+ \é) X
H). The minimum computation is obtained wh@requalsy/V, a computational reduction
of vV could be obtained compared to F-RNNLMs in Equatb®0when output vocabu-
lary is significantly larger than hidden layer side(i.e. V >> H). Similar computational
reductions on error backpropagation and update in the olaper are also achieved. This
structure gives a large speedup on both training and inferstages for RNNLMs154].

When variance regularisation is used for training criterithe computational load in
the train stage is the same for each sample. In the test tmaeamputational complexity
for each sample in the output layer becorkkswhich is the hidden layer size. For noise
contrastive estimation, the computational complexityirdyithe train stage in the output
layer is proportional to,

H x k (4.23)

wherek is the number of noise sample. The test computation is the senvariance reg-

ularisation, which idH. Table4.1 gives the computational complexities of RNNLM using
different output layer structures and training criteriadoe sample in the forward process.
The computational loads in the hidden layer are not showherntable since they are the
same regardless of the output layer structure and traimitegia.

4.4 Implementation

In order to facilitate parallelisation on GPU, a bunch moakeloe applied to neural networks.
This technique has previously been used for feedforward M8I[195 196. A fixed num-
ber (i.e. bunch) oh-grams could be collected from the training data. They aopagated
through the network and accumulated the gradients. Thetepdaveight parameters is
based on the gradient over the whole bunch. The fixed numbgrioing samples, or
bunch size, is normally chosen between 2 and 256 for feediohWNLMs [196. This
form of bunch based training facilitates the matrix opemtithus making it more suitable
for the implementation of GPU and giving significant speeduprain speed. However,
there is scarce work on applying bunch mode for the trainff@NLMs. In this thesis, a
novel sentence splice method is proposed to arrange thestlatéure, which is more suit-
able for bunch model based training. The strong parallelgg@GPU is also explored and
significant acceleration can be obtained.
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4.4.1 RNNLM training word by word

In terms of implementation, back propagation through tiBETT) [236 can operate on
sentence level or word level. In the former case, after gettia complete sentence, the
error computed for each word is back propagated to the begjrof the sentence. This is
the implementation in Tensorflont] and RWTH LM [218. An alternative way of imple-
mentating BPTT for RNNLMs is to update word by word. RNNLM tkib[ 155 provides
an example of this implementation. Instead of updatingthasecomplete sentences, in this
fashion, update is word by word. For each word, forward isiedrout first, then followed
by back propagating error through time and updating modwirpaters. These two types of
implementation are described in this section.

RNNLM training sentence by sentence The blue flow in Figured.4 illustrates the
forwarding process associated with a sentence, wihejs the initial recurrent vector.
The recurrent vectong; (i = 0,1, ...,8) are computed and stored during the process. These
recurrent vectors will be used in the following BPTT and magwlate. The updated model
parameters are then used for the next sentence.

Model update

<S> | wp Wo | W3 | Wy | W | Wg | Wy | </s>

h  hy h  hy h
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h  hgy hy h hg hy hs hg by

Fig. 4.4RNNLM training in one sentence. The blue line shows the pgoésentence by
sentence update and the recurrent vectors are computecktsatine model without update
until seeing the complete sentence; the green and read eéoa word by word update.
The green line shows the update of woluging approximate recurrent vectors generated
by old model parameters. The red line shows the correct waydod by word update, all
history recurrent vectors are re-computed after each updat

RNNLM training word by word : consider now updating model parameters in word
by word basis. Figurd.4illustrates this for wordwvs. After processing worelvs, the recur-
rent vectorh, is computed. In order to use the correct statistics for BPAd @pdate, the
previous recurrent vectors should be re-calculated frarsémtence start. These recurrent
vectors are indicated £$(i =0,1,2,3) and this process is shown as red flow in Figdir&

However, the re-computation of all previous recurrent@esctrom sentence start is com-
putationally expensive for the update of each word. Henc@pgroximation is introduced,
where the recurrent vectongi = 0,1, 2, 3) are obtained using the old model parametets
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to yield the approximate history recurrent vectBr@ =0,1,2,3). Although, they are not
the correct recurrent vectors due to the mismatch betlveandh;, this approximation was
empirically found not to hurt performanc&qQ. This process is illustrated as green flow in
Figure4.4.

In this thesis, we adopted RNNLM training word by word. Thigplementation facili-
tates parallelisation and allows more sentences to be ggeden parallel during training as

will be shown in the Sectiod.4.4

4.4.2 Conventional Bunch Mode RNNLM Training

It is easy to apply bunch mode training to feedforward NNLMc& then-grams can be
collected before training. However, it is not so straightfard for RNNLMs training to
use bunch mode training. As RNNLMs use a vector to representdmplete history, the
predicted probability of the current word depends on thelerhestory information. Hence,
each sentence has to be processed in order from the beginerglt Instead of operating
at then-gram level, a sentence level bunch is us2@i7] 217. This form of parallelisation
requires each sentence to be regarded as independent inRN&ilning by re-initialising
the recurrent hidden history vector at the start of everyesere.

- .
Wi Wit1
/|\ il
bunch l /'
Stream 0 1 <s> i think that was it </s> Sent 0
Stream 1 <s> | eating at home </s> NULL | NULL Sent 1
Stream M-1 <s> good </s> NULL NULL NULL | NULL Sent M-1

time

Fig. 4.5An example of bunched RNNLM training without sentenceisglidNULL tokens
are added in the end of sentences to get the same sententefl@ngll sentences

The basic idea of bunch mode training is shown in FiguBe Assuming the bunch size
is M and the whole corpus contaiBsentences, a total 8 sentences are aligned from left
to right. During parallelisation, a regular structuredubmatrix is formed. The element at
the i row andi™ column in the input matrix, associated with tiine 1 and an output word

Wi(l+)1’ represents a vect{wi(j),vi@l]T, wherewt(j) andvi(i)1 are the 1-ofk vector encoding of

thei™ word of thej™ sentence in the bunch, and the corresponding recurrentigtctor

at WOI‘dWi(j) respectively.
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Two issues arise when directly using the above sentencenbmocle training. First,
the variation of sentence length in the training data reguihe number of columns of the
input matrix to be the maximum sentence length in the trgirdarpus. To handle this
issue,NULL “words” are then appended to the end of other shorter seesendhe bunch,
as shown in Figurd.5. These redundaULL words are ignored during BPTT. As the
ratio between the maximum and average sentence length tfaiheng data increases, its
potential speed up from parallelisation is descreasedoredhe conventional sentence
bunch mode training also interacts with the use of classhBMNLMs [154, 217]. As
words aligned at the same position across different seeseran belong to different classes,
the associated output layer submatrices of irregular sikde used at the same time
instance. This can also result in inefficiency during tnagni

4.4.3 Bunch Mode RNNLM Training with Sentence Splicing

To improve efficiency, bunch mode based on spliced senteaga®posed in this thesis.
Instead of a single sentence, each stream in the bunch ndaite@a sequence of concate-
nated sentences, as illustrated in Figdr@ Sentences in the training corpus now can be
concatenated into streams that are more comparable irhlehgtividual sentence bound-
aries within each stream are marked in order to appropyiagset the recurrent history
vector as required. As the streams are more comparable gthletihe insertion oNULL
tokens at the stream end is minimised. This approach cansilgugicantly reduce the
synchronisation overhead and improve the efficiency inljgdisation.

The bunch mode training of C-RNNLMs requires the use of daffié submatrices as
words within the same bunch maybe from different classeg;iwtomplicates implemen-
tation. The non-class based, full output layer RNNLMs (FNRWIs) introduced in Chap-
ter 4.1.1are chosen to avoid this issue. F-RNNLMs use the entire ougyer both in
training and LM probability calculation, therefore allowg the speed improvements from
parallelisation techniques to be fully exploited.

It is also worth noting that, we can not apply sentence spicknique for the sentence
by sentence update. Otherwise, the sentence boundaryppga in the middle of spliced
sequence randomly as shown in Figdré. Another solution to improve parallelisation
efficiency for the sentence by sentence RNNLM training idtoase multiple sentence with
similar sentence length. However, we found this may affeetgerformance by clustering
sentences with similar length.

4.4.4 Analysis of the Efficiency of Parallelisation

As discussed in Sectioh4.1 the RNNLMs could be updated either a sentence by sentence,
or word by word basis. Both of these two implementations capdrallelised by aligning
multiple sentences. In this section, we will compare thecieificy of these two implemen-
tations. For simplicity, we assume thdtsentences are parallelised for computation and all
sentences have the same sentence ledgth shown in Figurd.7

In our implementation, model parameters are updated onaine ly word basis. There-
for N updates are required to procéés N words shown in Figurd.7. Each update collects
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bunch

) Sent 0 Sent M Sent S-M-2
Stream 0 <s> .. </s> <s> ... </s> _] s [__js>n.<b> NULLs
Sent1 Sent M+1 Sent S-M-1
Stream 1 <s> ... <[s> <s> .. </s> —| <s> ... </s>
Sent M-1 Sent 2M-1 Sent S-1
Stream M-1 <s> ... </s> <s> ... </s> |_ <s> .. </s> NULLs

time

Fig. 4.6An example of bunched RNNLM training with sentence spliddiggentences from
the training corpus are concatenated into M long streamsHbidlL tokens are only needed
at the end of the training corpus.

gradients oM words from the same column as shown in Equatidti

9 & W)

V=55 ZInP hi’;8) (4.24)

For the sentence by sentence update, only 1 update is rdcanck the gradients are
collected fromM sentences as shown in Equat®b25 However, the computation is only
parallelised oveM sentences as words in a sentence still need to be proceesetkft to
right.

0 0 &< () ().
V= anInP :—e;IZInP(Wj Ihj""; 8) (4.25)

When applying SGD for RNNLM training, a proper minibatchesizeeds to be set. A
small minibatch size may cause slow training and take lotiugrerto train; a large minibatch
may hurt convergence and degrade performance. For exah#8eyas empirically found
optimal minibatch size for a range of task¥] 239 112. During word by word based
update, we can s&l to be 128 and parallel 128 sentences for training. Duringesee by
sentence based updating, if we assume that the sententieMeisgLO and still usél = 128.

A total of 1280 words will be used for each update. This wiluk in a bad convergence.

A comparable value foM in the sentence by sentence update mode should be about 13. In
this case, only 13 sentences will be parallelised during RMNraining. Hence, we can

see that our implementation is more beneficial for parabeion.
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Sent0 AN <> W(ll) W(21) Wél) W§\|1) /s>

Sent 1 <s> W(lz) w(zz) W(32) w? | s

Sent M <s> W(lM) W(ZM) W(3M) W,(\IM) <[s>
time,

Fig. 4.7An example of M sentences with the same sentence length N.

4.4.5 Efficient Softmax Calculation and Parameter Tuning

To improve efficiency, graphics processing units (GPUs)ctvinave been previously em-
ployed to train deep neural network based acoustic modalgeach recognitior8[7, 199,
are used to train RNNLMs. CUBLAS from CUDA 5.0, the basic dnalgebra subprograms
(BLAS) library optimised for Nvidia GPUSs, is used for fast tmaoperation. As discussed
in Chapterd.1.2 when a large number of output layer nodes is used, the spftorapu-
tation during gradient calculation is very expensive. Tadia this problem, a fast GPU
implementation of the softmax function is used. Insteaduofising the sufficient statistics
sequentially over all output layer nodes, they are processene block. Shared memory is
also used to facilitate rapid address access time. An amragch block with a fixed length
(1024 used in this work) is allocated in the shared memorgtid?accumulates are stored
in the array elements. A binary tree structured summatiofopaed over the array reduces
the execution time fronM to logM, for example, from 1024 down to 10 parallelised GPU
cycles.

In order to obtain a fast and stable convergence during RNNaMming, the appropriate
setting and scheduling of the learning rate parameter aressary. For the F-RNNLMs
trained with bunch mode, the initial learning rate is engailly adjusted in proportion to
the underlying bunch size. When the bunch size is set to 1 arfdrm of parallelisation
is used, the initial learning rate is set to 0.1, in commorlie default setting used in the
RNNLM toolkit [155. The initial learning rate settings used for various othench sizes
are also given in Tablé.2 When the bunch size increases to 128, the initial learrategis
set to 0.0078 per sample.
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Table 4.2 The empirical value for initial learning rate pamgple with different bunch size
for RNNLM training.

| bunchsize | 1 8 32 64 128 256 |
| learning rate 0.1 0.0375 0.025 0.0156 0.0156 0.0078

4.5 Pipelined Training of RNNLMs

A practical way to further speedup training is using more niaes (CPUs or GPUSs) for
parallel computation. The parallel training of neural natkwcan be splitinto two categories:
model parallelism and data parallelis00). The difference lies in whether the model
or data is split across multiple machines or cores. Pipelingning is a type of model
parallelism. It was first proposed to speedup the trainingesfp neural network (DNN)
based acoustic models iB7]. Layers of the network are distributed across differentUsP
Operations on these layers such as the forward pass andaclopropagation are executed
on their own GPUs. It allows each GPU to proceed indepengland simultaneously. The
communication between different layers is performed adtah parameter update step. In
this thesis the idea of pipelined training is to be appliethmtraining of RNNLMs.

An example of RNNLM with one hidden layer and associated @lata& of pipelined
training is shown in Figurd.8 The hidden layer (denoted by Weight 0) and output layer
weight (denoted by Weight 1) matrices are kept in two GPUsdted by GPU 0 and GPU
1). For the first bunch in each epoch, the input is forwardethéohidden layer and the
output of hidden layer is copied from GPU 0 to GPU 1. For the Buadch, the input is
forwarded to hidden layer in GPU 0. Simultaneously, GPU Wéods the previous bunch
obtained from hidden layer to the output layer. This is feladl in sequence by error back
propagation, parameter update, and the communicationeletaPUs in the form of a
copying operation. For the following bunches, GPU 0 updttesnodel parameters using
the corresponding error signal and input with BPTT, befarevarding the new input data
for the next bunch. GPU 1 performs successively a forward,parsor back propagation
and parameter update again.

Output (GPU 1) Forward Backward Forward Backward Forward Backward
Layer bunch 0 bunch 0 bunch 1 bunch 1 bunch 2 bunch 2
Hidden 5 d E d E d Backward Forward Backward  Forward
Layer (GPU 0) bSR’cVﬁ’o bSr’]V(‘;’ﬁrl bu?{g‘(?& bunch 0 bunch 3 bunch 1 bunch 4
Time

Fig. 4.8An example of data flow in pipelined RNNLM training using 2 GPU
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4.6 EXxperiments

In this section, the performance of the proposed technitu@sprove RNNLM training
and inference efficiency are evaluated on two tasks: a HTd&dbdarge vocabulary speech
recognition system developed for English conversatiaiaphone speech (CTS) used in the
2004 DARPA EARS evaluatior6f]; and Google’s one billion word benchmark corpGg][
for language modelling.

4.6.1 CTS-English ASR Experiment

In this section, RNNLMs are evaluated on the CU-HTK LVCSRtegsfor conversational
telephone speech (CTS) used in the 2004 DARPA EARS evatualioe MPE 178 acous-
tic models were trained on approximately 2000 hours of Fisloaversational speech re-
leased by the LDC. A 59k recognition word list was used in détg. The system uses a
multi-pass recognition framework. The initial lattice geation used adapted gender depen-
dent cross-word triphone MPE acoustic models with HLDA ect¢d, conversational side
level normalised PLP features, and unsupervised ML&B $peaker adaptation. A pruned
interpolated 3-gram LM was used for lattice generation albwed by lattice rescoring
using an unpruned 4-gram LM. A more detailed descriptiorhefliaseline system can be
found in [65]. It is worth mentioning that the system was built in CUED fraluation
in about 10 years before, which cannot reflect the performaricstate-of-the-art acous-
tic model. For the performance of RNNLM on advanced acoustidels, the readers are
referred to ChapteB, where meeting data is used to construct state-of-the-@R 8ystem.
The 3 hourdev04data, which includes 72 Fisher conversations and contaiaserage 10.8
words per segment, was used as a test set. For results gegetitis chapter, matched pairs
sentence-segment word error (MAPSSWE) based statistirafisance test was performed
at a significance levet = 0.05 to ensure the improvement is statistically significarite T
baseline 4-gram LM was trained using a total of 545 milliorrégfrom two text sources:
the LDC Fisher acoustic transcriptionSisher, of 20 million words (weight 0.75), and
the University Washington conversational web d&d],| UWWeb, of 525 million words
(weight 0.25). Thd-isher data was used to train various RNNLMs. A 38k word input layer
vocabulary and 20k word output layer shortlist were usedNRMs were interpolated with
the baseline 4-gram LM using a fixed weight 0.5. This basdélMegave a WER of 16.7%
ondev04measured using lattice rescoring.

The baseline class based RNNLMs were trained on CPU with thdifrad RNNLM
toolkit [155 compiled with g++°. The number of BPTT steps was set as 5. A computer
with dual Intel Xeon E5-2670 2.6GHz processors with a totdlGphysical cores was used
for CPU-based training. The number of classes was fixed as P8 number of hidden
layer nodes was varied from 100 to 800. 12 epochs were refjtoreRNNLMSs training
to get convergence in this task. The 100-best hypotheseaceed from the baseline 4-

5A speedup of 1.7 times for CPU based training could be obtidigehe Intel MKL CUBLAS implementa-
tion with multi-threading (compiled with icc version 1420 over the baseline RNNLM toolkit for C-RNNLMs
with 512 hidden layer nodes and 200 classes.
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gram LM lattices were rescored for performance evaluafidre perplexity and error rates
of various RNNLMs are shown in Tab#3. The C-RNNLM with 512 hidden layer nodes
gave the lowest WER of 15.3% and serves as the baseline C-RNNAIl the experiments.

Table 4.3 Training speed, perplexity and WER results of CRithéd C-RNNLMs on the
CTS task with varying hidden nodes with cross entropy baseding.

hidden|| speed| train time dev04
nodes || (w/s) | (hours) | PPL| WER
4glm (baseline) 51.8| 16.72

100 7.6k 9.8 50.7| 16.13
200 2.1k 35.6 48.6 | 15.82
512 || 0.37k| 202.1 | 46.5| 15.32
800 || 0.11k| 679.9 | 45.8|15.40

Experiment on bunch mode training on GPU

The next experiment was to examine the efficiency of bunchar®gU based RNNLM
training with sentence splicing. The Nvidia GeForce GTXAN GPU was used to train
various F-RNNLMs. The spliced sentence bunch mode pasatedn algorithm and its
GPU implementation described in Chaptérdwere used. A range of different bunch size
settings from 8 to 256 were used. Consistent with the abo®RNGHLM baseline, all F-
RNNLMs have 512 hidden layer nodes and a comparable numbeeight parameters.
Their performance measured in terms of training speed)geaty and WER are shown in
the 2nd Section of Tabléd.4. To illustrate the performance differences among RNNLMs,
WERSs are shown with accuracy of 2 decimal places. The pedonoa of the baseline C-
RNNLM with 512 hidden nodes (shown in the 4th line in Tall&) is again shown in
the 1st line of Tablet.4. Setting the bunch size to 8, a 4 times speed up is achieved. Im
provements in perplexity and WER over the C-RNNLM baselireeadso obtained. Further
improvements in training speed can be consistently actlieyencreasing the bunch size
to 128 without performance degradation. The best perfocmamterms of training speed
and WER was obtained by using a bunch size of 128. This giv@stiaris speed up and a
0.1% absolute reduction in WER over the C-RNNLM baseline.

Examining the breakdown of the training time suggests thpuwiuand hidden layers
account for the majority of computation during BPTT (44.886189.4% respectively), due
to the heavy matrix multiplications required. The remagntomputation is shared by other
operations such as resetting F-RNNLM hidden vectors atghtesce start, and data transfer
between the CPU and GPU. This breakdown of training timeasigghat further speedup is
possible via pipelined training by allocating the compiotabf the hidden layer and output
layer into different GPUs, as shown latter in TaBléQ A further speed up is possible, for
example, by increasing the bunch size to 256. However, theergence becomes unstable
and leads to performance degradation.
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Table 4.4 Training speed, perplexity and WER results of GRlnéd F-RNNLMs ordev04
with varying bunch sizes and a fixed hidden layer size of 500.

model || bunch| #parameter| speed| time dev04
type size (w/s) | (hours)| PPL | WER
\ C-RNN H - \ 26.9M H O.37k\ 202.1 H 46.5\ 15.32\
8 1.4k | 53.4 | 45.7| 15.22
32 4.6k | 16.3 || 45.6| 15.25
F-RNN 64 26.8M 7.6k 9.8 45.7| 15.16
128 10.1k| 7.4 46.3| 15.22
256 12.9k| 5.7 46.5| 15.38
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Fig. 4.9F-RNNLM training speed with and without sentence splicinghe CTS task. The

red line is the train speed with spliced sentence bunchimgiand the green line is without

sentence bunch but only aligning multiple sentences.

An analysis of number dilULL tokens with and without sentence splicing was carried
out. With bunch size 128, by simply aligning the sentenc2s KULL tokens are appended
at the end of sentence in one epoch. In contrast, only BOKL tokens are necessary
at the end of each epoch when sentence splicing is adoptenhuld been seen that the
number ofNULL token can be reduced dramatically. As a major contributamtalr to the
above speed improvements,the importance of using sensgticang in bunch mode based
GPU implementation is shown in Figu#e9, where a contrast in speed with and without
sentence splicing is drawn. When using the conventionatibumodel training with no
sentence splicing as shown in Figuré, only limited speed improvements were obtained
by increasing the bunch size. This is due to the large numbersertedNULL tokens
and the resulting inefficiency, as discussed in Seddigh These results suggest that the
proposed sentence splicing technique is important for awvipg the efficiency of bunch
mode RNNLM training.

The spliced sentence bunch based parallelisation can alssdd for RNNLM perfor-
mance evaluation on GPU. Tabfe5 shows the speed information measured for N-best
rescoring using the baseline C-RNNLM and the F-RNNLM of &hWl. As expected, it
is very expensive to use F-RNNLM on CPU, which is discusseithénfollowing section.
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C-RNNLMs can improve the speed by 43 times. A further speeafup times over the
CPU C-RNNLM baseline was obtained using the bunch mode (barze 512) parallelised
F-RNNLM.

Table 4.5 Evaluation speed of C-RNNLMs (class based RNNLaM&) F-RNNLMs (full
output layer RNNLMs) for N-Best scoring atevO04 The F-RNNLM is trained with bunch
size 128.

model || device| bunch|| testspeed| WER
type size || (words/sec)
C-RNN 5.9k 15.32
F-RNN CPU | N/A 0.14k 15.22
1 1.1k
F-RNN || GPU 64 41.3k 15.22
512 56.3k

Experiment on variance regularisation

In this section, the performance of F-RNNLMs trained withi@ace regularisation are eval-
uated. These experimental results with various settingeeofegularisation constamptin
equation 4.9) are shown in Tabld.6. The word error rates wité(h) in the table are the
WER scores measured using the conventional normalised RINptbbabilities computed
using Equatiort.6. WERs withZ in the last column are obtained using the more efficiently
approximated RNNLM probabilities given in Equatidnl2 The first row of Table4.6
shows the results without variance regularisation byrsgitito 0, the same to the conven-
tional CE based training. As expected, the WER was increfisad15.22% (conventional
fully normalised F-RNNLMSs) to 16.24% without performingetimormalisation. This con-
firms that the normalisation term computation for the sokruanction is crucial for using
cross entropy (CE) trained RNNLMs in decoding.

When the variance regularisation term is applied in F-RNNttdning, there is only
a small difference in terms of WER between using the accuratmalisation tern¥Z(h)
or approximate normalisation terth As expected, when the setting pis the increased,
the variance of the log normalisation term is decreasing.ef\jhis set as 0.4, it gave a
WER of 15.28%, insignificant to the WER of the baseline CEedi F--RNNLM (1st line
in Table4.6 and also 5th line in Tabld.4). At the same time, significant improvements in
evaluation speed were also obtained. This is shown in PaBld he CPU based F-RNNLM
evaluation speed was increased by a factor of 56 over the &@fett F-RNNLM baseline
using variance regularisation, while retaining the saramimng speed.

Experiment on NCE training

The next experiment was using NCE for RNNLM training, wheceederations in both
training and decoding are expected since the computatithreioutput layer can be reduced
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Table 4.6 Perplexity and WER performance of F-RNNLMs trdiméth variance regulari-
sation ondev04 The mean and variance of log normalisation term were coetponer the

validation data. The two columns under WER (Z(h) and Z) denatrd error rates using
normalised or approximated RNNLM probabilities computsohg Equationg.6and4.12

log-norm WER
y mean| var PPL Z(h) | InZ
[0.0] 15.4 [ 1.67] 46.3] 15.22] 16.24]
0.1] 14.2|0.12| 46.5| 15.21| 15.34
0.2] 13.9|0.08| 46.6| 15.33| 15.35
0.3|| 14.0 | 0.06|| 46.5| 15.40| 15.30
0.4 14.2 | 0.05| 46.6| 15.29| 15.28
05| 14.4|0.04| 46.5| 15.40| 15.42

Table 4.7 Training and evaluation speed of F-RNNLMs trawéd variance regularisation
on the CTS task. C-RNNLMs were trained on CPU and F-RNNLMs &uUGBoth were

evaluated on CPU.

model || train train train time test
type crit || speed(w/s) (hours) | speed(w/s
\C-RNN H CE H 0.37k \ 202.1 \ 5.9k \

CE 10.1k 7.4 0.14k

F-RNN R 10.1k 7.4 7.9k
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significantly. As discussed in Chapte&¥2.3 an important attribute of NCE training is that
the variance of the RNNLM output layer normalisation tefroan be implicitly constrained
to during parameter estimation. This effect is illustrateBigure4.10on the log scale over
a total of 12 epochs on the validation data set. The variahtieeonormalisation term is
slightly increased from 0.035 to 0.06 in the first 4 epochsntbradually reduced to 0.043
at the last epoch.
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Fig. 4.10Variance of the output layer log normalisation tem¥ on the validation data on
CTS task at different epochs during NCE based RNNLM training

The WER and PPL results of NCE trained RNNLM are given in Tab& 12 epochs
were required for both the conventional CE and NCE basedit@ito converge. As dis-
cussed in Chaptet.2.3 the log normalisation terrinZ in Equation4.19was fixed as 9.
The perplexity scores in Tabke8 were obtained by explicitly computing the output layer
normalisation term. During N-best rescoring, normalis&NRM probabilities were used
for the CE trained RNNLM baseline, while unnormalised ptubes were used for the
NCE trained RNNLM. As is shown in Tabk.8 the NCE trained RNNLM gave slightly
worse performance than the CE trained baseline. At the san® the train speed was
doubled. This is expected as the time consumed on outputiEgpproximately half of the
total training time required for conventional CE training.

Similarly a large testing time speedup of 56 times over thet@ifed RNNLM on
CPUs was also obtained, as is shown in Tab& This improvement is comparable to the
speedup obtained using variance regularisation based RNi&ining previously shown
in Table4.7. As the computation of the normalisation term is no longeressary for NCE
trained RNNLMs, the computational cost incurred at the outayer can be significantly
reduced.

As expected, the NCE training speed is also largely invat@athe size of the output
layer, and thus improves the scalability of RNNLM trainingewn a very large output vocab-
ulary is used. This highly useful feature is clearly showmable4.9, where CE training
speed decreases rapidly when the output layer size ina.elsseontrast, the NCE training
speed remains constant against different output layerotdaey sizes.
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Table 4.8 Perplexity and WER performance, training anduatain speed of NCE trained
F-RNNLMs on the CTS task. C-RNNLMs trained on CPU and F-RNNL&h GPU. Both
evaluated on CPU.

model || train train train test dev04
type crit || speed(w/s) time(hr) | speed(w/s)| PPL | WER

[CRNN] CE | 037k | 2021 | 59K | 465]15.32]
CE || 10.1k 7.4 0.14k || 46.3] 15.22
F-RNN | VR | 10.1k 7.4 7.9k || 46.6| 15.28
NCE | 19.7k 3.8 7.9k || 46.8] 15.37

Table 4.9 The training speeds (w/s) using cross entropy @H)noise contrastive estima-
tion (NCE) with different output layer size for F-RNNLMs oriTS task

train || #output layer nodes

crit || 20k | 35k | 30k
CE || 10.1k| 9.1k | 8.0k
NCE 19.7k

Experiment on Dual GPU pipelined training

In this section, the performance of a dual GPU based piplir&NNLM training algo-
rithm is evaluated. In the previous experiments, a singlelidvGeForce GTX TITAN GPU
(designed for a workstation) was used. For the pipelinaditrg experiments, two slightly
slower NVidia Tesla K20m GPUs housed in the same server wsd. urablet.10shows

the training speed, perplexity and WER results of pipeliGgttraining for F-RNNLMs.
As is shown in the table, pipelined training gave a speedua fafctor of 1.6 times and
performance comparable to a single GPU based training.

Table 4.10 Training speed, perplexity and WER performam&eRNNLMs ondev04using
pipelined CE training on CTS task.

model train dev04
type GPU speed(w/s) PPL | WER
[CRNN] - [ 037k [46.5]15.32]

IXTITAN 10.1k 46.3| 15.22
F-RNN || 1xK20m 6.9k 46.3| 15.22
2xK20m 11.0k 46.3| 15.23

4.6.2 Google’s One Billion Word Experiment

A new benchmark corpus was released by Google for measueifigrpmance of statistical
language models3p]. Two categories of text normalisation are provided. Onfisma-
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chine translation (StatMT) and the other is for ASR provitbgdCantab Resear¢h The
latter was used to further evaluate the performance andlsitigl of NCE based RNNLM
training in this experiment for training RNNLMs on large pas. The former will be used
to build language model in the next experiment. A total of &@ilion words were used
in LM training. A test set of 160k words (obtained from theftfigplit from held-out data)
was used for perplexity evaluation. A modified KN smoothegt&n LM was trained using
the SRILM toolkit [213 with zero cut-offs and no pruning. In order to reduce the pata-
tional cost in training, an input layer vocabulary of 60k iiosquent words and a 20k word
output layer shortlist were used. RNNLMs with 1024 hiddegretanodes were either CE or
NCE trained on a GPU using a bunch size of 128. The other trgiconfigurations were
the same as the experiments presented in Chdek A total of 10 epochs were required
to reach convergence for both CE and NCE based training. @tegxity performance of
these two RNNLMs are shown in Tablell Consistent with the trend found in Talles,
the CE and NCE trained RNNLMs gave comparable perplexitynwheerpolated with the
5-gram LM. A large perplexity reduction of 21% relative otlee 5-gram LM was obtained.

Table 4.11 Perplexity performance of RNNLMs on Google’s bitleon (for ASR (provided
by Cantab Research) corpus) word corpus.

LM train train PPL

crit | speed(w/s | +5gIm
[ 5gm | - | - [[87] - |
CE 6.7k 104.4| 65.8
NCE 11.3k 107.3| 66.0

F-RNN

In order to further investigate the scalability of NCE bas&dNLM training, an addi-
tional set of experiments comparable to those presentealileZ.11were conducted using
a much larger, full output layer vocabulary of 793k words ssduin previous research [52].
It is worth mentioning that the corpus used in this experimegrior machine translation,
which is different to the corpus used for ASR provided by @hriResearch in previous ex-
periments. Due to the large size of such output layer voeafthe speed of standard cross
entropy training of a full output layer based RNNLM is as slagv200 words per second.
It is therefore computationally infeasible in practice tain such a baseline RNNLM. The
training speed and perplexity score of a NCE trained RNNLNhwi 793k vocabulary are
presented in Tabld.12 together with the baseline 5-gram LM’s perplexity perfarme.
A total of 1024 hidden nodes and a bunch size of 128 were ushd. stand alone NCE
trained RNNLM gave a perplexity score of 77.3. This was fertreduced to 52.6 after an
interpolation with the 5-gram LN Note that in order to ensure stable convergence during
NCE training, an additional gradient clipping step was applied. In combination with
drawing noise samples over a much larger output layer, ttdgianal operation led to only

6All sources are available in https://code.google.combpllion-word-language-modeling-benchmark/.
The machine translation normalised version of this datapmagiously used in32] for RNNLM training.

"The log file for perplexity computation is also available ittph//mi.eng.cam.ac.uk/projects/cued-
rnnim/ppl.h1024.log
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a moderate decrease in the training speed from 11.3k to Gos#swper second, when com-
pared with the NCE trained 20k vocabulary RNNLM in Ta#llé 1 The relative increase in
training time is much lower than that of the output layer \mdary size, by approximately
40 times.

Table 4.12 Perplexity performance of RNNLMs on Google’s bifieon word corpus using
793K vocabulary. The train is run on GPU and test is on CPU.

LM train train test PPL
crit | speed(w/s) speed(w/s \+59Im
[ Sgm | - | - [ - [J708] - |
| FFRNN||NCE| 6.5k | 371 | 77.3] 52.6 |

4.7 Conclusions

This chapter studies the efficient training and inferencRENLMs. A sentence splicing
based bunch mode training is proposed to facilitate thelb(iree minibatch) based training
on GPUs. Compared to the popular RNNLM toolkit trained on CRUspeedup of 27
times is obtained on a CTS task by training RNNLMs with bunadmon GPU. Pipelined
training using 2 GPUs is also investigated for the trainifigRBINLMs, which gives 1.6
times speedup. Besides the traditional cross entropymnegiregularisation (VR) and noise
contrastive estimation (NCE) are also introduced into thening of RNNLMs to further
improve the training and inference efficiency. RNNLMs tedrby either VR and NCE give
much faster inference speed than C-RNNLMs due to the userajraralised probability.
Furthermore, NCE based training doubles the train speed.eXperiment on Google one
billion corpus indicates that the training scales well oargé amount of data.



Chapter 5

Efficient Lattice Rescoring of RNNLMs

The standard back-off-gram language model (LM) is suitable for first-pass decg@ind
lattice rescoring due to its finite history character. Thedpetion of current word is only
related to the previous-1 words. During the search, histories from different paitus be
combined according to their valiokgram history, which reduces computation and mem-
ory demand significantly. However, for RNNLM, first-pass oeinig and lattice rescoring
become difficult for its long term character. There is noigttdiorward way to combine his-
tories directly since the prediction of current word is asated with the complete history.

In order to address this issue, a range of techniques havesbedied in recent years.
Among these earlier works, a sampling based approach wdsagenerate text data from
an RNNLM and a back-offi-gram LM is trained to approximate the RNNLN3g, 60. A
discrete quantisation of RNNLMs into a weighted finite staé@sducer (WFST) represen-
tation was proposed irLBZ. An iterative lattice rescoring approach was first progbaed
further investigated ing8]. However, these earlier schemes were unable to produestl-b
error rates comparable to the conventional N-best resgapproach9, 132 or generate
a compact lattice representation of the hypothesis spatéstBuitable for downstream ap-
plications such as confusion network (CN) decodi&g, [LO7] or keyword search. Several
latter works that were more successful in exploiting thedatinternal hypothesis ranking
produced by an earlier decoding pass. This allows an appairi partial expansion of
the underlying word graph to be performed during RNNLM resap[219 220. In this
chapter, the lattice rescoring of RNNLM is studied and twgoakhms for RNNLM lattice
rescore are proposed This work enables efficient lattice rescoring using RNNLNFsir-
thermore, compact lattices are generated after RNNLM resg@and these lattices can be
used by other applications such as confusion network degddiget further word error rate
improvement.

The chapter is organised as follow. Two widely used appresgaigram LM based
approximation and N-best rescoring, for incorporation BiNR.M into speech recognition,
are introduced in Chaptér.1 and5.2 The use oin-gram LM for history combination is
reviewed in Chapteb.3. Two proposed RNNLM lattice rescore methods are presented i

1This is a collaborative work with Dr Xunying Liu, who also soipervised this work. The code for lattice
expansion during RNNLM rescoring is mainly implemented hyXunying Liu. The ideas are proposed
during discussion.
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Chapter5.4, which aren-gram and history vector distance based clustering reispbct
Experiments examine the proposed methods in Ch&pseand the conclusion is given in
Chapters.6.

5.1 n-gram LM approximation of RNNLM

RNNLM is difficult to directly apply to lattice rescoring due its complete history char-
acter. One feasible approach is to build a language modglgmaimate the probability
distribution of RNNLM and this language model is suitablelfttice rescoring, such as
gram LM. The approximated language model can be optimisaddxymising the following
cross entropy objective function,

JF(@)= 3 Prun(wih)logP(wlh) (5.1)
(wh)eD

whereD is the training dataPrnn(w|h) is the RNNLM probability and®(w|h) is the prob-
ability of the approximated language model. This approxeddanguage model can be
any form of language model which is suitable for lattice ces. It is computationally
intractable to optimise the parameterffw|h) over all possible word and history, h).
Sampling technique is used as approximation and the obgeftinction shown in Equation
5.1can be written as,

IF@)= 5 logP(wlh) (5.2)

(whyeD

whereD is the set of sentences randomly sampled from RNN&Mn(w|h). Equation5.2
is the standard maximum likelihood (ML) objective functidn previous work 9], n-gram
LM is chosen as the form of the approximated language modetalits finite history and
easy incorporation for lattice rescoring.

In this method, RNNLM is used to randomly sample sentenceasthé beginning of
a sentence, the first input word is sentence start <s>, witkea #@nd initialised history
vector (e.g. all set to.@). A word is sampled according to the output layer distitout
Prnn(wih). The sampled word is used as input word for next samplings phocedure
can be applied repeatly until the sentence end symbol </sangpled. In this way, a large
quantity of sentences can be generated from a well-trainédLR1 [60, 5]. An n-gram
LM can be constructed on these sampled sentences whichnsiritexpolated with the
baselinen-gram LM. The resulting LM can be applied directly for firstgs decoding or
lattice rescoring as an approximation to the original RNNIBVevious research has shown
that this approximated language model provides moderateay@r the baselin@-gram
LM, but worse than the exact probability calculated using\RIN [ 60].
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5.2 N-best Rescoring of RNNLM

A nice feature of the approximation approach introducedrab® that am-gram language
model with finite history can be constructed. However, a dégtion of performance for
speech recognition is observed compared to using exacapildip from RNNLM. An alter-
native approach is to modify the lattice structure to malsaiitable for RNNLM rescoring.
Lattice is a direct acyclic graph (DAG) with compact repras¢ion of multiple hypotheses
as shown in Figur®.1 Each arc (i.e. word) in the lattice may have different hista A
parallel structure of the lattice can be constructed by Idivig all paths as shown in Figure
5.2 However, it is computationally intractable to list all pdde paths in the lattice. N-best
list only maintains the highest N paths from the lattice alhmigs the exact RNNLM proba-
bility Prnn to be used. N-best rescoring is normally applied in speeabgr@tion systems
with an additional pass. The language model probabilithesé N-best hypotheses are sub-
stituted by the interpolated probabilities of thggram LMs and RNNLMs. The hypotheses
are then reranked with the interpolated language modekgioty.

<s> there is a cat </s>
S =
here hat
mat

Fig. 5.1Example lattice for rescoring

is a cat </s>
{ @ @ ]
iS a h’a/

{ @

is a ma

{ @

is a cat

{ {

is a hat

@ @

is a ma

@ @

Fig. 5.2Example N-best list for rescoring

N-best rescoring provides a straightforward way to inceapRNNLM and promising
performance can be obtaineti5y, 123. However, only the top N-best sentences in the
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lattice are possible decoding output and other possiblethygses are ignored as the growth
of N introduces a linear increase of computational load. Asmammputationally efficient
way is to convert N-best into prefix for RNNLM rescoringlfl]. The N-best list in Figure
5.2can be converted to a prefix tree as shown in Figuéewhere the paths with the same
history can be merged. However, it is still impractical tkeanto account all paths in the
lattice given the vast amount of potential paths. Furtheend-best rescoring only updates
the information for the N-best list, instead of the wholdita. The output is 1-best hy-
pothesis and it cannot generate lattice after N-best regroFhe rich information of lattice
is lost. Lattice is of practical value for various applicats. Confusion network decoding
[149 applied on lattice can obtain further recognition perfanoe gain; the confidence
score estimated from lattice is useful for for keyword skarelence, RNNLM rescoring
based on lattice is very useful for real applications.

<s> there is a cat </s>
{ @ @

@ ]
ma
here is a cat
@
Nat
mat

Fig. 5.3Example prefix tree for rescoring

5.3 History Combination of n-gram LM

Before entering the discussion of RNNLM lattice rescoritigg history combination us-
ing n-gram LM based lattice rescoring is reviewed. In speechgeition, there is a large
amount of possible paths during searching. In order to kbepet candidates with a low
computation and memory cost, the paths with the sargeam LM history are merged as
early as possible. As an example, when 2-gram LM is used hofdllowing two paths
ending with wordgw;_1,w;), their likelihoods are written as,

L1 = p(O|wh 2 wi_g,wi)P(Wy 2 wi1)P(wijwh 2 wi_1) (5.3)
Lo = p(o Wy 2,Wio1,Wi)P(Wpy 2, Wi—1) P(Wi [Wpy 2, Wi_1)

The first item on the right of the above equation is acoustidehprobability, the remaining
two items are language model probabifityin a 2-gram LM, the language model probabil-

2language model scale and insertion penalty are ignored here
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ities of the current word; are the same.
P(wi|wh 2, wi_1) = P(Wi|\Wh 2,wi_1) (5.4)

It is worth noting that the two history word sequencdg(,wi_l) and (/\7'()*2,Wi_1) are not
required to have the same length. Moreover, for any wordsedriuture, they also share the
same language model probability. These two paths can beschéased on the discussion
of Viterbi decoding in Chapte2.4.1 The path with higher likelihood is kept and the other
path is removed. This process is illustrated in Fighire

Fig. 5.4An example of combining two paths ending with_uw;) when 2-gram LM is used.
Sa and $ are the history states (e.g. acoustic model and languageehi@lihood, valid
n-gram history) of these two paths.

5.4 Lattice Rescoring of RNNLM

As stated above, it is impractical to compute the exact RNNirlbability for every possi-
ble path in a lattice, as it requires significant computati@ifort and results in prefix tree
ultimately. Hence, some approximation is necessary to cessghe search space.

Motivated by the path combination ofgram LM discussed in Chapté&:3, compact
lattice is generated due to tmegram assumption. This thought can also be applied on
RNNLM to cluster similar histories so as to shrink the seagéce and reduce computation.
The condition of combination of two paths in RNNLM can be et as,

Prn(Wi [wh 1) ~2 Prn(wi W 1) (5.5)

Given two distinct historiesl, * andwl; 2, if their probability distributions on current word
w; could be viewed equivalently, these two paths can be cordl@esen approximation.
The methods proposed in this thesis are inspired by two RNIMEMimptions. First, the
history has a gradually diminishing effect on the predictedd probability in RNNLMs as
the distance to the current word increases. This allowsgbdnistories that are the same
to share predicted word distribution. More precisely, ibtfinite histories share the same
recent words, they are viewed as equivalent. It is thus plessd represent the infinite
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history of RNNLMs using a truncated history with fixed and ténllength, which is similar
to n-gram LM. The 3-gram approximation for the RNNLM history comation can be
shown as, _ _

PrN(Wi W3, Wi 2, Wi 1) =2 PRN(W[Wh 3, wi 2, Wi 1) (5.6)

The probabilities of RNNLMs can be viewed as the same if tleipus two words in the
history are the same. Second, recalling to Equadidi® in a more general case, RNNLM
probabilities can be represented by the previous wgrd and its history vectow;_»°,

Prn(Wi[Wg 1) = Pran(Wi[Wi_1,Vi—2) (5.7)

wherev;_» is the hidden history vector. Hence, it is also possible ieily use a hidden
history vector distance based measure to determine theagh@irRNNLM probabilities.
This method can be written as,

Prnn(Wi (W1, Vi—2) ~ Prnn(Wi [Wi—1,Vi_2)  when w_3=W_1,D(Vi_2,Vi_2) <y (5.8)

D(vi_2,Vi_») denotes some distance measure to evaluate the similatitesé two hidden
history vectors, which will be detailed below.

Motivated by these hypotheses, two efficient RNNLM lattiesaoring methods are
proposed and investigated. The first usesxgram based clustering of history contexts
[142 104 and the second method exploits the distance measure beteeerrent history
vectors L42].

5.4.1 n-gram based History Clustering

Thisn-gram based history clustering is motivated by the assumnpiiat the effect of distant
history gradually vanishes, and only the most recent woagts & large impact on predicting
the next word. Two histories sharing the commoa 1 previous words are viewed as
equivalent. It is thus possible to merge these two pathsargimgle path for the following
word predictions. Recalling the approximationregram LM shown as EquatioB.22 a
similar approximated RNNLM state for the complete hilefyl can be written as,
PraNWy D) =W h L =<Wig, . Wiy (5.9)
The history state of RNNLWRNN(Wb_l) during searching is decided by its previous 1
words. When two paths are considered to be merged, thearhistates are compared. If
their history states are equivalent, i.e. sharing the samequsn— 1 words, these two paths
are merged by keeping the path with higher likelihood andosgng the other path with
lower likelihood. This approximation reduces the compotand memory significantly.
As the truncated history length— 1 increases, the approximated RNNLM probabilities
are expected to be increasingly close to the true ones, wiitirea growth of computation.
Figure 5.5 illustrates the history combination using 2-gram appration. For the word

3The continuous history vectar_; can also be used to represent its complete history.
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“a”, it has two distinct history paths “<s> there is” and “<Bere is”. The most recent word
for both paths is “is”. Hence these two paths could be contbared the history state of
above path (“<s> these is”) is kept due to its higher liketiti.

ac=-10.0 ac=-9.0 ac=-14.0
Im=-3.0 Im=-2.3 Im=-1.5 rnn hist: <s> there is a
<s> .rnn hist: <s>. <s>there <s> there i / cat </s>

there is

ac=-13.0
Im=-3.4

ac=-14.0

rnn hist: <s>
Im=-2.0
<s> here is
ac=-11.0
Im=-1.5
<s> here

Fig. 5.5An example of n-gram based history clustering. For the notle word “a”, its
two history paths “<s> there is” and “<s> here is” has the sanrecent word “is”. When
2-gram approximation is applied, these two paths can be ettagnd only the history path (

“<s> there is”) giving higher probability is kept and will beised for computing new history
vector.

The above history clustering algorithm in practice opeyate a LM state cache that
stores the RNNLM probabilities over the output vocabulasgaiated with distinct trun-
catedn-gram histories derived fronPng(-). By default, if a particular truncated history
state®yg(W, 1) is not found in the cache, the full histowy; * that subsumes the truncated
context is used to create a new entry in the cache. As thigigdgouses similar informa-
tion as conventionah-gram LM, it can be easily adapted and used by both beam search
decoders 170 168 where RNNLM probabilities can be computed on-the-fly byuest
and accessed via the cache. WF3%J style lattice rescoring where a previously gener-
ated network can be used to build all possible shared RNNla¥#estinto a WFST. In this
thesis, only the lattice rescoring case is studied.

5.4.2 History Vector Distance based Clustering

The strong generalisation power of RNNLM is rooted in thetoarous vector representa-
tion of word and history context. When clustering histories also possible to make use of
the similarity in their vector representation. The contate of an RNNLM is represented
by an ordered pair that encodes the full, complete hismgﬂ]/ =<Wj_1,...,Wp >.

Prnn(Wp 1) = <Wi_1,Vi_p> (5.10)

“the language model scale and insertion penalty is ignored he
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The internal state of RNNLM here consists of two terms. Thst fiem is the previous word
wi_1. The second itenv;_» gives a compact vector representation of hismﬁ/z. The
history clustering can be based on this history representdirectly. For two paths:\/"(;1
andwé,_l, they will be clustered if the following constraints areistd:

Wi_1=Wwj_1 & D(Vi_z,Vj_z) <y (5.11)

wherey is a threshold and can be viewed as a hidden history vecttandis beamD(-, -)
can be any distance measure such as Euclidean distance. dedaned flexibly to adjust
the trade-off between precision and computation of this@amation.

Under this approximation, two paths with the common mostmégvord, and their dis-
tance of full history vector below a threshafchre merged. For example, in the prefix tree
shown in Figureb.6, for the two nodes with word “a”, its two histories “<s> thasg and
“<s> here is” share the same previous word “is” and their aiddectors are close enough.
Hence, these two paths will be merged and the history veétivecabove path which has a
higher likelihood is kept.

ac=-10.0 ac=-9.0 ac=-14.0

Im=-3.0 Im=-2.3 Im=-1.5 rnn hist: <s> there is a
<S> rpn hist: <s> <s>there  <s> there i / cat </s>
o @ ® ®

there is

ac=-13.0

Im=-3.4
ac=-14.0

rnn hist: <s>
Im=-2.0
<s> here is
ac=-11.0
Im=-1.5
<s> here

Fig. 5.6An example of history vector distance based clusteringtf®node with word “a”,
its two history paths “<s> there is” and “<s> here is” can be jgresented by two history
vectors in RNNLMs. These two paths can be merged as the Eaglidistance of these
two vectors is smaller than a threshold. The history path §2<there is”) giving higher
probability is kept and will be used for computing new higteector.

In similar form to then-gram based clustering scheme introduced before, thierfist
vector distance based clustering method is also implerdesta cache during lattice rescor-
ing. This method can also be applied for beam search basedielecHowever, due to
the introduction of the distance beamthis technique is non-trivial to be directly used in
generic WFST based decoding approaches.

There is a range of choices available for the distance med&Xiv_»,vj_») over the
two history vectors. The history vector is a vector with edsits from the output of sigmoid
function, which is bounded from 0 to 1. Here, the normalisadlifiean distance is used in
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this thesis, which is given by,

d

1
D(vi-2,Vj-2) = 5 > (Vie2k—Vj-—2k)? (5.12)
&

whered is the dimension of the history vector.

5.4.3 Algorithm Implementation

The options discussed above determine which paths to mengag different histories
based on the prefix tree. However, a lattice is a more commtnsieucture for a com-
pact representation of multiple paths. Hence, in practiterns to expend the path for each
node in the lattice, until the histories are equivalent adicg to either Equatios.90r5.10

It is worth pointing out, during RNNLM lattice rescoring, RNLMs are applied on
the the existed lattice generated tygram LMs, instead of prefix tree. Thegram based
clustering and history vector based clustering describ&ectiorb.4.1and5.4.2are used to
determine whether two history paths are equivalent or mobtl the node will be expended.
The extreme case is all merging node are expended and thetpeefis generated. However,
it won't generate new path in the new lattice compared wighitiputn-gram lattice.

All the lattice rescoring experiments in this thesis use asthe-fly lattice expansion
algorithm [L41]] suitable for a wide range of language models including baitk-grams,
feedforward NNLMs, recurrent NNLMs and their interpolafedm [139. A central part
of this algorithm requires the LM state representation fier inderlying model being used.
For example, for back-offi-gram LM, this is given by Equatio@.22 For approximated
RNNLMs, this is based on Equatidn9 or 5.10depending on the history clustering tech-
nique being used. The interpolated LM’s state repres@mtasi derived from a union of
those component LMs. The corresponding pseudo-code faigjoeithm is given below.

1: for every node; in the networkdo

2: initialise its expanded node lisf = {};

3: initialise its expanded outbound arc I&t= {};

4: end for

5: addng to its expanded node lidNy = {no};

6: add allng’s outbound arcs to its expanded arc li&§,= Ao;
7. Start depth first network traversal from the initial nade
8: for every noden; being visiteddo

9: for every expanded nodlf; € N/ of noden; do

10: for every outbound arax from n; do

11: find the destination node, of arcay;

12: find the LM statecb(hﬂé) of expanded nods;;
13: compute LM probability:’(nk|d3(h2é));

5The pseudo-code is from 44 provided by Xunying Liu
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14: find a new LM stateb (hr) for nodeny;

15: if 3 noden| € NJ representing state(hpk) then
16: return the found node;;

17: else

18: add a new node to N, to represent stat@(hr);
19: end if

20: create a new arg from n’j ton(;

21: assign score IR(ng| d)(hﬂé)) to &;

22: add arca; to the expanded outbound arc It
23: end for

24:  end for

25: end for

26: Rebuild new network usingN/} and{A(}.

The above on-the-fly lattice expansion algorithm is implated as an extension of
HLRescore in HTK toolkit and also incorporated into the $atd TK v3.5 252].

5.5 Experiments

In this section the performance of the proposed RNNLM latte&scoring methods are eval-
uated using two HTK-based large vocabulary speech regograystems. The first was de-
veloped for English conversational telephone speech (03&]) in the 2004 DARPA EARS
evaluation §4]. The second system for Mandarin Chinese conversatiorgctpwas used
in the 2014 DARPA BOLT evaluationl}3. A series of experiments were conducted on
these two tasks.

5.5.1 Experiments on English CTS Data

The 2004 CU English CTS LVCSR system was also used for expaisnn Chapted.
A pruned interpolated 3-gram LM was used for lattice genenaand followed by lattice
rescoring with an unpruned 4-gram LM. The 3 haolev04data, which includes 72 Fisher
conversations and contains on average 10.8 words per segrnasused as a test set. The
3 hourevalO4set of a comparable number of Fisher conversations was aksh UFor all
results presented in this chapter, matched pairs sentagraent word error (MAPSSWE)
based statistical significance test was performed at afsignce levelr = 0.05.

The baseline 4-gram back-off LM was trained using a total48 illion words from
2 text sources: the LDC Fisher acoustic transcriptiéisher, of 20 million words (weight
0.75), and the University Washington conversational weh [24], UWWeb, of 525 million
words (weight 0.25). Thé&isher data of 20M words contains on average 12.7 words per
sentence, and was used to train a feedforward 4-gram NNLNgubie OOS architecture
proposed in 172, and an RNNLM using the comparable class-based OOS actiniee
in Figure4.2 of Chapter4 with 500 output layer classes. The same 38k word input layer
vocabulary and 20k word output layer shortlist were useténh feedforward and recurrent
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NNLMs both with 500 hidden layer nodes. A total of 1 billion wis of text data were
generated from this RNNLM using the sampling technique idesd in [59] to train a 4-
gram back-off LM as an approximation to the original RNNLMhéke three LMs were
then interpolated with the baseline 4-gram LM and used foertsi. Confusion network
(CN) decoding 145 is used on lattice for better performance.

| LM | Nbest| PPL| lbest| CN | LatDensity |
4glm 51.8| 16.7 | 16.1| 421
+NN.4g 50.0| 16.3 | 15.8]| 555
+RNN.sample.4g 50.9| 16.2 | 15.9| 462
50 15.4 | 15.4| 188(97)
100 15.3 | 15.3 | 365(175)
*RNN 1000 | %®3| 153 | 15.1| 3416(1298)
10000 15.3 | 15.0| 32277(10212

Table 5.1 Performance of 4-gram LM approximation of RNNLMdampling and N-best
rescoring on the English CTdev04task

Table5.1 gives the experimental results of the 1-best and CN word eates (WER)
of the baseline back-off 4-gram LM (the 1st line), the feedfard NNLM system (the
2nd line), and the approximated 4-gram LM of RNNLM trained sampling sentences
(the 3rd line) on thaelevO4set. The RNNLM system was evaluated by re-ranking N-best
lists of various depth from top 50 up to 10k entries, as shawmf4th to 7th line. The
RNNLM rescored N-best lists were also converted to prefig sguctured lattices2fl]]
and used for CN decoding. The HTK formatted lattice dengyg$/Sec) measure for the
baseline systems are also shown in the TakleFor the RNNLM N-best rescoring results,
the lattice density measures before and after prefix treetsting of N-best lists are both
given. As expected, the prefix tree structuring of N-bess$ ksgnificantly reduced the size
of the N-best lists (shown in brackets in the same column)CHglecoding favours a more
efficient lattice representation that encodes rich alter@adypotheses. To achieve the same
improvements from CN decoding, RNNLM rescored N-best letas to be as deep as 10k.
This 10k-best RNNLM rescoring baseline gave the lowestdt-aad CN WER of 15.3%
and 15.0% ordev04 set, with a density of 10.2k arcs/sec measured on the lattfter
converting the N-best list to the prefix tree.

The performance of lattice rescoring using RNNLMs is giveTable5.2 The results
of then-gram approximation based RNNLM lattice rescoring methargsgiven in the first
block. When the truncated history is increased to the pus/Aowords, the resulting 6-gram
approximated RNNLM system produced 1-best and CN errosratel5.4% and 15.0%
on dev04 set, comparable with the standard RNNLM 10k-best rescdoasggline, and a
significant 70% reduction in lattice size from 10k to 3k ases/ Further increasing the
truncated history length to 6 words via a 7-gram approxiamegiave no further improvement
while only increasing the size of the resulting latticesisidonfirms the hypothesis raised in
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Chapters.40ver the decaying effect from remote history contexts on RMNbrobabilities.

| history clustering| config. || PPL| 1best| CN | LatDensity|
4glm baseline 51.8| 16.7 | 16.1| 421

3 46.4 | 15.8 | 15.4| 428

4 46.3 | 15.7 | 15.2| 555

n-gram 5 46.3 | 15.6 | 15.1| 1266
6 46.3 | 154 | 150 | 3025

7 46.3 | 15.4 | 15.0| 7140

0.00450| 46.4 | 15.8 | 15.4| 465

0.00300|| 46.3| 15.6 | 15.2| 539

history 0.00200|| 46.3| 15.6 | 15.1| 699
vector 0.00100|| 46.3| 15.6 | 15.1| 1345

distance 0.00075|| 46.3 | 15.5| 15.1| 1842
0.00050|| 46.3 | 154 | 150 | 2818
0.00025|| 46.3 | 15.4 | 15.0| 4725
0.00001| 46.3 | 15.4 | 15.0| 6836
Table 5.2 Performance of RNNLM lattice rescoring usingram based history and history
vector distance based clusteringaev04set

The results of the hidden history vector distance based RWNiitice rescoring are
shown in the bottom section of Tabke2 By adjusting the hidden vector distance beam
y in Equation5.10 a range of approximated RNNLM comparable in error rate$ wie
truncated history based approach but more compact lattiees produced. For example,
settingy = 0.002 produced equivalent 1-best and CN error rates of 15.@04%1% as the
5-gram history approximated system tav04 setand a 45% reduction in lattice size from
1266 down to 699 arcs/sec. The best performance was obthinedttingy = 0.00050,
which gave 1-best and CN error rates of 15.4% and 15.0%, with46 and 7% reduction
in lattice size over the 10k-best rescoring baseline, aad#st 6-gram history clustering
rescoring system respectively. In practice, a systemnggtif history vector distance to
0.00050 can be used to rescore more heavily pruned latti€e8 aime real time (RT) while
producing comparable 1best and CN error rates of 15.4% aridd5In contrast, the 1k-
best and 10k-best rescoring systems used 1.8 and 17 timessR&atively. The similar
trend was observed @valO4set, which is given in Tablb.3.

5.5.2 Experiments on Mandarin CTS Data

The 2014 CU CTS Mandarin Chinese LVCSR systd#d was used to further evaluate
the two proposed RNNLM lattice rescoring methods. The systas trained on 300 hours
of Mandarin Chinese conversational telephone speech diased by the LDC for the
DARPA BOLT program. A 63k recognition word list was used ircdding. The system
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| LMtype |usage || config.| PPL| lbest| CN | LatDensity |

4gim 521] 19.1 | 18.7 430
+NN.4g 50.9| 18.7 | 18.2 574
+RNN.4g | sample 51.1| 18.9 | 18.4 472
50 179 | 17.9] 200(98)
+RNN 100 17.9 | 17.7| 389(177)
Nbest || 1600 | 66| 17.8 | 17.6| 3607(1313)
10000 17.8 | 17.5 | 33607(10275

Table 5.3 Performance of N-best rescoring and samplingRINMNLM on the English CTS
task oneval04
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Fig. 5.7WER and lattice density for n-gram approximation based RMNiitice rescoring
on the English CTS task @val04
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Fig. 5.8WER and lattice density for history vector distance basetlRM lattice rescoring
on the English CTS task aval04

uses the same multi-pass recognition framework but with eeradvanced acoustic model
compared the the above experiment.

The initial lattice generation stage used CMLLE8] based speaker adaptively trained
cross-word triphone Tanden®9] HMM acoustic models with MPE178 based parame-
ter estimation and unsupervised MLLR33 speaker adaptation. HLDALP7, 137, pro-
jected and speaker level normalised PRR]] features augmented with pitch features were
used. 26 dimensional DNN bottle neck featur2sJ extracted from a deep neural network
[51, 19§ consisting of 4 hidden layers of 1k nodes each and modeilngontext depen-
dent states at the output layer, were also used. An intégmblgram baseline LM was
used. A 4.5 hour test set of Mandarin Chinese conversattelegdhone speech data used in
the BOLT programgdev14 consisting of 57 speakers from 19 conversations, was used f
performance evaluation. An additional 1.6 hour test ee4)97, consisting of 49 speakers
from 20 conversations, was also used. Manual audio segtr@ntgas also used to allow
translation outputs to be accurately scored.

The baseline 4-gram back-off LM was trained using a total billion words from the
following two types of text sources: 2.6M words of acoustanscripts including the LDC
Call Home Mandarin (CHM), Call Friend Mandarin (CFM) and HEUD collected conver-
sational Mandarin telephone speech data (weight 0.78)llidrbwords of additional web
data collected under the DARPA EARS and GALE programs (wedg®?). The acoustic
transcripts contain on average 7.5 words per sentence babaine 4-gram LM has a total
of 48M 2-grams, 133M 3-grams and 143M 4-grams. It gave a peitylscore of 151.4, 1-
best and CN character error rates (CER) of 35.7% and 35.3%ctgely ondev14 140.0,
31.3 and 31.1 omval97 These results are shown in the 1st line in Tahke

In order to further improve the RNNLM'’s coverage and gensadilon, the 2.6M words
of acoustic transcripts data were augmented with 15M wofdssgaraphrase variants.
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These were automatically produced using the statisticapgtease induction and genera-
tion method described inlf(. The above combined data set was then used to train a
paraphrastic RNNLM136 “rnn” on a GPU in bunch modedJ]. The full output layer with
an OOS node based RNNLM architecture in FigBr2 was used. A total of 512 hidden
layer nodes were used. A 27k word input layer vocabulary @&kdadrd output layer short-
list were also used. In common with the previous experimeh@hapter5.5.1, a total of

1 billion words of text data were also generated from the RNNInn” using the same
sampling technique described B9 to train a 4-gram back-off LM as an approximation.
Both the RNNLM and the sampled data trained 4-gram LM wera theerpolated with the
baseline 4-gram LM for performance evaluation. The peiplek-best and CN decoding
CER performance of the baseline RNNLM and various approtionachemes are shown
in Table5.4. Consistent with the trend previously found in Tabl&, the sampling approach
based RNNLM approximation (line 2 in Tab$e4) only retained a part of the improvement
of the original RNNLM (lines 3 to 6 in Tabl&.4) over the baseline 4-gram LM in terms
of both perplexity and error rate. Using the prefix tree strred N-best lists again signifi-
cantly reduced the density of the resulting lattices. Trst @& decoding performance was
obtained using a 10k-best RNNLM rescoring baseline sys@mthedevl4data, it gave a
1-best and CN CER of 34.6% and 34.3%. It had a density of 11d{sec measured on the
lattices converted from the prefix tree structured 10k-hsist

| LM type | Nbest|| PPL | 1-best] CN | LatDensity |

4gim 151.4] 357 | 353 273
+RNN.sample.4g 140.6| 35.2 | 34.8 310
50 347 | 34.6] 185(102)
100 34.6 | 345| 360(187)
+*RNN 1000 || Y271 345 | 34.4| 3329(1417)
10000 34.6 | 34.3| 30597(11007

Table 5.4 Performance of N-best rescoring and sampling RMNLM on Mandarin CTS
devl4testset

The results of RNNLM lattice rescoring on tldevl14set are given in Tablé.5 The
performance of the-gram history clustering based RNNLM lattice rescoring b&@ters.4
is shown from in the first block. A 6-gram approximate RNNLMss®m produced 1-best
and CN error rates of 34.7% and 34.2% respectivelgerid Both results are comparable
to the 10k-best RNNLM rescoring in Tabfe4. It also gave a significant 74% reduction
in lattice density from 11k to 2852 arcs/sec. Further insirgg the truncated history to
6 words or more gave no improvement but only increasing theltiag lattice size. The
performance of the hidden history vector distance basedIRNMttice rescoring is shown
in the bottom block of Tabl®.5. The hidden vector distance begm= 0.00195 gave the
best CER performance among all systems. This approximatersygave a 1-best and CN
error rates of 34.6% and 34.2% respectively. It also gavez68elative reduction in lattice
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density over the prefix tree structured 10k-best rescogates in Tablé.4from 11k down

to 3501 arcs/sec.

| history clustering| config. | PPL | 1-best| CN | LatDensity|

| 4glm baseline | 151.4| 357 [353| 273 |

3 127.5| 34.8 | 345 305

4 127.1| 34.8 | 344 554

n-gram 5 127.1| 34.7 | 34.3 1285
6 127.1| 34.7 | 34.2 2852

7 127.1| 34.6 | 34.3 6012

8 127.1| 34.7 | 34.2 12695

0.00900| 127.3| 34.8 | 345 500

0.00800| 127.1| 34.8 | 344 564

0.00700| 127.1| 34.9 | 34.3 658

0.00600| 127.1| 34.8 | 34.4 802

history 0.00500| 127.1| 34.8 | 34.3 1034
vector 0.00400| 127.1| 34.7 | 34.3 1430
distance 0.00300| 127.1| 34.7 | 34.3 2112
0.00195| 127.1| 34.6 | 34.2 3501

0.00185| 127.1| 34.6 | 34.2 3705

0.00175| 127.1| 34.6 | 34.2 3905

0.00150|| 127.1| 34.6 | 34.2 4427

0.00100| 127.1| 34.6 | 34.2 5652

0.00010|| 127.1| 34.6 | 34.2 8098

0.00001| 127.1| 34.6 | 34.2 8215

Table 5.5 Performance of RNNLM lattice rescoring usingram based history and history
vector distance based clustering on Mandarin @é$l4testset.

A similar trend was also found on tleval97data in Tablée.6.

5.5.3 Experiments on Babel Corpus

The next experiment is conducted on the Babel corpt2280], which consist of transcribed
telephone conversations in a range of languages for speeognition and keyword search
(KWS). The aim of the Babel Program is “developing agile amlolust speech recognition
technology that can be rapidly applied to any human languageder to provide effective
search capability for analysts to efficiently process nvasasmounts of real-world recorded
speech®. Keyword search, also known as spoken term detection, ieckpprocessing

Squoted from https://www.iarpa.gov/Programs/ia/Bakaddéd.html. The corpora ids used in this section
in the Babel language releases are Pashto (104) IARPA-badieiv0.4bY, Igho (306) IARPA-babel306b-
v2.0c, Mongolian (401) IARPA-babel401b-v2.0b, Javanet@?) IARPA-babel402b-v1.0b and Georgian
(404) IARPA-babel404b-v1.0a.
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| LM type | usage || config.| PPL | 1-best| CN || LatDensity |

4gim 140.0] 31.3 | 311 273
+RNN | sample 135.0 31.2 | 30.9 326
50 305 |30.5] 238(128)
100 305 |305| 458(232)
*RNN | nbest | 000 | 125-0] 305 | 30.4| 3861(1610)
10000 30.5 |30.4|| 31423 (10848

Table 5.6 Performance of N-best rescoring and sampling RNINLM on the Mandarin
CTSeval97testset.

807 ' ' Word Error Rat
or rror Rate—*-—
Lattice Density A 7000
30.6 |
- 6000
e 30.5"—*-\-.\._\\ -~ 5000 =
o Kl @
B '\"%, (]C.)
o N 4 a
o 30.4 | . B 4000 &
= S e '\,_\ °
S * ~._ -4 3000 S
30.3 | .
¥
- 2000
30.2 |-
- 1000
301 1 1 1 1
3 4 5 6 7 8

Approx. n-gram Order

Fig. 5.9WER and lattice density for n-gram approximation based RMNiitice rescoring
on the Mandarin CT®&val97.
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Fig. 5.10WER and lattice density for history vector distance baselRW lattice rescoring
on the Mandarin CT®&val97.

task to find all occurrences of a word or word sequence, ingelaudio corpusl22, 117].
Figure5.11gives an example framework of keyword search system. lestice generated
from the ASR system and the query (i.e. keyword) is searcheazhg all possible paths in
lattices. The posterior of the keyword in lattices can be goted based on their acoustic
model and language model probabilities7].

Speech S Keyword  Keyword
peech yw yw
Recognition Search Hits
Word Lattice T
Query

Fig. 5.11A framework of keyword search system.

Given the keyword list containing the set of keywords of ia#, two types of errors
are defined in the keyword search system: miss error anddédse error. The miss error
refers to the case that the keyword indeed appears in thelspatethe KWS system doesn’t
spot it. The false alarm error means that there is no keywotlda speech while the KWS
system outputs it as a keyword. The rates of miss and fals@ &liaors can be computed as
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below,
Neorr (WkW7 9)
Picd Wi \ 0)=1-———=
missWiw, 0) Nre t (Wiw)
Nincorr (Wiw, 6)
e (Wi, §) — Nincort (Wi 6) 5.13
ta(Wiw; 6) Nerial (Wiw) | )

where Nref(Wkw) IS the number of reference occurrence of keywekg,, Ncorr(Wikw, 0)
is the number of correctly hypothesised occurrencevigf at the detection thresholé,
Nincorr (Wikw, 8) is the number of incorrectly hypothesised occurrenceigfat threshold,
andNial (Wikw) IS the number of trials fowiy. Nirial (Wkw) is defined by,

Nerial (Wiew) = Ts peect— Nref (Wicw) (5.14)

where Tspeechis the total speech duration in seconds and a rate of oneptiasecond is
assumedl17].

In the spoken term detection (STD) 2006 evaluation, a metecm-weighted value”
(TWV), is defined by NIST as,

TWV(6)=1— = 5 (Prisd Wi 0) + BPra(Wyw: 0)) (5.15)

|Q| WkweQ

where|Q)| is the number of keywords in the keyword I8t andf = 9999 to reflect the rela-
tive cost of miss and false alarm errors. The value of T\@Mies in the range of—c, 1.0].
The reference of keyword gives a TMW of 1.0 and an empty ougperresponding to 0.0
for TMW. The maximum term-weighted value (MTWV)is used in the the experiment,
which is the best term-weighted value with an optimisedcteia threshold.

The full language pack (FLP) in the Babel Program has abo0t2D® hours of tran-
scribed audio training data-©0-80 hours speech) for the training of acoustic model. Tan-
dem and Hybrid systems are built with speaker adaptatiorguGMLLR transferred feature
[68]. To obtain better performance, a total of four acoustic elediwo Tandem and two
Hybrid systems, are build using HTK toolkR2%2), based on the multi-lingual featur229
provided by IBM and Aachen University. Joint decodir@B§ discussed in Chapté&d.2.4
was used to combine these 4 acoustic models. A brief deaript joint decoding can be
found in ChapteB.2 The corpus to build language model consists of two souraes:is
from the acoustic transcription, which is referred as FLRthe other one is from the web
using a search engine, e.g. Wikipedia, Ted talk, Tweets. arheunt of the FLP data is
significantly smaller than that of the WEB data. A total of Bdaages were examined in
this experiment. The information of these 5 languages isvahin Table5.7. The vocabu-
lary size varies from 28K in Igbo to 376K in Pahto and the amairihe WEB data also
varies from 2Min Igbo to 141M in Mongolian. The size of FLP @& stable among these 5
languages, which lies in the range of 400K to 500K. For eacfuage, the vocabulary size
is larger than 200K and the amount of web data is about 100bemEXgbo. The 3-gram

7“NIST Tools”: http://www.itl.nist.gov/ iad/mig/tools/
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LMs were used in this experiment as 4-gram LMs didn't givef@@nance improvement.
The 3-gram LMs and RNNLMs were built for the 5 languages armdr therplexity results
are also given in the table. For the training of RNNLMs, the B\itata is first used. The
model trained on the WEB data is then fine-tuned on the FLP. @itRNNLMs are trained
with slipced bunch mode on GPU as introduced in ChagteFhe 3-gram approximation
described in Chaptés.4.1is used for RNNLM lattice rescoring based on lattices geteera
by the 3-gram LMs. All RNNLMs shown in Tablb.7 were trained with cross entropy
with a single hidden layer with 100 nodes. It can be seen tiNtiIRVIs gave significant
improvements over 3-gram LMs in terms of perplexity on eactglage.

Table 5.7 Statistics and perplexity results for 5 languagése Babel corpora.

Language| Vocab | #Train Word PPL
Size | WEB | FLP | 3-gram LM | +RNNLM
Pashto | 376,271 104M | 535K 171.6 135.8
Igbo 28,097 | 2M | 549K 109.9 94.3
Mongolian || 246,831| 141M | 512K 133.6 105.4
Javanese|| 268,099| 73M | 409K 218.8 172.1
Georgian || 278,623| 137M | 406K 472.4 377.2

Pashto is used to investigate the WER and MTWYV performansieind Tablé.8gives
the WER results of the 3-gram LM and RNNLM on Pashto. RNNLMeaaweduction of
1.0% in WER. However, in the RNNLM for Pashto, an output sieirtonsisting of 282k
words is used. The CE training is very slow due to the largputugayer, which takes up
to one week. Furthermore, a full output layer RNNLM was teaifirom CE based criterion
and the evaluation is also time-consuming as the explicinatisation in the large output
layer is required.

Table 5.8 WER results of RNNLM on Pashto.

\ LM H WER \
3-gram|| 43.8
+RNN || 42.8

One solution to improve the evaluation efficiency is adap®NNLMs with class based
output layer. However, as discussed in Chapgteit is difficult to parallel the training of
class based RNNLMs. In this section, various training gateescribed in Chaptet are
investigated. As mentioned above, there are two stageRddRINNLM training, which are
on the WEB and FLP data successively. Noise contrastiveastn (NCE) 4] is suitable
for the training of the WEB data. However, there is an issuélie fine-tune on the FLP
data. Given the large output layer size and small amount &fdta, there are many words
in the output layer that do not appear in the FLP data, andnigram probability of these
words turns to be 0. As a result, the weight associated webehwords in the output layer



5.5 Experiments 95

won't be trained as target word or noise word during the N@ihing on the FLP data. Poor
performance was obtained by using this unigram for NCE imgfh

Three methods were proposed to address the above issugbeanER and MTWV
results are presented in Tal@e9. The first approach applies CE on the WEB data, and
variance regularisation (VR¥B|] on the FLP data for fine-tuning. The model trained with
variance regularisation was used for lattice rescoringpout normalisation in the output
layer, which speeded up the evaluation significantly. TheRA#d MTWV results are
shown in the 3rd line of Tabl&.9. It gave a small degradation in terms of performance
compared to RNNLMs trained with CE in the 2nd line, while migiter than the 3-gram
LM shown in the 1st line. However, it took long time to trairet6E based RNNLM on the
WEB data. The second method is to apply NCE training on the W&t and then adopt
VR on the FLP data. In addition to solve the evaluation efficieissue by using RNNLM
trained with VR, it also has a much faster train speed on trgelamount of WEB data
by NCE training, which only takes about 6 hours for traininthe results can be found
in the 4th line of Tableé.9. It gave a comparable WER and MTWYV performance as the
RNNLM trained with CE, while much faster for RNNLM train andaduation. The third
method aims to use NCE for the whole training, in order to @tbe unigram issue in the
NCE training mentioned above: 9 copies of the FLP data areraggal to the end of the
WEB data to construct a “extended” corpus, and the NCE tgis then applied to this
“extended” corpus. The results are shown in the last lin&éntable, which gave fast train
and evaluation, but with a degraded performance.

Table 5.9 WER and KWS results of RNNLM trained with variougesta on Pashto.

LM | Train Crit | WER MTWV
WEB | FLP IV [ OOV [ Total
3-gram : 43.8 || 0.4828] 0.4083] 0.4750

CE | CE || 42.8 || 0.4975| 0.4048| 0.4871
CE | VR || 43.0 || 0.4958| 0.4010| 0.4853
NCE | VR || 43.0 || 0.4975| 0.3953| 0.4862
NCE | - 43.2 || 0.4936| 0.4038| 0.4835

+RNN

Considering the balance of performance and efficiency, ébersd method (NCE+VR)
provides the best solution among the three approachesnigiieod was then applied to the
remaining 4 languages. The WER and KWS performance can Il fiouTable5.10 The
RNNLMs were trained efficiently (all less than 8 hours) andsistent improvements were
obtained on the 4 languages in terms of WER and MTWV.

8Unigram from the WEB data or interpolated with the unigraonirWEB data were also tried, which
gave degraded performance
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Table 5.10 WER and KWS results of RNNLM trained on differeamduages.

Language| LM WER MTWV
IV | OOV | Total

Igbo 3-gram| 54.6 || 0.4079| 0.3635| 0.4030
+RNN || 53.7 || 0.4101| 0.3718| 0.4061
Mongolian| 3-gram|| 47.0 || 0.5606| 0.5171| 0.5559
+RNN || 46.0 || 0.5708| 0.5343| 0.5666
Javanese| 3-gram| 50.1 || 0.5182| 0.4801| 0.5138
+RNN || 49.3 || 0.5229| 0.4768| 0.5173
Georgian | 3-gram|| 37.8 || 0.7325| 0.7300| 0.7322
+RNN || 37.1 || 0.7386| 0.7309| 0.7375

5.6 Summary

In this chapter, lattice rescore using RNNLM is studied. Teificient lattice rescoring
methods for RNNLMs were proposed. Unlike previous work whgenerated an approx-
imatedn-gram LM or only rescored the top N-best lists, RNNLM probipiis used to
rescore the whole lattice. The proposed techniques pradldeest and confusion network
decoding performance comparable with a 10k-best resc&MigLM baseline systems on
two large vocabulary conversational telephone speeclyrgtoon tasks for US English and
Mandarin Chinese. These methods also produced highly ottrigttice representation after
RNNLM rescoring. Consistent compression in lattice size wlatained over the prefix tree
structured N-best rescoring RNNLM baseline systems. Tressdts demonstrate the advan-
tages of the proposed techniques over the traditional rdsttwincorporate RNNLM, such
as N-best rescoring amdgram LM approximation through sentence sampling. Coestst
improvements are also obtained for the keyword searchmyisyeusing lattices generated
by RNNLM lattice rescoring.



Chapter 6
Adaptation of RNNLMSs

Acoustic model adaptation is a crucial technique in speecbgnition to mitigate the acous-
tic mismatch that may exist between training and test dateh &is unexpected speaker,
background noise and channel. Significant improvementifopaance has been reported
from acoustic model adaptation. Mismatch can also occunemiature of language to be
modelled. Normally the training corpus for a language masieollected from a variety
of sources with different content, written or speaking fogenre or topic. The style of
corpus can heavily influence words to be used. When appliaddeen test data, mismatch
arises in various aspects including speaking style and togiich degrades performance as
aresult. Hence, language model adaptation is an impogaaarch area and very useful for
practical application. Approaches for adaptmgram LMs was discussed in Chap®8.6
In this chapter, the adaptation of neural network baseduagg models will be detailed.
There are two approaches to adapt RNNLMs described in theture: fine-tuning; and
incorporation of informative feature. In this chapter, tadled study of RNNLM adaptation
is carried out on a multi-genre broadcast news task usingpbag®ASR system, where the
adaptation can be operated at different levels, such as gedrshow level. A range of topic
models are used to extract topic representation for each. sho

This chapter is organised as follows. RNNLM adaptation mésare reviewed in Chap-
ter6.1 Genre dependent RNNLM adaptation is described in Ch&p2efollowed by topic
representation on show level for adaptation in Chapt8r The experimental results are
presented in Chaptér4. Finally, Chapte6.5 concludes this chapter.

6.1 Review of RNNLM Adaptation

A standard framework for unsupervised RNNLM adaptatiorsfsgech recognition is illus-
trated in Figures.1[151, 45]. The blue part is the conventional speech recognitionauith

language model adaptation and the red part denotes thengiget RNNLM adaptation.

1-best hypothesis and lattice are generated during segrgiien the input utterance. The
1-best hypothesis is used to adapt RNNLM and the adapted RINdlitained. The adapted
RNNLM can be used to rescore lattice generated from the ASIResyand the adapted 1-
best hypothesis obtained. The gray block in Figiukgives an example of RNNLM adap-
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tation using the output of speech recogniser and there heg options to adapt RNNLMs.
For example, the adapted RNNLM can be obtained by fine-tutiegnodel on in-domain
data and applied directly on lattice.

I speech | 1-best RNNLM adaptation
recognizer hYPOtTeSIS
[adaptation :|<_|' RNNLM ]

[ lattice }«—{ adapted RNNLM }

Speech
waveform

1-best
hypothesis

Fig. 6.1A standard framework for unsupervised RNNLM adaptatiorpegesh recognition.

Adaptation methods of RNNLMs are divided into two broad gatees in the literature,
which are fine-tuning and incorporation of informative feat.

6.1.1 Fine-tuning

RNNLMs are initially trained on all available training datié this initial RNNLM is to be
applied to a specific target domain, then fine-tuning withith@éomain data can be applied.
These in-domain data may come from a subset of training déiar,e the prior information
about the domain (or genre) of data is available. The adaptetel can then be applied to
the corresponding test data according to their domaindeare) labelsg06, 177. In many
applications, the reference of adaptation data is notyeasdilable. The hypothesis from
ASR is used instead for fine-tuning to improve the mod&d in an unsupervised mode.
Depending on the amount and accuracy of the adaptation tti@tayhole or partial model
parameters are updated. Figérillustrates the fine-tuning of RNNLMs.

Fine-tuning provides a straightforward way to tune the str@ined universal model
into specific domain. If the prior information (e.g. domaabél) and sufficient amount
of adaptation data are available, the model could be imprdyeadaptation and obtain
better performance. However, in many situations, suffiéredomain data and their domain
information are difficult to obtain. Furthermore, it recesrstoring one model for each
domain, which requires large disk space when a range of dmnaaé used.

6.1.2 Incorporating Auxiliary Feature

An alternative approach to adapt RNNLMs is to incorporataleuy features, which carry
information about the speech and topics. This informateeture could be incorporated
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Fig. 6.2RNNLM adaptation with genre information based on fine-tgnin

into the training of RNNLMs for adaptation in a more compaud &fficient way compared
to fine-tuning. Figuré.3illustrates the adaptation scheme. The feature véesappended
to the input layer. It is fed into the hidden layer and outpyelt as introduced in]52.

A range of auxiliary features have been investigated foptadeng RNNLMs in earlier
research. For example, morphological and lexical featheee been modelled in factored
RNNLMs [244] on the 930k word WSJ portion of Penn Treebank data; topiarmétion
derived from latent Dirichlet allocation (LDAY1|B] models was used inlp1] on a corpus
of 37 million words; personalized user information such amdgraphic features was ex-
ploited in [235 for RNNLMs on a social media corpus of approximately 25 mailwords;
sentence length information and lexical features were usgtD4] on lecture transcripts of
9 million words; and domain information was used in mutlrtioin RNNLMs R27] on a
10 million word medical report corpus.

There are two important issues that directly impact theleuyifeature based RNNLM
adaptation approach: the form of input feature representab use; and the scalability
when larger amounts of training data are used. In this chaptgh of these issues are
explored. Genre and topic based RNNLM adaptation techsigteeinvestigated on a multi-
genre BBC broadcast transcription task. The BBC providedittsgenre information for
each broadcast show and this information is used for adaptafA range of techniques
including LDA, probabilistic latent semantic analysis @A) [99] and hierarchical Dirichlet
processes (HDPRPRE are used to extract a show-level topic representation asmmus

1According to our experimental results, the connection ketwinput (blocK) and output layer is crucial
when the hidden layer size is small (eg.50). When the size of hidden layer becomes large (e.4.00),
there is no difference between using and not using the cdionewith the output layer. In this work, the
output layer connection is used.
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Fig. 6.3An example RNNLM with an additional input feature vedtor

valued vectors. These additional topic vectors are use®KXLM training and then to
facilitate adaptation at test time.

6.2 Adaptation using Genre Information

In some applications, the text data for training containgxaohdifferent genres, and genre
information is available, such as the broadcast news datmerthe genre information (e.g.
news, sports, documentary) can be obtained easily. RNNLavisbe refined by making
use of this genre information. The first and most straightéod way is to fine-tune a
well-trained genre-independent RNNLM using genre-spediita as discussed in Chapter
6.1.1 This yields a set of genre-dependent RNNLMs, one for eachegeAt test time,
for each utterance, the genre-specific RNNLM is applied @ting to its genre label. The
potential drawbacks of this method are that a RNNLM for eaehrg needs to be stored
and sufficient data for each genre is required for robustitigi An alternative approach
to construct genre-dependent RNNLMs is to incorporate #raelabel into the training
of RNNLM as discussed in Chaptérl.2 The genre label can be represented as a 1-of-k
encoding feature vector in the input layer as shown in FiguB Compared to the fine-
tuning scheme, only one RNNLM model is trained and storedfeEint genre models are
obtained by using the 1-of-k encoding vectors. Both of treggaroaches yield genre-level
adapted RNNLMs. Their performances are investigated antgbaced in Chaptes.4.
However, in many situations, the genre label is unknown awssiply difficult to ro-
bustly estimate. Furthermore, the genre label is normallyaase representation of the type
of topic. It may be not able to classify data accurately. Hemaomore refined representation
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is preferred to automatically derive a topic representatay each show (i.e. document).
This show-level topic representationwill be concatenated with the standard input layer
for RNNLM training and testing as shown in Figuses.

6.3 Topic Space based Adaptation

Contextual factors, such as speaking style, genre andhepidly influence the use of word
in spoken language. A complex combination of these factefmé a specific target situ-
ation of interest. The variabilities introduced by theseédein factors are only implicitly
learned in conventional RNNLMs. Since it is problematic taw upon related and sim-
ilar events occurring in the training data, direct adaptanf RNNLM parameters given
limited data at test time to a target situation is difficulbtatain good generalisation perfor-
mance. One solution to this problem is to explicitly modelsé influencing factors during
RNNLM training, for example, by adding auxiliary featurega the input layer. This al-
lows RNNLMs to better exploit commonalities and specialéenong diverse data. It also
facilitates adaptation at test time to any target situatiefined by these factors.

Various topic models have been proposed for topic repragentof documents, includ-
ing probabilistic latent semantic analysis (PLSA), latBitichlet allocation (LDA) and
hierarchical Dirichlet processes (HDP). Both PLSA and LDse & fixed number of latent
topics. In contrast, HDP is able to estimate the posteridhefnumber of topics during
training and choose the number of topics automatically.

LetD = {dy,...,dn} denote the training corpus, whetgs a documenty = {wx,...,Wwy }
is the set of all distinct words in the vocabulafy= {z, ...,z } is the set of latent topics,
andn(d;,w;j) is the word count ofv; appearing in documer;. For each document, a
vector of posterior probabilities among topics

P(z1|d;)
f= | Padd)
P(z|ch)

is derived from the specified topic modglt, where each topic has a multinomial
distribution over the given vocabulary.

When incorporating the feature vectanto RNNLM training as shown in Figuré.3, a
Bayesian interpretation of the RNNLM probability for wowgl given historyh; in a docu-
mentd’ is given by,

Pran(Wi|hi, D, d') = / Pran(Wi B, F)P(F| M, d)P(MT|D)dfdMT  (6.1)

whereP(f| M+, d’) is the topic posterior af’ given a mode/Mt trained on corpu®. The
exact calculation of the above integral is intractable inegal. Hence, approximations are
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required to make it feasible. For topic modelt, a MAP estimate is used instead,

M7t = argma®(Mr|D) = argma®(D|Mr) (6.2)
Mt Mt

when a uniform prioP(M7) is used. A further approximation is made,
P(fIMr,d) ~ 8(f—F . ), (6.3)

the topic posteriofMT ¢ can be obtained by maximisimfd’| Mr).
Hence, the process in Equatiériis be simplified as,

1) train a topic modelMt to maximise the data likelihood in Equatiér?:

2) computing the topic posterior vectAt}glT ¢ for document!’ given topic modeM .

3) fMT ¢ is used in RNNLM training and applied in the adaptation stagehown in
Figure6.1

6.3.1 Probabilistic Latent Semantic Analysis

PLSA [99, 165 76€] is a generative model defined over a given set of documendsh E
document is assumed to be generated from a mixture of latpiust{z} (k= 1,...,K).
Each topicz is defined by a word distributioR(w;|z). The EM algorithm is applied to
maximise the following likelihood criterion,

N M K

INP(DLMr) = 3 5 nidwi)In 3 P(ad)Pw 20 (6.4)
i=1]= —1

wheren(d;, w;j) is the count of wordv; occurring in documend;, P(z|d;) is the probability
of the document]; assigned to topie, and P(w;|z) is the word distribution associated
with topic z.. Given a test document, the topic probability?(z|d’) is obtained by fixing
P(w;j|z) and maximising

M K
InP(d'[Mr) =3 n(d,wj)In 5 P(z|d")P(w;|z), (6.5)
=1 K=1
whereP(z]d") is found as,
P(d]z)  MLaPwlzg"@™)

= — (6.6)
Sme1 P(zm)  SHq 1)L P(Wj|2) ")

6.3.2 Latent Dirichlet Allocation

LDA [18, 224 adds a prior distribution over the model parametgx(&; ), to relax the
constraint of using a fixed set of document level topic pastef P(z|d;)} in PLSA. Given
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a hyper-parametem, a multinomial parameter distribution(6; a) is defined. LDA is a
generative model. For each wangl in each documert;, topicz is sampled from the topic
distribution® to generate word;. The following likelihood is maximised during training,

n(d;,wj)

N M K
nP(DAMr) = 3 In / Il (kzlwwj |zk>P<zk|6>> p(6;a)do 6.7)
i= = =

Again whereN is the number of document aml is the number of distinct words in vocab-

ulary. The number of topic in LDA is set #€ and fixed during both training and inference.

The exact posterior inference using LDA is intractable, andariational approximation

or sample based approach can be used instead. A Gibbs sgrbpbed implementation

in [176] is used in this work. The posterior probability of each togi given document’

is computed as,

B n(d,z)+a
o1 (n(d',zm) +a)

wheren(d’, ) is the number of words assigned to topién document’.

P(z|d")

(6.8)

6.3.3 Hierarchical Dirichlet Process

HDP [22€] is a nonparametric Bayesian model for clustering problestis multiple groups
of data. Its modelling hierarchy consists of two levels. Tih& level samples the number
of topics and topic-specific parameters. The bottom levelgdas the topic assignment for
each word in each document based on the samples drawn fraopthevel. In PLSA and
LDA, the number of topics is chosen empirically, while HDFhaastimate the posterior
probability over the number of topics. Equatiéri can be rewritten by sampling the topic
model M¥ with k topics fromM¥ ~ P(M+1|D) as,

N

n; Pran(Wi [hi, flvl';“” ’d,), (6.9)

Prn(Wi [hi, D, d") =

Ny

where the topic posteriofM?d, can be obtained by maximisir(d’'|MX). However, di-
rectly computing Equatiof.9is not practical as it requires training multiple RNNLMs for
varying numbers of topics. To address this issue, the MARegeMT = arg ma®(D| MK)

is used as an approximation. The open-source t@ditHDP based on MCMC sampling
is used in this work. The topic posterior probabilitie&z|d’) on test documend’ are
computed as in Equatiach8.

2http://www.cs.princeton.edu/ chongw/resource.html
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6.4 Experiments

6.4.1 Experimental Setup

An archive of multi-genre broadcast television shows waspbed by the British Broad-
casting Corporation (BBC) and used for these experimentsta of seven weeks of BBC
broadcasts with original subtitles were available, whieliegabout 1000 hours of training
data after suitable processing and alignment. A carefrdlydcribed test set containing 16.8
hours of data from 40 shows broadcast from one week was used.

A baseline acoustic model was built using standard PLP c#d@std differentials trans-
formed, with HLDA and modelled with decision tree clusterrdss-word triphones, fol-
lowed by MPE training. An improved Tandem model used 26 #altht features generated
by a deep neural network (DNN) with a bottlene@8] layer. Both a speaker indepen-
dent version of this system (Tandem-MPE) and one with CMLtaRed adaptive training
(Tandem-SAT) were used. The hypotheses from the Tandem+ktiRiel were used as adap-
tation supervision. Details of the construction of Tandexoustic models can be found in
[129.

The baseline 4-gram (4g) language model was trained on dbloillton words of text
collected from US English broadcast news and the 11 milliords of BBC acoustic model
transcription with slight prunning, which includes 145My8m and 164M 4-gram entries.
These 11 million words are from the transcription of 6 weeBRlata, consisting of 2231
shows. A 64K word list was used for decoding and language mhmoatestruction. The
RNNLM was trained on the 11M words using a 46K word input digirand 35K output
shortlist. The 2231 BBC shows are labelled with 8 differeznigs (advice, children, com-
edy, competition, documentary, drama, event and news).

Train Test
#token\ #show #token\ #show

advice 1.8M 269 24.4K 3

Genre

children 1.0M 418 20.8K 7
comedy 0.5M 154 27.2K 5
competition || 1.6M 271 25.8K 6
documentary| 1.6M 302 57.8K 6
drama 0.8M 149 20.3K 3
events 1.2M 180 28.7K 5
news 3.1M | 488 22.2K 5
Total 11.5M | 2231 || 227.1K| 40

Table 6.1 Statistics of the BBC training and test data.

Table6.1 gives the statistics of the 11M BBC data. The average seatiemgth (with
sentence start and end) on the subtitle training set anceghesét with manual segmenta-
tion are 19.3 and 9.7 respectively and the OQV rate is 1.39%e corpus is shuffled at
the sentence level for RNNLM training. Stop words are filteoait for training of topic
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representationd as they are usually refer to the most common, short functiordsvin a
language, such as “a”, “the”, “is”, and “on” in English. Faaining of genre dependent
RNNLMs, a genre independent model is first trained on all 11dthdthen followed by
fine-tuning on genre-specific data or the use of a genre irquié.cTo allow the use of show-
level topic adaptation, RNNLMs were trained from scratckthwie topic representation as
an additional input.

The RNNLMs had a single hidden layer with 512 hidden nodesveer@ trained on a
GPU with a 128 bunch size89]. RNNLMs were used in lattice rescoring with a 4-gram
approximation as described in ChapserAll word error rate (WER) numbers are obtained
using confusion network (CN) decodin@45. For all results presented in this chapter,
matched pairs sentence-segment word error (MAPSSWE) Iséaiestical significance test
was performed at a significance levelmt= 0.05.

6.4.2 Results for RNNLMs trained on 11M words

Table 6.2 gives the PPL and WERs for genre dependent RNNLMs. Tandems$stem

was used as acoustic model. From the results, the use of ipele@endent RNNLMSs gives
a significant WER reduction of 0.7% absolute. Genre depandBiNLMs trained using
both fine-tuning and genre-codes both gave small statiistisignificant WER reductions.
The use of a genre-code is preferred since only one RNNLMseeble stored.

PPL
M RNN [ +4gim | WER
4gim - 123.4 || 32.07
RNN 152.5| 113.5 | 31.38
+fine-tuning || 148.7| 110.4 || 31.29
+genre-code| 144.2| 109.3 | 31.24

Table 6.2 PPL and WER results for genre dependent RNNLMs oedkvBBC test data.
The genre dependent RNNLMs were constructed based on tiraieed genre indepen-
dent RNNLM. Tandem-SAT system was used as acoustic model.

In the next experiment, RNNLMs trained with show-level topepresentations were
evaluated. In151], each sentence was viewed as a document in the training Af abd a
marginal (0.1%) performance gain was reported on a systerg asa MPE-trained acoustic
model. In this work, each show is processed as a documentlbost topic representation.
The test-set topic representation is found from the re¢mgnhypotheses using the 4-gram
LM after CN decoding. For comparison purposes the referéracescription is also used.
For PLSA and LDA, the number of topics is 30 unless otherwiated.

An initial experiment used the baseline MPE acoustic mo@lee RNNLM gave 0.7%
absolute WER reduction over the 4-gram LM, and the LDA baseipervised adaptation
gave a further 0.4% WER reduction. The experimental resisitsg Tandem-SAT acoustic

3Using stop words didn’t affect performance in our experitaen
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models are shown in Tab&3 PLSA and LDA gives comparable PPL and WER results.
A 0.2% to 0.3% WER improvemehtand 8% PPL reduction were achieved. This is con-
sistently better than genre-dependent RNNLMs. It is wodting that the PLSA and LDA
derived from reference (supervised) and hypotheses (emgigpd) gave comparable per-
formances. This indicates that the topic representatiference is quite robust even when
the WER is higher than 30%. The number of topics chosen by B i giving a slightly
poorer PPL and WER than LDA and PLSA. It is maybe related tampater tuning since
the number of topics chosen by HDP was found to be sensitiirgtial parameters. Table

. PPL
Topic M | Sup BNN ‘ +4g|m\ WER
- - 152.5| 113.5| 31.38
hyp || 137.8| 106.3 | 31.16
PLSA ref || 137.3| 105.1 | 31.08
LDA hyp || 133.7| 105.0 || 31.14
ref || 134.1| 104.2 || 31.07
HDP hyp || 138.9| 106.6 || 31.19
ref || 138.0| 105.2 || 31.10

Table 6.3 PPL and WER results for RNNLMs with various topigresentation on 1 week
BBC test data. The RNNLMs with topic representation weren&d from scratch. The

number of topics is set to 30 for all topic models. The hyps#isevere obtained using the
4-gram LM.

6.4 gives the PPL and WER results with different numbers of LDgi¢e derived from the
reference. The results show that the performance is faiggnsitive to the number of topics
and 30 gives the best performance in terms of PPL and WER.

N PPL

Topic Dim BRNN ‘ +4g|m\ WER
20 138.7| 106.4 || 31.13
24 139.3| 105.8 || 31.16
30 134.1| 104.2 || 31.07
40 137.1| 104.3 || 31.11

Table 6.4 PPL and WER results for RNNLM adaptation with LDAngsdifferent numbers
of topics on 1 week BBC test data

6.4.3 Results for RNNLM trained with additional Subtitle Data

The baseline RNNLMs with the previous seting were rebuiibgs&n additional 620M of
BBC subtitle data. A 4-gram LM trained on the 620M BBC subtilata was interpolated

4WER improvements are statistically significant.
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LM | #hidden| Topic || PPL || WER
node | Model

4glm - 103.1| 25.61
512 - 93.0 || 25.03
+RNN LDA 85.1 || 24.71

1024 | LDA 81.0 || 24.36

Table 6.5 PPL and WER on 1 week BBC test data using RNNLM tchiore additional
subtitle data.

with the 4-gram LM trained on 1.6 billion words including t60M BBC subtitle data.
More advanced acoustic model techniques were used to irfine\baseline system, which
was used for the ASRU2015 MGB challen@d . RNNLMs were trained on all 630M of
text, consisting of the 620M BBC subtitles and the 11M of atimumodel transcriptioh
RNNLMs with 512 and 1024 hidden nodes were used and compared.

Table 6.5 presents the PPL and WER results with the additional 620Migvof BBC
subtitles. RNNLM with 512 hidden nodes trained on 630M giadarther 0.6% reduction
in WER. RNNLMs with LDA topic features provided an additidi®a3% WER reductiof
and a 8.5% PPL reduction with unsupervised topic adaptakiarthermore, RNNLM with
1024 hidden nodes, adapted by LDA gives further 0.3% WER avgament. RNNLM gives
a total of 1.2% WER reduction over the baseline ASR system.

6.5 Summary

In this chapter, RNNLM adaptation at the genre and show leeeé compared on a multi-
genre broadcast transcription task. A number of adaptatpproaches were examined.
Simple fine-tuning on genre specific training data and theofigegenre code as an addi-
tional input give comparable performances. Continuousoreopic representations includ-
ing PLSA, LDA and HDP were incorporated into the training MIRLMs for show-level
adaptation, and consistently outperformed genre levgdtatian. Significant perplexity and
moderate WER reductions were achieved for speech recognikurthermore, the use of
LDA based topic adaptation was also effective and offeraetsistent improvement when
RNNLMs were trained on a much larger corpus.

5The 11M acoustic transcription was placed after 620M setdita in the training data.
SWER reduction is statistically significant.






Chapter 7

Interpolating RNNLMs and n-gram LMs

The characteristics and generalisation patternsgfam LMs and RNNLMs are expected

to be different and possible complementary to each othender to take a advantage of the
strengths of these different modatsgram LMs and RNNLMs are usually combined using

a context independent, fixed weighting based linear intatpm in state-of-the-art ASR
systems 153 154, 217, 32, 38]. The same approach was previously used to combine mul-
tiple n-gram LMs trained on a diverse collection of data sourcesdi8sussed in Chapter
2.3.3 in order to reduce the mismatch between the interpolatedabiithe data of inter-
est, interpolation weights are often tuned by minimizing plerplexity on data from target
domain fL10 119 106 187, 49]. These interpolation weights indicate the “importancgé” o
individual component LMs for a particular task.

In order to fully exploit the locally varying complementaattributes among component
LMs during interpolation, a more general history dependenth of interpolation can be
used to combina-gram LMs [L41] where the interpolation weights depend on the word his-
tory. A similar local variation of probabilistic contribion fromn-gram LMs and RNNLMs
across different contexts during interpolation has beesa e#ported171]. The perplexity
analysis oven-gram LMs and RNNLMs in 171] suggests this variation is heavily cor-
related with the underlying context resolution of compdrnaigram LMs. For example,
RNNLMs assign higher probabilities when thegram LMs’ context resolution is signifi-
cantly reduced via the back-off recursion to a lower ordad eonversely when a longer
history can be modelled by thegram LMs without using back-off. Inspired by these find-
ings, a back-off based compact representation-gfam dependent interpolation weights
is described in this chapter. This approach allows robusglwgarameter estimation on
limited data. Experiments are conducted on the three tagksvarying amounts of train-
ing data. Small and consistent improvements in both peitglexd WER were obtained
using the proposed interpolation approach over the baséhiad weighting based linear
interpolation.

This chapter is organised as follows. Linear interpolaifirst briefly reviewed in
Chapter7.1 Back-off based interpolation is investigated in Chapt@and two methods
for back-off based interpolation are proposed and compd&eperiments are conducted in
Chapter7.3and this chapter is concluded in Chaplet.
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7.1 Linear Interpolation

Methods to combine multiple language models had been stagid compared ir2R, 141,
101]. These techniques are investigatedegram LMs and their derivations, such as topic
basedn-gram LM and cached basedgram LM as discussed in Chapti3.6 RNNLMs
are inherently different fromm-gram LMs in terms of their generalisation patterns. Fos thi
reason, RNNLMs are usually linearly interpolated witigram LMs to obtain both a better
context coverage and strong generalisatithd] 217, 196, 62, 172 131]. The interpolated
LM probability is given by,

1
Z(h)

whereZ(h;) is the normalisation ternty, = W{)‘l represents the complete historywaf and
A is the global weight of the-gram LM distributionPy¢(+), which can be optimised using
the EM algorithm on a held-out set.

To guarantee the interpolated probabiFtyNi\V\/"O‘l) be a valid probability, the sum to
one constraint needs to be satisfied,

ZVP(Wi whp ) =1 (7.2)

Pwi Wy %) = =2 (ARG (Wilwh ) + (1= A)Prn(wilwg ) (7.1)

whereV is the vocabulary. For linear interpolation shown in Equai. 1, the normalisation
term can be written as,

2= 5 (AP (i) + (1= ) Pr (i ;) )

wie

—A+(1-2)=1 (7.3)

The normalisation terrd(h;) is always 1 in linear interpolation. Hence it provides a denp
way to combine two language models.

7.2 Back-off Based LM Interpolation

7.2.1 Generalised LM Interpolation using Weight Clusterirg

As discussed in Chapt@r3.3 in order to fully exploit the complementary attributes ailgo
different language model architechtures, a more genemal & linear probability interpola-
tion betweem-gram LMs and RNNLMs based on word and history dependentw®ican
be considered as below,

. 1 . .
PG ) = 5 (A Pu (g ) AT L Pruwiiwg 1) (74)
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(NG) (RN)
whereA (Wi (i

weight for RNNLM given the predicted wong; and historyw'b‘l. This term is computed
as,

is the interpolation weight fon-gram LM andA is the interpolation

Z(h) =y ( <m“fjv.61)PNG<wwo1>+A(<§;T3%1>PRN<W|W()1>) (7.5)
weV
Z(hy) is the normalisation term to ensure that the predicted wovbability mass is a valid
function. This approach requires a large number of intejpmh weight parameters to be
robustly estimated and therefore leads to a data sparsi ifor limited data, which is
similar to simply estimatingi-gram LMs. A general solution to handle this problem is
to share weights within groups of contexts where the comtivbs fromn-gram LMs and
RNNLMs are similar. Using this approach a more compact pr&tion of then-gram
dependent interpolation weights can be derived. The wieiglased linear interpolation in
Equation7.1is thus modified to,

—~

: 1 . :
Iwi—1) — (NG) i—1 (RN) wi—l
I:)(W||Wlo ) = Z(h) (Acb(wi,vv‘bl)H\IG(W' |Wo )+)\¢<Wi7%71) I:)RN(W||WIO )) (7.6)
where then-gram dependent interpolation weigh\é'\(lvc;) Wi 1) and)\é?\',\'v? Wi ) are positive
1YW 1,0

values and shared using argram clustering functio®(-). A normalisation ternZ(h;) is
also required to ensure the interpolated LM probabilitiesvalid. This normalisation term
is computationally heavy as it no longer always equal to Ine@sl interpolation in Equation
7.3

The above form of interpolation based orgram weight classing is illustrated in Fig-
ure7.1l Usually, the interpolation weights afgram LM and RNNLM satisfy,

(NG) (RN) _
)\m(wi%,l) +)\¢<Wi%,1) =1 (7.7)
By definition, the standard fixed weight based linear inteEfon in Equation7.1is
subsumed by the more general form of linear interpolatidignation?.6, and is equivalent
to assigning all contexts to a single class and fixed intetpol weights are used.

7.2.2 Interpolation using Back-off for Weight Clustering

A central part of then-gram class dependent interpolation approach given in titqua.6
is to derive an appropriate form of context class mapphig. For interpolation between
back-offn-gram LMs and RNNLMs, a suitable weight classing schemepgeted to reflect
the variation of the probabilistic contribution from thdse component LMs. In previous
research it was found that this variation was heavily catesl with then-gram LM’s un-
derlying context resolutioril[71]. This is represented by the highest availaiigram order
obtained through the back-off recursionmsgram LM in Equatior2.27.

The back-off scheme in-gram LM was first discussed in Chap&B.2and is recalled
here. An example back-off recursion for a 3-gram LM is illastd in Figure7.2 When



112 Interpolating RNNLMs andh-gram LMs

P (Wi wp ) wy  PRu(W wo b P(wilwh )
() A (Wi ,Wio_l) () ()
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Fig. 7.1n-gram dependent interpolation of n-gram LM and RNNLM.

the trigram probabilityP(w; |w;_1,w;i_») is estimated directly in the 3-gram LM, there is no
back-off and the back-off level is 3. When tRéw;|w;_1,w;_») does not exist and its back-
off 2-gram LM probability is used instead, the back-off lexe2. Similarly, when it backs
off to unigram, then the back-off level is 1.

back-off level

3 ‘ P(Wi|Wi_1,Wi_2) ’

‘ y(Wi—1,Wi—2)

2 [ P(wilwi_1) }

y(Wi—1)
1 [ P(w) ]

Fig. 7.2An illustration of back-off scheme in a trigram LM.

This correlation in perplexity is presented again in thiamtier based on the Penn Tree-
Bank (PTB) corpus as irl[7]1]. A detailed breakdown of the perplexity performance of the
baseline 5-gram LM, RNNLM and their linear interpolatioreowdifferentn-gram context
groups of varying back-off orders on the PTB test data is shiowfable7.1 The 5-gram
LM outperformed the RNNLM in terms of the overall perplexi#s expected, significant
perplexity reduction can be obtained using standard opédiinear interpolation as shown
in 7.1 (3rd line in Table7.1). A large variation in the 5-gram LM'’s contribution charac-
terised by the rank ordering in perplexity against the RNNawér different back-off orders
is also clearly shown in Tabl@.1 This is due to the fact that-gram LMs and RNNLMs
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employ inherently different mechanisms to acquire gemsatbn. n-gram LMs are more
powerful in predicting the probabilities of frequently acdng n-grams using higher order
context modelling, while RNNLMs’ strength lies in their &tyi to predict rare events.

Table 7.1 Perplexity performance of baseline 5-gram LM, RNNand their linear interpo-
lation over varying back-offi-gram orders on PTB test set.

n-gram LM back-off level
LM 19 | 29 | 3g | 49 | 5g | Overall
| #words || 15594 | 33646| 19655| 9502 | 4033| 82430 |
5gim 9157.3] 198.0| 264 | 83 | 2.5 141.5
RNN 4633.7| 183.4| 38.7 | 179 | 6.0 150.8
5gIm+RNN || 4697.6| 161.6| 269 | 9.4 | 3.0 | 118.3

The above analysis suggests that the back-off order camdgran indication ofi-gram
level varying probabilistic contribution. The interpatat weights can be clustered into
a small number of classes based on their back-off orders. wHEight parameters can be
robustly estimated even on a small amount of held-out dakee associated interpolation
weight classing is thus computed as,

F(w,wg ) = g (WW_E )

B {n if <wj,w"! >€Gng

Mne (Wi, WL, ) otherwise (7.8)

n+2

whereGyg = {...,<w,h’>,...} contains all the unique observeegram contexts that the
n-gram LM Byg(- ) models. I‘(w.,wI 1) can be viewed as the back-off order in thgram
LM for word w; with historbe‘l. However, the optimisation of interpolation weights is
not easy due to the normalisation tedth;) in Equation7.5. Stochastic gradient descent
is applied for the optimisation on a held-out set. The im&apon weight forn-gram LM

and RNNLM)\(( )wi 1 and)\(FEN)WI 1y can be any positive value in theory. Normally the
0
following condition is retained for each back-off level thg optimisation.
(NG) (RN) _
)\r(Wh"‘fo Y) +)\ M(wwg ) ! (7.9)

This form of interpolation will be denoted asgram LM & RNNLM and the interpolated
probability can be written as,

P (wi[wy ) = ﬁ (Ar(?l\,a%l) P (Wijwh 1) + Ar(?xi%fl) Pr (Wi \V\’i&l)> (7.10)

7.2.3 Back-off based Interpolation with Rescaling

Then-gram class dependent interpolation approach given in tiqud. 10 requires a nor-
malisation ternZ(h;) to be computed for each distinct history over multiple weiglasses.
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As such term is also dependent on the interpolation weightirect optimisation of the
weight parameters by maximising the interpolated LM pralitgds in Equation7.10is a
non-trivial problem. Computationally expensive numerigptimisation methods are re-
quired.

In order to improve efficiency, an alternative novel formmgram class dependent
interpolation between back-off LMs and RNNLMs is consider€his is given by,

P (W) = A s NG WG ) + (1= A i) ) Br o) (Wo )Py (Wil )

where then-gram context class and history dependent normalisatiom @(Wi ws ) (V\f'(;l)
is independent of interpolation weight parameters and caetpas below,

Twreu® | P (W g )

o

- eyt POV )

Be(wy 1) (7.11)

-1
0

wherek = I (w; ,vv"o‘l), andw\f\';),l is the set of wordv' whose back-off level equal tq given
0

historyw} 2.

wv(éll — (W T (W wh ) =k} (7.12)
The whole vocabulary can be written as,
K
v=Uu, (7.13)
k=1 ©

whereK is the highesh-gram level.
Recalling the general form of interpolation in Equatitl, Equation7.11is a specific
case under the following conditions,

NG) |
Ar(Wi ,Wi071) - )\r(Wi 7\/\1'071)
RN
Ar(<w3w;;1) = (L= A ) ) Br o) (7.14)
Z(h) =1

As the above normalisation term is no longer dependent omtkepolation weights,
weight parameters associated with different classes captomised independently of each
other using the conventional EM algorithm on held-out d&aring evaluation, this nor-
malisation term can be computed for each pairing of the uyidgrweight class and history
only once and cached for efficiency. In common with the imtéaon approach given in
Equation7.6, the form of interpolation in Equatioh 11also requires a suitable interpolation
weight class assignment among differargram contexts. The back-off based interpolation
weight classing given in Equatioh8is used.
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The resulting back-off based interpolation given in Equai.11retains the probability
mass of alln-grams sharing a common history and the same back-off basgghiiclass.
This probability mass is then be redistributed using the RMNlistribution during inter-
polation. In this process, potential bias to tkgram LM distribution may be introduced
in the final interpolated LM probabilities. In order to adskethis issue, it is possible to
further improve generalisation performance by combinhejihterpolated LM probabilities
obtained using Equation.11with RNNLMs using the conventional fixed weighting based
interpolation. _ _ _

Pwiwy 1) = AP®(wi|wy )+ (1—A)Pry (Wi [wy 1) (7.15)

The back-off class dependent interpolation weig{‘ulg(wi %71)} and the top level linear

interpolation weightA can be optimised iteratively using the EM algorithm on a Feid
set. This form of interpolation will be denoted asdram LM ® RNNLM) + RNNLM.

7.3 Experiments

Experiments were conducted on three tasks with differerants of training data to show
the effect of back-off based interpolation. These threpa are refered as Penn TreeBank
(PTB), Babel and Multi-Genra Broadcase (MGB) data. The daBabel project was used
in Chapters.5.3but with different languages and the MGB data used in Ch&pote® The
statistics of the three corpora are given in the followingea

Table 7.2 Statistics of the three corpora used for experisnen

| Corpus| #Voc | Train | Eval |
PTB 10k | 860k | 79k

Babel | 24k | 290k | 52k
MGB | 64k | 650M | 180k

7.3.1 Experiment on Penn TreeBank Corpus

First, the Penn TreeBank (PTB) corpus was initially usedaiidate the previous findings
reported in L71]. The 860k word PTB training data and a 10k vocabulary weetlus\
development data set of 70k words was used for parametergui separate 79k word
test test was used for performance evaluation. The petpl@XPL) results of the 5-gram
LM and RNNLM are shown in Tabl&.3 The PPL scores of the two LMs over different
context groups associated with varying back+efjram orders are shown in the first two
rows. These results were previously presented and distusSable7.1 The third line
(5G+RNN) shows the PPL score breakdown of the final linearpdlated LM. The linear
interpolation weighA was perplexity optimised on the development set. Accortbrigese
results, the conventional form of linear interpolation gawod generalisation performance
on each back-off order context group via a simple probatéiteraging. The overall PPL
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was reduced from 141.5 to 118.3. In particular, this stashfiaed weighting based interpo-
lated LM gave significant improvements in PPL for the groupaitexts where the 5-gram
LM backed off to 1-gram.

Table 7.3 PPL results on test set of PTB corpus.

n-gram LM back-off level

LM 1 | 2 | 3 | 4] 5 Overall
#words 15594 | 33646| 19655| 9502 | 4033| 82430
5gim 9157.3| 198.0| 26.4 | 83 | 25 141.5

RNN 4633.7| 183.4| 38.7 | 17.9| 6.0 150.8
5gIm+RNN 4697.6| 161.6| 269 | 94 | 3.0 118.3
5gIm@RNN 4568.1| 163.0| 274 | 9.1 | 2.9 117.8
5gIm®RNN 5472.1| 170.0| 243 | 79 | 24 117.6
(RNN®5gIm)+RNN || 5230.7| 167.8| 24.7 | 81 | 25 117.0

The fourth line (5gIMbRNN) gives the results of the first back-off based interpola-
tion method introduced in Chapt@r2.2 where the interpolation weights were optimised
with stochastic gradient descent. It gave a slight overfall Fnprovement. The fifth line
(5glmxRNN) presents the results of the back-off based interpmiagipproach of Chap-
ter 7.2.3 As discussed, this form of back-off based interpolatidairs then-gram LM’s
probability mass of alh-grams sharing a common history and the same back-off oederh
weight class, and re-distributes it using the RNNLM digitibn during interpolation. It can
be seen from Tablé.3that the PPL score was improved on each back-off level coedaar
the baseline 5-gram LM. The interpolation weigiiton each back-off level was efficiently
optimised independently via the EM algorithm on the develept data. The optimal in-
terpolation weightA,} for the 5-gram LM were{0.25,0.4,0.5,0.55,0.55} for varying
back-off levels from 1 to 5. As expected, a general trendattal found that th&-gram
weight increases with the back-off order. The back-off daseerpolated LM probabilities
could be further linearly interpolated with the RNNLM (withweighting 0.9:0.1) using
Equation7.15 This gave further small improvements in perplexity.

7.3.2 Experiments on Babel Corpus

The next experiment was conducted on the BABEL corpus (A&PA-babel202b-v1.0d)
and used Full Language Pack (FLP) of the Swabhili language-ghagh LM (3glm) with
slight pruning and RNNLM were both trained on 290K words ofttéatd. The test set
includes 52K words. The vocabulary size is 24K. All vocabylwords were used in
RNNLM input and output word listst during training. A totaf 200 hidden units were
used. RNNLMs were trained on GPU as described4@.[ The PPL and WER results
are shown in Tablg.4. A pattern similar to that observed on the PTB task in Tabk
was found. Standard linear interpolation reduced the dveRd score by 7% relative com-
pared with the 3-gram LM. A detailed analysis on each batkestl showed that linear

1A 4-gram LM gave no further improvements of ASR performarigemgthe small amount of training data
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interpolation improved the PPL score by 25% relative on tlbeds where the 3-gram LM
backs off to 1-gram, while no improvements were obtainedHerother two back off levels.
The back-off based interpolation by simply clustering (BgRNN) provided slight PPL
reduction and obtained the same WER as linear interpolafibe back-off based interpola-
tion (3giImxRNN) reduced the PPL consistently on each back-off levelpzmed with the
3-gram LM. A small overall PPL reduction was also obtainedrahe conventional fixed
weight based linear interpolation. The optimal interpolaiveights assigned to the 3-gram
LM were (0.25, 0.6, 0.65) for the back-off levels from 1-gram8-gram.

Table 7.4 PPL and WER results on Swabhili for Babel

LM PPL WER

n-gram LM back-off level| Overall

1 | 2 | 3

#words 19687 | 28355| 7156 | 55198
3gim 3510.4| 107.1| 19.0 297.2 | 47.3
RNN 2387.3| 145.6| 29.9 321.6 -
3gIm+RNNLM 2618.3| 107.9| 21.5 273.0 | 46.8
3glm®RNN 2602.6| 107.6| 21.6 272.2 | 46.8
3gIm2RNN 2933.9| 102.0| 18.7 271.3 | 46.9
(3giImRNN)+RNN || 2850.4| 103.0| 19.2 270.7 || 46.7

ASR experiments were then conducted on the same BABEL taskatoustic models
were trained on 46 hours of speech. Tandem and hybrid DNNssstvere trained sepa-
rately. A frame level joint decoding was then applied to corelihe acoustic scores of the
two systems233. The baseline 3-gram LM was used in the first decoding stagkaftice
generation. N-best (N=50) rescoring was then applied usiagnterpolation between the
RNNLM and 3-gram LM. The word error rate (WER) results arevghdn Table7.4. The
baseline 4-gram gave a WER score of 47.3%. Standard linespoiation gave an absolute
0.5% WER reduction. the back-off based interpolation gageraparable WER score of
46.9%. A further linear interpolation using Equatisri5between the back-off based inter-
polated LM and the RNNLM (with a weighting 0.9:0.1) gave tbe/ést WER of 46.7% in
the table. A statistical significance test was carried odtitimdicated that the improvement
from back-off based interpolation was statistically imsfgant.

7.3.3 Experiments on MGB Corpus

The previous experiments were conducted on a relativelyl smeunt of training data. In
the next experiment a much larger training set based on the BRBIti-Genre Broadcast
(MGB) challenge task was used650M words of text data were used in the baseline 4-
gram LM (4glm) and RNNLM training. The hybrid DNN acoustic de was trained on
700 hours of data. A 64K vocabulary was used. A total of 50@é&ndnodes were used in

2The detail of MGB challenge could be found from http://wwwlorchallenge.org/
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the RNNLM. A 46K input shortlist and 40K output shortlist veaused in RNNLM training.
The results are shown in Tabfeb. The complementary attributes of 4-gram LM (4glm)
and the RNNLM on each back-off level were consistent withgteyvious two tasks. There
was only 3.6% of alh-gram requests that back off to 1-gram due to the large amafunt
training data being used and low pruning threshold. In commith the previous two tasks,
RNNLM was found to perform better than 4-gram LM when thedatiacks off to 1-gram
or 2-gram probabilities, while vice versa when it retainégdgram or 4-gram modelling res-
olution. The baseline linear interpolation gave a significa/erall reduction in perplexity.
On each back-off level, the reduction in perplexity incesasvhen the back-off level de-
creases. Again the back-off based interpolation with synepistering (4glnrieRNN) gave
slight PPL improvement and the same WER compared to lingarpalation. The back-
off based interpolation with rescaling (4giRNN) slightly outperformed the conventional
linear interpolation. In terms of WER results, the lineaenpolation reduced the WER by
0.7% absolutely. 4glmRNN and 4ginwRNN+RNN gave a small further reduction of of
0.1% absolute and gave an overall improvement 0.8% absolgethe baseline 4-gram
LM. Again, the improvement from back-off based interpadatis statistically insignificant
according to the result of a statistical significance test.

Table 7.5 PPL and WER results on MGB task

LM PPL WER
n-gram LM back-off level Overall
1 | 2 | 3 | 4
#words 7362 | 60578| 78528| 56291 | 202759
4gim 18731.7| 733.2| 76.0 | 11.7 | 108.7 || 26.2
RNN 5868.1 | 564.3| 79.0 | 21.8 | 116.2 -
4gim+RNN 6782.0 | 560.3| 68.2 | 13.4 | 96.3 25.5
4gImaeRNN 6440.7 | 563.0| 68.7 | 12.7 | 95.1 25.5
49Im@RNN 7145.7 | 593.5| 70.0 | 115 | 94.9 254
(49iIm®RNN)+RNN || 6800.4 | 584.2| 69.5 | 11.8 | 94.7 25.4

7.4 Conclusion and Discussion

In order to exploit the complementary features amaorggam LMs and RNNLMs, a stan-
dard form of linear interpolation based on fixed weights idely used. Motivated by their
inherently different generalisation patterns that areedated with the variation of the un-
derlyingn-gram LM context resolution, a novel back-off based compeptesentation of

n-gram dependent interpolation weights is proposed. Thpgsed technique allows the
interpolation weights shared at each back-off level to lieneged both efficiently and ro-
bustly. Experimental results on three tasks of varying ameaf training data show that the
proposed back-off based linear interpolation betwegnam LMs and RNNLMs provided

a simple but powerful way to combine them. Small but consistaprovements in terms of
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both perplexity and WER reductions were obtained over theeational fixed weighting
based linear interpolation.






Chapter 8

Experiments on Meeting Transcription

In this chapter, the techniques discussed in the previcastels will be applied to a meeting
transcription task. Meeting transcription is a very usedald highly challenging, task. Many
researches have examined a range of approaches for awdalhyatianscribing meeting
data [L84, 89, 20, 90]. These have normally been applied to standard corpordy asc
those used for NIST evaluation8g, 67]. The well-known AMI corpus and related public
meeting data are used in this work to allow a contrast withpiteeious published results.
In addition to this publicly available meeting data, the &geGroup at Toshiba Research
Europe Ltd, Cambridge Research Laboratory, undertookat@rding of meetings, related
to speech recognition and synthesis projects, over a nupfbaonths. This corpus will
be referred to as the Toshiba Technical Meeting (TTM) dathe performance on TTM
data is expected to reflect the performance on real-life img&tith mismatched acoustic
condition. The ASR system is constructed with HT25§] on the public meeting corpora.
Various language models includimggram LMs, feedforward and recurrent NNLMs are
evaluated and compared.

8.1 Data Description

Two corpora are used in this chapter. The first is from the Aktljgxt [27]. This data
Is used for training acoustic and language models, and ssig@mallow comparason with
existing systems. The second is the TTM data, which is usedalsation test set to reflect
the performance on a less mismatched meeting data. For bgtbra only the multiple
distant microphone (MDM) data is used. Beamforming is pentd using thé8eamformit
tool [15§ to yield a single audio chanrlel

8.1.1 AMI Corpus

The Augmented Multi-party Interaction (AMI) corpu®] was collected for research and
development of technology that may help groups interadebetAs part of this corpus,

1Currently there is no Wiener filtering in the front-end prssieg, as used for example i89, which
should yield performance gains.
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speech data was collected in close-talking and far-fieldaopitones, and high quality tran-
scriptions generated. This data was collected in a scesatiop where 4 people were
allocated roles and asked to discuss the design of a remotetanit [27]. In this thesis
only the far-field microphones, multiple distant micropkatata (MDM) was used as this
is felt to be the scenario for meeting transcription appioca Additionally, the overlapping
speech data was removed from both training and test data.yidlded about 59 hours of
data. In addition to the AMI corpus, 52 hours from the ICSlprey L0 and 10 hours
from the NIST corpus were also usetB] for training. ICSI meeting data was recorded in
the conference room in ICSI. These meetings were recordecetihss the group meeting,
discussing research at ICSI. NIST also provides a pilot mgelata corpus.

Table 8.1 Summary of the AMI Test Data

Test-Set Meeting # Hours
id Speakerg Duration |Ref. SegAuto. Seg
Dev IS09 4 1.82 1.28 1.49
ES09 4 1.92 1.37 1.62
Eval ISO8 4 1.59 1.12 1.25
ESO8 4 2.22 1.52 1.77

| Totals|| 755 | 529 | 6.14 |

Table 8.2 Summary of the Meeting Training Data

| Corpus|| # Session # Speaker| Ref. Seg (Hours)

AMI 152 175 59
ICSI 52 75 52
NIST 19 51 10

Totals 223 301 121

Four meetings were held back from the AMI data to provide anl ARV and eval set,
each contains two meetings, with 4 speakers per meetingddtiaded analysis of this data
Is given in Table8.1 The two meetings labelled as 1IS09 and ES09 were chosen dsstev
set; 1ISO8 and ES08 were used as eval test set. As overlappéeglis was not evaluated
this yielded a total test set size of about 5.29 hours, as slimtheRef. Segolumn in the
above table. The quantity of automatic segmented datager#nan that in the reference as
it includes overlapping speech which is ignored for scaring

The total available data for training, after removing thedt tmeetings, was about 121
hours of data. The breakdown of the training data can be seBabie8.2 This is the same
configuration, and held-out test sets, as use@@h [
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8.1.2 Toshiba Technical Meeting Data

The second corpus was collected at Toshiba Research Eutdjgedambridge Lab. The

corpus was collected in a meeting room (shown in Figufg with between 6 and 9 partic-
ipating in each meeting. The data was recorded using a ntioraparray. A single micro-
phone array was placed in the centre of a meeting fodihis limited the nature of the data
that can be collected: no close-talking microphone dataadable; individuals were able
to sit where they wanted; and move to give presentations\a tsde” conversations. The
Toshiba ASR and TTS technical meetings were recorded, theskved discussion of the

on-going research projects and future plans. Comparecetdhti corpus, the TTM data

has a greater distance from the microphone to the speakex higther level of noise. The
level of background noise is also much higher in this meatomgpared to both the training
data and the AMI testsets. A subjective estimate of SNR ofitketing is around 0 to 5dB
but it varies by speaker. These differences will be refleatedhigher baseline WER than
for a typical meeting from the AMI corpus. Additionally it waagreed that this data would
never be made publicly available or used to assess the pefme of individuals.

< L=9.0m >

reverberation
Spk2 e Spki

(non-native speaker) (non-native Speaker)
Spkl

(native speaker)
W=6.3m
o oo
a

Single Mlcrophone Array

H=2.6m SPkN
v (native speaker)

Fig. 8.1Toshiba Technical Meeting Recording Configuration

A sequence of TTM meetings were recorded over two years. A6&sare collected,
which are 179 hours in length. All meetings were truly hel@ashiba, including 15 shows
(20 hours) for ASR project, 61 shows (57 hours) for TTS pripj&8 shows (44 hours)
about discussion on acoustic modelling, 35 shows from tbagmeeting (41 hours) and
meetings with outside parties, etc. Neither speaker nareate information is available.
This corpus was explored for long-term adaptation as desdrin [38].

An initial group of seven shows (8.88 hours) were selecteda3 TM testset to evaluate
performance. Tabl8.3 shows the details of these seven meefindgote that overlapping
speech was again removed from the reference.

2Multiple microphone arrays could address some of the issiigsrved with distance from the microphone.

3Meeting T0004 had a large amount of silence at the end of t@rdeng (0.63 hours) as the recording
equipment was not turned off. This silence was correctlgctet by the automatic segmenter. The statistics
in table8.3are after this data has been ignored.



124 Experiments on Meeting Transcription

Table 8.3 Summary of the Toshiba Technical Meeting (TTM)aDat

Genre Meeting # Hours
Speakerg| Duration| Ref. Seg| Auto. Seg
A0001 7 1.83 1.47 1.50
ASR  A0002 7 2.27 2.10 1.72
A0006 6 1.67 1.59 1.30
TO001 9 1.08 0.99 0.82
TS T0002 8 1.23 0.99 0.91
TO003 9 1.19 1.01 0.88
TO004 9 2.11 2.00 1.74

[ Totals | 11.38 | 10.16 | 8.88 |

Comparing the statistics in Tab&3 and Table8.1 indicates that the performance of
the automatic segmenter was different on the TTM data theaAMI data, with significant
amounts of speech data being missed. This may partly beieggdlay the larger room and
additional noise from a fan in the meeting room in the TTM data

Manual transcriptions were provided as reference for exadn. As this data was tran-
scribed early in the collection, it is related to meetingidgrthe intial phase of data col-
lection. To assess the quality of the professional trapsons, the first recorded meeting
(denoted as A0001) was also transcribed by people who wesept at the meeting and
familiar with the attendees and their accents. This willdfenred to as the “gold-standard”.
Table8.4 shows both the microphone distance and word error rate girthfessional (man-

Table 8.4 Microphone distance and WER results of manuastrgstion and ASR result
compared to “gold-standard” on meeting AO001

[Speake A~ B C D E JAvg|
[Dist(m) 21 21 12 16 1.2 — |

Manual | 16.4 157 82 7.6 29| 10.6
ASR 68.6 664 749 70.2 55.464.8

ual) transcriptions, compared to the “gold-standard”, pedormance of an initial ASR
system. Speakers C, D and E are native UK English speakeike sgeakers A and B
are non-native. The professional transcribers sometitn@secan incorrect word sequence,
though the transcriptions were phonetically similar to¢berect word sequence. The over-
all WER is 10.6%, which indicates the TTM data is a highly &ading task. The tran-
scribers had difficulty with non-native speakers (A and Blpahese and Chinese names,
technical jargon and abbreviations. These are not issugetiple familiar with the partic-
ipants and topics. For example, these are able to general:Standard”. However, these
“gold-standard” transcriptions are very difficult to obitas they require transcribers with
expert in-domain knowledge of both the meeting topic andigpants. For this work the
“gold-standard” was used as the reference for meeting AG&id the manual transcriptions
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were used for the other six meetings. The lowest WER speakéné ASR system was the
same as the manual transcribers, a speaker close to thephmcre. However, there was no
consistent pattern over the other speakers.

8.2 Baseline System

The ASR system was constructed using the HTK v3.5 from CadgbriJniversity 257.
First of all, in order to validate the performance of the HTd6lkit, both Kaldi and HTK
toolkits were used to build the Hybrid system using the stiathd\MI train and test set as
Kaldi recipé’. The same language model was used for decoding. The expeainesults
show that they gave comparable performances. More detml®e found in AppendiB.
All experiments in this chapter are based on the HTK toolkit.

8.2.1 Acoustic Modelling

Two forms of acoustic model were examined for meeting trapgon. These will be re-
ferred as,

» Tandem SystenBp|: GMM-based systems using PLP and bottleneck (BN) features
* Hybrid System $1]: combining HMMs and DNN posteriors.

All systems were based on state-clustered decision-tig®otie models. The same 6000
distinct states were used for both the GMM and neural netwased systems.

A GMM system with PLP feature was built to initialise the blase system and make
use of the publicly available combilex dictionard85. The system was built in a similar
fashion to that described ir2(]. 13-dimensional PLP features were extracted from the
data and delta, delta-delta and triples appended. CMN, CMiNHeteroscedastic linear
discriminant (HLDA) [L27] were then used for feature normalisation and projection. O
average each state had 36 Gaussian components. This yae3@edimension feature vector.
The minimum phone error (MPELF§ criterion was used to train these initial acoustic
models. Speaker adaptive training (SAB] pased on constrained maximum likelihood
regression (CMLLR) 8] was also used. Additionally MLLR was used to adapt to the
target test speaker for the GMM-based systems. For allmgstesing speaker adaptation
the supervision for the adaptation was obtained from thalsgeindependent (SI) MPE
baseline PLP-based GMM system. Note that adaptation wadsrpexd for each speaker
per meeting. Thus, though the same speaker appears in lmahgetings this knowledge is
not used.

This initial system, was then extended to a Tandem systerpgralding bottleneck fea-
tures B5] to the PLP. A deep neural network with four hidden layerdd@0odes per layer)
was constructed. Discriminative pretraining usedlfg was used to train the neural net-
works. For all systems, 9 frames were spliced together to the input layer to the MLPs.

4“The Kaldi recipe for AMI system can be found at https:/giiteom/kaldi-
asr/kaldi/tree/master/egs/ami/s5
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For the Tandem feature used in the Tandem system, the etkdrature was extracted
from the deep neural network using Fbank feature as inpturfeaThe bottleneck feature
was appended to the standard PLP feature. The dimensioe tiotitieneck feature is se-
lected to be 26. A semi-tied covariance (ST69|[transform was applied to the bottleneck
features prior to concatenation with the PLP features. Theslimensionality of the Tan-
dem feature here is 65. The Tandem acoustic models wereubinty the rapid construction
approach described i173. Again MPE training and SAT models were constructed, with
an average of 36 Gaussian components per state.

The second acoustic model was based on a Hybrid system, rasamkas DNN-HMM
systems $1]. The training of neural network in Hybrid system is simitarthe training
of the BN features in the Tandem system. 9 consecutive frareesoncatenated together
as input to the neural networks. The DNN is trained in a supedvfashion and discrim-
inatively layer by layer in pretraining, then it is fine-tuheiith several epochs until the
frame accuracy converges in cross validation set. The rakgn for the targets was ob-
tained from the SAT Tandem system. The Tandem feature usibe@ ifandem system was
adopted as input static feature of the deep neural work irHytaid system. sequence
training [115 214, 232 was applied for deep neural network (DNN) training.

Joint decoding?.2.4is used to combine Tandem and Hybrid systems for better base-
line performance. Lattices from joint decoding are thenpaeld for lattice rescoring using
various language models, e.g. RNNLM].

8.2.2 Language Modelling

A variety of sources including the acoustic model transwips (from AMI, ICSI, NIST),
ISL, Callhome, Switchboard, Gigaword and web data colkkbiethe University of Wash-
ington were used for training language model. Language mogkpolation weights were
tuned on the AMI dev set. A 41K word list was used as the LM votaty. 3-gram and
4-gram LMs were trained on a mixture of text corpora. A sumnudithe LM training cor-
pora can be in in Tabl8.5. In total, 2.6G words of language model training data weezlus
It can be seen that the AMI transcription is the most impdrntanpus, giving a interpolation
weight of 0.651. Although the Gigaword corpus contains G Words, it contribute 0.015
in terms of interpolation weight.

Table 8.5 Statistics of the train corpora for the languagelehoThe linear interpolation
weights on each corpus were optimised on the AMI dev set.

| Text Source | # Words| interpolate weighf
Gigaword 1.71G 0.015
University of Washingtor], 910M 0.234
Fisher 21M 0.100
Acoustic Transcription 2.0M 0.651
Callhome+SWB 0.60M 0.001
Total 2.62G
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Table8.6 gives the out-of-vocabulary (OOV) rates on AMI dev, eval émel TTM test
sets. Interestingly the OQV rates for the TTM data were lothan that for the AMI,
scenario-based, data.

Table 8.6 Out of Vocabulary (OOV) % for AMI and TTM test data

AMI
dev | eval

[2.23%] 2.17%]| 1.24%)]

TT™M

8.2.3 Baseline Results

Table 8.7 gives the word error results of the baseline with variousuatio models. A 3-

gram language model was used for decoding. The results afehamnd Hybrid systems
are shown in the first block, labelled AMI. It can be seen thgbhtl system outperforms
Tandem system on the AMI test set and gives the same perfoer@nthe TTM test set.
Both joint decoding and confusion network decoding (CNCjenapplied to combine the
Tandem and Hybrid systems. Joint decoding gave slightliebgerformance than CNC
on these three test sets as it combines the acoustic modeksoothe early stage. The
joint decoding system was served as the baseline systenmarattices generated by joint
decoding were used for lattice rescoring to verify the efedwarious language models.

Table 8.7 WERs of baseline ASR system on AMI and TTM test sdtsa3-gram language
model

AM AMI
dev | eval | TTM

Tandem 32.4| 33.5| 55.4
Hybrid 31.4| 319 554
Joint decodeg| 30.4| 31.0|| 52.8
CNC 30.5| 31.3|| 53.6

8.3 Experiments with RNNLMs

In addition to the baseline-gram language models, both feed-forwat@ and recurrent
neural network (RNN) 153 language models were built. Initially, both neural networ
based language models (NNLMs) were trained on about 2 miiords, the acoustic tran-
scription in TableB.5. The 41k decoding vocabulary is used as input shortlist badrtost
frequent 31K words in all train data is chosen as output |ahertlist. An out of shortlist
(O0S) symbol was also used on the output lay€q] to represent all OOS words. The
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probability of the OOS word is divided by the number of all Ofx&les to get a valid proba-
bility over the whole decode vocabulary. Cross entropy elusr the training of RNNLMs
in this chapter as the output layer size is not very large.

The feedforward NNLM has two hidden layers with 600 and 40@easorespectively.
The RNNLM was trained using the CUED-RNNLM toolk#]] with cross entropy criterion.
The model was trained on GPU with a bunch size of 64 as disdus<ehapted. The size
of hidden layer was set to be 256. All the neural network béseguage models are linearly
interpolated with the standardgram language model and the weight was fixed to be 0.5.

Table 8.8 The perplexity for AMI and TTM test data using vasdanguage models. The
feedforward and recurrent NNLMs were trained on 2M acoustigscription.

LM AMI
Order NNLM dev| eval

— 117.1| 110.6| 128.8
3-gram| Feedforward| 98.8| 92.8| 122.2
Recurrent 82.8| 77.7| 112.3

— 114.0| 108.3| 126.7

4-gram| Feedforward|| 90.4| 85.4| 116.6
Recurrent 81.5| 76.5|| 110.9

TT™

Table 8.8 gives the perplexities of various language models. 3-gradchdagram LMs
were combined with the feedforward and recurrent NNLMs Wiitear interpolation. The
4-gram LM gave slight improvement in terms of perplexity quared with the 3-gram LM.
It can be seen that both feedforward and recurrent NNLMsduktp reduce the perplexity
compared with the baselimegram LM. RNNLM yielded the lowest perplexity on all three
test sets. Comparing the three test sets the TTM data hasgihesh perplexity. However
the increase does not explain the performance degradatiGabile8.7. The impact of the
topics associated with the TTM data has not caused a largeatth with language models.

The word error rate results of these language models arermiegsin Table8.9. The
WER results are reported on the confusion network decodid§|[ The lattice rescoring
using RNNLMs was carried out as described in Chaptérhe 4-gram LM improved WER
by 0.3% to 0.6% on AMI and TTM test sets. Feedforward NNLM gameadditional WER
reduction of 0.3% to 0.6%. RNNLM obtained the best perforogain terms of WER.

Table8.10shows the PPL and WER results of different RNNLM structunes i@scor-
ing methods. 256 hidden layer nodes were chosen for both NERA¢ and F-RNNLMs.
and 200 classes were used for the C-RNNLMs. The WER resulstedfbi decoding is
presented in the table. It can be seen that F-RNNLMs gaveoweprPPL results on AMI
dev and eval test sets, as well as better WER results withb&80+escoring. The lattice
rescoring gave comparable WER results with 100-best regrolhe WERs of RNNLM
lattice rescoring can be further reduced to 28.7% and 29.4%NMI dev and eval sets by
applying confusion network decoding on lattice generatechflattice rescoring.

The next experiment was to investigate the LDA based RNNLIdp&ation. The ex-
periment were conducted on the 2M AMI acoustic model trapson. According to the
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Table 8.9 The WERs for AMI and TTM test data using various lage models. The
feedforward and recurrent NNLMs were trained on 2M acoustigscription.

LM NNLM AMI
Order dev\ eval TT™
\ 3-glm \ - H 30.4\ 31.0\ 52.8\

- 29.8| 30.7| 525
4-gram| Feedforward|| 29.3| 30.1| 52.2
Recurrent || 28.7| 29.4| 51.9

Table 8.10 PPL and WER results of C-RNNLMs (class based RNB)LAnd F-RNNLMs
(full output layer RNNLMs) with N-best and lattice rescagiron AMI corpus. The
RNNLMs are trained on AMI acoustic model transcription grishich is about 2M and
cross entropy is used for RNNLM training. The WER results daeibi decoding is pre-
sented in the table

LM rescore PPL WER \
dev | eval || dev | eval

4-gram - 114.0| 108.3|| 30.4| 31.0
+C-RNN 100-best 85.8 | 81.6 || 29.0| 30.1

100-best 29.5| 29.9
+F-RNN lattice rescore 815 765 29.1| 30.0

statistics shown in Tabl8.2 there are only 223 shows for the whole meeting corpus. The
number of meetings is too small to robustly build a topic moHence, the sentences from
the same speaker in each meeting are regarded as a documigig.Way, 1014 documents
are collected to estimate the LDA model with 20 topics. Intitaening of RNNLMs, the
posterior probability over topics for each document is catad and used as auxiliary input
feature during the LDA based RNNLM training. In test timeg thypothesis from the same
speaker in the same meeting is collected as a document ana fieel trained LDA model.
The posterior probability vector can be obtained and usedrisupervised adaptation.

Table8.11gives the WER results for LDA based RNNLM adaptation. Thepfsity
results are not given as automatic segmentation was usexvdtuation. It is difficult to
associate each utterance from automatic segmentatiornthgtheference segmentaion. It
can be seen from the table that, for AMI test sets, the WERopaidnce was degraded by
0.1% absolute for both dev and test sets. A degradation &6 @vds obtained in the TTM
test set. The possible reason for the degradation is tha&kNMiemeeting is not as diverse
as the MGB data used in Chap#r The discussing topics in the meeting data are more
homogeneous. And the amount of training data for topic mivgeivas smaller as wef.
This phenomenon also needs to be further investigated ifutbee work. Hence, in the
following experiments in this chapter, RNNLMs without atktpon were applied.

Susing Fisher data don’t help to improve performance
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Table 8.11 WERs on AMI and TTM test data using 2M transcriptising LDA based
RNNLM adaptation

AMI
dev\ eval
- 28.7129.4| 51.9
LDA 28.8| 29.5| 52.3

Adaptation TT™

Besides the 2M acoustic model transcription, the additidata for the training of the
n-gram language model was also used for training RNNLMs. WAdkshtional data is used
for training, the AMI transcription is always put at the enidtlee whole train file. Hence,
for each epoch, the last seen sentences during trainingareAMI transcription, which
gave better performance in experiments. Tl presents the PPL and WER results for
RNNLMs with more training data and increased hidden layee.siThe first line in Table
8.12is the performance using RNNLM trained on 2M acoustic madeligcription. With ad-
ditional 24M train words from Fisher, Callhome and Switcatmbtranscription, the perplex-
ity and word error rate were be reduced slightly. 0.2% WERroupment were obtained
on both AMI and TTM test sets. The use of 930M WU data gave gogatrovement on
TTM data. However, in AMI corpus, it helps to eval set, whikgdade the WER of dev set.
The increase of hidden layer gave consistent PPL and WERoweprents. When the layer
size size was set to 2048. The WER of TTM test set was 51.1%.d®éh&in adaptation
can be carried out by fine-tuning the RNNLMs on the AMI datajchtis in-domain data
for AMI test sets. The WER on AMI test set can be further imgaby fine-tuning, which
gives a WER of 27.8% and 28.4% on test and dev set respectidelyce, the increase of
training data and model size gave an additional 0.8% to 1.(BRWeduction compared to
the RNNLM trained on 2M transcription.

Table 8.12 PPL and WER results on AMI and TTM test sets with RMN trained on
different amounts of training data.

Train # train | #hidden PPL WER

Corpus words | node AMI ™ AMI TT™
dev | eval dev | eval

AMI 2M 256 81.5| 76.5| 110.9| 28.7| 29.4| 51.9

+Fisher,Callhome,SWB 24M 512 78.5| 74.5| 108.1| 28.5| 29.2| 51.7
512 79.4| 75.7| 103.4| 28.6| 29.0| 51.3

+WU 930M | 1024 || 74.5| 70.8| 100.3|| 28.1| 28.9| 51.2
2048 || 71.8|68.0| 98.1 || 27.9| 28.7| 51.1
Adapt. 512 73.1| 68.8| 101.6| 28.2| 28.4| 51.3

(+AMl.finetune) 930M | 1024 || 69.5|65.2| 99.5 || 28.0| 28.5| 51.2
2048 | 67.7|63.0| 97.3 || 27.8| 28.4| 51.2

The back-off interpolation described in Chaptewas not investigated on the meeting
data since the improvement over linear interpolation isstatistically significant.
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8.4 Summary

In this chapter, RNNLMs were evaluated in the meeting dathe dcoustic model was
trained on public meeting corpora and two matched test sets AMI corpus and one
mismatched corpus from Toshiba Technical Meeting were asdést sets. The ASR sys-
tem based on HTK was constructed. Tandem and Hybrid basest@rmodels were con-
structed and then combined using joint decoding in the frigwed to get better performance.
Various language models including 4-gram LM, feedforwand aecurrent NNLMs were
evaluated on this system. RNNLMs were trained efficientlyG#iJ using bunch mode as
described in Chaptet. In test time, lattice rescoring discussed in Chapteas applied and
followed by confusion network decoding to get better perfance. RNNLMs trained on
different amounts of data were investigated and comparéd. ekperimental results show
that RNNLMs gave the best performance among these languadelsa RNNLM trained
on 2M acoustic model transcription gave 0.6% to 1.0% WER ¢gdn. The use of addi-
tional data allows larger RNNLM to be applied, which furtiaproved the word error rate
by 0.7% to 1.0%.






Chapter 9

Conclusion and Future Work

9.1 Conclusion

Language models are crucial components in many applicit@tuding speech recognition.
n-gram LMs have been the dominant language models for mamg.yel@wever, there are
two well-known issues in the standamegram LMs, which are data sparsity and tikgram
assumption. Many sophisticated smoothing technigBgsjave been developed to address
the data sparsity issue, and various modificatidr®)[ 125 187] based on the standard
n-gram LMs have been proposed to capture longer contexthguiage modelling.

More recently, recurrent neural network was applied to trossword based language
model [L53 and promising results have been reported on a range ofcapipins and tasks
during last several year$$4, 61, 216, 55, 123. Recurrent neural network language models
(RNNLMs) provide a good solution for these two problems ia #tandarc-gram LMs.
Each word in the input layer of RNNLMs is projected into a ldimension continuous
space, which facilitates the implicit sharing of model pagters. The number of parameters
doesn't increase exponentially with the growth of vocalyusaze as in th@-gram LMs. For
the long term history issue in thegram LMs, the recurrent connection between the hidden
layer and input layer is able to model the complete history.

Despite the above advantages of RNNLMs, their long ternotystharacters also bring
some problems, especially when they are used in speechmniéoog For example, it is
difficult to parallel the training using bunch (i.e. minibh) mode and also hard to apply
lattice rescoring as the complete history is required tadiptehe next word. In this thesis,
the application of RNNLMs in speech recognition systemusl&d in various aspects. The
efficient training and inference are investigated in Chagtand the lattice rescoring of
RNNLMs is studied in Chaptés. Researches on adaptation of RNNLMs and interpolation
between RNNLMs and standanegram LMs are discussed in Chap@and7 respectively.

9.2 Review of Work

In Chapter4, the efficient RNNLM training and inference are studied. Traning of
RNNLMs is computationally heavy due to the large output tayed difficulty of paralleli-
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sation. The class based output layer was used widely for RMikHaining on CPUs in
most previous work. A novel sentence splicing method is pseg in this thesis, which
enables RNNLMs to be trained more efficiently with bunch md@BU is also used to fully
explore its parallelisation power for fast computation.si@les the standard cross entropy
based training criterion, two improved training criteriariance regularisation and noise
contrastive estimation, are studied for rapid RNNLM tragmand inference. Experiments
on a conversational telephone speech task show that up itm&¢ $peedup in terms of train-
ing is obtained. The experiments on Google 1 Billion corpgs andicate the scalablity of
NCE based RNNLM training.

In Chapter5, the lattice rescoring of RNNLMs is explored for speech gggtion. Due
to the long term history, the exact lattice rescoring of RNMM_is computationally in-
tractable. Previous work used N-best list or prefix tree fiNRM rescoring, which only
rescore the topl hypotheses and can not generate the compact lattice. Appaitens are
made for RNNLM lattice rescoring to cluster similar hisesi n-gram and recurrent vec-
tor based clustering are proposed and used as criteriagtechistory and combine paths
in lattices. Both of these two approaches are able to geneoahpact lattices, which can
be used in applications including confusion network desgdiExperiments on a conver-
sational telephone speech task and Babel task reveal ttfatrpance gain is obtained by
applying RNNLM lattice rescoring compared to N-best reswpr

Chapter6 describes the work on RNNLM adaptation. Two popular apgreacior
RNNLM adaptation: model fine-tuning and incorporation oformative feature, are in-
vestigated and compared. A range of topic models are usedraxcetopic representation
for efficient adaptation. Experiments on a multi-genre Hoaat corpus are conducted to
show the performance of RNNLM adaptation.

Chapter7 investigates the interpolation between RNNLMs andram LMs. Based
on an experimental analysis of interpolation between RNNlavidn-gram LMs, back-off
level is used as a feature to cluster and share parameteirgdgpoolation. Two back-off
based interpolation algorithms are proposed and inveaetigaThe experiments on three
corpora with different amounts of training words show tline back-off based interpolation
gives small but consistent performance improvement.

9.3 Future Work

This thesis mainly focuses on the applications of RNNLMsgaexch recognition. The effi-
cient training and inference, lattice rescoring, adaptedif RNNLMs and their interpolation
with n-gram LMs are studied. However, there are still many areashwdile for further
investigation. Here a number of suggestions for futurectioes are listed.

* More efficient training of RNNLMs using multiple GPUs. Theoxk discussed in
this thesis focuses on RNNLMs trained on one or two GPUs (jpipe training). For
the training ofn-gram LMs, it is possible to use many CPUs in parallel to speed
up the training. Nowadays, it is not difficult to get multigBPUs for computation.
The training of RNNLMs using multiple GPUs is important anfdpoactical value.
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Asychronised trainingg6] and Hessian free optimizatiod]1q are two promising
choices to utilise multiple GPUs for training.

* Modelling context cross sentence. RNNLMs (and LSTM RNNDMee able to cap-
ture long context. The complete history is used to estimtaentord probability. It
normally captures history from the beginning of the sergerndowever, in many sit-
uations, the longer history beyond the current sentenceaoatain information for
prediction, especially in situations where the sentenaguige short, such as voice
searching.

» Language model with semantic information. Currently,dtagistical language model
is applied widely, which is purely data-driven. The semaitformation of the sen-
tence is ignored. However, the semantic and grammer kngeledntain informa-
tion about the structure of sentence, which is also helgfuldnguage understand-
ing. There are also extensive research interests in paethgiques228 and word
embedding 156. Hence, these sources of information should be incorpdrit lan-
guage model.

» Multi-language RNNLMs. 182 proposed the training of multi-language RNNLMs.
The training corpus consists of sentences from differemydages. The input and
output layers of RNNLMs are language dependent, while tdddn layer and recur-
rent connection is shared among different languages. Thi-laguage RNNLMs
outperformed RNNLMs trained on mono language. Under tlaisiéwork, the multi-
language RNNLM allows words from different languages tggebinto the same low
and continuous space. Hence, many aspects can be furtHerezkpsuch as word
embedding for multiple languages and RNNLM adaptation td@semulti-language
RNNLMs.
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Appendix A

Calculation of Gradient in Noise
Contrastive Estimation

The aim of noise contrastive estimation training is to diegrate data generated from data
distribution (i.e. RNNLM) from some known noise distribori. There is an prior assump-
tion that the noise samples deéimes more frequent than data samples.

Given a wordw and its historyh, let’s denote the probability from data distribution
(i.e. RNNLM) Pryn(wih) and the probability from noise distributid®(w|h). Hence, the
posterior probability ofv generated by RNNLM is,

Prnn(W/h)
P(w e Dlw,h) = A.l
( [w.h) Prnn(W|h) 4+ KBy (w]h) (A1)
The posterior probability of word generated by noise distribution is,
KR, (w|h)
P(we Nlw,h)=1—-P(we Dlw,h) = A.2
(weNwh) = 1-P(we Dwh) = o= b (A-2)

During NCE training, for each train sampigand its historyh;, k noise samples; j(j =
1,2,...k) are randomly sampled from a specified noise distributiog. (anigram distribu-
tion). The objective function is to minimize the negativg jzosterior probabilities over all
samples, which can be written as,

NCEgy — S (InP(w— e D|wi, hy) + % INP(Wi.; € N|V¥ | h-)) (A.3)
NWi; 1 [ERR| & 1,] [N ERE
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The gradient of the above objective function is,

dJNCE(@) :_iNW<aInP(Wi € Djwi,hi) K 9InP(Wi | eN|wi,j,hi)> (Ad)
00 Ny £ 00 = 00
Recalling Equatio\.1 andA.2, the first term in the above equation is,
dInP(wi € Djwi,hj)  dInP(w; € D|w;, hy)
00 B 00
dInPrnn(wi |hy) B dIn(Prnn(wi [hy) + KRy (wi|hy))
00 00
_ 1 IPrNN(W[hi) 1 JOPrnN(Wi | hi)
Prnn(Wi|hi) 00 Pran(Wi [ hy) + KRy (wi [ hy) 00
_ KPR (wihi) IPRNN(Wi hi)
Prn(Wi[hi) (Prn(Wi[hi) + KPy(wi i) ) 06
_ KPh (wi|hi) 0 InPrnn(wi|hy)
(Prnn(Wi [hy) 4+ KRy(wi|hi)) 00
= P(w; € N|Wi,hi)a|nPRNN(Wi|hi) (A.5)
00
Similarly, the second term in Equatidn4 is,
INP(W; j € N|W; i, h; I Ni i [
= (Wwdee M —P(W;j € D\Wi,j,hi)a nPR’\(IyNe(W”' ) (A.6)
Hence, the gradient of NCE objective function becomes,
dJINCE (@) 1 N dInPrn(wilhi) & y A InPryn(Wij|hy)
™ (Plwi & Npw, ) =3 - 3 Py <l h) =5 )
(A.7)
The gradientd"‘PRgig(v"i“‘i) and %‘W can be computed via back-propagation

easily.



Appendix B

Experiment on AMI IHM corpus

In this appendix, HTK and Kaldi toolkits were used to buildastic models based on Hy-
brid system on the same data set to allow fair comparison Ellekimown AMI [27] corpus
is chosen for experiment. Three microphone conditions weesl to build the acoustic
model and evaluate performance, which are IHM (Individuaatiset Microphones), SDM
(Single Distant Microphone), MDM (Multiple Distant Micrdyones) respectively. The
Kaldi AMI recipe was adopted to build Kaldi systéin.The train, dev, and eval sets are
consistent with the Kaldi AMI recipe. A 4-gram LM model wasitred on text corpus in-
cluding 12M words, which consists of 1M AMI transcriptionsdal 1M Fisher data(part 1).
Sequence training were applied for the training of acousticlels for both of HTK and
Kaldi Toolkits. The experimental results are shown in Tahle The WER results of HTK
are reported on output from confusion network decoding adatdf Kaldi are reported on
MBR decoding.

According to the results in Tab&.1, HTK gave better results with cross entropy train-
ing. For the MPE based sequence training, HTK and Kaldi gaveparable performances.

Table B.1 WER results of AMI eval set using HTK and Kaldi Tatdk A 4-gram language
model was used and CN (HTK), MBR (Kaldi) decoding were agplie

Train Toolkit WER

Crit IHM \ MDM \ SDM

CE HTK 27.7| 49.0 | 54.7
Kaldi 28.3| 505 | 57.2
HTK 26.3| 47.0 | 524

MPE Kaldi 259 | 46.9 | 535

1The Kaldi recipe for AMI system can be found at
https://github.com/kaldi-asr/kaldi/tree/master/egs/s5
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