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Abstract

Improving Abstractive Summarization and Information Consistency Assessment
Potsawee Manakul

Summarization is the process of compressing a document into a shorter form that contains
all the relevant information. It is useful in many applications, for example, a brief summary
of the content of an article or a podcast can help decide whether it should be read or
listened to. This summarization process is often split into two distinct research areas:
extractive summarization, which pulls out key phrases directly from the text; and abstractive
summarization, which rephrases and condenses ideas from the text. This thesis examines
abstractive summarization as it can provide a more effective and compact summary of the
information than extractive summarization. In common with other research areas in natural
language processing, deep learning has become the dominant technology in abstractive
summarization demonstrating significant performance gains over more traditional approaches.
Initially, these neural-based models were trained from scratch, with randomly initialized
parameters, relying solely on supervised training. As this meant there was usually limited
training data, the generated summaries often had limited diversity and fluency. The recent
shift to using foundation models, trained on vast quantities of text exploiting self-supervised
training schemes, addressed some of these issues such as fluency. However, there still
remain issues such as how to handle long documents. A key challenge to developing these
abstractive summarization systems is assessment. In common with many natural language
generation tasks, it is not possible to generate an exhaustive set of reference summarises, so
simple lexicon-matching approaches have limited accuracy. This thesis investigates both the
generation and assessment of abstractive summaries. In addition, approaches motivated by
summary assessment are applied to hallucination detection in large language models.

The first area examined in this thesis includes two aspects of summary generation. The
first aspect is associated with the diversity issue when training a model from scratch with
limited data. The second aspect is associated with applying foundation models to long-
document summarization. Initially, recurrent neural networks (RNNs) were the dominant
form of abstractive summarization models. However, these models can often produce
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summaries with low diversity. This lack of diversity means that the models may not fully
capture or maximize the available information. To address this problem, this work proposes
metrics based on hierarchical representations to explicitly maximize information usage in the
source and encourage diversity in the summary. The second aspect addressed is to improve
foundation model based systems to efficiently handle long documents. The contributions in
this part are three-fold. First, sentence filtering methods for content selection are examined
for both the training and inference stages. Second, this work presents design considerations
for local attention aimed at improving the efficiency of transformer models. By combining
local attention and sentence filtering, high-performance long-document summarization is
achieved. Third, this work investigates encoder-decoder attention and demonstrates that its
cost can be critical at inference. Based on this finding, sentence structure and sparsity in
encoder-decoder attention are exploited, resulting in an improvement in the complexity of
the attention with minimal performance degradation.

The second area investigated is summary assessment. Ideally, summaries would be
assessed manually. However, this is highly expensive, motivating the need to develop
automatic assessment methods. There are many attributes associated with good summaries
such as fluency and consistency. Since generation systems based on foundation models are
highly fluent, this work focuses on information consistency between the source document
and the summary. This work proposes a question answering (QA) based approach to measure
the consistency. In contrast to previous QA approaches, a multiple-choice QA framework
is proposed. This allows information consistency to be approximated by computing the
expected statistical distance between summary and source answer distributions. Additionally,
current large language models (LLMs) have been shown to have strong zero-shot abilities in
various NLP tasks. Hence, this thesis investigates whether LLMs can be used for summary
assessment in a zero-shot manner, and proposes a comparative assessment framework.

Information consistency can be useful in a wide range of tasks in addition to summary
assessment. Another application of information consistency explored in this thesis is hallu-
cination detection in LLMs. A hallucination, in the context of LLMs, is a response which
contains non-factual information with respect to actual knowledge. This work applies infor-
mation consistency methods, initially developed for summarization, to wider LLM generation
to enhance the reliability of LLMs. Specifically, this work proposes SelfCheckGPT that
measures the consistency between stochastically generated responses from an LLM. Self-
CheckGPT does not require an external database and it can be applied in a black-box manner,
making it applicable in a variety of situations. This work demonstrates the effectiveness of
SelfCheckGPT through experiments based on GPT-3’s hallucinated contents.
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Chapter 1

Introduction

1.1 Context and Motivation

Automatic summarization is the process of creating a shorter version of a text that still
maintains all the important details. Automatic summarization can typically be achieved
through two primary methods. The first method, known as extractive summarization, involves
selecting salient segments directly from the text. The second method, called abstractive
summarization, focuses on generating novel text that captures the main concepts from the
original document. The primary goal of automatic summarization systems is to create concise
summaries that capture the key points of a document, using few words and minimizing
redundancy [239]. These systems enable users to understand the main ideas of the original
document without having to read it in its entirety [211].

Before the era of deep learning, summarization methods were predominantly unsupervised
extractive methods such as graph-based ranking methods [198, 64] or maximum marginal
relevance [18]. Pre-deep-learning abstractive summarization methods were also developed
such as deletion-based [138] or statistical models [8]. In the era of deep learning, abstractive
summarization is more widely used than extractive summarization [271]. This is because
abstractive summarization allows for more flexible and coherent summaries that can integrate
information from various parts of the source text. This approach can produce summaries that
are more readable and engaging for humans, as they often resemble the natural way humans
summarize information. Thus, this thesis focuses on abstractive summarization.

Early work in neural abstractive summarization adopted recurrent neural network (RNN)
[29, 208, 263] or convolutional neural network [252, 29]. To handle long documents such
as transcripts of spoken documents or long articles, hierarchical RNN architectures were
developed [39, 160, 349]. However, there remain challenges such as the diversity in the
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generation from training these neural models from scratch on limited data [288, 263, 98].
This work examines this diversity problem in detail on spoken document summarization.
This is because existing spoken document data is limited in size and has extra challenges
such as long contexts, disfluencies in speech, and errors in transcription, which could lead to
diversity issues in the generated summaries.

Given the advances in self supervised learning, abstractive summarization approaches have
recently shifted to using pre-trained transformer-based [290] foundation models [169, 159,
340]. In this paradigm, large foundation models are first pre-trained on a large amount of raw
text before being fine-tuned on an abstractive summarization task. This paradigm has shown
impressive results on standard summarization tasks such as news summarization [159, 340].
However, there is a challenge in applying a large foundation model to long-document
summarization such as meeting summarization, podcast summarization, or scientific paper
summarization. This is because the time and memory requirements of standard self-attention
in the transformer scale quadratically with sequence length. Thus, this work examines
methods to improve transformer-based systems to efficiently handle long documents.

A further important challenge is how to evaluate summarization systems. Although human
evaluation is considered the gold standard, it can be expensive, time-consuming, and difficult
to reproduce. This necessitates automatic summary assessment. Current generation systems
based on large pre-trained models [159, 340] are highly fluent, but these systems have
been shown to generate false or unsupported information [143]. This phenomenon is also
commonly referred to as hallucination [348, 193]. Hence, another area of investigation is on
developing automatic methods for assessing information consistency, which is to evaluate
whether the generated outputs are factually consistent with their source documents.

Lastly, hallucination is not limited to summarization tasks, and it is also a problem in broader
generative tasks [123]. Recently, there has been mass adoption of large language models
(LLMs) such as GPT [15] on a variety of tasks. However, despite the impressive generation
ability of LLMs, they may produce unfaithful responses, similar to when summarization
systems generate inconsistent summaries. Thus, this work extends information consistency
methods, initially developed for information consistency assessment in summarization, to
wider LLM generation.

Research Questions

To address the challenges discussed previously, this thesis considers these research questions:
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1. How well do abstractive text summarization based on a hierarchical RNN perform on
abstractive spoken document summarization and can a multi-task learning framework
improve the performance?

2. Can sentence filtering based on the attention of hierarchical RNN improve long-input
summarization?

3. How do we improve the encoder’s attention for long-input summarization?

4. How do we improve the encoder-decoder’s attention for abstractive summarization?

5. How do we measure information consistency between the summary and the source
document?

6. Can we perform summary assessment in a zero-shot manner by prompting large
language models, and is comparative assessment better than point-wise assessment?

7. Can we apply summary assessment methods to the hallucination problem in large
language models?

Methodology

This section has described the research questions and challenges that will be investigated in
this thesis. In the field of NLP, a general methodology is as follows:

1) Ideation: The first step is to identify a challenge or gap in the existing literature. This stage
involves literature reviews to explore current approaches, trends, challenges and limitations
in the domain of interest. In this work, literature reviews (and related fundamental methods)
are presented in the chapters 2, 3, and 4.

2) Data Preparation: After the challenge or research problem is defined, the next step is
data preparation. In NLP, research work could either utilize existing datasets when working
on a standard task or benchmark, or collect a new dataset for a new task. To work on existing
datasets, the process typically data includes cleaning (e.g., removing noise, normalizing text,
etc) and converting raw text into a structured format. To collect a new dataset, this may
involve web scrapping, or transforming publicly available datasets.

3) Model Development: Once data is clean and ready, the next step is model development
which includes selecting appropriate model architectures, training frameworks, optimization
algorithms, training criteria, or hyperparameter setting. Data is typically split into training,
validation, and test sets, and the model is trained on the training set. During this development
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step, the trained model is validated on the validation set, and the training process terminates
when the performance on the validation set does not improve.

4) Automatic Evaluation: During the development stage, the model is trained on a criterion
which may not align with the real-world metric (as the training criterion typically needs to
be differentiable), so in this stage a metric that better aligns with the real-world use-case is
adopted, for example, accuracy, precision, recall, or F1-score. In addition, further analysis
can be performed to identify the current model’s limitations and failed examples. Note that
automatic metrics (e.g., ROUGE for summarization) were shown effective when evaluating
those models in the early years of development. However, as models become better and
more fluent, automatic metrics, especially for natural language generation tasks, often fail to
capture semantic meaning, coherence, and contextual appropriateness.

5) Iterative Improvement: After evaluating and identifying current limitations, the next
iteration of training, validation, and evaluating continues to refine the current approach until
the method or the model achieves a satisfactory performance level.

6) Human Evaluation: Once the model achieves satisfactory performance (e.g., outperform-
ing its baseline or achieving state-of-the-art performance in some benchmark), it might be
used on a real application where humans evaluate its usefulness. We note that this step can
be time-consuming or it is difficult to reproduce, and it is more common in the industry.

1.2 Thesis Outline

This thesis starts with background knowledge which is split into deep learning, foundation
models, and summarization. Then, contributions in two topics of summary generation, sum-
mary assessment, and information consistency in generative language models are presented.

In the background knowledge sections in Chapter 2, the fundamentals of deep learning,
including model architectures, training methods, inference methods, ensemble methods, and
tokenization are established. Chapter 3 discusses foundation models in NLP and related
topics such as self-supervised learning, transformer architectures and the variants, and the
properties of transformer-based models. Chapter 4 introduces the main tasks in the field of
summarization, including extractive summarization, abstractive summarization, and summary
assessment, and existing work in each of these areas.

In terms of the contributions, Chapter 5 improves abstractive spoken document summariza-
tion, proposes a multi-task learning framework including dialogue act prediction, extractive
labelling, and a novel diversity loss, and studies the impact of ASR systems on spoken
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document summarization. Chapter 6 improves abstractive summarization with foundation
models, and the focus is on long input spans and efficient modelling. Three main contribu-
tions in this chapter are (1) sentence filtering where training-time and inference-time filtering
methods are proposed, (2) efficient encoder attention where local attention is investigated
and applied to summarization as well as combined with sentence filtering, and (3) efficient
encoder-decoder attention where the sparsity in this is observed and exploited. In addition to
these three core contributions, the experimental work in this chapter also includes ensemble
methods in summarization. Chapter 7 improves automatic summary assessment with a focus
on information consistency in summarization. This chapter proposes a novel multi-choice
question-answering framework for assessing summaries. Zero-shot assessment methods,
which exploit large language models, are studied including a standard prompting and a novel
comparative assessment framework. Motivated by the summary assessment methods, Chap-
ter 8 extends these techniques to a broader information consistency problem in generative
language models, and proposes SelfCheckGPT which is a family of hallucination detection
methods. Finally, Chapter 9 provides conclusions of the work and discusses limitations and
potential future directions.
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Part of the PhD research in this thesis has been published in peer-reviewed natural language
processing and speech conferences and also released as an arXiv pre-print.

Peer-reviewed Publications

• [188] P. Manakul, M.J.F. Gales, L. Wang, "Abstractive Spoken Document Summarization
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of Interspeech 2020.
→ The work was done in collaboration with Linlin Wang who worked on producing ASR
transcripts of the AMI dataset. My contribution was designing and executing the experiments,
and writing the paper. This work is a part of Chapter 5.

• [184] P. Manakul and M.J.F. Gales, "CUED_SPEECH at TREC 2020 Podcast Summarisa-
tion Track", In Proceedings of Text REtrieval Conference (TREC) 2020.
→ Part of this work is included in Chapter 6.

• [185] P. Manakul and M.J.F. Gales, "Long-Span Summarization via Local Attention and
Content Selection", In Proceedings of the 59th Annual Meeting of the Association for
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Computational Linguistics (ACL) 2021.
→ This work is a part of Chapter 6.
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Methods in Natural Language Processing (EMNLP) 2021.
→ This work is a part of Chapter 6.

• [183] P. Manakul, Y. Fathullah, A. Liusie, V. Raina, V. Raina, and M.J.F. Gales, "CUED at
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summarization models; Adian Liusie who worked on the selection of abstractive summa-
rization baselines and training models; Vyas Raina who worked on MBR decoding; Vatsal
Raina who worked on data access and project coordination. My contribution was extractive
summarization, zero-shot summarisation, token-level ensemble, and hierarchical ensemble
combination. Part of this work is included in Chapter 6.

• [189] P. Manakul, A. Liusie and M.J.F. Gales, "MQAG: Multiple-choice Question An-
swering and Generation for Assessing Information Consistency in Summarization", In
Proceedings of the 13th International Joint Conference on Natural Language Processing
and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics (IJCNLP-AACL) 2023.
→ The work was done in collaboration with Adian Liusie who helped discuss the concept
and helped with paper writing. This work is a part of Chapter 7.

• [190] P. Manakul, A. Liusie and M.J.F. Gales, "SelfCheckGPT: Zero-Resource Black-Box
Hallucination Detection for Generative Large Language Models", In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing (EMNLP) 2023.
→ The work was done in collaboration with Adian Liusie who helped discuss the concept
and helped with paper writing (given our time constraint, the initial draft writing was possible
with the help from Adian). This work is a part of Chapter 8.

• [173] A. Liusie, P. Manakul, and M.J.F. Gales, "LLM Comparative Assessment: Zero-shot
NLG Evaluation through Pairwise Comparisons using Large Language Models", In Proceed-
ings of the 18th Conference of the European Chapter of the Association for Computational
Linguistics (EACL) 2024.
→ The work was done in collaboration with Adian Liusie who led the project and set up the
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experiments on summary assessment, and also on the results on (part of) SummEval and
Podcast Assessment. This work is a part of Chapter 7.
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Chapter 2

Deep Learning Fundamentals

Deep learning, a subset of machine learning, has advanced the state of the art in Natural
Language Processing (NLP), and it has revolutionized model architectures and representation
learning [330]. Deep learning is centred on complex neural network architectures, usually
with millions of connections and non-linearity, that are inspired by biological neurons [112].
Neural networks consist of multiple layers of interconnected nodes, or neurons, that process
and transform data. Neural networks excel at automatically learning hierarchical features
and representations from raw data [142], enabling it to tackle complex tasks such as image
recognition [34, 276], natural language processing [279, 83], and speech processing [93, 94].
This chapter about deep learning fundamentals will delve into model architectures, training
methods, inference methods, ensemble techniques, and tokenization.

There are a range of model architectures in deep learning such as feedforward networks,
recurrent neural networks, and transformers. Each of these architectures is tailored to a
specific task. Training methods involve optimization algorithms and loss functions that learn
model parameters, while inference methods apply these trained models to unseen data for
predictions. Ensemble techniques combine multiple models to improve performance and
robustness. Lastly, as NLP tasks are typically sequential modelling tasks, the process of
breaking down text into units is a crucial step, which is referred to as tokenization and will
be described in this chapter.

2.1 Model Architectures

In deep learning, a neural network, parameterized by θθθ , is designed to learn a complex
mapping function f from an input X to an output Y with minimal manual feature engineering,

Y = f (X ;θθθ) (2.1)
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where the input X and output Y can take any form such as scalar x, vector x, sequence of
scalar x1:N , or sequence of vectors x1:N with examples being text, image, audio, video, time
series, etc. The remaining of this section will provide the background of neural networks that
will be used in this thesis.

2.1.1 Feedforward Neural Network

A feedforward neural network (FNN) is characterized by its uni-directional flow of infor-
mation from the input nodes to the output nodes [259]. A feedforward neural network may
comprise multiple linear layers with a non-linear activation function. Assume x(l) be the
input and x(l+1) be the output of layer l, the linear layer f (l)(.) computes the following:

x(l+1) = f (l)(x(l)) (2.2)

x(l+1) = σ
(l)
(

W(l)x(l)+b(l)
)

(2.3)

where W(l) and b(l) are model parameters associated with the linear l and σ (l) is a non-linear
activation function. A stack of linear layers l = 1,2, ...,L where each layer can have different
input and output dimensions and activation functions make up a feedforward neural network.

Activation Functions

Activation function in a neural network calculates the outputs given the inputs and weights
such as σ (l) in Equation 2.3. In deep learning, activation functions are non-linear in order
to solve nontrivial problems using a finite number of nodes [158]. Non-linear activation
functions ensure that the output cannot be reproduced from a linear combination of the inputs.
Without a non-linear activation function, a neural network, regardless of the size, will act as
a single-layer network. The forms that will be used are provided in Table 2.1.
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Activation σ(.) Output

sigmoid(x) 1
1+exp(−x)

tanh(x) exp(x)−exp(−x)
exp(x)+exp(−x)

ReLU(x) max(0,x)

GELU(x) 0.5x
(

1+ erf( x√
2)

)
softmax(x) exp(xi)

∑
J
j=1 exp(x j)

for i = 1, ...,J

Table 2.1 Commonly-used activation functions. Note that all of the activation functions in the table
except softmax are applied elementwise, while softmax is a function of all elements.

2.1.2 Recurrent Neural Network

A recurrent neural network (RNN) [112] has hidden states for processing sequential data
x1:T . At time step t, the hidden state ht is calculated as a function of the current input xt and
its previous hidden state ht−1,

ht = f (xt ,ht−1) (2.4)

The vanilla RNN applies linear matrices with a non-linear activation as shown in Equation 2.5,
and the output at this time step, zt , is then computed as a function of the hidden state:

ht = σh(Whxt +Uhht−1 +bh) (2.5)

zt = σz(Wzht +bz) (2.6)

where σh and σz are non-linear activation functions such as those described in Section 2.1.1,
and Wh, Uh, bh, Wz, and bz are the model parameters (weights) to be trained. An unrolled
recurrent unit shown in Figure 2.1 can be viewed as a fully connected neural network except
that the weights (and biases) are shared. Training an RNN is done by backpropagation
through time [312] rather than the standard error backpropagation for feed-forward neural
networks. Multiple recurrent units can be stacked together to form a deep RNN architecture.
Two RNNs, one operating forwards and the other operating backwards, can be combined to
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incorporate both past and future information, and this yields a bidirectional RNN:

hf
t = f (xt ,hf

t−1) (2.7)

hb
t = f (xt ,hb

t+1) (2.8)

ht =
[
hf

t ;hb
t
]

(2.9)

The vanilla RNN suffers a vanishing gradient and exploding gradient due to computations
involved in the backpropagation through time [107]. As a result, long short-term memory
(LSTM) [109] and gated recurrent unit (GRU) [28] are widely used because they are designed
to mitigate gradient problems by using gates to control information flow.

htht-1 ht+1

RNN

xt-1 xt xt+1

zt-1 zt zt+1

Fig. 2.1 RNN Architecture (unrolled in time)

Sequence Modelling Tasks

RNNs can be applied to different sequence modelling tasks as shown in Figure 2.2. In
sequence classification, it is a many-to-one task, predicting the label y of the input sequence
x1:T . This task is usually modelled by using the final time step output. Examples of sequence
classification include sentiment classification and textual entailment. In sequence labelling, it
is a many-to-many task where the input sequence and output sequence are of the same length.
This task is to predict the label for each input time step. Examples of sequence labelling
include token classification and grammatical error detection. In sequence-to-sequence, it is a
many-to-many task where the input sequence and output sequence can be different lengths.
Examples of sequence-to-sequence include machine translation and summarization. The next
section will discuss sequence-to-sequence and encoder-decoder framework in more detail.
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x1 x2 x3

y1 y2 y3

RNN

x1 x2 x3

y

RNN

N-to-1 | sequence classification N-to-N | sequence labelling

x1 x2

y1 y2

RNN

N-to-M | sequence-to-sequence

Fig. 2.2 The application of RNNs in sequence modelling tasks.

2.1.3 Encoder-Decoder Framework

In the previous section, sequence-to-sequence tasks were introduced, but Figure 2.2 (right)
shows a simplified version of an RNN sequence-to-sequence model. In practice, a sequence-
to-sequence model adopts an encoder-decoder architecture with two RNNs, which is de-
scribed below in this section.

RNN Encoder-Decoder

In a sequence-to-sequence model, the input and the output can have different lengths. Given
an input sequence x1:N and an output sequence y1:M (with their vector representations being
x1:N and y1:M, respectively), the goal of a sequence-to-sequence model is to estimate the
conditional probability P(y1:M|x1:N). A sequence-to-sequence architecture is typically made
up of two RNNs [279] as shown in Figure 2.3.

x1 x2

y1 y2

x3 y0 y1
encoder decoder

Fig. 2.3 RNN Encoder-Decoder Framework.

First, an RNN encoder θθθ enc maps the input sequence into a fixed-size context vector c:

c = f (x1:M;θθθ enc) (2.10)
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The context vector c is usually the output of the final timestep of the RNN encoder. Second,
a decoder uses the context vector from the encoder and generates an output sequence. This
RNN decoder θθθ dec estimates the conditional probability as follows,

P(y1:M|x1:N) =
M

∏
m=1

P(ym|y1:m−1,x1:N) (2.11)

P(ym|y1:m−1,x1:N)≈ P(ym|y1:m−1,c;θθθ dec) (2.12)

Assume dm is the hidden state of the decoder at time step m, the RNN computation is the
same as in Equation 2.4, which is then followed by a softmax.

dm = f (ym,dm−1;θθθ dec) (2.13)

The decoder state is initialized using the context vector (in Equation 2.10), i.e, d0 = c. To
obtain the probability over the vocabulary, the distribution P(ym|y1:m−1,c;θθθ dec) in Equa-
tion 2.12 is represented using a softmax over all possible words:

P(ym|y1:m−1,x1:N) = softmax(Wddm +bd) (2.14)

where the model parameter Wd has the output dimension of the same size as the vocabulary.

Encoder-Decoder with Attention Mechanism

In a standard sequence-to-sequence model, it can be difficult to learn a long source sequence,
as the source sequence is encoded into a single vector to initialize the decoder [5]. An
attention mechanism is proposed to allow the decoder to attend to all the encoder states,
and decide which part to attend at each time instance [5]. An attention mechanism can
be considered as computing the context vector dynamically for each decoder time step as
opposed to a fixed-size vector in the vanilla encoder-decoder architecture (Equation 2.10).
Given the output vectors of the encoder {h1,h2, ...,hN}, an encoder-decoder model with an
attention mechanism computes the following:

em,n = score(dm,hn) (2.15)

αm,n =
exp(em,n)

∑
N
n=1 exp(em,n)

(2.16)

cm =
N

∑
n=1

αm,nhn (2.17)
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The context vector cm is concatenated with the decoder state dm and the output distribution
in Equation 2.14 is modified to,

P(ym|y1:m−1,x1:N) = softmax(Wd[dm;cm]+bd) (2.18)

Lastly, it should be noted that there are other forms of attention mechanisms. Table 2.2
(adapted from Weng [311]) illustrates other forms of attention mechanism, which differ by
how the attention scores em,n are computed.

Attention Mechanism em,n = score(dm,hn)

Content-based dm·hn
∥dm∥ ∥hn∥

Dot-product dm ·hn

Scaled Dot-product dm·hn√
D

Additive vT
a tanh(Wa[dm;hn])

General dT
mWahn

Table 2.2 Form of attention mechanisms. Wa and va are attention mechanism parameters. dm and hn

are vectors of dimension D.

2.1.4 Transformer

The transformer architecture was introduced by Vaswani et al. [290] to replace RNNs entirely
with self-attention layers. The Transformer model, firstly proposed Vaswani et al. [290],
adopted an encoder-decoder architecture. Instead of using RNNs, both the encoder and
decoder are a stack of self-attention layers. Each encoder layer comprises a self-attention
layer and a feedforward layer, and each decoder layer comprises a self-attention layer, an
encoder-decoder attention layer and a feedforward layer. A casual mask is applied on the
decoder side to prevent it from using information from future time steps, and this allows the
model to perform autoregressive decoding at inference. During training, the Transformer
allows better parallelism compared to RNNs because each time step computation can be done
independently of previous time steps, and this results in faster training [290]. Given that the
Transformer can be trained efficiently (i.e., faster training), this architecture has become the
default option in large-scale self-supervised learning, which will be discussed in Chapter 3.

This section will describe the building blocks of transformers. It should be noted the
architecture is not limited to only the encoder-decoder architecture, and there are transformer-
based encoder-only and decoder-only models. In addition, each component could have a
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different implementation. This section will describe the realization of each component as
adopted in the original Transformer [290] shown in Figure 2.4.

Multi-Head
Self-Attention

Add & Norm

Feed-Forward

Add & Norm

Input
Embedding

Positional
Encoding +

Causal
Multi-Head

Self-Attention

Add & Norm

Multi-Head
Cross-Attention

Add & Norm

Feed-Forward

Add & Norm

Output
Embedding

+

Input Output

 Linear + Softmax

Probabilities

Positional
Encoding

N x
Encoder Block

N x
Decoder Block

Fig. 2.4 Architecture of the original Transformer [290].

Multi-Head Self-Attention

Previously in Section 2.1.3, the attention mechanism between the encoder and decoder was
described, and this attention mechanism allows the network to draw dependencies between
the input and output. Instead, self-attention is designed to learn dependencies within the
same sequence, similar to an RNN. Given a sequence of vectors {x1, ...,xN}, a self-attention
layer computes the following to obtain the representation hi for i = 1, ...,N:

• query, key, value:

qi = Wqxi (2.19)

ki = Wkxi (2.20)

vi = Wvxi (2.21)
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• self-attention weights using scaled dot-product where D is the dimension:

αi, j = softmax
(

qi ·k j√
D

)
=

exp
(

qi·k j√
D

)
∑

N
j′=1 exp

(qi·k j′√
D

) (2.22)

• state representation:

hi =
N

∑
j=1

αi, jv j (2.23)

The weights Wq,Wk,Wv are specific to each layer and each head. In the Transformer, self-
attention is multi-headed, meaning that there are multiple self-attention mechanisms running
in parallel independently. Each of the heads operates on a subset of the total dimension. The
outputs of all heads are then concatenated and linearly transformed into the final output.

For the encoder-decoder architecture, on the decoder side, there is also a multi-head
cross-attention mechanism that allows the decoder to use information from the encoder.
Given a sequence of encoder outputs {x1, ...,xN} and a sequence of decoder input vectors
{y1, ...,yM}, a cross-attention layer computes the following to obtain the representation d j

(corresponding to y j) for j = 1, ...,M:

• query (decoder side):
q j = Wqy j (2.24)

• key, value (encoder side):

ki = Wkxi (2.25)

vi = Wvxi (2.26)

• cross-attention weights:

α j,i = softmax
(

q j ·ki√
D

)
=

exp
(

q j·ki√
D

)
∑

N
i′=1 exp

(
q j·ki′√

D

) (2.27)

• state representation:

d j =
N

∑
i=1

α j,ivi (2.28)

The weight matrices are specific to each layer and each head in the same way as self-attention,
and cross-attention is also multi-headed. Lastly, it should be noted that self-attention allows
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each position to attend to all other positions. Since the decoder cannot attend to its future
generated tokens at inference, causal masking is applied to the decoder self-attention layers.

Feedforward Layers

The outputs of each self-attention block are then passed into a feed-forward network, which
typically consists of two linear layers with a non-linear activation function σ(.), e.g. ReLU
in the original Transformer [290], or GeLU in GPT models [242]. The feed-forward layers
perform position-wise operations.

Feedforward(x) = W f2
(
σ(W f1x+b f1)

)
+b f2 (2.29)

Positional Encoding

The self-attention mechanism is permutation-invariant. However, in natural language, the
order of words in the text is important, and if omitted, semantics will change. Therefore,
positional embedding is added to the token embedding before being passed to the first layer
of attention blocks. Notable positional encoding methods are as follows:

• Sinusoidal: The original transformer [290] introduced sinusoidal positional embedding
such that the embedding is fixed (i.e., not learnable) with each dimension having a different
frequency. Assume that at position i, xi is a token encoding vector, pi = [pi,1, pi,2, ..., pi,D] is
a positional encoding vector of the same dimension where the elements of pi are,

pi,2d = sin
(

i
100002d/D

)
(2.30)

pi,2d+1 = cos
(

i
100002d/D

)
(2.31)

The motivation is this design may allow the model to extrapolate to longer sequences at the
inference time. However, it has been shown that sinusoidal positional embeddings have a
weak extrapolation ability [236].

•Learned Embedding: This method learns trainable positional encoding vectors p1,p2, ...,pN

from scratch. This method is similar to the sinusoidal method in that pi is added to the token
encoding vector at the position i. This type of positional encoding is used in BERT [52].
It has a limitation that it cannot encode any position beyond the fixed number of learned
positions. For example, BERT can only perform positional encoding up to 512 tokens.
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•T5 Bias: The T5 model, proposed by Raffel et al. [244], uses a relative position method [270].
Instead of adding position information to token embeddings, this method injects positional
information by modifying the way attention values are computed. The attention values are
computed as before, but a learnable bias bi, j is added to each query-key score such that the
self-attention weights in Equation 2.22 become,

αi, j = softmax
(

qi ·k j +bi, j√
D

)
(2.32)

This learnable bias depends on the distance between the query and the key, and the T5 model
shares the position embedding parameters across all layers. The T5 model sets a maximum
distance such that any larger distance will have the same learned bias – which allows T5 to
have a sequence of any length1 similar to the sinusoidal encoding method.

• Rotary: Rotary Position Embedding (RoPE) was introduced by Su et al. [278] and it
has been adopted and popularized by GPT-J [299], Llama [286], Llama2 [286], PaLM [31].
Instead of adding sinusoidal embeddings to the input of the transformer, the rotary embedding
multiplies the keys and queries at every attention layer by sinusoidal embeddings:

αi, j = softmax
(
(Riqi)

T R jk j√
D

)
= softmax

(
qT

i (RT
i R j)k j√
D

)
= softmax

(
qT

i R j−ik j√
D

)
(2.33)

where Ri is a rotation matrix with rotation θd = 10000−2(d−1)/D,

Ri =



cos(iθ1) −sin(iθ1) 0 0 . . . 0 0
sin(iθ1) cos(iθ1) 0 0 . . . 0 0

0 0 cos(iθ2) −sin(iθ2) . . . 0 0
0 0 sin(iθ2) cos(iθ2) . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . cos(iθD/2) −sin(iθD/2)

0 0 0 0 . . . sin(iθD/2) cos(iθD/2)


(2.34)

Essentially, the rotary encoding rotates different representation dimensions by θd . For two
nearby positions, i.e. small distance i− j, the rotation Ri− j will be small. RoPE embedding
injects position information into every layer instead of one time at the input, but unlike the
T5 bias, RoPE embeddings are not constrained to a maximum distance.

1This only means that there will not be the same error observed in the learned embedding method of BERT;
however, whether or not T5 bias can extrapolate beyond the maximum distance is a different aspect.
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Layer Normalization

Layer normalization (LayerNorm) [2] is applied (after self-attention or feedforward layer as
shown in Figure 2.4) to normalize across features for each individual sample in a (mini-)batch
independently. Given a vector of D features, x = [x1,x2, ...,xD], LayerNorm computes the
following for d = 1, ...,D:

µ =
1
D

D

∑
d=1

xd (2.35)

σ
2 =

1
D

D

∑
d=1

(xd−µ)2 (2.36)

x̂d =
xd−µ√
σ2 + ε

(2.37)

and x̂ = [x̂1, ..., x̂D], then the output of LayerNorm is:

LayerNorm(x) = γ x̂+β (2.38)

where γ and β are learnable parameters for each layer normalization layer. Layer normal-
ization differs from batch normalization [120] which normalizes across the batch for each
feature. LayerNorm does not depend on the batch size, which makes it especially useful for
tasks where batch size might be dynamic or where using large batches is infeasible. Unlike
batch normalization, which might have different behaviours during training and testing due
to batch statistics, LayerNorm behaves consistently as it normalizes across features.

2.2 Sequence Training Methods

The training algorithms presented here are model-agnostic and applicable to all models that
are parametric. As the optimization is performed using gradient ascend/descent (described in
Section 2.2.3), the objective function must be differentiable, with the exception of sequence-
level training objectives where the gradient is computed via an approximation (described in
Section 2.2.2). In this section, the notation is as follows: θθθ denotes the model parameters,
X = x1:N the input sequence, and Y = y1:M the target sequence.
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2.2.1 Token-level Loss

As mentioned in the previous section, a sequence-to-sequence model estimates the condition
probability P(Y |X). This section will describe a training method to maximize the likelihood
of the conditional probability.

Maximum Likelihood Estimation

Although a model is trained to predict sentences or a sequence of tokens, the sentences are
split into tokens2 and the model is trained to maximize the likelihood of the ground-truth
tokens given the input context. Maximum Likelihood Estimation (MLE) training is a method
of estimating the parameters of a statistical model by maximising a likelihood function.
Given a dataset of J source-target pairs, {(X (1),Y (1)), ...,(X (J),Y (J))} where X ( j) = x( j)

1:N j

and Y ( j) = y( j)
1:M j

denote the j-th instance, the likelihood function is defined below, and as

training sequences (X (1),Y (1)), ...,(X (J),Y (J)) are independent, the likelihood of the training
sequences become the product of the likelihood of each sequence:

P
(
{Y (1), ...,Y (J)}|{X (1), ...,X (J)};θθθ

)
=

J

∏
j=1

P
(

Y ( j)|X ( j);θθθ

)
(2.39)

As the likelihood function can become very small resulting in the floating point precision
issue, log-likelihood is usually maximized in practice. As the log function is monotonic, max-
imizing log-likelihood yields the same solution as maximizing the likelihood in Equation 2.39.
The model parameters obtained by maximizing the likelihood is, therefore,

θθθ
∗
MLE = argmax

θθθ

(
1
J

J

∑
j=1

logP
(

Y ( j)|X ( j);θθθ

))
(2.40)

Based on Equation 2.40, the MLE loss function (to be minimized) is defined as,

L(θθθ) =−1
J

J

∑
j=1

logP
(

Y ( j)|X ( j);θθθ

)
(2.41)

As mentioned earlier, the sentence (or sentences) is split into a sequence of tokens, e.g.
Y = y1:M , for maximum likelihood training at the token level. The loss function is, therefore,

L(θθθ) =−1
J

J

∑
j=1

M j

∑
m=1

logP
(

y( j)
m |y( j)

1:m−1,x
( j)
1:N ;θθθ

)
(2.42)

2Tokenization is discussed in Section 2.5.
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In Equation 2.42, the loss is factorized across time. For gradient-based optimization, which
will be described in Section 2.2.3, the gradient is:

∇L(θθθ) =−1
J

J

∑
j=1

M j

∑
m=1

∇

(
logP

(
y( j)

m |y( j)
1:m−1,x

( j)
1:N ;θθθ

))
(2.43)

For a differentiable neural model, the gradient in Equation 2.43 is simply the summation
over time steps and independent training instances. In practice, the loss is optimized using
teacher forcing (TF) [315] where P(y( j)

m |y( j)
1:m−1,X

( j);θθθ) is computed using the reference

output history y( j)
1:m−1. Teacher forcing allows the training to be performed in parallel across

time, and MLE and teacher forcing are the standard option in training sequence-to-sequence
models. However, there are known issues due to the nature of MLE and teacher forcing:

• Exposure Bias: At the inference stage, a decoding algorithm is usually free running
(FR), where the decoder has to use its own prediction from the previous time step. The
model has not been trained to correct for errors in the history during training, and this
mismatch may result in poor performance at inference [248, 300].

• Metric Mismatch: During training, the likelihood at the token level is maximized,
while during inference, a sequence-level metric such as BLEU or ROUGE is used.

• Diversity: The generated outputs were observed to be generic and repetitive [263, 224].
One reason for this issue is that during training, the attention mechanism is more diverse
as it is guided by ground-truth target tokens.

Learning Algorithms beyond MLE

To mitigate the exposure bias problem, scheduled sampling [11] gradually changes the
training process from fully guided by ground-truth tokens towards generated tokens. As an
improvement to scheduled sampling, professor forcing [153] and attention forcing [58] were
developed to reduce to discrepancy in teacher forcing mode and free running mode. Note
that Section 2.2.2 discusses sequence-level training that could reduce the metric mismatch
problem, and Section 5.3 discusses and proposes methods to deal with the diversity problem
in RNN approaches.
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2.2.2 Sequence-level Loss

In practice, the generated sequences are typically evaluated at the sequence level (i.e., once
generation is complete). Thus, this section discusses methods that directly optimize sequence-
level metrics as these methods can be applied to achieve the highest evaluation score.

Minimum Bayes Risk (MBR) Training

Maximum likelihood is typically used for parameter optimization; however, once trained, the
model performance is measured using non-differentiable and discrete metrics such BLEU
in machine translation, ROUGE in summarization, or word error rate (WER) in automatic
speech recognition. Due to this discrepancy, maximum likelihood trained models do not
always yield the best performance on discrete evaluation metrics [224, 214, 235]. Minimum
Bayes Risk (MBR) training optimizes the expected value of a discrete evaluation metric
directly. The notation is X = the input sequence, Y = the reference sequence, Ỹ = a hypothesis
sequence from all possible sequences Y , and the discrete score = R(Y,Ỹ ). The expected
discrete score of sequences generated by model θθθ can as written as follows,

R̄(X ,Y ;θθθ) = EỸ∼P(Ỹ |X ;θθθ)
[
R(Y,Ỹ )

]
= ∑

Ỹ∈Y
R(Y,Ỹ )P(Ỹ |X ;θθθ) (2.44)

The MBR training (for j = 1, ...,J independent training instances), which is designed to
directly maximize the expected reward, is defined as:

θθθ
∗
MBR = argmax

θθθ

(
1
J

J

∑
j=1

R̄(X ( j),Y ( j);θθθ)

)
(2.45)

which is usually done by computing the gradient of the expected reward defined above. For
simplicity of notation, the summation over instances 1, ...,J is omitted. For gradient-based
learning methods, the gradient is, therefore,

∇R̄(X ,Y ;θθθ) = ∇

(
∑

Ỹ∈Y
R(Y,Ỹ )P(Ỹ |X ;θθθ)

)
(2.46)

∇R̄(X ,Y ;θθθ) = ∑
Ỹ∈Y

R(Y,Ỹ )∇P(Ỹ |X ;θθθ) (2.47)

Although Equation 2.47 is differentiable with respect to θθθ , the summation over all possi-
ble sequences Y is intractable. In the ASR community, the gradient in Equation 2.47 is
approximated by sampling [235, 254, 268] or N-best sequences [235, 232] as follows:
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• Gradient Sampling:

∇R̄(X ,Y ;θθθ) = ∑
Ỹ∈Y

R(Y,Ỹ )
[
∇ logP(Ỹ |X ;θθθ)

]
P(Ỹ |X ;θθθ) (2.48)

≈ 1
K ∑

Y (k)∼P(Ỹ |X ;θθθ)

R(Y,Y (k))
[
∇ logP(Y (k)|X ;θθθ)

]
(2.49)

where Y (k) is sampled from P(Ỹ |X ;θθθ). To stabilize training, Prabhavalkar et al. [235],
Shannon [268] subtract the reward in Equation 2.49 by the mean of samples to reduce the
variance of the estimate:

∇R̄(X ,Y ;θθθ)≈ 1
K ∑

Y (k)∼P(Ỹ |X ;θθθ)

[
R(Y,Y (k))− R̃

][
∇ logP(Y (k)|X ;θθθ)

]
(2.50)

where the mean of samples is,

R̃ =
1
K ∑

k
R(Y,Y (k)) (2.51)

• N-best List: Although gradient sampling approximation yields an unbiased estimate, it
requires a large number of samples to achieve a good estimate. N-best list approximation
works on the assumption that top-N sequences (e.g., from beam search decoding) account for
the majority of the probability ∑Ỹ P(Ỹ |X ;θθθ). Let Ŷ = {Ŷ (1), ...,Ŷ (N)} be the set of N-best
hypotheses. The gradient in Equation 2.47 can be approximated by the N-best list and
becomes tractable as follows:

∇R̄(X ,Y ;θθθ) =
N

∑
n=1

R(Ŷ ,Y (n))∇P̂(Ŷ (n)|X ;θθθ) (2.52)

where

P̂(Ŷ (n)|X ;θθθ) =
P(Ŷ (n)|X ;θθθ)

∑Y (m)∈Ŷ P(Y (m)|X ;θθθ)
(2.53)

Note that a potential drawback of this method limits the exploration ability. The top-N
hypotheses are likely to be close in the search space, especially for a long sequence.

An Interesting Interpretation: MBR Training and Reinforcement Learning

When casting a sequence training problem as a Reinforcement Learning (RL) problem, it
can be shown that the policy gradient update is the same as the gradient sampling of the
MBR criterion in Equation 2.50. RL algorithms seek to find a policy P(Ỹ |X ;θθθ), which is
optimal such that it maximizes the expected reward. This expected reward is defined as the
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MBR criterion in Equation 2.44. From a reinforcement learning (RL) perspective, Equation
2.48 and Equation 2.49 can be derived by using the REINFORCE algorithm [314] which is a
Monte Carlo policy gradient algorithm. Instead of subtracting the mean of samples, as done
in Equation 2.50, it can be shown that when computing the reward with respect to a baseline
b that does not depend on Y , the expected gradient remains unchanged [251]:

∇R̄(X ,Y ;θθθ) = EỸ
[(

R(Y,Ỹ )−b
)

∇ logP(Ỹ |X ;θθθ)
]

(2.54)

= EỸ
[
R(Y,Ỹ )∇ logP(Ỹ |X ;θθθ)

]
−EỸ

[
b∇ logP(Ỹ |X ;θθθ)

]
(2.55)

= EỸ
[
R(Y,Ỹ )∇ logP(Ỹ |X ;θθθ)

]
−b ∑

Ỹ∈Y

[
∇ logP(Ỹ |X ;θθθ)

]
P(Ỹ |X ;θθθ) (2.56)

= EỸ
[
R(Y,Ỹ )∇ logP(Ỹ |X ;θθθ)

]
−b∇ ∑

Ỹ∈Y
P(Ỹ |X ;θθθ) (2.57)

= EỸ
[
R(Y,Ỹ )∇ logP(Ỹ |X ;θθθ)

]
(2.58)

Hence, an approximation term b is added to reduce the variance of the gradient estimate.
Examples of RL applications are Rennie et al. [251] which applied this RL training on image
captioning tasks, and Paulus et al. [224] which applied it to abstractive summarization and
computed the reward of the sequence generated using greedy search, R(Y,Ŷ ), as b.

2.2.3 Optimization Algorithms

This section has described token-level and sequence-level losses for training sequence models.
Training a neural model with parameters θθθ is the process of finding θθθ that minimizes a train-
ing criterion/loss, and this subsection will describe gradient-based optimization algorithms.

However, due to the large number of variables in a neural model, there is almost never
any practical way to find a closed-form solution for the minimum. Hence, iterative methods
such as gradient descent with a differentiable neural network and a loss function are often
the only viable options for finding the minimum [253]. This iterative optimization process is
referred to as Gradient Descent (GD) which takes the following form,

θθθ t+1 = θθθ t−η∆θθθ t (2.59)

where θθθ t is the model parameter t at iteration t. The gradient is,

∆θθθ t =
∂L(θθθ)

∂θθθ
|θθθ t (2.60)
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where η is the learning rate. In practice, after a pre-defined number of iterations, the loss is
computed on a validation set. When the validation loss does not improve a certain number of
times (e.g., once or a few times), the iterative optimization is stopped.

Stochastic Gradient Descent (SGD) is a popular extension of GD which takes the derivative
on randomly drawn samples (i.e., a mini-batch) instead of the entire dataset. As the gradient
computed from a mini-batch will be noisy, momentum term is used to reduce the variance
in SGD, and accelerate the convergence towards the relevant direction. The SGD with
momentum method can be written as follows,

mt = γmt−1 +η∆θθθ t (2.61)

θθθ t+1 = θθθ t−mt (2.62)

where ∆θθθ t is the gradient defined in Equation 2.60 and γ is a hyperparameter controlling the
number of previous gradients (usually set to 0.9). As the learning rate η can influence the
model performance significantly, it is important to tune η when using the SGD and SGD with
momentum algorithms. To make learning algorithms less sensitive to η , improved optimizers
have been proposed such that learning rates can be parameter-specific as well as adaptive.
Notable adaptive learning algorithms are AdaGrad [60], RMSProp [92], AdaDelta [339], and
Adam [136]. The Adam (adaptive momentum) optimizer has been widely adopted in the
machine learning community, and it performs the gradient update as follows,

mt = β1mt−1 +(1−β1)∆θθθ t (2.63)

vt = β2bt−1 +(1−β2)(∆θθθ t)
2 (2.64)

θθθ t+1 = θθθ t−η
m̂t√
v̂t + ε

where m̂t =
mt

1−β t
1
, v̂t =

vt

1−β t
2

(2.65)

where ∆θθθ t is the gradient and (∆θθθ t)
2 is the elementwise square of ∆θθθ t . The authors of the

Adam optimizer [136] suggest the values of the hyperparameters to be β1 = 0.9, β2 = 0.999,
and ε = 10−8, which will be used in this work.

Learning Rate Scheduling

Another important ingredient that exists in all gradient-based optimization methods is the
learning rate η . When fine-tuning a pre-trained language model, the learning rate η is usually
set to follow a schedule where: (1) the first stage has the learning rate starts from 0.0 and
increases to the maximum value, and (2) the second stage has the learning rate decays from
the maximum value [290, 169]. This schedule is to allow adaptive optimizers (e.g., Adam
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optimizer) to gain enough statistics during the early stage (of training and not yet change
parameters too dramatically (i.e., low learning rate). The first stage is called warm-up. Later,
the learning rate decreases such as following an exponential decay pattern.

ηt =

η0t/τ t ≤ τ

η0 exp(−αt) t > τ

(2.66)

where τ is the number of warm-up steps, α is the decay rate, and η0 is the peak learning rate.

2.3 Inference Methods

The previous section discussed how the distribution P(Y |X ;θθθ) is obtained (i.e., model
training). This section is concerned with how to generate a target sequence given the
distribution (i.e., the trained model).

2.3.1 Maximum Likelihood Decoding

At training (in Section 2.2), the distribution parameterized by model weights P(Y |X ;θθθ) is
optimized by maximizing the likelihood of the target sequence Y . At inference, the task is to
find the most likely hypothesis sequence given the trained model,

YMLE = argmax
Y

P(Y |X ;θθθ) (2.67)

The form in Equation 2.67 is a decoding method based on maximum likelihood estimation
(MLE). However, considering all possible sequences Y is intractable. Given the common
architectures are RNNs and transformers, traditional dynamic programming methods such as
the Viterbi algorithm [293] are inefficient [195]. Generally, in a sequence-to-sequence task,
autoregressive models are used to factorize the joint distribution,

P(Y |X ;θθθ) =
M

∏
m=1

P(ym|y1:m−1,X ;θθθ) (2.68)

This factorization allows the model to generate one token at each time instance, and the
following approximation methods for maximum likelihood decoding are used in practice:
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• Greedy search: Greedy search decoding makes the locally optimal choice at each
time instance by selecting,

ŷm = argmax
y

P(y|ŷ1:m−1,X ;θθθ) (2.69)

• Beam search: Beam search decoding extends greedy search decoding from keeping
one candidate to keeping top-K candidates at each time where K is the beam width.

• Sampling: Greedy search yields a deterministic output, which may not be preferable
in scenarios that value creativity. An alternative approach is to perform sampling at
each time step. To control the amount of randomness, a temperature hyperparameter τ

is incorporated before the final softmax layer to rescale the logits for each candidate
token.

ysm ∼ P(y|ys1:m−1,X ;θθθ) (2.70)

Other variants of sampling-based decoding include: (1) top-K sampling which only
considers the most probable K tokens (2) top-p sampling (i.e., nuclear sampling) [111]
which samples from the top-p most probable tokens that collectively have a probability
greater than or equal to p.

For greedy search, beam search, and sampling-based decoding methods, the back history
of the conditional probability is based on the model’s prediction. This type of decoding is
referred to as free running (FR) mode. In contrast, when the back history is the ground truth
(e.g., during training), it is referred to as teacher forcing (TF).

2.3.2 MBR Decoding

In Section 2.3.1, maximum likelihood based inference methods are described. These methods
make locally optimal choices, which do not guarantee and generally do not yield the global
optimal output. This subsection, on the other hand, considers a decoding method that
maximizes a global criterion. Let P(Y |X) be the true distribution of the target Y given the
source X , e.g., all possible summaries Y are available. The quality of hypothesis sequence Ỹ
as measured by the Bayes Risk [146] is

RB(X ,Ỹ ) = EY∼P(Y |X)[R(Y,Ỹ )] = ∑
Y∈Y

R(Y,Ỹ )P(Y |X) (2.71)

where R(Y,Ỹ ) is the discrete score of hypothesis Ỹ with respect to reference Y . Note that in
Section 2.2.2, Y was used to denote the reference sequence as it was assumed there is only
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one gold standard sequence in that case. Whereas here it is assumed that the true distribution
of the reference P(Y |X) is known. The hypothesis that minimizes the Bayes risk is

YB = argmin
Ỹ∈Y

∑
Y∈Y

R(Y,Ỹ )P(Y |X) (2.72)

This MBR decoding can be thought of as choosing a consensus output. However, in practice,
it is not feasible to obtain the true distribution P(Y |X), and the space Y of all possible
sequences is too large. Therefore, approximation methods have been considered,

• Single Models: N-best list of hypotheses, Ŷ = {Ŷ (1), ...,Ŷ (N)}, can be generated by the
model P(Y |X ;θθθ), and the MBR decoding method can be implemented as:

YB = argmin
Ỹ∈Ŷ

N

∑
n=1

R(Ŷ (n),Ỹ )P̂(Ŷ (n)|X ;θθθ) (2.73)

where P̂(Ŷ (n)|X ;θθθ) is defined the same as in Equation 2.53.

•Multiple Models: Based on M one-best outputs from M models, Ŷ = {Y (1), ...,Y (M)}, the
MBR decoding method can be implemented as:

YB = argmin
Ỹ∈Ŷ

M

∑
m=1

R(Ŷ (m),Ỹ )P̂(Ŷ (m)|X ;{θθθ (1), ...,θθθ (M)}) (2.74)

where

P̂(Ŷ (m)|X ;{θθθ (1), ...,θθθ (M)}) = ∑
M
m′=1 P(Ŷ (m)|X ;θθθ

(m′))

∑
M
k=1 ∑

M
m′=1 P(Ŷ (k)|X ;θθθ

(m′))
(2.75)

This MBR decoding using multiple models can be thought of as a system combination
method (i.e., ensemble method). The next section will describe other ensemble methods.

2.4 Ensemble Methods

Ensemble methods combine multiple learning algorithms or generative models to obtain
better performance than a single model. Training individual models could be prone to overfit
specific aspects, i.e., local minima of the loss function, especially when working with a
small dataset, so multiple models are trained so that each model can potentially capture
different aspects of the data that are generalizable and not prone to overfitting. Combining
diverse models together can often create a more robust and accurate prediction model [273].
Various approaches can be used to create diverse individual systems. A simple approach is to
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use different weights’ initialization for different seeds [152]. Alternatively for pre-trained
systems, one can set different random seeds, which will influence training dropout and
stochastic gradient descent batch creation, resulting in variability in the final models’ weights.
One can also use a form of data bagging, where a different subset of the data is used to train
each model [77].

Given dataset D, let P(θθθ |D) be the model distribution such that an ensemble of models
{θθθ (1),θθθ (2),θθθ (3), ...} can be drawn from. A possible model combination method is weight
averaging:

θθθ
Avg =

1
M

M

∑
m=1

θθθ
(m) (2.76)

Although weight averaging across training runs has shown success in image classification
[318], weight averaging across different training runs is expected to work only when individ-
ual runs operate in similar weight spaces. This limits the types of combinations for weight
averaging to only models with the same architecture and the same input format. Alternatively,
a Bayesian approach can be applied to system combination as follows,

P(Y |X ,D) =
∫

θθθ

P(Y |X ,θθθ)P(θθθ |D)dθθθ (2.77)

≈ 1
M

M

∑
m=1

P(Y |X ;θθθ
(m)), where θθθ

(m) ∼ P(θθθ |D) (2.78)

However, Equation 2.77 is intractable, so the Monte Carlo approximation is used in Equation
2.78. In practice, one can obtain a set of neural network models {θθθ (1), ...,θθθ (M)} from
different initialization points, different data shuffles, or different model topologies. Due to
the nature of the factorization property in Equation 2.68, combining the generative models
can be done at either the token level or the sequence level as follows:

• Token-level ensemble (product-of-expectations):

P(Y |X) =
T

∏
t=1

[
1
M

M

∑
m=1

P(yt |y1:t−1,X ;θθθ
(m))

]
(2.79)

• Sequence-level ensemble (expectation-of-products):

P(Y |X) =
1
M

M

∑
m=1

[
T

∏
t=1

P(yt |y1:t−1,X ;θθθ
(m))

]
(2.80)
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Maximum likelihood decoding methods in Section 2.3.1 can be used to decode both token-
level combination (Eqn. 2.79) and sequence-level combination (Eqn. 2.80). In addition,
based on the MBR decoding (Section 2.3.2), one could decode each model P(Y |X ;θθθ

(m))

separately to obtain one (or more) sequence Ŷ (m), and use the MBR decoding to combine all
sequences to obtain one output.

Hierarchical Ensemble

In addition to standard ensemble approaches, this work introduces Hierarchical Ensemble.
The motivation is that in a task where many base models could be trained, instead of using
only one type of combination, the hierarchical ensemble approach combines two levels of
combination: token-level and sequence-level (through MBR decoding). An example of a
hierarchical ensemble is depicted in Figure 2.5.

T5 model (1,1)

T5 model (1,M1)

p1,1(y|x)

p1,M1(y|x)

summary y1

Token-level Ensemble 1

T5 model (N,1)

T5 model (N,MN)

pN,1(y|x)

pN,MN(y|x)

Token-level Ensemble N

summary yN

summary y*

MBR Decoding

Fig. 2.5 Hierarchical ensemble of generative models (token-level ensemble and MBR decoding for
sequence-level combination) where each individual model is fine-tuned independently. Although this
figure uses T5 as an example of the base model, it can be replaced by any generative model.

Section 6.5.7 will examine the performance of ensemble techniques, including the proposed
hierarchical ensemble on the Spotify podcast summarization challenge at TREC 2020, and
the medical problem list summarization challenge at BioNLP 2023.

2.5 Tokenization

The previous sections described how models operate. It should be noted that these models
work with numbers, not raw text. Thus, a process to convert raw text into numerical numbers
is required. This process is called tokenization – transforming raw text into a format that



32 Deep Learning Fundamentals

models can understand and process. Tokenization breaks down texts into smaller, manageable
units (referred to as tokens [308]) such as words, subwords, or characters. By converting
text into tokens, each token can be mapped to a numerical identifier, making it possible
for the model to operate on the text data. For example, numerical identifiers of an input
text are mapped into vector representations via an embedding layer. Also, at the generation
stage, numerical identifiers are mapped back into tokens. Depending on the granularity,
tokenization can be broadly categorized into word-level, character-level, and subword-level.

Word-level

The text is broken down into individual words. This is a common approach to tokenization,
especially in languages (e.g., English) where words are separated by spaces. For example, the
sentence "This is Monday" can be simply split by the spaces, yielding [This, is, Monday].
To handle a more complex text (e.g., with contractions, punctuation, commas), a standard
word-tokenization toolkit NLTK3 and spaCy4 apply additional steps. For example, the default
word tokenizer in NLTK is the Treebank tokenizer. It uses regular expressions to tokenize text
as in Penn Treebank [192]. The additional steps for this tokenizer are: (1) split contractions
(e.g., don’t→ do n’t), (2) treat punctuations as separate words, (3) split commas and single
quotes when followed by a space, (4) split periods at the end of line.

For languages without word boundaries (e.g., Thai, Chinese, Japanese), word tokenization
is more challenging. For these languages, there are word segmentation algorithms such as
longest matching [206] or maximal matching [317].

Character-level

The text is broken down into individual characters. It was first introduced to deep learning
in the Character RNN model [130]. This approach treats each character as a token. For
example, the sentence "This is Monday" can be split into [T, h, i, s, _, i, s, _, M, o, n, d,
a, y ]. This method offers the finest granularity, ensuring no out-of-vocabulary issues, and it
can be useful for languages without clear word boundaries. However, its disadvantages are
that it can lead to very long sequences and characters may not be able to capture semantic
information as effectively as words.

3NLTK: https://www.nltk.org/
4spaCy: https://spacy.io/

https://www.nltk.org/
https://spacy.io/
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Subword-level

Consider the word "tokenization". It might be considered a rare word and could be
decomposed into "token" + "ization". Both of these subwords are more likely to appear
standalone. Also, the meaning of "tokenization" is kept by the composite meaning of
"token" and "ization". Typically, a 750-word document is about 1000 tokens. This process
allows us to have good coverage (thus, a small percentage of unknown tokens) while keeping
the vocabulary size small. Examples of widely used subword tokenization algorithms are
summarized below.

• Byte-Pair Encoding (BPE) [266]: This subword tokenization method starts with a vocabu-
lary of individual characters and it iteratively merges the most frequent pairs of symbols until
a desired vocabulary size is reached. Byte-Level BPE is a variation of BPE that operates at
the byte level. Byte-level BPE begins with a vocabulary of individual bytes instead of starting
with a vocabulary of individual characters or words. This makes it language-agnostic and
capable of handling any raw text, including special characters and even binary data. Models
such as GPT-2 use byte-level BPE tokenization.

• WordPiece [52]: This subword tokenization method starts with a base vocabulary of
individual characters from the dataset. This base vocabulary is often initialized with all the
characters present in the training data. Instead of simply counting frequencies like in BPE,
WordPiece tries to maximize the likelihood of the training data with respect to the model.
During each iteration of vocabulary expansion, WordPiece considers adding a new token
that will result in the biggest gain in the data’s likelihood. New tokens are added until the
desired vocabulary size is reached or until the likelihood gain falls below a certain threshold.
When tokenizing a text, if a word is not in the vocabulary, the word is iteratively split into
smaller subwords until the subwords are found in the vocabulary or reduced to individual
characters. To differentiate between a subword that starts a word and a subword that is in
the middle of a word, WordPiece typically uses a special prefix, often ##. For example, the
word "unhappiness" might be tokenized as [un, ##happiness] or [un, ##happi, ##ness].
WordPiece tokenization was proposed and used in BERT [52].

• SentencePiece [144]: BPE and WordPiece have the same problem in that they assume the
input text uses spaces to separate words. However, not all languages use spaces to separate
words (e.g., Thai or Chinese). This problem can be addressed by using a language-specific
pre-tokenizer as done in XLM [154]. SentencePiece handles this problem more generally by
treating the input as a raw input stream, including the space in the set of characters to use. It
then uses the BPE or WordPiece algorithm to construct the vocabulary. Note that decoding
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with SentencePiece is easy since all tokens can simply be concatenated and space_token is
replaced by a space. Models such as T5 use byte SentencePiece tokenization.

2.6 Chapter Summary

This chapter discussed deep learning fundamentals. Section 2.1 covered standard architec-
tures, including feedforward neural network, recurrent neural network, encoder-decoder
architecture, and transformer. Section 2.2 discussed training methods, including token-level
training objective, sequence-level objective, and optimization algorithms. Section 2.3 dis-
cussed inference methods, including maximum likelihood decoding and MBR decoding.
Section 2.4 discussed ensemble methods as well as introducing hierarchical ensemble. Lastly,
Section 2.5 explained tokenization methods, which are an important pre-processing stage in
text processing. The materials in this chapter are not specific to any particular experiments or
investigations in the following parts of the thesis, and they are applicable to deep learning
based methods broadly.
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Foundation Models in NLP

Foundation models1 are large-scale neural network models that are (pre-)trained on a large
quantity of data. Foundation models harness the increasingly larger computational resources
and available large datasets to achieve state-of-the-art performance across a range of tasks,
from natural language processing, computer vision, to speech processing. The term ‘foun-
dation’ is used to describe these models because they provide a versatile basis upon which
more specialized, application-specific models can be constructed [14].

Previously, the dominant pre-training method was transfer learning (TL), which uses
labelled data to learn a good representation of neural network models from one task and
transfer it to another task [358]. Recently, a new pre-training approach – Self-Supervised
Learning (SSL) – has demonstrated improved results on a wide range of applications [6].
TL and SSL are both applied to learn a good representation of a model before applying the
model to a target task. However, in contrast to TL, SSL does not require annotated labels as
SSL creates auxiliary or pseudo tasks from unlabelled data.

3.1 Self-Supervised Learning (SSL)

Self-supervised learning (SSL) is an important approach that underpins advances in machine
learning and generative AI. SSL is a methodology that can learn from unlabelled data. SSL
is different from supervised learning which requires labelled data, which makes it difficult
to scale up training data. SSL is similar to unsupervised learning in that it does not require
labelled data; however, unlike unsupervised learning, SSL exploits inherent structure in
unlabelled data, allowing SSL to obtain supervisory signals from the data itself.

1In the pre-training and fine-tuning paradigm, foundation models are also referred to as pre-trained models.
In NLP, foundation models are also referred to as large language models (LLMs).
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3.1.1 General Approach in SSL

Self-supervised learning generates labels (i.e., the targets for supervised learning) from the
unlabelled data without manual or weak label sources. The idea is that a part of the input
(regardless of whether it is text, image, or speech unit) can be hidden or modified, such that
the original data can be used as the ground-truth target. Self-supervised tasks are also referred
to as pretext tasks. Common type pretext tasks include: recovering the input from corruption
and predicting the future from the past. The general approach (illustrated in Figure 3.1) in
any domain can be simplified into (1) transforming the unlabelled data into a pretext task,
e.g., by masking or adding noise; (2) predicting the targets which are generally created from
the original data; (3) computing the loss which can then be backpropagated to train the model.
The exact realization of each component in SSL depends on the domain, and we provide
some examples below.

Masking
(Adding Noise)

Model
(Making Prediction) LossData

Fig. 3.1 General Approach in SSL. The data can be in any domain including texts, images, audio
or time series. The model can be any architecture, but in modern deep learning, models are mostly
transformer-based as it allows SSL on a large amount of data to be parallelized using GPUs. Widely-
used architectures are discussed in Section 2.1.4.

In NLP, a common SSL approach is to predict hidden parts of the input or to reconstruct
a perturbed input. In this example, SSL exploits unlabelled data (e.g., texts) by hiding or
perturbing the texts, and the supervisory signals are the hidden or perturbed parts. This
SSL task is also known as Mask Language Modelling (MLM), which has shown success
in representation learning. In MLM, the model has to learn good representation in order
to predict masked words from the surrounding contexts. Another common SSL task is to
predict next the word conditioned on previous words, which has improved generative tasks.
The applications of SSL in NLP will be discussed in more detail in Section 3.1.2.

In speech processing, Oord et al. [216] proposed a pretext task that maximizes the mutual
information between the input features and the contextual representation. wav2vec 2.0 [4] is
trained by predicting speech units for masked parts where the representation is quantized
and negative examples are chosen from masked segments in the same utterance. Hidden
Unit BERT (HuBERT) [115] follows the architecture of wav2vec2.0; HuBERT is trained on
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a masked language modelling loss similar to BERT, but the targets are obtained by using
k-means clustering to obtain a discrete set of outputs.

In computer vision, Gidaris et al. [85] were one of the first to apply SSL to computer
vision tasks where the SSL task is to predict the amount of rotation applied to the original
images. SimCLR [23] identifies augmented pairs as an SSL task. Similar to MLM in NLP,
analogous tasks such as BYOL [95] learn to predict masked patches in an image. SSL has
improved the results in object classification, object segmentation, object detection tasks, etc.

The supervised pre-training stage enables the model to learn general-purpose feature
representation for downstream or target tasks. After the pre-training stage, the model can
be applied to a target task in two standard ways: (1) fine-tuning the model either entirely or
partially on the target task, and (2) applying the model in a zero-shot manner, which is more
common for large foundation language models. Before delving into SSL in NLP, it should be
noted that another important concept in SSL is contrastive learning, which is to distinguish
correct (positive) samples from wrong (negative) ones.

Contrastive Learning

Contrastive learning aims to learn representation by pulling semantically close neighbours
(e.g., similar sentences) together and pushing apart non-neighbours [100]. Contrastive
learning assumes a set of paired examples {(X ( j), X̃ ( j))} j=1,2,...,J such that X̃ ( j) is a positive
example of X ( j) while X̃ (k) is a negative example when k ̸= j. The conservative learning loss
given the set of paired examples (or mini-batch of paired examples in practice) is:

L( j)
CT(θθθ) =− log

 exp
(
sim(h( j),h̃( j))

τ

)
∑

J
j′=1 exp

(
sim(h( j),h̃( j′))

τ

)
 (3.1)

where h( j) = f (X ( j);θθθ) is the model-based representation of X ( j), the function sim(., .)
measures similarity between two embeddings, and temperature τ is a hyperparameter. For
example, in sentence representation learning, SimCSE [79] generates similar (i.e., positive)
samples by applying dropout masks while diverse (i.e., negative) samples are other sentences
in the same mini-batch. SimCSE achieved state-of-the-art performance in sentence represen-
tation learning. Researchers in different domains have proposed various contrastive learning
based SSL objectives, which could be considered variants of Equation 3.1 [6].
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3.1.2 Applications of SSL in NLP

In NLP, a large amount of raw (unlabelled or no target sequence) texts are readily available
such as the Common Crawl data2 or the RefinedWeb data [225] which has already been
preprocessed. Thus, SSL is adopted in NLP to utilize the massive amount of unlabelled data,
and this has led to significant performance improvement in modern NLP models such as
BERT [52] or GPT [242]. The following will describe notable SSL techniques in NLP.

Word Embeddings

One of the first applications of SSL is word embedding [199, 227], which converts each word
into a vector space representation. This vector space representation of words is expected
to map semantically similar words closer to each other in the space. The most widely used
word embedding models are word2vec [199] and GloVe [227] both of which are based on
unsupervised learning. However, both word embeddings are context-independent, which
means that they have a fixed embedding for each word regardless of the context (e.g.,
sentence). ELMo [228] is a context-dependent word embedding as it is trained to predict the
next words. These early works in word embeddings use a recurrent neural network (RNN) as
the backbone, and they were mostly invented before transformers. RNNs suffer from gradient
vanishing [107, 108], capturing long-range dependencies [155], and non-parallelizability
during training [290, 226]. These limitations prevent RNNs from performing SSL at scale.
Subsequent works, therefore, have shifted to using transformer-based backbones, which can
be trained more efficiently. This started a new trend in designing self-supervised tasks for
pre-training transformer-based models, which we discuss below.

Masked Language Modelling (MLM)

In Masked Language Modelling (MLM), some words (or more precisely tokens and typically
with a pre-defined percentage masking) in unlabelled texts are masked. The model is trained
to predict the masked tokens using the remaining context. For example, Bidirectional Encoder
Representations from Transformers (BERT) [52] is an encoder-only model pre-trained on a
masked language modelling (MLM) objective. In this setup, the final hidden representations
corresponding to masked tokens are passed to a softmax layer, and the training criterion
is to maximize the probability of the masked tokens. For BERT pre-training, unlabelled
texts are corrupted by random masking at around 15% of the tokens. BERT also has a
second pre-training objective, which is to predict whether the two-sentence input is related
(as the texts are the concatenation of two sentences either drawn randomly or from adjacent

2https://commoncrawl.org/

https://commoncrawl.org/
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pairs). The pre-training data comprises a book corpus (800M words) and English Wikipedia
(2,500M words).

Causal Language Modelling (CLM)

As opposed to the MLM objective, the causal language modelling (CLM) objective is to
predict the next word. For example, GPT-2 [242] is a causal or unidirectional language model
trained on 8 million web pages (40GB of text). A GPT model is causal in the sense that
during training, a causal mask which prevents each token from using future information is
applied, and hence, models trained on the CLM objective are suited for text generation tasks.

Bidirectional LM
(e.g., BERT)

Causal LM
(e.g., GPT-2)

A  _  C  _  E <s>  A  B  C  D

  A   B  C  D  E        B       D  

Fig. 3.2 BERT (left) is a bidirectional language model pre-trained with the MLM objective to predict
masked tokens. BERT is good for extracting word or sentence representations, but it is not suitable for
generation. GPT-2 (right) is a causal language model pre-trained with the CLM objective to predict
the next words, and it is suitable for generation tasks.

3.1.3 Main Types of Transformers

In NLP, transformer architectures have paved the way for significant advances. Due to their
performance, transformers have become the standard backbones of many sequential and
NLP tasks such as text classification [329], machine translation [290], or grammatical error
correction [127]. In summarization, Liu and Lapata [169] was one of the first to show that
transformer models can be comparable with existing RNN models, and with pre-trained
weights, transformer models set new state-of-the-art results. Given the impressive results
of transformers, this subsection delves into the details of the architectures, which primarily
manifest in three configurations: encoder-only, decoder-only, and encoder-decoder models.

• Encoder-Only: Encoder-only or autoencoding models are trained on the MLM objective.
The dependencies between tokens are bi-directional such that each token attends to all other
tokens in the input sequence. As a result, autoencoding models are suitable for natural
language understanding tasks such as text classification, sentiment analysis, named entity
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recognition, or token classification. Widely used autoencoding models include BERT [52],
RoBERTa [170], XLM [154], ELECTRA [36], DeBERTa-v3 [102].

• Decoder-Only: Decoder-only or autoregressive models are trained on the CLM objective.
The dependencies between tokens are uni-directional such that each token can only attend
to the past tokens (e.g., through causal masking). As a result, autoregressive models are
suitable for text generation. In addition to generation, autoregressive models have been
shown to have emergent behaviour (i.e., capable of classification tasks) once trained at
scale [15, 309, 31]. Widely used autoregressive models include the GPT family of models
[241, 242, 15], BLOOM [257], OPT [342], LLaMA [286].

• Encoder-Decoder: Encoder-decoder or sequence-to-sequence models are trained on an
objective to reconstruct corrupted text spans (e.g., masked tokens and swapped position).
The encoder is an autoencoding model, so it has bi-directional dependencies and is suitable
for understanding the input. The decoder is an autoregressive model, so it has uni-directional
dependencies which allow it to perform generation. Because the encoder-decoder model
combines the strengths of the previous two architectures, it facilitates both the understanding
and generation of text, which is pivotal in complex undertakings like translation, summa-
rization, and question-answering. Widely used sequence-to-sequence models include BART
[159] and T5 [244].
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Fig. 3.3 Timeline of pre-trained transformers and the number of parameters.

Figure 3.3 illustrates the timeline of common pre-trained transformer architectures where
the x-axis shows the time when each model is released based on either the timestamp of the
corresponding arXiv pre-print if available or the published paper and the y-axis shows the
log-scale of the number of parameters of the largest variant of each model. It is clear that
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larger (and usually more capable) models have been released continuously throughout the
time of conducting experiments in this thesis (late 2019 – late 2023). Figure 3.3 can be used
as a rough guide about state-of-the-art backbones across the timespan.

3.1.4 Memory and Computation

Given that there are constraints in hardware (e.g., VRAM or memory of GPUs) and time,
this subsection analyses the memory requirement and computational cost of transformers.

Memory Requirement

Since training is done on an accelerator (with GPU being the default option in practice),
the memory requirement has to be within one GPU limit; otherwise, techniques such as
model parallelism will be required, reducing training/fine-tuning speed. A standard GPU
specification (during most of the time span of this research) includes:

• NVIDIA V100 with 32 GB

• NVIDIA P100 with 16 GB

• NVIDIA 2080Ti with 11 GB

• NVIDIA 1080Ti with 11 GB

O(N2) complexity in memory requirement

As summarization tasks typically involve long input sequences, one of the important con-
siderations in this thesis is the memory requirement. Following Section 2.1.4, we consider
query, key, and value as matrices where

Q =


qT

1

qT
2
...

qT
N

 K =


kT

1

kT
2
...

kT
N

 V =


vT

1

vT
2
...

vT
N

 (3.2)

Q,K,V∈RN×D where N is the sequence length and D is the hidden dimension. The standard
self-attention mechanism is,

Attention(Q,K,V) = softmax(QKT )V (3.3)
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which involves the following three steps:3

1. 1st matrix-multiplication (Query, Key): QKT

2. Softmax: softmax(QKT )

3. 2nd matrix-multiplication (Prob, Value): softmax(QKT )V

As the intermediate matrix QKT ∈ RN×N , standard implementations (such as PyTorch
implementation), which store intermediate results in the GPU high-bandwidth memory,
will have a quadratic memory requirement in sequence length, (i.e., O(N2)). The memory
requirement is more critical at training (due to gradient updates and optimizer states) than at
inference (no gradient updates), which may prevent researchers without high-memory GPUs
from training/fine-tuning models locally.

In recent work, FlashAttention [46] re-formulates the standard attention mechanism, lever-
aging the knowledge of the GPU memory hierarchy (high-memory bandwidth HRAM and
on-chip SRAM) for efficiency. FlashAttention can reduce the memory requirement to linear
with the sequence length O(N) by operating all intermediate steps on-chip without having to
cache QKT . FlashAttention has since become the new de facto implementation of attention,
but as it was released after this work, experiments in Chapter 6 do not cover FlashAttention.

Model Quantization

In standard Python, a model parameter is a 32-bit floating point (FP32) variable, which takes
4 bytes of memory. To store/load a model with 1 billion parameters, 4 GB of memory is
therefore required. The 32 bits consist of 1 bit for sign, 8 bits for exponent, and 23 bits for
fraction. Model quantization is to project higher precision variables into lower precision
variables such that the memory requirement can be smaller but with the accuracy and stability
trade-off [72, 333, 322, 164]. Table 3.1 illustrates examples of precision spaces. During the
majority of the experiments in this thesis, a 32-bit floating point (full precision) is used as it
is commonly adopted and is more stable; although we note that brain floating point (bfloat16)
[302] has become more popular, especially with LLMs larger than 1 billion parameters.

3Masking, scaling, and dropout operations are omitted as they are element-wise operations with a linear
complexity
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Type Bits Exponent Fraction Memory

FP32 32 8 23 4 bytes
FP16 16 5 10 2 bytes

BFLOAT16 16 8 7 2 bytes
INT8 8 +/- 7 1 bytes

Table 3.1 Memory requirement for different values of precision.

Computation Cost

The computation cost of transformer-based models consists of several factors. First, as
discussed in the memory requirement, computing standard self-attention is quadratic in the
sequence length (i.e., O(N2)) due to QKT . In addition, a non-trivial amount of computation
also comes from the two-layer feed-forward layers at every block (approximately half the
compute time and/or FLOPs [283]). Although the complexity of the FFN is linear with
respect to sequence length (i.e., O(N)), it is generally still costly due to the size of hidden
dimension D.

3.1.5 Efficient Transformers

Pre-trained transformer models have shown success [52, 159, 244] and become the starting
point for various NLP problems such as BERT [52] in contextual representation, GPT-2 in
text generation [242], or BART in sequence-to-sequence tasks [159]. However, memory and
time requirements of standard implementations (in Section 3.1.4) for transformer models
grow quadratically with the sequence length, which can hinder model scalability in many
settings, especially for long-span tasks. The term ‘efficient model’, in this work, refers to
the efficiency of the Transformer model both in terms of memory and computation. There
have been a number of transformer variants proposed that address the quadratic complexity
problem [283, 282], which can be categorized as follows:

• Fixed Attention Patterns: Blockwise attention [238] groups the sequence into fixed
blocks (each with length W ) such that the complexity reduces from N2 to W 2× N

W =WN.
Furthermore, Transformer-XL [42] extends the blockwise attention method by connecting
blocks via recurrence. Similar to blockwise attention, local attention (shown in Figure 3.4b)
[223, 338, 10] operates by limiting each token to attend to neighbouring tokens within a
span size of W . Stride attention (shown in Figure 3.4c) [27, 10] employs strided or dilated
windows such that each token can only attend to other tokens at a fixed interval. Global
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attention (shown in Figure 3.4d) allows pre-defined tokens such as <bos> and <eos> to
attend to over other positions as well as being attended by all other positions. A combination
of fixed patterns has been considered. For example, Longformer [10] employs both local,
strided, and global attention patterns. BigBird [338] employs random attention (a fixed
number of random positions are attended to) in addition to local and global attention patterns.

(a)     full attention (b)     local attention (c)     strided attention (d)     local +     global

Fig. 3.4 Diagram of different forms of fixed attention patterns.

• Learnable Patterns: Instead of pre-defining fixed patterns, learnable patterns aim to find
an effective pattern from the data, e.g., through token relevance and group tokens into clusters,
such as Reformer [137]. Also, the Sinkhorn Sorting Network [281] exposes the sparsity in
attention weights by learning to sort blocks of the input sequence.

• Low-Rank Matrix Approximation: This method assumes the low-rank structure in the
N×N matrices. For example, Linformer [303] projects the length dimension of the key
and value matrices to a lower-dimensional space (N→ k), reducing the complexity to N× k.
Recently, LoRA [116], a low-rank matrix approximation-based method, has made training
LLMs faster and more memory-efficient. LoRA works by adding an adapter (e.g., a low-rank
N× r matrices) and training only this adapter.

• Kernel Methods. These methods are approximations that use kernel tricks to avoid the
explicit computation of the N×N matrix. These methods include Performers [30], Linear
Transformers [131], etc.

A detailed survey on efficient transformers has recently been compiled by Tay et al. [283].
In addition to efficient architectures, there are alternative and complementary techniques
which can be used to improve efficiency. For example, Voita et al. [294], Michel et al. [196]
showed that some attention heads are redundant and can be pruned to reduce model size.
Knowledge distillation [106, 255] compresses a large model (i.e., teacher) to a smaller model
(i.e., student) while retaining most of the performance and reducing memory and computation.
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Model quantization [121] has also been applied to compress the model from full precision
(32-bit) to half-precision (16-bit) or lower.

3.2 Properties

To leverage foundation language models for a particular task, it is essential to understand
their properties and limitations. First, this section will discuss the memory and computation
requirements of the transformer architecture. Next, this section discusses scaling laws and
emergent abilities which enable large language models to perform various NLP tasks in a
zero-shot fashion. Lastly, this section discusses the methods to align LLMs to user intents,
which has recently driven the mass adoption of LLMs.

3.2.1 Scaling Laws and Emergent Abilities

Language models (LMs) are probabilistic models that learn patterns in texts, and they can be
used to compute the likelihood of words or to generate new words. More recently, GPT-3 has
shown that as LMs become large (hence referred to as large language models or LLMs), they
can be used in a few-shot learning manner [15]. Few-shot learning refers to when a model can
make predictions or understand new tasks it has not seen before, using only a few examples
for each task. This contrasts with traditional approaches that often require large amounts
of data for accurate performance. In the context of LLMs, few-shot learning is usually
performed through a prompting method such as in-context learning [201]. Furthermore,
recent work such as Kojima et al. [141] shows that LLMs are zero-shot learners. This is
when a model can infer information about new tasks it has never seen. LLMs can achieve
impressive results without the need for task-specific fine-tuning or architectural modification.
As LLMs are scaled up, new abilities are unlocked or emerge4 without being directly trained
on; for example, the emergent abilities include performing arithmetic, question answering,
summarization, etc [15, 309, 31].

In-Context Learning

After pre-training and/or aligning LLMs to better follow human instructions (Section 3.2.2),
a standard approach to using LLMs is to design suitable prompts for solving various tasks.
A typical prompting method to utilize relevant examples, known as in-context learning
(ICL), formulates the task description and/or demonstrations (examples) in the form of

4Note that recent work by Schaeffer et al. [258] argues that emergent abilities appear because of the choice
of evaluation metrics that are non-linear.
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natural language text [55]. It has been shown that LLMs can solve a series of complex
tasks through in-context learning, such as solving mathematical reasoning problems [310].
In-context learning requires a few examples to form a demonstration context concatenated
with a query in natural language as the input prompt to the LLM. Unlike supervised learning,
in-context learning does not change the model parameters. This makes in-context learning
interpretable, highly adaptable, and easier to incorporate human knowledge into LLMs.
Since in-context learning is applied through natural language interface prompting, some
more advanced prompting techniques have been proposed such as chain-of-thought (COT)
[310], self-consistency COT [304], and three of thoughts [332].

Scaling Up LLMs

Scaling language model has shown consistent improvements in model performance (e.g., as
measured by the cross-entropy loss). Kaplan et al. [128] showed that a linear relationship
between the loss and log of the number of parameters holds from 103 to 109 parameters. In
contrast, emergent abilities refer to the scenario when the LLM suddenly gains an ability to
perform a task, it is on not trained on, once it reaches a certain scale. For example Srivastava
et al. [275] showed that after reaching the size around 1010 to 1011 parameters, the LLM is
suddenly capable of performing several tasks on BIG-bench [275].

In addition, recent works [110, 286] demonstrated that scaling up the model size solely
may not be enough as training also depends on the dataset size. For example, Hoffmann
et al. [110] showed that the number of tokens (in the training data) should be about 20 times
the number of parameters to be data optimal for a fixed computational budget. Similarly,
Touvron et al. [286] showed that previous training was not data optimal, and by training
longer (e.g., larger training dataset), LLaMA achieves state-of-the-art performance and is
comparable to an LLM with 10 times more parameters.

In conclusion, it has been found that scaling up LLMs results in emergent abilities which
enable zero-shot or few-shot approaches. Another important technique to improve LLMs is
instruction tuning, which is to further align LLMs with human instructions. Aligning LLMs
is important as it improves the zero-shot ability of LLMs (e.g., without the need for providing
examples as in few-shot learning). Both of these are discussed in more detail below.

3.2.2 Aligning Large Language Models

Despite being trained on a vast quantity of texts from the internet, LLMs do not necessarily
understand human instructions, or generate unintended responses, limiting the usefulness of
LLMs. Thus, aligning LLMs with human preferences has become an important component in
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the success of modern LLMs in performing tasks in a zero-shot manner [306]. The following
will outline two common techniques for aligning LLMs to human instructions.

Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is a method to instruction-tune LLMs using supervised
instruction-response pairs. SFT is a technique to improve the capabilities and controllability
of foundation models, especially large language models (LLMs) [32, 218, 341]. The goal
is to make LLMs understand and respond to human instruction, which is crucial in zero-
shot applications. SFT is performed by further training LLMs using pairs of instruction
and desired output. Since LLMs are trained to predict the next words, they are capable of
performing sentence completion but they may lack the ability to follow human instructions,
which limits the helpfulness of LLMs. InstructGPT [218], for example, is an instruction
fine-tuned variant of GPT-3 [15], allowing the LLM to give useful responses to user prompts.

An instruction-tuning dataset consists of multiple common supervised tasks such as
question answering, summarization, and dialogue generation. Each example in an instruction-
tuning dataset consists of three elements: (1) an instruction which specifies the task in human
language, (2) an (optional) input which provides (optional) context for performing the task,
(e.g., the source document for performing summarization), and (3) the desired output.

The dataset is generally constructed by methods as follows. First, existing NLP datasets
are turned into instruction-tuning datasets using a template as done in, for example, T0
[256], Flan [176] and P3 [256]. T0 converts a large set of existing supervised datasets, each
with multiple prompts and different wording. FLAN manually creates ten prompt templates,
where each template contains natural language instructions to describe the tasks associated
with the dataset. This includes 62 publicly available datasets from Tensorflow Datasets.
Second, desired outputs are crafted by human annotators such as the dataset for InstructGPT
[218] or by prompting (usually larger) LLMs such as the Alpaca dataset [280].

Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) [218] is a training methodology for
training machine learning models, particularly deep reinforcement learning models, using
feedback derived from human annotators. Traditional reinforcement learning (RL) involves a
model (e.g., an LLM) interacting with an environment and learning through rewards based
on its actions. However, designing a good reward function can be challenging, especially in
complex environments such as natural language tasks. This is where human feedback can
improve RL. The process of RLHF typically follows these steps:
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1. Human Annotation: (1) desired responses are manually generated, which are then
used to fine-tune an LLM (supervised training); (2) ranking responses are performed
by human annotators, which are then used in the next step.

2. Reward Model: A reward model can be trained to rank responses using the dataset
from the previous step. This reward model can then be used instead of a pre-defined
hand-crafted reward function in the RL training.

3. Training with Proximal Policy Optimization (PPO): Using the learned reward model
as a surrogate reward function, the LLM is then fine-tuned using a reinforcement
learning algorithm such as Proximal Policy Optimization (PPO) [260]. Recently,
Direct Preference Optimization (DPO) [243] is proposed to implicitly optimize an
objective that yields a similar result to RLHF without the need for reward model fitting,
extensive sampling, and complex hyperparameter tuning in reinforcement learning.

The initial model can also be further improved by collecting more human feedback, and the
RLHF process above can be iterated over again.

3.3 Chapter Summary

This chapter discussed foundation models, which are the backbone of many current deep
learning systems. Section 3.1 discussed self-supervised learning (SSL) which exploits
inherent structures in unlabelled data to pre-train foundation models for further fine-tuning
to specific tasks. This section discussed the general pipeline in SSL, the application of SSL
in NLP, major types of pre-trained transformers, memory and computation complexity, and
efficient transformer architectures. Section 3.2 discussed the properties of transformers,
including scaling laws, emergent abilities, and alignment processes. This chapter provides
the fundamentals of foundation models, which will used for abstractive summarization in
Chapter 6, for summary assessment in Chapter 7, and information consistency in generative
AI in Chapter 8.



Chapter 4

Summarization Background

Summarization is the task of producing a shorter version of one or more source documents that
preserve most of the source’s information. It is one of the most researched areas in the Natural
Language Processing (NLP) community with several benchmark approaches [212, 331] and
tasks [208, 209]. A taxonomy for automatic text summarization can be done based various
classifications; for example, the number of source documents (e.g., single-document, multiple-
document), summarization method (e.g., extractive, abstractive), the nature of the summary
(e.g., query-based, generic), language (e.g., monolingual, multilingual, cross-lingual), domain
(e.g., news, podcasts, meeting transcripts, scientific articles, opinions/reviews, etc.).

LONDON, England (Reuters) -- Harry Potter star Daniel
Radcliffe gains access to a reported £20 million ($41.1
million) fortune as he turns 18 on Monday, but he insists the
money won't cast a spell on him. Daniel Radcliffe as Harry
Potter in "Harry Potter and the Order of the Phoenix" To the
disappointment of gossip columnists around the world, the
young actor says he has no plans to fritter his cash away on
fast cars, drink and celebrity parties. "I don't plan to be one
of those people who, as soon as they turn 18, suddenly buy
themselves a massive sports car collection or something
similar," he told an Australian interviewer earlier this month.
"I don't think I'll be particularly extravagant. "The things I like
buying are things that cost about 10 pounds -- books and
CDs and DVDs." At 18, Radcliffe will be able to gamble in a
casino, buy a drink in a pub or see the horror film "Hostel:
Part II," currently six places below his number one movie on
the UK box office chart. Details of how he'll mark his
landmark birthday are under wraps.[...truncated...]

Harry Potter star Daniel Radcliffe gains access to a reported
£20 million ($41.1 million) fortune as he turns 18 on Monday,
but he insists the money won't cast a spell on him.

extractive
summarization

abstractive
summarization

Harry Potter star Daniel Radcliffe gets £20M fortune as he
turns 18 Monday . Young actor says he has no plans to fritter
his cash away . Radcliffe's earnings from first five Potter
films have been held in trust fund .

Fig. 4.1 An example of extractive summarization and abstractive summarization.

As the focus of this work is on the methods underlying summarization techniques, the main
classification in this chapter will be extractive and abstractive summarization illustrated in
Figure 4.1. Extractive summarization aims to select the most salient units from the source
document and reorder the extracted units to form a summary. Extracted units can be sentences,
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segments, or words. One way of achieving extractive summarization is to assign a score to
each and every extractive unit, and then select those with high scores. Alternatively using a
probabilistic view, extractive summarization can be seen as the probability of each extractive
unit being included in the summary. Extractive summarization will be further described
in Section 4.1. On the other hand, abstractive summarization aims to generate words and
phrases that may or may not appear in the source document. From a probabilistic perspective,
abstractive summarization is to learn the conditional probability of the summary given the
source document. Abstractive summarization will be further described in Section 4.2.

A good summary is usually ill-defined and subjective because there are multiple aspects
such as content and text quality. A good summary should contain salient information in
the source as well as be readable. Despite the subjectivity, accurate and reliable summary
evaluation methods are useful, as they provide a way to compare new summarization models
to existing ones. Thus, various assessment/evaluation methods and metrics have been pro-
posed from human evaluation to automatic assessment methods. Human evaluation is usually
treated as the gold-standard approach. However, human evaluation can be expensive, time-
consuming, and difficult to scale, therefore, limiting its usefulness. Automatic assessment
methods aim to approximate gold-standard human evaluation. These automatic methods are
evaluated by similar they are compared to gold-standard or human evaluation. The evaluation
of automatic methods is referred to as meta-evaluation, or simply just evaluation in the
context of developing automatic assessment methods. Given the importance, this chapter
includes the background of automatic summary assessment methods in Section 4.3.

4.1 Extractive Summarization

Extractive summarization is to generate a summary by selecting salient units from the
original document, with or without reordering them. Extractive units do not necessarily mean
sentences in the linguistic sense. Extractive summarization units can be sequences of words
such as word segments, sentences, or utterances in spoken language. For simplicity, in this
chapter, we will refer to all types of extractive units as sentences. Extractive summarization
methods are categorized into unsupervised methods and supervised methods, and we will
discuss commonly used methods for each of the two types.

4.1.1 Unsupervised Extractive Summarization

Unsupervised extractive summarization methods are the first approaches applied to text
summarization. Extractive summarization methods do not require document-summary pairs,
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and they can be computationally cheap to run. Hence, they are often used as baselines. The
notation for extractive summarization is as follows: X is the source document consisting of
N extractive units, such as sentences, {S1,S2, ...,SN}. The following will describe common
extractive summarization methods.

TextRank and LexRank

TextRank [198] and LexRank [64] are similar, both algorithms are based on the PageRank
algorithm. The first step is to split the source document X into sentences, S1,S2, ...,SN .
Similarity measures between sentences are then calculated and stored in the form of a matrix
M where the element (i, j) is:

Mi, j =
1
Zi
sim(Si,S j) (4.1)

TextRank and LexRank differ in how the similarity score sim(.) is computed. TextRank
computes the number of words that the two sentences have in common divided by the
sentence length, whereas LexRank computes the cosine similarity of TF-IDF vectors. The
term Zi is a normalization term of each column of M such that ∑i Mi, j = 1.0, and M is a
transition matrix where Mi, j is the probability of j→ i. Both algorithms seek to find a vector
v such that

Mv = v (4.2)

In other words, if we consider the problem as a graph, each sentence as a node, and the
similarity score as an edge, we have a process of information flow between sentences.
Therefore, v = [v1,v2, ...,vN ]

T is the stationary distribution, or the eigenvector associated
eigenvalue of 1. Finally, sentences can be ranked according to the scores v1,v2, ...,vN .

Maximum Marginal Relevance (MMR)

MMR is an iterative method that can be used in extractive summarization [18]. Let Y k be the
hypothesis summary at the k-th iteration. The score of Sn in the k-th iteration is defined as:

score(Sn) = λ ×sim1(Sn,X)+(1−λ )×sim2(Sn,Y k−1) (4.3)

The first term can be thought of as a saliency measure, and the second term can be thought
of as a redundancy measure. λ is a hyperparameter weighing the importance of the two
measures. The sentence of the highest score in iteration k is selected and added to Y k−1 to
yield Y k. The similarity functions sim1(.) and sim2(.) can be defined differently as denoted
by different subscripts. Traditionally, Sn, X , and Y k are encoded using TF-IDF, and cosine
similarity is used as the similarity functions.
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Latent Semantic Analysis (LSA)

LSA is a method based on singular value decomposition (SVD). Let t1, t2, ..., t|V | represent
frequencies where t j is the frequency (count per total) of word j in a given text. A matrix A
can be constructed such that Ai, j is the frequency of word j in sentence i. Row i of matrix A
can be thought of as a vector representing sentence i. We can compress A using SVD:

A{N,|V |} = U{N,K}S{K,K}VT
{K,|V |} (4.4)

where K is the number of compressed dimensions (also called the number of topics). It
can be seen that row i of the matrix U is a compressed vector representation of sentence i.
This enables using the compressed representations to compute similarity. There are other
variants of LSA such as probabilistic LSA (PLSA) and latent Dirichlet allocation (LDA).
Once compressed representations are obtained, methods such as TextRank or MMR can be
applied. Other unsupervised extractive summarization methods are, for example, Integer
Linear Programming (ILP) based methods [194, 87].

4.1.2 Supervised Extractive Summarization

In Section 4.1.1, unsupervised methods rely on defining scores for estimating the saliency of
each input sentence, respective to other input sentences. In contrast, supervised extractive
summarization aims to identify salient sentences from ground-truth signals.

Early supervised methods construct input features from texts, and they adopt techniques
such as support vector machine (SVM) and Naive Bayes Classier to make predictions about
sentences [63]. For example, in Kupiec et al. [148] a binary classifier is trained using the
Bayes’ rule to calculate the probability of including each sentence, in Conroy and O’leary
[41] Hidden Markov Model (HMM) is used to compute the likelihood of each sentence,
in Fuentes et al. [75] SVMs are trained for query-based summarization to select relevant
sentences. Given the success of deep learning, neural networks have been applied to extractive
summarization and extractive summarization is formulated as a sequence tagging task.

Neural Sequence Classification

This section focuses on modern approaches which are based on neural sequence classification
where extractive summarization is formulated as a sequence classification task. Various
neural-based approaches have been proposed, for example, by Cheng and Lapata [25],
Nallapati et al. [207], Xu and Durrett [326], Desai et al. [48].



4.1 Extractive Summarization 53

The notation is the same as unsupervised extractive summarization where X = {S1,S2, ...,SN}
is the source document with an addition of zi ∈ {0,1} be a binary label indicating whether
sentence Si is salient or not. The task is predict to predict ẑi, i.e. assign how likely sentence i
is salient or not,

ẑ1, ẑ2, ..., ẑN = f ({S1,S2, ...,SN}) (4.5)

where ẑi is a continuous value bounded between [0.0,1.0]. Using a neural model, Equation 4.5
can be modelled by a probabilistic model:

ẑi = P(zi|{S1,S2, ...,SN};θθθ) (4.6)

where early work adopted RNN, LSTM, and/or CNN architecture for θθθ [25, 207] and the
trend later shifted to using transformers [353, 3]. Nevertheless, these neural models similarly
encode sentence Si into a representation,

hi = f ({S1,S2, ...,SN};θθθ) (4.7)

This is usually followed by a sigmoid activation at the output layer,

ẑi = sigmoid(wT hi +b) (4.8)

where w and b are model parameters of the output layer. The objective function for supervised
extractive summarization in this setup is binary cross entropy,

L(θθθ) =−
N

∑
i=1

(zi log ẑi +(1− zi) log(1− ẑi)) (4.9)

and the loss function can be optimized using a stochastic gradient descent approach. Neural
approaches typically do not use hand-engineered features as the input texts are encoded
into embeddings. The neural approaches have shown success compared to the previous
approaches. Using a pre-trained backbone, the neural approach has achieved state-of-the-art
performance in extractive summarization [169, 327].

Training extractive models require reference labels {z1, ...,zN}. However, the majority of
reference summaries are often in the form of text-based summaries. To obtain reference labels,
Cheng and Lapata [25], Nallapati et al. [207], Liu and Lapata [169] use greedy selection to
create reference labels based on heuristics. For instance, one sentence at a time is selected
incrementally to a set of already selected sentences such that it maximizes the ROUGE
score [162], described in Section 4.3.1, between the current set of selected sentences and the
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reference summary. To avoid creating pseudo extractive labels, Reinforced Neural Extractive
Summarization (RNES) [320] directly trains the model using reinforcement learning loss
with the reward comprising coherency and ROUGE score.

Alternatively, in Zhong et al. [352], they formulate the problem as a semantic text matching
problem, in which a source document and candidate summaries (extracted from the original
text) are matched in a semantic space.

4.2 Abstractive Summarization

Abstractive summarization generates words and phrases. These words and phrases capture the
salient information in the source document, but the exact words may or may not appear in the
source document. Abstractive summarization approaches encode the source document into
feature representation and generate the summary based on the representation. As abstractive
summarization requires more complex abilities such as paraphrasing, generalization, or
incorporating domain knowledge, it was difficult to achieve these abilities without deep neural
networks. With the success of sequence-to-sequence models [279], RNN-based abstractive
summarization models using a sequence-to-sequence architecture were proposed [252, 29,
208].1 Similarly to other natural language generation tasks, abstractive summarization models
were traditionally trained from scratch and an inductive bias was carefully designed into
the model architecture [252, 29]. Given the success of self-supervised learning, pre-trained
language models have become the starting point for developing abstractive summarization
models [159]. More recently, large language models with billions of parameters have enabled
abstractive summarization in a zero-shot manner [15]. This section will delve into the details
of each of these paradigms of abstractive summarization.

4.2.1 Training Models from Scratch

An abstractive summarization model consists of an encoder which processes the source
document X = x1:N , and a decoder that processes/generates the summary Y = y1:M. The
encoder can have bi-directional dependencies, while the decoder has uni-directional depen-
dencies from left to right because, at the inference time, it has to perform autoregressive
generation. Essentially, these models are a conditional language model P(Y |X ;θθθ) with
parameters θθθ . The language model is then trained on the maximum likelihood criterion
described in Section 2.2.

1The RNN-based sequence-to-sequence architecture is described in Section 2.1.3
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Based on this conditional language modelling and sequence-to-sequence structure, early
work focused on designing neural network architectures. For example, Rush et al. [252]
experimented with a bag-of-words model, CNN, and attention network for the encoder while
a feed-forward network was used for the decoder. Chopra et al. [29] adopted a CNN model
or attention-based network for the encoder, while the decoder was RNN or LSTM. Nallapati
et al. [208] improved the architecture by using a bidirectional GRU for the encoder with
several input features including word embedding, part-of-speech tags, named-entity tags,
and TF-IDF features. The encoder is also hierarchical with one GRU layer at the word level
and one GRU layer at the sentence layer. The decoder uses a uni-directional GRU and a
pointer-network [292, 96] which allows the decoder to copy words from the input.

Pointer Generator Network (PGN)

A notable abstractive summarization model is the Pointer Generator Network (PGN) [263]
illustrated in Figure 4.2, and this model will be used as a baseline in Chapter 5. The PGN
model extends the vanilla encoder-decoder model by adding a copying mechanism. The
copying mechanism allows PGN to mitigate factuality and out-of-vocabulary problems. In
addition, it employs a coverage mechanism [288] to mitigate repetition in generation.

Following the vanilla encoder-decoder with an attention mechanism described in Sec-
tion 2.1.3, assume cm is the context vector and dm is the decode state at time instance m, the
PGN model computes the probability of generating from the vocabulary as follows:

pgen = sigmoid(wT
gen[dm;cm]+bgen) (4.10)

where wgen and bgen are pointing mechanism trainable parameters. The output probability
distribution given generation is the standard output distribution of words in the vocabulary
(i.e., softmax of the decoder output layer) in Equation 2.14. The output probability distribu-
tion given copying is the summation of the attention mechanism score for each word in the
source text, αt,i. The overall output probability of PGN is:

P(ym|y1:m−1,X) = pgenP(ym|,y1:m−1,X ;gen)+ pcopyP(ym|y1:m−1,X ; copy) (4.11)

= pgenPvocab(ym)+(1− pgen)

(
∑

i:wi=wm

αm,i

)
(4.12)

where Pvocab(ym) is the output distribution as defined in Equation 2.14.
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 Encoder (RNN) Decoder (RNN)

x1    x2   x3    x4   ...    xN <s>   y1   y2

attention distribution
over the input words

attention distribution
over the output vocab

final distribution
x (1 - pgen) x pgen 

Fig. 4.2 Pointer Generator Network (PGN) Model Architecture. The output distribution comes from
two parts: (1) generation from the vocabulary, and (2) copying from the source sequence.

Furthermore, Paulus et al. [224] augment the token-level MLE training loss with a sequence-
level RL loss:

LRL = (R(Y g)−R(Y s)) logP(Y s|X ;θθθ) (4.13)

where R(.) is a metric such as ROUGE, Y g is a greedy-search output, and Y s is a sampled
output. More details about sequence-level criteria are discussed in Section 2.2.2. Furthermore,
two-stage approaches are considered by Chen and Bansal [24], Gehrmann et al. [82], Hsu et al.
[114] where they demonstrate that good content selection (i.e., via extractive summarization)
helps abstractive news summarization systems. Gidiotis and Tsoumakas [86] divide the
source and target into multiple smaller pairs before training abstractive summarizers.

Hierarchical Recurrent Neural Network

Hierarchical recurrent neural networks were designed to model long-term dependencies
[105]. Given their effectiveness for long-term dependencies, they could be used as an
encoder for long-input sequence-to-sequence tasks. In summarization tasks, Cohan et al.
[39], for example, applied a hierarchical attention model to long-form documents (e.g.,
research papers) by having two RNN layers at the word level and the section level. In
meeting summarization, Li et al. [160] proposed a multi-modal hierarchical attention encoder
across three levels: segment, sentence/utterance and word where topic segmentation and
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abstractive summarization are jointly modelled. Similarly, Zhao et al. [349] proposed a
hierarchical attention encoder across three levels with a gating mechanism, which computes
the representation of the current utterance as a non-linear combination of the representation
of the previous utterance and the word-level representations of the current utterance. In
this thesis, we follow the existing hierarchical model architecture, and we describe the
architecture in detail in Section 5.2.1.

4.2.2 Fine-tuning Pre-trained Models

Pre-trained language models such as BERT [52] have been applied to summarization. Early
work includes Liu and Lapata [169] where the transformer-based encoder was initialized
with BERT’s parameters while the transformer-based decoder was initialized from scratch.
The encoder-decoder model was jointly trained on summarization datasets, achieving state-
of-the-art at the time. Recent work has focused on designing pre-training self-supervised
objectives to be closer to the target tasks, and notable pre-trained models are described below.

• BART [159] was proposed for sequence-to-sequence tasks. BART (illustrated in Figure 4.3)
extends BERT and GPT to sequence-to-sequence tasks. BART has an encoder-decoder
architecture, which allows it to perform denoising processes such as swapping word order
and predicting masked words. Its decoder is to denoise, (i.e., reconstruct noise added inputs)
and predict the next words. BART achieved state-of-the-art results on a range of sequence-to-
sequence tasks such as abstractive dialogue, question answering, and summarization.

Bidirectional Encoder Causal Decoder

D  _  A  _  E <s>  A  B  C  D

  A   B  C  D  E

Fig. 4.3 BART combines the benefit of BERT (to encoder source sequence) and GPT-2 (to generate
output sequence). Note that this also allows BART to be pre-trained using arbitrary noise transforma-
tion. This figure is adapted from the original BART paper.

• UniLM [54] combined unidirectional, bidirectional, and sequence-to-sequence pre-training
objectives so that one unified transformer model can be used in any downstream task (with
an appropriate mask).
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• T5 [244] is another sequence-to-sequence pre-trained where a large number of NLP
datasets are formatted as a sequence-to-sequence task for a unified text-to-text framework.
For instance, an example in a German-to-English translation dataset could be formatted as
Translate German to English: Das ist gut as used as the input to T5. This unified
text-to-text framework allows T5 to generalize and perform well. This process of formatting
NLP datasets into a unified format is similar to supervised fine-tuning LLMs with formatted
data described in Section 3.2.2.

• PEGASUS [340] was proposed to further make pre-training closer to summarization more
than BART. PEGASUS (illustrated in Figure 4.4) masks entire sentences (referred to as
Gap Sentence Generation, GSG) in addition to masking tokens. The model is trained to
predict these sentences. Although the GSG objective is highly challenging, even for humans,
this criterion was shown to elicit a higher sense of understanding for the generation of
sentences that have an instance of the original document. The findings from PEGASUS also
demonstrated that choosing the most important sentences for masking yields the best results,
and this is done by finding sentences that are the most similar to the document according to
the ROUGE score.

Encoder Decoder

the cat sat [mask] the mat . the [mask] has blue [mask]

the cat sat on the mat .  the mat is green .  the cat has blue eyes .

<s> the mat is green . 

. . .

. . .

the mat is green . </s> 

.  .  .  .  .

on cat eyes

Fig. 4.4 PEGASUS performs sentence masking and word masking simultaneously. For example, the
second sentence is masked and it is used in the text. The other two sentences remain in the input but
have some tokens masked.

Furthermore, Liu and Liu [172] proposed a re-ranking approach where the first stage uses
BART to generate a list of candidate summaries, and the second is to score the generated
summaries to obtain the best summary. The scoring model (using RoBERTa as the backbone)
is trained on a contrastive loss.
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Long-input Summarization

As described in Section 3.2.2, the compute and memory costs of the standard transformer
architecture grow quadratically with sequence length. In long-input summarization, this
quadratic dependency leads to a high memory requirement that could make fine-tuning a
large pre-trained model infeasible. Thus, applying a large pre-trained transformer model
off-the-shelf to long-input summarization can be challenging.

• Efficient Transformer for Summarization: One method to address the long-span problem
is to make the model architecture more efficient to handle a longer input span. For example,
efficient transformer architectures, which have been applied to long-input summarization,
are BigBird [338] and Longformer-Encoder-Decoder (LED) [10] which was developed
concurrently with the work in Chapter 6. BigBird is an encoder-decoder model where
its encoder employs local, global, and random attention patterns. Similarly, LED extends
Longformer to an encoder-decoder model, and its encoder has local, strided, and global
attention patterns. Although long-input summarization is a standard long-input task that
efficient models are designed to address, such models are applicable to broader sequential
tasks, and the discussion of these models is included in the section about efficient transformers
(Section 3.1.5).

• Hierarchical Architecture: Hierarchical architectures (such as the one described in
detail in Section 5.2.1) have also been applied to multi-document summarization [168], and
extractive news and table-to-text summarization [345, 210]. A hierarchical RNN system has
been applied to summarize long articles [39].

• Two-stage: Extractive + Abstractive: Existing work shows that good content selection
helps abstractive news summarization systems [24, 82, 114]. Hybrid systems that select
sentences and generate an abstractive summary have been proposed such as extractive system
+ TLM (Ext+TLM) for scientific articles [231], simple selection + BART for podcasts [274],
and guided summarization by BERT-based keyword/sentence extraction + BART for news
and scientific articles [101, 59]. CTRLsum [101] extends BART by conditioning the summary
generation with extracted keywords V in addition to the document, e.g., P(Y |X ,V ). The
keyword extraction model is based on BERT, and they apply a sliding window allowing it
to extract V in long sequences. However, their BART-based abstractive summarizer is still
limited to the first 1,024 tokens. Other work includes dividing the source and target into
multiple smaller pairs to train abstractive summarizers [86]. Extractive methods with and
without redundancy reduction techniques for long-span summarization have been studied by
Xiao and Carenini [323, 324].
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4.2.3 Prompting Large Language Models

With the advances in large language models (LLMs), LLMs have become ubiquitous, pow-
ering many NLP applications including text summarization [91, 344]. LLMs have led to
a shift in paradigm from fine-tuning language models to prompting language models to
perform a new task in a few-shot or zero-shot manner [15, 218]. To make language models
understand natural language prompts and perform tasks such as text summarization, two steps
are required: (1) pre-training at scale to achieve emergent ability (outlined in Section 3.2.1),
and (2) aligning the model with instruction-tuning datasets or with reinforcement learning
with human feedback (outlined in Section 3.2.2). In the zero-shot setup, an instruction-tuned
language model can be prompted with a user instruction as well as the desired output style
defined in the prompt [218], for example,

Summarize the content you are provided with for a second-grade student.
Content: ...

Prompt-based methods have improved controllable text summarization through textual input
in the form of a set of keywords or descriptive prompts [101, 124]. However, it should
be noted that zero-shot LLMs have been shown to underperform supervised models and
in-context learning on more challenging tasks such as machine translation. For example,
Brown et al. [15] showed that the few-shot setup for machine translation increased the BLEU
score for GPT-3 by almost 11 points from the zero-shot setup.

4.3 Summary Assessment

Summary assessment (i.e., summary evaluation) is useful for both machine-generated and
human-produced summaries. Assessing the generated summary text enables, for example,
summary generation system development and detection of inappropriate summaries to
ensure the quality of training examples. Reliable summary assessment methods are crucial
to benchmark new summarization models as they can show progress in summarization
development. While human evaluations are seen as the gold standard, they are costly and
hard to scale. Therefore, various automatic assessment methods have been proposed to
emulate human standards. This section will describe existing summary assessment methods,
which serve as the background for automatic summary assessment work in Chapter 7.
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Notation

X = x1:N is the source document, Y = y1:M is a candidate summary (i.e., summary to be
assessed), Y ∗ = y∗1:M is the reference/gold-standard summary which may or may not be
available depending on the task, z is the quality of the summary Y .

Aspects of Summary Assessment

Assessment methods need to evaluate the quality of a summary on one or more aspects which
are typically defined as follows [213, 45, 43, 125, 17]:

• Text Quality

- Fluency: Assessing the quality of individual sentences (e.g., whether the summary is
grammatical, or the summary appears natural).

- Coherency: Assessing the collective quality of all sentences (e.g., how well sentences
are connected).

• Content

- Informativeness (or Relevance): Assessing how much salient information is presented
in the summary, and how much redundancy the summary contains.

- Consistency (or Faithfulness, Factuality): Assessing whether the information in the
summary can be inferred by the source document. Hallucinated contents in an unfaith-
ful summary can be categorized into (1) intrinsic hallucination = when information is
manipulated inaccurately; and (2) extrinsic hallucination = when information is added.
Maynez et al. [193] distinguished between faithfulness and factuality in whether world
knowledge2 is taken into account in the context.

A combination of the aspects has been used as the overall quality of a summary [45, 43,
125]. It should be noted that the list above should not be treated as complete as different
categorizations and definitions have been adopted in the community [113]. Given that modern
summarization systems (especially those which are based on pre-trained models) are capable
of generating highly fluent summaries, the text quality aspects (e.g., fluency and coherence)
are less important [229, 50, 49]. As a result, the focus of the majority of recent summary
evaluation research has been on content-based aspects such as information consistency.
Similarly, this thesis focuses on assessing content-based quality, and we will therefore

2World knowledge is defined as the knowledge from external sources.
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discuss and present existing content-based assessment methods. Note that the details about
text-quality methods can be found in survey papers by El-Kassas et al. [62], Mridha et al.
[203], Cajueiro et al. [17].

Categorization of Summary Assessment Methods

A number of summary assessment methods have been proposed in the past decades and
multiple ways of categorization exist [17]. For example, categorization can be based on
whether the methods are intrinsic or extrinsic where intrinsic methods measure the quality
of the summary against the source document, while extrinsic methods measure the perfor-
mance on a target task when using the summary (e.g., document classification or reading
comprehension). Other ways of categorization include the aspect that measures a summary,
the algorithms (e.g., supervised or unsupervised), and model-based or model-free, etc.

In this thesis, as the focus is on content-based summary assessment, the methods are
categorized into (1) reference-based where the candidate summary is compared against the
gold-standard summary (or multiple gold-standard summaries), and (2) reference-free where
the generated summary is compared against the source document as illustrated in Figure 4.5.

Reference-free

Reference-based
Summary  y

Reference  y* Summary
Quality/Score

z

Summary
Quality/Score

z
Summary  y

Document  x

Fig. 4.5 Two types of content-based summary assessment methods: reference-based (top) and
reference-free (bottom). Each assessment method can be either an unsupervised or supervised method.

Assessing extractive labelling tasks

While general summary assessment methods are applicable in both extractive and abstractive
summarization, for extractive labelling tasks where ground-truth labels (i.e., binary label
zi ∈ {0,1} indicating whether sentence i is salient or not) are available, standard classification
metrics such as accuracy, precision, recall, or F1 score can be used for evaluating this task. For
example, extractive labels in the AMI dataset are available, so an F1-score evaluation is used
in Section 5.5.5. However, in practice, it is common that only ground-truth summaries are
available instead of ground-truth extractive labels. In this scenario, extractive summarization
methods are evaluated in the same way as abstractive summarization methods where the top
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sentences returned by an extractive method are concatenated as an output summary which is
compared against the reference.

Human evaluation methods

Human evaluation of summaries is generally viewed as the gold-standard evaluation method
since humans can reliably perform tasks that automatic methods often struggle with [88, 171].
For example, a human evaluator can be instructed to grade summaries based on certain
criteria and guidelines, whereas doing this automatically is likely very challenging for
most summarization applications. Hence, human evaluation is deemed more reliable than
automatic methods, and it is considered the gold standard in most applications.

First, human evaluation can be in the form of direct rating (i.e., reference-free) based on
specific criteria such as human evaluations performed in previous shared tasks, including
DUC 2005 [44], TAC 2008 [45], and TREC 2020 [125]. This form allows human evaluators
to judge summaries based on precise aspects one wishes to measure. However, it is essential
to provide a clear scoring guide, and there could be inconsistency among the evaluators (even
with training). This direct assessment requires human evaluators to understand the source
documents, which can be highly labourious, especially when evaluating multiple documents
or even just one in-depth document.

Second, human evaluation can be reference-based where human evaluators compare
candidate summaries against gold-standard summaries. Common reference-based human
evaluation methods are: Factoid [289], Pyramid [213], and Lightweight Pyramid [269].
In these methods, human evaluators assess whether the information in the gold-standard
summary is in the candidate summary by comparing the content units of both texts. For
example, the Pyramid method [213], illustrated in Figure 4.6, assesses the quality of a
summary by comparing it against a set of possible content units extracted from a set of
reference summaries. These content units, called Summary Content Units (SCUs), represent
unique pieces of information. A pyramid is constructed by ranking SCUs based on how
many reference summaries contain them: SCUs in more reference summaries are at the top,
while less common SCUs are at the bottom. To evaluate a hypothesis summary, SCUs are
identified within it and scored based on their level in the pyramid as follows,

Pyramid score =
∑

N
i=1 i×Di

MaxScore
(4.14)

where Di is the number of SCUs in level i, and MaxScore is the maximum value of ∑
N
i=1 Di

that has the same number of SCUs. The Pyramid method requires expert annotators, who are
trained to identify and match SCUs. This makes calculating the Pyramid method expensive
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and difficult to scale. The Lightweight Pyramid [269] was proposed to perform the Pyramid
Method but with crowd-sourced workers.

level 1

level 2

level 3

Fig. 4.6 Pyramid method. Each dot represents a summary content unit (SCU), e.g., "Daniel Radcliffe
gets £20M". A level represents the importance of an SCU. Pyramid was originally proposed for
multi-reference tasks and the importance was measured by how many times an SCU is present in
ground-truth references. This figure shows two of three optimal (score = 1.0) summaries with 4 SCUs.

4.3.1 Reference-based Methods

In developing supervised summarization systems, the data consists of a set of documents
X = {X (1),X (2), ...} and gold summaries Y∗ = {Y ∗(1),Y ∗(2), ...}, and the summarization
systems are trained to maximize the likelihood of the gold summaries such that

θθθ MLE = argmaxθθθ [P(Y∗|X ;θθθ)] (4.15)

As a result, traditional assessment methods, when gold summaries are available, take the
form f (Y,Y ∗) where Y is the system-generated summary.

n-gram-based Methods

The most common reference-based assessment method is ROUGE (Recall Oriented Under-
study for Gisting Evaluation) [162], which is based on the overlap between n-grams extracted
from the summary and n-grams extracted from the reference. Let n-gram(Y ) denote the set
of n-grams extracted from Y , the operator ∩ denote intersection, and |.| is the number of
items in the set. The definition of the ROUGE-n score as originally created is,

ROUGE-n (Recall) =
|n-gram(Y ) ∩ n-gram(Y ∗)|

|n-gram(Y ∗)|
(4.16)
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which can be considered as the recall version of ROUGE. Existing ROUGE packages also
include the precision version of ROUGE,3

ROUGE-n (Precision) =
|n-gram(Y ) ∩ n-gram(Y ∗)|

|n-gram(Y )|
(4.17)

ROUGE-1 and ROUGE-2 are commonly adopted. An alternative ROUGE-based metric is
ROUGE-L, which compares the longest common subsequence (LCS) [163],

ROUGE-L (Recall) =
LCS(Y,Y ∗)

lY ∗
(4.18)

ROUGE-L (Precision) =
LCS(Y,Y ∗)

lY
(4.19)

where LCS(Y ∗,Y ) is the length of the longest common subsequence of Y ∗ and Y , lY ∗ is the
length of Y ∗, and lY is the length of Y . ROUGE is usually reported as the harmonic mean,

F1 = 2× Prec×Rec
Prec+Rec

(4.20)

In practice, ROUGE packages such as the original Perl package or Python implementation
rouge-score4 often include text normalization and stopword removal.

Other n-gram based methods include BLEU [222] and METEOR [7]. Similar to the
ROUGE-N precision (in Equation 4.17), BLEU counts matching n-grams in the system-
generated summary to n-grams in the reference, but the difference is that BLEU score limits
the matching count to the maximum n-gram count in the reference. METEOR computes
precision and recall similar to ROUGE-1 (unigram), and it takes into account stemming
and synonyms for matching. When computing the F-score, recall is weighed 9 times more
than precision: Fmean = 10× Prec×Rec

Prec+9∗Rec . In addition, to account for longer n-gram matches,
METEOR computes penalty, p, which is higher given more matches that are not adjacent,
and finally METEOR score is computed as M = Fmean(1− p).

Representation-based Methods

Despite the robustness of n-gram-based methods, they do not take into account word seman-
tics. Thus, researchers have replaced the surface-level comparison with semantic comparison.
Using pre-trained language models such as ELMo [228] and BERT [52], representation-

3The precision version of ROUGE is the same as the BLEU score.
4https://pypi.org/project/rouge-score/

https://pypi.org/project/rouge-score/
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based methods have been proposed based on word (token) embeddings. Commonly used
word-level representation-based methods are the following:

• BERTScore [52] computes the semantic similarity between tokens of reference and
summary. Let {h1,h2,h3, ...,hM} be the token-level contextual BERT embeddings of the
reference and {ĥ1, ĥ2, ĥ3, ..., ĥN} be the token-level contextual BERT embeddings of the
summary. BERTScore calculates pairwise cosine similarity and maximum similarity as
follows,

RBERT =
1
M ∑

i
max

j

(
hi · ĥ j

)
, PBERT =

1
N ∑

j
max

i

(
hi · ĥ j

)
FBERT = 2

PBERT ·RBERT

PBERT +RBERT
(4.21)

•MoverScore [347] evaluates text generation quality similar to BERTScore, but it operates
at a more macro, content-transformation level. It is based on Word Mover’s Distance (WMD)
[149], which is a measure in statistics that calculates the minimum amount of work required
to transform one probability distribution into another. In this context, work corresponds to
the semantic changes between sentences. MoverScore adapts this concept to measure the
similarity between two sentences (e.g., the generated text versus the reference text). It uses
pre-trained contextual embeddings (e.g., from BERT, ELMo, etc.) to represent the sentences
in a high-dimensional space. Then, it computes the minimum amount of movement (in terms
of semantic meaning) that would be required to transform the generated sentence into the
reference sentence. The less movement required, the more similar the sentences are in terms
of their overall semantic content, implying that the generated text is of higher quality.

Knowledge-based Methods

Knowledge-based methods involve converting texts into knowledge representations such
as semantic triples or knowledge graphs. A Semantic Triple represents information using
the "Subject-Relation-Object" pattern. (1) Subject is the entity from which the statement
originates, which is often an individual entity described by some relationship; (2) Relation
describes the relationship between the subject and the object, which is similar to the verb
in a sentence; (3) Object is the entity that is linked by the relation to the subject, which is
similar to the direct object in a sentence.

Multiple semantic triples can form a Knowledge Graph, which is a method to store
information in a structured way. A knowledge graph is a collection of nodes and edges,
where each node represents an entity, and each edge represents a relationship between those
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entities. This structure is useful for handling complex interrelations. Figure 4.7, for example,
shows an example of a text and its corresponding knowledge graph and semantic triples.

Rishi Sunak was born on 12 May 1980 in Southampton in the UK. He is currently
a British politician and serves as Prime Minister of the United Kingdom.

(Rishi Sunak, born on, 12 May 1908)

(Rishi Sunak, born in, Southampton)

(Rishi Sunak, serve, Prime Minister)

Rishi Sunak

12 May 1980

Southampton United Kingdom

Prime Minister

born on
born in in

serve

(Rishi Sunak, born in, UK)

(Southampton, in, UK)

Original Text

Knowledge Graph Semantic Triples

Fig. 4.7 An example of knowledge graph and semantic triples.

Existing work has utilized semantic triples for assessing summaries, and some examples
are described below. Although knowledge graphs can capture more complex relations, their
application in summary assessment is an open research question.

• Triple-Matching, proposed by Goodrich et al. [90], compares texts via the overlap of
semantic triples to assess factual consistency. The semantic triples extracted from the
summary are compared against the semantic triples extracted from the reference to compute
the factacc score, which is defined as the precision of the generated summary,

factacc(Y,Y ∗) =
|Triple(Y ) ∩ Triple(Y ∗)|

|Triple(Y )|
(4.22)

Goodrich et al. [90] considered various triple extraction methods. First, model-based triple
extraction methods include (1) named entity recognition (NER) system (Stanford’s CoreNLP
or NLTK) + relation classifier (transformer encoder-only); (2) end-to-end model; (3) NER +
binary relation classifier (i.e., selecting {0,1} for every pair of entities). The models were
trained using the WikiData knowledge base [296]. Second, the model-free triple extraction
method is open-schema OpenIE [65]. In their experiments, factacc with the end-to-end triple
extraction model achieved the best performance.

• Fact-based Content Weighting, proposed by Xu et al. [328], represent facts in a sentence
by adapting Semantic Role Labelling (SRL) [220] which roughly captures "who did what to
whom". The method creates the tree meaning representation from a list of facts. Automatic
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content weighting computes argument and fact weights by the contextual similarity (e.g.,
BERT embeddings for content words) and their distance in the tree meaning representation.

Supervised Reference-based Methods

Supervised approaches require gold-standard summary scores (e.g., human judgements) for
training. These methods are expected to have the best performance on the in-domain dataset;
however, their weakness is on out-of-domain datasets. Most summary assessment datasets
are small (and it is tedious to annotate summary scores), making these methods less practical.
Examples of notatable supervised reference-based methods are: S3 [230] train support vector
regression (SVR) using the features (TF-IDF, KL-divergence, JS-divergence, and ROUGE)
extracted from the source document, summary, and reference. BLEURT [264] and COMET
[249] train neural models to predict summary score given the summary and reference.

Weakly Supervised Reference-based Methods

UniEval, proposed by Zhong et al. [354], converts NLG evaluation into a Boolean QA
problem. This method uses a pre-defined scheme for each aspect (e.g., coherence) and
generates synthetic data to fine-tune a T5 system assessing that aspect. References are
required for some aspects such as relevancy,5 and schemes/systems are bespoke to a particular
attribute. The authors explored multi-task learning training and continual learning, and
demonstrated that continual learning where a system is sequentially trained on multiple
attributes performs the best.

Given the evaluation aspect A, context information C (which could be the source document
and/or the reference), and the text to be evaluated Y , UniEval transforms (A,C,Y ) into an
input prompt P = P(A,C,Y ). For example, for the consistency aspect in summarization, the
prompt template can be:

----------------------------------------------------------
Is this summary consistent with respect to the reference?
Summary: {summary}
Reference: {reference}
Answer: ...
----------------------------------------------------------

5Although for some aspects, references are required, for other scenarios, UniEval can be reference-free.
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Then for each input prompt, the probabilities of predicting "Yes" and "No" are used to
calculate the UniEval score:

UniEval(Y |A,C) =
P(‘Yes’|P(A,C,Y );θθθ)

P(‘Yes’|P(A,C,Y );θθθ)+P(‘No’|P(A,C,Y );θθθ)
(4.23)

where in this particular example (assessing consistency with respect to the reference), the
context C is the reference summary Y ∗. The model θθθ is trained on weakly supervised data
such as NLI6 datasets [334, 53, 307] and generic QA datasets [35, 135, 81, 84, 134].

4.3.2 Reference-free Methods

In practice, one cannot always assume that the reference or gold-standard summary is avail-
able for assessment of the generated summary, so in this scenario, assessment methods will
have to rely on comparing the generated summary against the source document.7 In addition,
a prompt-based LLM (Section 4.2.3) generates summaries based on a prompt template
and patterns that the LLM learned during pre-training, instruction-tuning, or reinforcement
learning from feedback, so the applicability of comparing generated summaries against gold
summaries is less clear compared to fine-tuned models. For example, Goyal et al. [91]
showed that the GPT-3 prompting method cannot be evaluated using reference summaries,
and they performed an A/B testing to compare GPT-3’s outputs against the fine-tuned model’s
outputs. The following will categorize and describe the existing reference-free methods for
summary assessment.

Textual Entailment Methods

Textual entailment, also known as natural language inference (NLI), is a relation between two
natural language texts (‘premise’ and ‘hypothesis’). The task is that: given a premise X and
hypothesis Y , predict their relation from a set of possible options such as entailment, neutral,
and contradiction. A widely-used dataset for NLI is the Multi-Genre Natural Language
Inference (MNLI) dataset [313], which is a crowd-sourced collection of 433k sentence pairs.
For example, an NLI score can be defined as,

NLI-score(X ,Y ) = P(‘entailment’|X ,Y ;θθθ) (4.24)

6The NLI dataset can be formatted into QA by, for example, ‘Is this hypothesis entailed the premise’.
7In fact, widely used summarization datasets actually have pseudo summaries instead of real summaries.

See Section 6.5.1 on a note on reference summaries for further discussion.
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or the probability of the relation being entailment. Using textual entailment, Maynez et al.
[193] showed that BERT fine-tuned to MNLI achieves the highest Spearman correlation with
human judgements on faithfulness and factuality.

Similarly, FactCC, proposed by Kryscinski et al. [143], is a weakly-supervised method.
Weakly supervised data is derived from a set of rule-based transformations, and BERT is ad-
versarially trained to distinguish between real (faithful) and artificial (unfaithful) summaries.

Question Answering Methods

A question-answering method generally consists of a question-generation system and an
answering model. This approach is designed to measure to what extent a summary provides
sufficient information to answer relevant questions derived from the original context. As this
approach is the most related to our proposed information consistency assessment method, a
detailed background is provided in Section 7.2.

Language Model Scoring Methods

• BARTScore [337] evaluates texts using conditional language model scores,

BARTScore =
M

∑
m=1

ωm logP(ym|y1:m−1,X ;θθθ) (4.25)

where ωm is a weight such as TF-IDF to put different emphasis on different tokens (note
that the authors of BARTScore adopted equal weighting). Prompting can be applied to
BARTScore such as appending text to the source text X and pretending text to the target text
Y . Prompting has been shown to improve the performance of BARTScore.

• GPTScore (Generative Pre-training Score) [74] evaluates texts using conditional language
model scores. By conditioning the language model θθθ on instruction and context, GPTScore
assumes that it will assign a higher probability to a high-quality generated text. The instruc-
tion (i.e., the input to the LLM θθθ ) is composed of the task description and the evaluation
aspect A, the context information (e.g., source document) X , and the text to be assessed (e.g.,
summary) y1:M. GPTScore is defined similarly to BARTScore as,

GPTScore(y1:M|X ,A) =
M

∑
m=1

ωm logP(ym|y1:m−1,P(X ,A);θθθ) (4.26)

where ωm is the weight of the token at position m (note that the authors of GPTScore adopted
equal weighting) and P(X ,A) is the prompt given the instruction and context.
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Supervised Reference-free Methods

Supervised approaches require ground-truth scores (e.g., human judgements) for the sum-
maries Z = {z(1),z(2), ...,z(J)} to train a regression model θθθ that predicts

ẑ = f (X ,Y ;θθθ) (4.27)

A common training objective is the mean squared error (MSE) that minimizes the L2 distance
between the predicted score ẑ and the ground-truth score z,

L(θθθ) = 1
J ∑

j
∥ z( j)− ẑ( j) ∥2

2 (4.28)

For example, Xia et al. [321] collected English learners’ summaries from a real examination,
and have the summaries graded by professional examiners. Kernel Ridge Regression, LSTM,
and CNN models were trained using this data. Bao et al. [9] trained fully connected, CNN,
LSTM, and BERT-based models on simulated CNN/DailyMail, BillSum, arXiv, BigPatent
data. They created simulated by negative sampling, e.g. random shuffling summaries or
word-level summary corruption. Wu et al. [319] constructed negative samples with respect
to linguistic qualities and informativeness, and they trained BERT-based models using
contrasting learning.

4.3.3 Meta-Evaluation of Automatic Methods

As automatic assessment methods are designed to approximate gold-standard human judge-
ments, automatic methods are evaluated by their similarity to human judgements, for example,
through correlation measures. This evaluation of automatic assessment methods can be re-
ferred to as meta-evaluation.8

Summary assessment can operate at a range of levels such as (1) ranking summary generation
systems, (2) ranking summaries of a particular document, and (3) estimating the quality of a
document-summary pair on an absolute scale. Hence, meta-evaluation metrics can differ for
different granularity levels.

Let u j
i and v j

i be two scores of metrics fU(.) and fV (.), for the candidate summary by
system i ∈ {1, ...,N} on the source document j ∈ {1, ...,M}. Correlations, which are the
(meta)-evaluation metrics for summary assessment methods, are defined as follows.

8When working only on developing automatic evaluation/assessment methods, meta-evaluation will be
referred to as evaluation for simplicity.
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• System-level Correlation (i.e., Corpus-level) is used to measure how well an assessment
method ranks summary generation systems. It computes the average of scores across
documents for each system before computing a correlation, so it is generally less noisy
compared to the summary-level correlation. The system-level correlation is defined as:

ρ = Corr

{∑ j u j
i

M
,
∑ j v j

i

M

}N

i=1

 (4.29)

• Summary-level Correlation (i.e., Sentence-level or Response-level) is used to measure
how well an assessment method ranks summaries for each source document. It computes
a correlation between predicted scores and ground-truths and then takes the average of
individual correlation scores. The summary-level correlation is defined as:

ρ =
1
M ∑

j
Corr

({
u j

i ,v
j
i

}N

i=1

)
(4.30)

• All-Example Correlation computes a correlation between all predictions and ground-truth.
It is used to evaluate all document-summary pairs together on an absolute scale. However,
it is only applicable when the assessment method gives a score on an absolute scale. For
example, the ROUGE score per one document is not comparable across documents as it is
not in the same value range, so this metric is not applicable in this case.

ρ = Corr
({

u j
i ,v

j
i

}i=N, j=M

i=1, j=1

)
(4.31)

The exact form of correlation between {u1,u2, ...,un} and {v1,v2, ...,vn} can be:

• Pearson correlation coefficient (PCC) assumes a linear relationship between two variables,
and it calculates the correlation using this formula:

ρ =
∑

n
i=1(ui− ū)(vi− v̄)√

∑
n
i=1(ui− ū)2

√
∑

n
i=1(vi− v̄)2

(4.32)

• Spearman’s rank correlation coefficient (SCC) measures the monotonic relationship be-
tween two variables using their ranks instead of raw values. The formula is the same as the
Pearson correlation coefficient (in Equation 4.32) with the difference in that ordinal ranks of
U and V are used instead of raw values. For tied values, they receive the same average rank
[71]. For instance, if two values of U are tied for the third smallest value, the ranks would be
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3 and 4. The average of these two ranks is 3.5, and that is the value that is used as the rank of
these two observations of U .

• Kendall rank correlation coefficient (KCC) [132] is similar to SCC in measuring the ranks,
and KCC is preferred over SCC when the sample size is small.

4.4 Chapter Summary

This chapter provided the background of the summarization tasks. Section 4.1 covered
unsupervised and supervised extractive summarization. Section 4.2 covered abstractive
summarization approaches, which were categorized chronologically into three types: training
neural models from scratch (which lays the foundation for Chapter 5), fine-tuning pre-
trained models (which lays the foundation for Chapter 6), and prompting LLMs. Lastly,
Section 4.3 covered summary assessment, including traditional reference-based methods and
reference-free methods and meta-evaluation, which will be the focus of Chapter 7.





Chapter 5

Abstractive Summarization with
Hierarchical RNNs

Earlier chapters have established the background for deep learning techniques and automatic
summarization, setting the stage for the content in this chapter. Given recent advances in
deep learning, modern summarization systems are abstractive summarization models based
on neural networks [252, 29, 208]. Initially, these neural models adopt recurrent neural
networks (RNNs) and they are trained from scratch. This often results in issues such as
diversity in generated outputs when training data is limited. This chapter will study this
problem in the context of spoken document summarization, which is less studied compared
to standard summarization tasks such as news summarization. Spoken documents such as
meeting recordings with gold-standard summaries are limited in size, which could lead to an
issue about diversity. In addition, these spoken documents can be lengthy and have different
characteristics from written documents such as disfluencies in speech or transcription errors.
For existing attention-based sequence-to-sequence abstractive summarization systems, these
challenges can yield a poor attention distribution over the spoken document words and
utterances, impacting performance.

First, this chapter discusses the challenges of spoken document summarization in more
detail in Section 5.1. To improve RNN-based approaches to abstractive spoken document
summarization, Section 5.2 introduces a hierarchical encoder-decoder RNN model to explic-
itly model utterance-level attention distribution and exploit multi-task learning, including
dialogue act classification and extractive summarization. Section 5.3 introduces modified hi-
erarchical attention mechanisms at both training and inference stages to address the diversity
problem. Given the flexibility of hierarchical attention mechanisms, Section 5.4 discusses
sentence filtering to tackle redundant utterances. Section 5.5 provides experimental results as
well as investigating the impact of ASR errors on the summarization performance.
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5.1 Challenges in Spoken Document Summarization

Spoken documents can be more challenging, especially in situations involving human inter-
actions, such as meetings, e.g., a snippet of a meeting transcript is illustrated in Figure 5.1.
Compared to written texts, spoken language data can present additional challenges as follows:

• Structure of Spoken Language: In spoken documents such as meeting transcripts, the
input source is typically longer, less grammatical, and contains less-structured utterances
rather than well-constructed sentences. Consequently, Li et al. [160], Zhao et al. [349]
demonstrated that standard sequence-to-sequence neural models with attention mechanisms
that take a long sequence of tokens were less effective than hierarchical models for spoken
document summarization. To exploit the hierarchical structure and incorporate additional
information at the utterance level, this chapter will apply a multi-task learning framework,
which is described in Section 5.2 with experimental results presented in Section 5.5.2.

• Limited Data: Text summarization systems are typically trained on news articles, scientific
articles, or Wikipedia data. However, large-scale spoken language corpora are not readily
available. Training a neural network from scratch usually requires a large dataset, which
may be unavailable or expensive for spoken document systems. For example, the AMI cor-
pus [19], which can be used for meeting summarization, only consists of hundreds of training
documents – far fewer than news summarization datasets such as CNN/DailyMail [208]
which has nearly 300 thousand documents. Furthermore, the summaries of these meetings
are also similar to each other as they are mainly about a group of people discussing the
design of a product. As a result, trained systems may produce commonly used words and
repeated sentences, i.e., they may suffer the diversity problem. To address this challenge,
this chapter proposes a sentence-level attention diversity criterion to be optimized in the
multi-task learning framework at training, and a decoding method to improve diversity at
inference. These methods are described in Section 5.3 with experimental results presented in
Section 5.5.3.

• Redundancy in Spoken Language: Speech transcripts are not only less structured and less
ungrammatical, but some of the sentences/utterances also convey little or no information. In
addition, in the case of spontaneous speech, within an utterance, disfluencies and repetitions
are present. Redundancies make source sequences unnecessarily long, leading to more
complex dependencies that the model has to learn. To address redundancy, this chapter
proposes using the sentence level (i.e., utterance level) attention scores as a measure of
sentence importance to perform content selection. This is described in Section 5.4 with
experimental results presented in Section 5.5.6.
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• Automatic Speech Recognition (ASR) derived transcripts: To apply a summarization
system on a spoken document, an ASR system (or manual transcription) is required to
produce a transcript of the audio data. In sequence labelling tasks such as grammatical
error detection, Knill et al. [139], Lu et al. [177] demonstrated that ASR-derived inputs
result in the worst downstream system performance. This is because ASR makes errors such
as wrongly derived, or segmentation errors. Similarly, we expect that transcription has an
impact on summarization performance. Thus, this chapter examines the impact of ASR on
summarization empirically in Section 5.5.4.

Fig. 5.1 Excerpt from AMI meeting (ES2010a). The first column shows utterance ID and speaker
ID. The transcriptions and utterance boundaries were manually derived. Redundancies within sen-
tences are, for example, um, okay, and redundant utterances/sentences are utt0000.A, utt0004.D,
utt0005.B, utt0006.A, utt0225.A, etc.

5.2 Hierarchical Model

Although hierarchical RNN models are not commonly used in standard summarization tasks
such as news summarization, previous work [160, 349] showed that the hierarchical models
are more suitable for spoken document tasks such as meeting summarization. Thus, we focus
on a hierarchical model as the base model. Additionally, Yuan and Yu [336] demonstrated
semantic slot and dialogue domain can improve dialogue summarization. Utterances (or
sentences)1 may also serve different functions within a conversation, and interactive signals
such as dialogue acts have been shown to be useful in predicting topic description [89]. As a

1Sentences and utterances are used interchangeably.
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result, this chapter aims to utilize multi-task learning based on the sentence-level features of
the hierarchical model to improve summarization performance.

5.2.1 Hierarchical Encoder-Decoder Architecture

In Section 2.1.3, the vanilla encoder-decoder architecture is described. This section will
extend it to a hierarchical architecture, following previous work [160, 349] that also applied
hierarchical models to spoken document summarization. The hierarchical architecture
consists of (1) an encoder with word-level and sentence-level RNNs, and (2) a decoder with
an RNN with an attention mechanism over the encoder states. This hierarchical encoder-
decoder architecture is illustrated in Figure 5.2.

Encoder Word-level RNN

Encoder Sentence-level RNN

x1,1 ,..., x1,N1 x2,1 ,..., x2,N2 x3,1 ,..., x1,N3

hw
2,1 ,..., hw

2,N2 hw
3,1 ,..., hw

1,N3hw
1,1 ,..., hw

1,N1

s1 s2 s3

hs
1 hs

2 hs
3

Decoder RNN

y0,     y1      y2

Hierarchical Attention

Output Layer

d0 d1 d2

P(y1)   P(y2)   P(y3) 

,J1

,J1 ,J2 3,J3

,J2 3,J3

Fig. 5.2 Hierarchical encoder-decoder architecture. A variant of RNN (e.g., LSTM [109] and GRU
[28]) or a self-attention layer can replace the RNN layer.

Notation: X is a source document with N sentences {S1,S2, ...,SN} and Y = y1:M is the
corresponding summary. Each sentence Si contains words {xi,1,xi,2, ...,xi,Ji}, and the word
xi, j is embedded into a vector xi, j. At the word level, a bidirectional word-level RNN
is applied, and the forward and backward states are concatenated to obtain word-level
representations:

{−→h w
i,1, ...,

−→
h w

i,Ji
}= Forward-WordRNN({xi,1,xi,2, ...,xi,Ji}) (5.1)

{←−h w
i,1, ...,

←−
h w

i,Ji
}= Backward-WordRNN({xi,1,xi,2, ...,xi,Ji}) (5.2)

hw
i, j = [

−→
h w

i, j;
←−
h w

i, j] (5.3)

At the sentence level, the input sentence representation is the concatenation of the word-level
representations as follows,

si = [
−→
h w

i,Ji
;
←−
h w

i,0] (5.4)
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A bidirectional sentence-level RNN is then applied:

{hs
1,h

s
2, ...,h

s
N}= Bi-SentenceRNN({s1,s2, ...,sN}) (5.5)

As opposed to the vanilla encoder-decoder with an attention mechanism (described in
Section 2.1.3), the hierarchical structure enables the decoder to first select salient input
sentences then select salient words in each sentence. Given the decoder hidden state dm (at
decoder time step m), the hierarchical attention mechanism is defined as follows,

• Sentence-level attention:

α
s
m,i =

exp(dT
mWshs

i )

∑i′ exp(dT
mWshs

i′)
(5.6)

• Word-level attention:

α
w
m,i, j = α

s
m,i

(
exp(dT

mWwhw
i, j)

∑ j′ exp(dT
mWwhw

i, j′)

)
(5.7)

The word-level attention distribution is used to produce a context vector:

cm = ∑
i

∑
j

α
w
m,i, jh

w
i, j (5.8)

Lastly, similar to Equation 2.18 for the vanilla encoder-decoder model, the context vector is
concatenated with the decoder state and fed through a linear layer, which has output units
equal to the vocabulary size, to produce the output word distribution:

P(ym|y1:m−1,x1:N) = softmax(Wo[dm;cm]+bo) (5.9)

5.2.2 Multi-Task Learning

The model is trained on the maximum likelihood estimation (MLE) criterion as described in
Section 2.2,

LMLE =−1
J

J

∑
j=1

logP
(

Y ( j)|X ( j);θθθ

)
(5.10)

When a sentence-level annotation is available (e.g., dialogue act classes and extractive
summarization labels), these auxiliary signals can be used for multi-task learning [89, 336].
In the following investigation, it is assumed that dialogue act classification and extractive
summarization information are available. Given the output of the sentence-level RNN for
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sentence i, hs
i , we pass the vector to linear layers and softmax/sigmoid activation functions:

PDA(qi|hs
i ) = q̂i = softmax(WDAhs

i +bDA) (5.11)

PEX(zi|hs
i ) = ẑi = sigmoid(wEX ·hs

i +bEX) (5.12)

where WDA, bDA, wEX, bEX are trainable parameters, q∈ {1, ...,D} is the dialogue act (one of
D possible classes), and z ∈ {0,1} the binary extractive summarization label. Alternatively, z
could be a continuous value representing how the saliency level of a sentence. The extractive
summarization, LEX, and dialogue act, LDA, loss functions are maximum likelihood based:

LDA =− 1
N

N

∑
i=1

D

∑
d=1

qi,d log q̂i,d (5.13)

LEX =− 1
N

N

∑
i=1

(zi log ẑi +(1− zi) log(1− ẑi)) (5.14)

where qi,d is the one-hot encoding of qi. Note that Section 5.3.2 will describe LDV diversity
loss function, and the overall training loss function is given in Equation 5.28 in Section 5.5.2.

5.3 Exploiting Attention Diversity

For a sequence generation task such as summarization, See et al. [263], Tu et al. [288]
observed that at the inference stage, neural models may repeat themselves even when
using beam search decoding. We will refer to this problem as the diversity of the output.
Typically, an encoder-decoder architecture is often used for sequence-to-sequence tasks, and
the diversity problem is related to exposure bias [248]. At training time, the model is trained
using teaching forcing [315], so the decoder sees a variety of input tokens from ground-truths.
In contrast, at test time, the model has to rely on its own predictions, which are often less
diverse than the ground truth tokens. This section focuses on approaches that aim to tackle
the diversity issue directly, which are different from and can be used in addition to those
designed for the broader exposure bias problem such as scheduled sampling as discussed in
Section 2.2.1.

5.3.1 Existing Attention Diversity Methods

At training time, existing methods control the attention mechanism by incorporating addi-
tional training loss to improve diversity, including:
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• Coverage Mechanism [288, 263] computes a coverage vector ct to track what has been
already attended over. It is computed by summing the attention score ααα t (of the vanilla
encoder-decoder model):

ct =
t−1

∑
τ=1

ααατ (5.15)

The attention score at time step t, ααα t , is modified to incorporate ct . A coverage loss to
penalize repeatedly attending to the same places is defined as,

LCOV = ∑
t

(
∑

i
min(αt,i,ct,i)

)
(5.16)

where αt,i represents the i-th component of ααα t .

• Global Variance Loss [98] is defined as follows,

gi = ∑
t
(αt,i)−maxt(αt,i) (5.17)

LGV =
1
N

N

∑
i=1

(gi− ḡ)2 (5.18)

where ḡ is the average of gi. The global variance loss encourages the model to assign a high
attention weight to the same positions once.

At the inference stage, Paulus et al. [224] observed that reference summaries are unlikely to
contain the same trigram twice in a particular dataset, and they proposed a simple method to
force the decoder to never output the same trigram twice by zeroing out the probability of
repeated trigrams:

p(ym|y1:m−1,X ;θθθ) = 0 (5.19)

In general, this heuristic method should increase the diversity in the output, and we refer to it
as n-gram blocking.

5.3.2 Attention Diversity at Training Stage

When summarizing, information from a different set of input sentences is typically used
to generate each of the summary output sentences. For example, when humans produce
words in one output sentence, we often use information from the same input sentences,
whereas when we produce different output sentences information is gathered from different
input utterances. This motivates us to model the diversity at the sentence level within the
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sequence-to-sequence attention mechanism, allowing this diversity to be explicitly optimized
during training. This diversity modelling approach is different to the coverage mechanism
[263, 288] and global variance loss [98] methods (previously described in Section 5.3.1),
which are also designed to mitigate repetitions as follows. The proposed approach operates
at the sentence level instead of the word level. In addition, the proposed method encourages
sentence-level attention to be similar when generating the same output sentences but varied
when generating different output sentences.

Given the hierarchical attention mechanism (defined in Section 5.2.1), it is possible
to define the diversity of input document attention both within an output sentence (intra-
sentence) and between output sentences (inter-sentence). Let αααs

t be the vector representing all
sentence-level attention scores at decoder step t. Inter-sentence and intra-sentence diversity
scores can then be expressed as follows,

• intra-sentence:

Dintra,k =
1(Tk
2

) Tk−1

∑
t1=1

Tk

∑
t2=t1+1

∥ ααα
s
t1−ααα

s
t2 ∥2 (5.20)

Dintra =
1
K

K

∑
k=1

Dintra,k (5.21)

• inter-sentence:

ᾱαα
s
k =

1
Tk

Tk

∑
t=1

ααα
s
t (5.22)

Dinter =
1(K
2

) K−1

∑
k1=1

K

∑
k2=k1+1

∥ ᾱαα
s
k1
− ᾱαα

s
k2
∥2 (5.23)

where k denotes output sentence k, Tk is the number of tokens in sentence k, K is the total
number of output sentences, and

(n
k

)
= n!

k!(n−k) is a binomial coefficient.
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1st summary sentence

2nd summary sentence

3rd summary sentence

4th summary sentence

Fig. 5.3 Attention weights at the sentence level. Each box (in red) represents input sentences that a
summary sentence focuses on the most.

As illustrated in Figure 5.3, the intra-sentence measure is the diversity of attention weights
within each box, while the inter-sentence measure is the diversity across boxes. Motivated by
the fact that as humans produce words in a particular output summary sentence, we are likely
to attend over the same source sentence, whereas when we produce a new output sentence we
will attend over different source sentences. This is equivalent to low intra-sentence (Equation
5.21) and high inter-sentence (Equation 5.23) diversity scores. Therefore, the diversity loss
is defined to be directly minimized as follows,

LDV =
Dintra

Dinter
(5.24)

The diversity loss, LDV, can then be optimized in addition to those losses in a multi-task
learning framework introduced in Section 5.2.2.

5.3.3 Attention Diversity at Inference Stage

The previous section described a training loss to improve attention diversity. Another
direction is to improve attention diversity at the inference stage.

An existing inference-time method includes a n-gram blocking method [224] described
in Section 5.3.1. Instead of preventing repeated n-grams with a hard constraint, this work
considers a soft criterion to penalize existing unigrams (without losing generality, it could be
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applied to n-grams),

ŷt = argmax
yt∈V

{
logP(yt |y1:t−1,X ;θθθ)−β

(
∑

t
t ′=11yt (ŷt ′)

t

)}
(5.25)

where β is the unigram bias constant, V is the decoding vocabulary, and

1yt (ŷt ′) =

1, for yt = ŷt ′

0, for yt ̸= ŷt ′
(5.26)

When this penalty method is applied to unigram at test time, this work will refer to it as
unigram bias decoding. Note that a similar approach was also used to penalize n-grams in a
concurrent work in controllable language generation by Keskar et al. [133].

5.4 Hierarchical Model for Sentence Filtering

To utilize summarization models trained on written texts, spoken documents are typically
processed to be as close to written text as possible. One method is to detect and remove
disfluencies, which has been shown to improve other downstream tasks [178]. We can extend
word-level disfluency removal to the sentence level, for example, by removing sentences that
contain little or no information. Although this process is similar to extractive summarization,
the difference is that extractive summarization seeks to find a set of sentences that represents
the key information in the original documents, whereas sentence filtering seeks to filter
out sentences that convey little or no information and find an optimal set of sentences for
downstream abstractive summarization. Additionally, the performance of a sentence filtering
system is measured by the performance of the downstream abstractive summarization task.

A spoken document such as a meeting recording or podcast may contain 30 minutes
of speech or longer, and the corresponding transcription could result in more than 5,000
tokens. This long input makes it inefficient and infeasible to train abstractive summarization
systems. RNN-based systems are prone to vanish gradients and exploding gradients for long
sequences, while self-attention in the transformer architecture has a quadratic dependency on
the sequence length. Note that Section 6.2 discusses other sentence filtering approaches with
a focus on handling quadratic dependency in the transformer’s attention.
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Sentence-level Attention Score as a Measure of Sentence Importance

averaging across y-axis and
salient input sentences are

demonstrated by the rank order

Fig. 5.4 Attention weights (same as Figure 5.3) and the corresponding sentence-level attention score
as a measure of sentence importance.

The sentence-level attention score of a hierarchical RNN model (Section 5.2.1), αs
t,i, measures

the importance sentence i in generating output at time t. We hypothesize that if we sum the
sentence-level attention score over all time instances as illustrated in Figure 5.4, this should
yield a measure of the importance of sentence i,

vi =
1
T

T

∑
t=1

α
s
t,i (5.27)

where vi is the importance measure of sentence i respective to the entire summary. It should
be noted if the target sequence is available (e.g., in training data), we can use teacher-forcing
decoding on the ground-truth target sequence to obtain the importance score. However, if the
ground-truth target sequence is not available, we have to rely on a decoding method such as
beam search to obtain a target sequence.
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5.5 Experiments

The experiments in this chapter investigate the proposed hierarchical RNN model (Sec-
tion 5.2) with the attention diversity methods (Section 5.3) on abstractive spoken document
summarization. Furthermore, multi-task learning tasks including dialogue act classification
and extractive summarization are investigated. The experiments also cover the impact of
ASR performance on downstream abstractive summarization. This chapter also provides
preliminary results on sentence filtering using the attention scores of the hierarchical model
(while the next chapter provides more detail on sentence filtering in general). The evaluation
metrics for the following experiments are the ROUGE scores [162] as commonly used in
text summarization.

5.5.1 Datasets

AMI Meeting Corpus

The AMI corpus [19] contains meeting recordings of four people discussing a remote control
design project. Each meeting is about 30 minutes, and there are 137 meetings (excluding
those without the annotation required for multi-task learning). This work makes use of
the dialogue acts, and extractive and abstractive summaries annotation in addition to the
manual transcripts. The default data split is used: 97 training, 20 validation, and 20 test
meetings, following the guidelines on the AMI website. The manually derived transcripts
have 784 utterances, 6,200 words, on average per meeting, and each summary contains 10
sentences of 172 words on average (and up to 300 words). Two sets of automatically derived
transcripts (test set), from ASR systems using manual segmentation, are used for testing our
final summarization system:

• ASR1 - AMI official release v1.52 which is publicly available and also used in Shang
et al. [267], Li et al. [160]. The word error rate (WER) is 36%.

• ASR2 - We generate this set of ASR transcripts using a CUED-trained ASR system:
TDNN-F acoustic model [233] trained on AMI IHM training set using the Kaldi toolkit
[234], with a 4-gram language model trained on the same set and the Fisher Corpus
(LDC2004T19) [33]. 40-dim Mel-scaled filterbank features and 15 TDNN-F layers
were used. The word error rate (WER) is 20%.

2http://groups.inf.ed.ac.uk/ami/download/

http://groups.inf.ed.ac.uk/ami/download/
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CNN/DailyMail

This dataset, introduced by Hermann et al. [104], contains news articles paired with multi-
sentence summaries (highlights) and processed and processed by Nallapati et al. [208].
Currently, it is one of the most widely used text summarization benchmark corpus. The
training, validation, and test split is 287,226, 13,368, and 11,490.

5.5.2 Hierarchical Model Baselines

This experiment aims to investigate the effectiveness of the hierarchical model, which
explicitly models sentence-level attention distribution, for abstractive spoken document
summarization. Another aspect of this experiment is the effectiveness of enforcing output
diversity in training time and test time. Furthermore, multi-task learning tasks including
dialogue act classification and extractive summarization are studied. Firstly, we investigate
the meeting summarization using the AMI corpus. For initial contrasts with the hierarchical
systems, the following baseline methods are used:

1. Lead-Sentences: This method simply selects the first K sentences in the input docu-
ment as the summary. For the news article summarization task, the first few sentences
are typically used as a baseline summary [207]. In this work, the first K sentences
will be selected, and the value that yields the best results on the validation set will be
used on the test set. Compared to news summarization, it is expected that in meeting
summarization, the information is more evenly spread out in the source, so this work
proposes DecoderLM as another baseline.

2. DecoderLM: This model is a decoder-only model with the same architecture as the
decoder of the hierarchical model, but with no conditioning on the input document. This
can be viewed as a baseline to assess the complexity and diversity of the summaries.
The motivation of this baseline is that for a task where there is low diversity in the
ground-truth outputs, DecoderLM (without any source document) should learn the
generic output which could achieve a good score.

3. Pointer Generator Network (PGN) [263]: As described in detail in Section 4.2.1,
PGN is an RNN encoder-decoder model with a copying mechanism. In this work, we
use a publicly available pointer-generator network (PGN) implementation3 with the
hyperparameters set as in the original work by See et al. [263].

3https://github.com/atulkum/pointer_summarizer

https://github.com/atulkum/pointer_summarizer
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For the hierarchical encoder-decoder model (in Section 5.2), a PyTorch implementation is
developed and open-sourced at https://github.com/potsawee/spoken_summ_div. The model is
trained on a combination of objectives (in Section 5.2.2 and Section 5.3.2), and the complete
loss to minimize is a linear combination of all the losses:

L= LMLE +λ1LDA +λ2LEX +λ3LDV (5.28)

where LMLE is the maximum likelihood loss on the sequence prediction task (Equation 5.10),
LDA the dialogue act prediction loss (Equation 5.11), LEX the extractive summarization loss
(Equation 5.12), and LDV the diversity loss (Equation 5.24). When training without auxiliary
tasks and diversity loss, λ1 = λ2 = λ3 = 0.0.

Additionally, Section 5.5.4 will compare our best hierarchical encoder-decoder model against
current state-of-the-art meeting summarization systems as follow:

1. Unsupervised Abstractive Summarization with Multi-Sentence Compression and
Budgeted Submodular Maximization (UMCB) [267]: This method is multi-step.
The first clusters sentences (i.e., utterances in spoken documents) into groups using
LSA and k-means algorithm. Then, each group of sentences is summarized into a
single sentence using the Multi-Sentence Compression Graph (MSCG) [69]. The final
summary is then generated by selecting the best elements from the set of sentences
from the second step using a budget constraint optimization.

2. TopicSeg [160]: This method uses an encoder-decoder architecture. The encoder is
based on GRU [28], and the architecture is also hierarchical similar to our model. The
attention mechanism of TopicSeg has a segment level on top of the sentence level. An
extension of TopicSeg is TopicSeg+VFOA where VFOA is based on a neural network
to extract visual information (row, pitch, yaw, azimuth, elevation) for each speaker and
each transcribed utterance (i.e. sentence). The VFOA features are at the sentence level,
which are then added to the sentence-level textual representation.

Summarization Performance

The performance of the system was first evaluated using the manual AMI transcripts, and
the results are shown in Table 5.1. The baselines for this task are described above. First,
the lead 10 sentences (utterances) are used as the Lead baseline, and the results show that it
achieves poor performance since information is more evenly spread in the source compared
to news summarization. Next, the DecoderLM baseline archives higher performance than
the Lead baseline, demonstrating that the summaries in AMI are not diverse as the model

https://github.com/potsawee/spoken_summ_div
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without any context can achieve reasonable performance. Nevertheless, the PGN with cover-
age, PGN+Cov, outperforms the DecoderLM baseline as this model can utilize the source
document. Additional gains can be obtained with transfer learning (TL) where the model
was initially trained on the CNN/DailyMail data. The hierarchical models achieve higher
ROUGE scores, consistent with Li et al. [160]. This experiment confirms the effectiveness of
the hierarchical model on the meeting dataset. Next, we investigate the output diversity of
this hierarchical model.

ROUGE F1

Model TL R1 R2 RL

Lead-10 ✗ 24.38 3.65 15.99
DecoderLM ✗ 26.00±3.55 8.26±1.62 24.78±3.15

PGN+Cov ✗ 29.90±0.88 10.41±0.99 28.16±1.12

PGN+Cov ✓ 33.43±1.70 11.29±1.55 31.42±1.64

Hierarchical ✗ 33.07±0.66 10.87±1.18 31.77±0.86

Hierarchical ✓ 39.12±2.45 13.03±1.58 36.77±2.28

Table 5.1 Summarization Performance as measured by ROUGE F1 on the AMI test set. TL denotes
that the model was initially trained on CNN/DailyMail. The reported numbers are mean ± standard
deviation from 3 runs with different data shuffling and different seeds.

5.5.3 Attention Diversity Results

Initially, the diversity of the test set summaries was evaluated for three generation modes with
the hierarchical model: teacher forcing (TF); free-running (FR); and unigram bias decoding
(UB). Teacher forcing and free running generation methods are described in Section 2.3.1,
and unigram bias decoding is proposed in Section 5.3.3.

Experimental results in Table 5.2 show that the FR mode has lower inter-sentence diversity
compared to the TF mode. This explains an observed higher number of repetitions since
the diversity from the reference in TF has been lost. Next, the results show that using UB
decoding increases the inter-sentence diversity. Figure 5.5 shows a detailed analysis of UB
decoding with the value of β on both datasets. There is little variation in the intra-sentence
variability, but clear gains in the inter-sentence diversity. This suggests that UB decoding,
which penalizes repeated unigrams, forces the model to attend to different input sentences as
it generates different summary sentences.

Additionally, we can see the impact of unigram bias decoding on diversity by computing
coverage loss and global variance loss (defined in Section 5.3.1). Table 5.3 shows that both
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losses increase when swapping from teacher forcing to free running, but the losses can be
reduced using the unigram bias method, thus, increasing attention diversity.

AMI CNN/DailyMail
Decoding intra (↓) inter (↑) intra (↓) inter (↑)

Teacher Forcing 0.0131 0.0066 0.0744 0.0837
Free Running 0.0133 0.0054 0.0755 0.0789

Unigram Bias 0.0133 0.0059 0.0774 0.1060

Table 5.2 Diversity scores on the test sets of AMI and CNN/DailyMain datasets where intra-sentence
diversity score is defined in Equation 5.21 and inter-sentence diversity score is defined in Equation
5.23. Unigram bias is with β = 20.0.

(a) AMI (b) CNN/DailyMail

Fig. 5.5 Unigram bias constant β (x-axis) against Increase in Diversity Score (y-axis)

AMI CNN/DailyMail
Decoding LCOV (↓) LGV (↓) LCOV (↓) LGV (↓)

Teacher Forcing 0.930 0.028 0.461 0.026
Free Running 0.958 0.062 0.642 0.158

Unigram Bias 0.949 0.052 0.611 0.121

Table 5.3 Coverage loss and global variance loss (Section 5.3.1) on the test sets of AMI and
CNN/DailyMain datasets. Note that lower loss means higher diversity.

The previous results show the effectiveness of unigram bias decoding on various diversity
measures. Here, the summarization performance is investigated. First, in Figure 5.6, the
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impact of unigram bias for β ∈ [0.0,40.0] is shown for 4 setups: the baseline hierarchical
model (HIER), the inclusion of multi-task training (HIER+MT), the diversity training loss
(HIER+DIV), and both (HIER+MT+DIV).

Since unigram bias decoding penalizes repeated unigrams, ROUGE-1 improves for all
models as expected. Figure 5.5a shows that the inter-sentence diversity score flattens at
β = 20.0, and it can be seen in Figure 5.6 that ROUGE-1 of the hierarchical setting also stops
improving at around β = 20.0. This suggests a positive correlation between models being
diverse and higher ROUGE-1. ROUGE-L, which measures the longest common sequence,
also follows the same trend as ROUGE-1. However, we note that the increase in ROUGE-2
is less than the increase in ROUGE-1, and in one setting there is no gain from unigram bias.

The optimal β and summarization scores, from Figure 5.6, for each system are shown in
Table 5.4. Additionally training the model with multi-task (HIER+MT) or diversity objectives
yields performance gains. When explicitly optimizing the diversity objective during training
(HIER+DIV), the model performance is similar to the baseline with unigram bias decoding
(HIER with β = 20.0). When the diversity loss is optimized, a lower value of β is required to
achieve optimal performance, suggesting that explicit diversity optimization during training
and forcing diversity during decoding have a similar effect. The results also show that
diversity optimization and unigram bias are complimentary, and the best performance is
achieved in the HIER+MT+DIV with unigram bias decoding setting.
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0 5 10 15 20 25 30 35 40
Unigram Bias

10

11

12

13

14

RO
UG

E-
2

HIER
HIER+MT
HIER+DIV
HIER+MT+DIV

(b) ROUGE-2

0 5 10 15 20 25 30 35 40
Unigram Bias

37

38

39

40

41

RO
UG

E-
L

HIER
HIER+MT
HIER+DIV
HIER+MT+DIV

(c) ROUGE-L

Fig. 5.6 Variation of ROUGE F1 scores against unigram bias for the hierarchical model (HIER), with
multi-task training (HIER+MT), diversity loss (HIER+DIV) and both (HIER+MT+DIV).
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ROUGE F1

Setting βββ R-1 R-2 R-L

HIER
✗ 39.12±2.45 13.03±1.58 36.77±2.28

20.0 42.39±1.91 11.60±1.60 39.27±1.96

HIER+MT
✗ 40.13±0.93 13.59±0.66 38.00±0.74

5.0 42.69±1.03 13.94±0.86 39.94±0.94

HIER+DIV
✗ 41.94±0.25 12.87±0.28 39.30±0.56

1.00 42.84±1.10 12.94±0.50 39.79±1.83

HIER+MT+DIV
✗ 44.46±0.11 14.51±0.12 41.12±0.13

0.25 44.36±0.58 14.62±0.21 41.10±0.25

Table 5.4 Summarization Performance ROUGE F1 on the AMI test set - Hierarchical Settings. All
models are trained from scratch. The reported numbers are mean ± standard deviation from 3 runs
with different data shuffling and different seeds.

As an ablation study, the comparison between the proposed diversity loss (+DIV) and the
coverage mechanism (+COV) described in Section 5.3.1 is conducted. The results in Table 5.5
show that the proposed diversity loss, which is designed to operate at the sentence level,
outperforms the coverage mechanism (+COV), which works at the word level. Note that
both systems (+DIV and +COV) achieve lower ROUGE-2 scores, suggesting that the vanilla
diversity loss could impact the fluency of the system.

ROUGE F1

Setting R-1 R-2 R-L

HIER 39.12 13.03 36.77
HIER+COV† 38.54 10.52 36.07
HIER+DIV 41.94 12.87 39.30

Table 5.5 Summarization Performance ROUGE F1 on the AMI test set on the hierarchical model with
a different diversity loss and without it. †The coverage mechanism [288] is applied at the word level
after multiplying the sentence-level attention score to each word.

In addition, we investigate the effectiveness of the attention diversity method on CNN/DailyMail.
As illustrated in Table 5.6, the HIER+DIV with unigram bias decoding system achieves
higher ROUGE-1, ROUGE-2, ROUGE-L scores than the HIER system by 3.81%, 0.67%, and
3.29%, respectively. These results further confirm the effectiveness of diversity optimization.
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ROUGE F1

Setting βββ R-1 R-2 R-L

HIER
✗ 31.45 12.60 29.54

20.00 34.77 13.23 32.67

✗ 32.54 12.75 30.57
HIER+DIV 10.00 34.64 13.36 32.40

20.00 35.26 13.27 32.83
Table 5.6 Summarization Performance ROUGE F1 scores on the CNN/DailyMail test set. Note that
the hierarchical training converged after 17 epochs, and we further train it with the diversity criterion
and this additional training converged after 2 more epochs.

5.5.4 Impact of ASR on Summarization Performance

In Section 5.5.3, the experiments compared different setups using manual transcripts as the
inputs. However, in practice, the first stage of spoken document summarization involves
an ASR system, which may introduce transcription errors to input documents. Hence, this
section investigates the impact of ASR on summarization performance. The best-performing
summarization system (HIER+MT+DIV with β=0.25) is selected for this investigation.

Table 5.7 shows the performance of the summarization system when using ASR tran-
scripts. When using the AMI ASR (ASR1) transcripts instead of the manual transcripts,
the decrease in ROUGE is around 2-3%. This relatively small drop is likely because even
at 30% WER, the sentence embedding similarity between a manual source and an ASR
source is about 0.70-0.85% [359, 295]. When compared to current state-of-the-art meeting
summarization methods (described Section 5.5.2), our system achieves higher ROUGE
scores than UMCB [267], and when compared to TopicSeg (without visual signals) [160] our
system achieves higher ROUGE-2 and ROUGE-L although lower ROUGE-1. Furthermore,
when using transcripts with lower WER (ASR2), ROUGE scores are closer to those obtained
from the manual transcripts, and yield higher ROUGE-2 and ROUGE-L scores than the
state-of-the-art multi-modal TopicSeg+VFOA. [160].
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ROUGE F1

Model Input R-1 R-2 R-L

UMCB [267] ASR1 37.86 7.84 13.72
TopicSeg [160] ASR1 51.53 12.23 25.47
TopicSeg+VFOA [160] ASR1 53.29 13.51 26.90

ASR1 41.23±0.75 12.74±0.21 38.38±0.63

HIER+MT+DIV ASR2 43.29±1.81 14.45±0.23 40.55±1.20

MAN 44.36±0.58 14.62±0.21 41.10±0.25

Table 5.7 ASR1 = publicly available ASR transcripts (WER=36%), ASR2 = CUED generated
transcripts (WER=20%), MAN =Manual transcripts. The reported numbers are mean ± standard
deviation from 3 runs with different data shuffling and different seeds.

5.5.5 Auxiliary Task Performance

For the multi-task trained systems, it is possible to evaluate the performance of the sys-
tem on the other training tasks, Dialogue Act classification (DialogueAct) and Extractive
summarization (ExtractiveSum). Both tasks used the encoder of the hierarchical model.
For the DialogueAct baseline LDA was optimized, and for the ExtractiveSum baseline Lext

was optimized. For the HIER+MT setting, the weighting of the loss terms, λ1 and λ2 (in
Equation 5.28) were both set to 10.0, and for the HIER+MT+DIV setting, λ3 was set to 1.0.
Table 5.8 shows that the summarization signal improves both dialogue act classification and
extractive summarization labelling tasks. Our best dialogue act accuracy is comparable with
the results achieved by Goo and Chen [89]. The diversity loss, in contrast, does not benefit
these two tasks. This is expected as the diversity criterion aims to improve the diversity of
the attention mechanism of the decoder, whereas for these two tasks, only the encoder of the
summarization system is used.

DialogueAct Accuracy ExtractiveSum F1

HIER 63.42±0.82 HIER 54.47±3.75

HIER+MT 64.32±0.39 HIER+MT 56.05±1.61

HIER+MT+DIV 63.11±0.36 HIER+MT+DIV 56.06±2.39

Table 5.8 Performance on auxiliary tasks: Dialogue act classification (1-in-15) and Extractive
summarization labelling (threshold of 0.5). The reported numbers are mean ± standard deviation
from 3 runs with different data shuffling and different seeds.
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5.5.6 Hierarchical Model for Sentence Filtering

Based on the sentence-level attention score of the hierarchical model (described in Sec-
tion 5.4), this section investigates the impact of removing redundancies in source documents.
The aim is to develop a method to filter redundancies at the sentence level to improve the
overall summarization performance.

We hypothesize that an abstractive summarization system performs salient sentence
selection implicitly as there exist redundant sentences that contain little or no information.
Hence, simply filtering some sentences out may improve summarization performance. We
use the following hierarchical models: (1) for AMI, the abstractive summarization model is
HIER+MT+DIV with β = 0.0; (2) for CNN/DailyMail, the abstractive summarization model
is HIER+DIV with β = 20.0. We compare three input scenarios as follows:

1. Full Input (baseline): All input sentences {S1, ...,SN} are kept.

2. Keep_prob: Selection based on sentence score, vi, defined in Equation 5.27 (using the
teacher forced target) such that the remaining sentences have vi above the threshold:

Ŝ = {S1, ...,Sn}= argmin
S

∑
i,Si∈S

vi and ∑
i,Si∈S

vi > keep_prob (5.29)

3. First-K: Keep the same number of sentences as keep_prob, but the first K sentences.

The results in Table 5.9 show that a small improvement in summarization performance can
be obtained by simply performing sentence filtering using the score based on the sentence-
level attention of the hierarchical model. In Figure 5.7a, the improvement is observed until
around 30% of input sentences are removed. Lastly, we investigate how models trained using
sentence-filtered data perform compared to models trained using full-input data. Figure 5.7b
demonstrates that an improvement can be achieved by re-training the hierarchical models
on filtered data. In conclusion, this section shows that an improvement in summarization
performance can be obtained when sentence filtering is applied either at the inference stage
only or at both stages. The next chapter will investigate sentence filtering in more detail,
especially in the context of foundation models where the length of source documents becomes
more critical.



5.6 Chapter Summary 97

Source Input R1 R2 RL

Full Input 35.26 13.27 32.83
Keep_prob=0.90 35.50 14.17 32.94

First-K 35.17 14.03 32.59

Table 5.9 Summarization Performance on the CNN/DailyMail test set using different source inputs.
The baseline system is the HIER+DIV system previously analyzed in Table 5.6.
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Fig. 5.7 ROUGE score on CNN/DailyMail and AMI as more sentences are removed. Due to the
size of the training data, sentence filtering is applied at both training and inference for AMI. For
CNN/DailyMail, sentence filtering is applied at inference only.

5.6 Chapter Summary

This chapter investigated abstractive summarization in the context of training hierarchical
RNN models from scratch. The proposed explicit sentence-level attention diversity at
the training stage and the unigram bias decoding method were both shown to improve
abstractive summarization using the hierarchical RNN model. It was demonstrated that a
multi-task learning method, which incorporates dialogue act and extractive summarization
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information, is useful for summarization. The hierarchical model with multi-task and
attention diversity objectives (HIER+MT+DIV) was found to be the best configuration
for the meeting summarization task. A further investigation demonstrated that for a real-
world spoken document summarization using an ASR system with WER of around 20%,
summarization performance close to that obtained from manual transcription can be achieved.
Furthermore, this chapter applied the hierarchical model to sentence filtering, and it was
shown that filtered inputs (i.e., a subset of input sentences) can yield better summarization
results with and without model re-training.



Chapter 6

Abstractive Summarization with
Foundation Models

Chapter 5 studied abstractive summarization with hierarchical RNNs where the models
were either trained from scratch or trained on another summarization task before being fine-
tuned to the target summarization task. However, RNNs have limitations such as vanishing
gradients [107] and non-parallelizability during training [290, 226], limiting pre-training
RNNs on large-scale data. Recently, there has been a shift in NLP approaches to using
the transformer architecture, which can be parallelized during training and does not suffer
vanish gradients. Transformer-based models with billions of parameters have then been
pre-trained on billions of words. These pre-trained models are referred to as foundation
models. After being fine-tuned on a target task, these foundation models achieve strong
performance in a range of tasks [52, 159, 244]. Yet, there are challenges associated with the
transformer architecture such as its quadratic dependencies with sequence length. This makes
it challenging to apply foundation models to long-document summarization. This chapter
will examine techniques for applying foundation models on long-document summarization
tasks such as podcast transcripts and research articles.

First, Section 6.1 introduces the framework for applying foundation models to summa-
rization, and it discusses the challenges, limitations, and general research questions being
addressed. Section 6.2 discusses sentence filtering techniques for selecting salient informa-
tion as the input to a foundation model at both training and inference stages. Section 6.3
focuses on the encoder of foundation models and investigates efficient attention mechanism.
Section 6.4 focuses on the encoder-decoder attention and proposes a method to make it
more efficient by exploiting sparsity in attention weights. Section 6.5 presents experiments,
which include the comparison between RNN-based and foundation model based approaches,
sentence filtering, efficient transformers, and ensemble of summarization models.
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6.1 Challenges in Long-Span Summarization

Foundation models or pre-trained models are typically trained using self-supervised learning,
e.g. masked language modelling or de-noising tasks [52, 159, 14], so they are generally
unfinished and should not be used directly on a target task. The standard approach in using any
foundation model on a sequence-to-sequence task is fine-tuning (i.e., adapting) the model to
the specific task using the teacher-forced maximum likelihood criterion (Section 2.2).1 With
regard to the architecture, encoder-decoder and decoder-only models are used in abstractive
summarization. This is because the generation process is autoregressive, so only these
architectures are suitable. The encoder-decoder architecture, such as BART [159] and T5
[244], is typically used in abstractive summarization. This is because the encoder-decoder
architecture adopts a bidirectional encoder, which improves the information flow from the
source document to the summary.

Encoder Decoder

x1 xN... xN+1 ...x2 y1 y2 ...

...

Truncated Document

Fig. 6.1 Fine-tuning a pre-trained transformer on a downstream task such as summarization. The
source document is truncated to the maximum input tokens of the pre-trained encoder model, or to the
limit of the available VRAM (e.g., GPU memory).

One issue with transformer models is that the use of self-attention does not scale well in
terms of memory and compute requirements as the input length grows (Section 3.1.4). Thus,
for long-document summarization, it can be challenging to fine-tune a large foundation
model. A vanilla approach could result in source documents being truncated as illustrated in
Figure 6.1. Therefore, in the following two sections, we address long-span dependencies in
summarization in two directions: explicit content selection to reduce the number of input
tokens into the model (Section 6.2), and efficient modelling using local attention to increase
the maximum length that the model can handle (Section 6.3). These two sections focus on

1Recently, large language models (LLMs) have been shown to emergent properties where the models can
perform tasks in a zero- or few-shot setup without fine-tuning. Emergent abilities are discussed in Section 3.2.1.
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handling long inputs and efficient encoder, while the subsequent section (Section 6.4) will
focus on the efficiency of the encoder-decoder attention.

6.2 Sentence Filtering

In the previous chapter (in Section 5.4 and Section 5.5.6), we investigated RNN-based sum-
marization models. With an RNN-based model, we could take any arbitrary length sequence
because applying an RNN would yield a representation, and it has a linear complexity (time
and compute) with the sequence length. With a transformer-based model, however, its fixed
positional encoding could result in limitations in the maximum length in addition to the
quadratic complexity with the sequence length of self-attention. Hence, sentence filtering
can be important in using foundation models.2

A form of sentence filtering based on the attention of the hierarchical model was in-
troduced and investigated in the previous chapter (in Section 5.4 and Section 5.5.6). This
section aims to firstly extend sentence filtering to improve fine-tuning foundation models with
a limited length input on long-document summarization tasks (e.g., to improve document
truncation shown in Figure 6.1), and secondly study other forms of sentence filtering.

It has been shown that a better content selection improves in news summarization [24, 82,
114], multi-document summarization [168, 165], and scientific article summarization [231].
Based on this motivation, this section seeks to tackle the excess length by sentence filtering.

We will investigate the upper-bound performance by making use of the oracle information
(i.e., using ground-truth summary). Oracle information also provides training signals about
which source sentences are the most informative with respect to the ground-truth summary.
However, oracle information is not available at the inference stage where sentence filtering
has to be performed without the ground-truth summary. Following extractive summarization,
a model-based approach is considered for sentence filtering. It should be noted that although
at training, an oracle information approach is expected to yield the best result (lowest training
loss), using oracle information could result in a mismatch between the training and inference
stages. Therefore, this work will investigate the performance at inference time when the
model is trained with and without oracle information. Table 6.1 summarizes when each
sentence filtering method is applicable.

2Sentence filtering is also referred to as content selection.
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Approach
Stage

Training Inference

Truncation ✓ ✓

Oracle (§6.2.1) ✓ ✗

Model-based (§6.2.2) ✓ ✓

Table 6.1 Stage when sentence filtering approach can be applied. During training, ground-truth
summaries are available, so filtering methods can be either: ground-truth-based (model-free), which
is also referred to as oracle and model-based. Ground-truth-based methods cannot be used at the
inference time, while model-based methods can be applied at both phases.

Let the subscript (i, j) denote the position of the j-th word in the i-th input sentence, the
full source document X = {S1, ...,Si, ...,SN1} = [x1,1,x1,2,x1,J1︸ ︷︷ ︸

sent 1

, ...,xi,1,xi,Ji︸ ︷︷ ︸
sent i

, ...,xN1,1,xN1,JN1︸ ︷︷ ︸
sent N1

]

where N1 is the number of sentences in X and Ji is the number of words in the i-th sentence,3

and Y = y1:M is the summary. A sentence filtering method re-ranks, truncates, and sorts the
input document X to get a filtered input X̃ as follows,

X̄ = {Sr1,Sr2 ,Sr3, ...,SrR} (6.1)

X̃ = SortOrig(TruncateN(X̄)) (6.2)

where ri is the index of the sentence of rank i, the TruncateN operation filters X̄ such that the
total number of words (or tokens) is less than N, and SortOrig retains the original sentence
order. The following ranking methods are considered,

• Truncation (TRC):
rk = k (6.3)

• Model-based: Given the score f of model parameterized by φφφ ,

rk = {i ∈ N1 : fφφφ (i|X) is ranked k-th} (6.4)

• Oracle (ORC): Given the ground-truth summary y and similarity measure sim,

rk = {i ∈ N1 : sim(Si,Y ) is ranked k-th} (6.5)

3This notation follows the notation in Section 5.2.1 with the only difference is that this chapter uses N1 to
denote the number of sentences, and N is instead used for the total number of words in all input sentences.
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Note that the model-based method is similar to extractive summarization (Section 4.1). The
slight difference is that extractive summarization seeks to find a subset of sentences that yields
the best summary, while the method in this section seeks to rank sentences and pass as many
sentences as the abstractive model could process. Hence, existing extractive summarization
models are applicable as a model-based method where they can rank original sentences.
Section 6.2.2 will describe model-based sentence filtering in detail.

6.2.1 Oracle Sentence Filtering

Oracle (or ground-truth-based) methods require ground-truth targets. Oracle methods have
the advantage that they utilize ground-truth summaries in identifying salient sentences and
these methods are applicable in training. However, the disadvantage is that they are not
applicable during inference, and their performance during inference only represents an upper-
bound performance level. Existing oracle methods include using the use of ROUGE-2 recall
in Liu et al. [165] or the average of ROUGE-1,2,L recall in Pilault et al. [231].

In this work, we use ROUGE-2 recall as the similarity measure sim in oracle methods (in
Equation 6.5). First, we retain only the input sentences with positive sim. We found that the
number of sentences with positive sim is low at 21.3% of the total number of sentences on
average on the Podcast dataset. This corresponds to 56% of training instances being shorter
than the BART input span of 1024. This percentage represents the percentage of documents
that are aggressively extracted by the oracle method. As the no-padding oracle method
(Oracle-no-pad) is highly aggressive, potentially preventing the downstream summarizer
from learning complex abstraction, we propose variants of oracle methods to extend the
Oracle-no-pad selected input to the maximum input span N tokens. Two proposed variants
shown in Figure 6.2 are:

• Oracle-pad-lead: Pad by leading unselected sentences and keep original order.

• Oracle-pad-rand: Pad by random unselected sentences and keep original order.

Fig. 6.2 Illustration of the oracle sentence filtering methods considered: no-pad, pad-lead, and pad-
rand. {S1,S2,S3,S4,S5} are input sentences, Y (ref) is the ground-truth summary, and similarity
score is ROUGE-2.
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6.2.2 Model-based Sentence Filtering

To process long input sequences entirely, we consider RNN, whose memory requirement
grows linearly with the sequence length, and hierarchical architectures which have been
shown effective for long sequence-to-sequence tasks [39, 160] as well as Section 5.5.6.

Through a least-squares regression with 20 samples, the hierarchical RNN model (de-
scribed in Section 5.2) requires VRAM during training given the target length of 144 as
follows,

memory= 0.83+B(3.96×10−5 +3.33×10−5N2)N1

where N1 is the number of input sentences, and N2 is the maximum number of words in a
sentence, and B is batch size. By setting N1 = 1000 and N2 = 50, only 2% of podcast data
exceeds this limit, while taking GPU memory to only 2.53 GB for a batch size of 1. Thus,
this finding confirms that this model can cover long sequences.

Previous model-based methods treat content selection as extractive labelling and create la-
bels heuristically [231], while Section 5.4 has used an encoder-decoder attention mechanism.
To utilize both of these in one framework, we propose a Multi-task Content Selection (MCS)
method where we train the hierarchical encoder-decoder with an attention mechanism and a
classification layer on top of the encoder. First, the model is trained on sequence-to-sequence
abstractive summarization objective as follows,

Lseq2seq =−
M

∑
m=1

logP(ym|y1:m−1,X) (6.6)

Second, we create binary labels as follows: for the i-th sentence Si and reference summary
Y , the label zi is 1 if sim(Si,Y ) > threshold; else zi is 0. The similarity measure sim is
ROUGE-2 recall and the threshold is set to 0.0 The extractive labelling task objective is
defined as,

Llabel =−
N1

∑
i=1

(zi log ẑi +(1− zi) log(1− ẑi)) (6.7)

ẑi = sigmoid(wT
clshi +bcls) (6.8)

where hi is the sentence-level encoder output associated with sentence i, and wcls,bcls are the
parameters of the classification layer. Thus, the MCS training loss is defined as follows:

LMCS = λLlabel +(1−λ )Lseq2seq (6.9)

At inference, there are two modes: (i) standard abstractive summarization, e.g., via beam
search; (ii) ranking input sentences via labelling score and sequence-to-sequence attention
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score. The latter is how MCS is used during inference.4 For sentence i, the scores are:

scorei,(label) = ẑi and scorei,(seq2seq) =
M

∑
m=1

α
s
m,i (6.10)

where αs
m,i is the sentence-level attention weight at decoder step m over input sentence i.

Since the scores are on different scales, rather than using the scores defined in Equation 6.10,
we simply rank the scores, and then normalize the score ranks into the range [0.0,1.0]. Let
nscore denote the normalized ranking score, the MCS inference score is:

fφφφ (i|X) = nscorei,(label)+nscorei,(seq2seq) (6.11)

6.3 Efficient Encoder Attention

To fine-tune pre-trained transformer models on summarization tasks with potentially long
input sequences, one method is to modify the architecture. In this section, we will delve into
local attention design with practical memory profiling and computation complexity analysis.
Moreover, Local attention BART (LoBART) will be introduced in Section 6.3.1.

6.3.1 Local Attention

BART [159] is used as an example of encoder-decoder foundation models. Following the
local attention window attention in Sparse Transformer [27] and Longformer [10], local
attention (illustrated in Figure 6.3) is applied to BART’s encoder to tackle the quadratic
dependency. Following the self-attention discussed in Section 2.1.4, the standard self-
attention mechanism computes the representation for position i shown in Figure 6.3a:

hi =
N

∑
j=1

(
qi ·k j

)
v j (6.12)

Local attention span limits the receptive field to a local neighbourhood [223], and modifies
the attention mechanism as shown in Figure 6.3b to:

hi =

min(i+W
2 ,N)

∑
j=max(1,i−W

2 )

(
qi ·k j

)
v j (6.13)

4In practice, we run beam search decoding of width 4, and we obtain the attention score from the top beam.
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where N is the input sequence length and W is the size of the local window. Given a self-
attention mechanism, this is applied to every position from i = 1, ...,N, so it reduces the
computational and memory costs from O(N2) to O(N ·W ).

Local attention is motivated by that the information is likely localized. Also, a standard
pre-trained model (e.g., BART) is used instead of other efficient encoder-decoder architectures
because pre-trained weights of standard models are more readily available (which was
especially true at the time of conducting the experiment), and they have also been fine-tuned
on various target tasks, including text summarization.

(a) Full Attention (b) Local Attention (with W = 9)

Fig. 6.3 Self-attention patterns that are investigated in this work. Other forms of fixed attention
patterns are provided in Section 3.1.5.

In addition to modifying the attention mechanism, other complementary techniques for
reducing memory in training could be considered: (i) gradient-checkpoint where a subset of
intermediate values in the computation graph are cached, and the rest are re-computed during
backpropagation [22], but this requires changes to optimization and leads to longer training
time; (ii) half/mixed-precision training [197] where the precision (discussed in Section 3.1.4)
of model parameters is reduced such as from 32-bit floating point to 16-bit floating point.
This reduction in the precision may result in lower performance; (iii) model parallelism with
micro-batching [118], but this method requires multiple accelerators.

Understanding Local Attention

To understand whether the assumption that the information is localized (hence the suitability
of local attention), this experiment seeks to empirically investigate the distance characteristic
of the attention mechanism of BART’s encoder. First, we define the mean attention distance
in a particular layer and head to study the characteristics of self-attention in BART’s encoder
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as follows,

Dα =
1
N

N

∑
i=1

(
N

∑
j=1

αi, j×|i− j|

)
(6.14)

where αi, j is the attention weight of position i attending to position j such that ∑
N
j=1 αi, j = 1.

This measure corresponds to the average distance of self-attention. If the attention weight is
assumed uniform, Dα = N2−1

3N . For example, if N = 1024, Dα = 341 for uniform attention.
Based on BART, Figure 6.4 shows that most layers have a shorter mean distance than

uniform-attention Dα , supporting that the information is more localized. The mean distances
of differently initialized BART models computed on the podcast data also show that the
attention mechanism is learned during the pre-training stage as there is little variation after
the pre-training stage. As illustrated in Figure 6.4, the average attention distance Dα of the
BART model is around 250-350 tokens. This suggests the window size W should be designed
to be above 700, allowing half local attention window W/2 to be greater than 250-350 to
effectively match BART and to exploit transfer learning more efficiently.
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Fig. 6.4 The average mean distance across multi-heads for each layer. The average mean distance of
the random weight model is slightly lower than uniform Dα as some inputs are shorter than 1,024.

Extending Maximum Input Span

As described in Section 2.1.4, transformers have a position encoding. For example, BART
has a learned embedding as its positional encoding, so the number of input tokens is limited
to the size of this positional encoding which is 1024 for BART. Previous work [169] handled
this limitation by extending a learned embedding of BERT by adding a position embedding of
extended positions. These new embeddings are initialized randomly and fine-tuned with other
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parameters in the encoder. This work, on the other hand, extends the positional embedding of
BART (and LoBART) beyond 1,024 by copying BART positional embedding with flipping
to allow a smoother transition as shown in Figure 6.5 where the positional embedding is
extended from length 1024 to 4096.
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Fig. 6.5 Extending position embedding of length 1024 to 4096.

Local Attention BART (LoBART)

As an example of an efficient foundation model for long-document summarization, this
work proposes local attention BART (LoBART) which is based on the BART-large system
with local attention in the encoder. Its positional embedding is initialized as described in
the previous subsection. In the subsequent sections, LoBART(nk) with local attention of
width W refers to the variant where the positional embedding is extended to n×1024. The
number of parameters in LoBART(nk) is, therefore, 406× 106 + 50264× (n− 1)× 1024
where 50264 is the size of the vocabulary and 1024 is the size of the representation.

6.3.2 Memory and Time Analysis

It has been known that the memory and compute complexity of transformers is quadratic
with the sequence length. However, in encoder-decoder architectures, the exact dependencies
on input length N, target length M, and batch size B are less well understood. This is particu-
larly important in long-span sequence-to-sequence tasks because large memory or compute
requirements could make training or fine-tuning impractical. The memory requirement is also
crucial in determining whether a design configuration is feasible given a hardware accelerator
(e.g., VRAM of a GPU). Thus, the following part will investigate these dependencies and
show the trade-off between the size of the input span and the efficient attention modification.
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Memory Profiling through Regression Analysis

To investigate the memory profiling of BART and its local attention, let input length = N,
target length = M, local attention width = W , and batch size = B. Through regression analysis
for an encoder-decoder architecture such as BART, the memory required in training is:

Memory= cb
1 +B(cb

2M+ cb
3N + cb

4MN + cb
5M2 + cb

6N2) (6.15)

The term cb
1 depends on only the model size and optimizer, and it is constant. The remaining

terms are activation memory associated with the activation outputs cached for backpropaga-
tion, and they grow with N, M, and B.

To perform regression analysis, the memory requirement for each (B,N,M) setup is
measured. In practice, this is done by selecting B, N and M and then BART is trained
and its maximum memory usage on a GPU is measured. The process can be repeated for
different sets of (B,N,M) values, and a regression analysis can then be performed to obtain
the coefficients in Equation 6.15 using the MATLAB curve fitting tool.

Based on the BART system (BART-large), the experiments include N ∈ [64, 256, 512,
1024, 2048, 3000] and M ∈ [36, 72, 144, 288, 576] using a batch size of 1, resulting in
a total of 30 samples. The least-squared regression of BART’s VRAM (in Equation 6.15)
yields R2 = 1,RMSE = 0.026, and the coefficients cb

1 = 6.054, cb
2 = 1.594× 10−3, cb

3 =

8.192× 10−4, cb
4 = 1.418× 10−6, cb

5 = 1.077× 10−6, cb
6 = 1.456× 10−6. As an example,

Table 6.2 shows system-independent5 regression results for the memory in training BART. It
is apparent that as N grows the dominant term is cb

6N2, which is associated with the encoder
self-attention. Thus, this finding confirms the motivation in modifying self-attention only on
the encoder side.

Term cb
1 cb

2M cb
3N cb

4MN cb
5M2 cb

6N2

GB 6.05 0.23 0.84 0.21 0.02 1.53

Table 6.2 BART’s Memory Profile (N=1024, M=144).

By introducing local self-attention of width W to BART (in short, we refer to this setup as
LoBART), the memory in training becomes:

Memory= cl
1 +B(cl

2M+ cl
3N + cl

4MN + cl
5M2 + cl

6NW ) (6.16)

5system-independent across hardware and machines; albeit implementation-dependent. This analysis is
based on widely used PyTorch and Huggingface implementation.
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Similarly, the experiments include N ∈ [512, 1024, 2048, 4096], M ∈ [100, 200, 400],
and W ∈ [32, 128, 512] using a batch size of 1, resulting in a total of 36 samples. The
least-squared regression of LoBART’s VRAM (in Equation 6.16) yields RMSE = 0.010,
and the coefficients cl

1 = 6.104, cl
2 = 1.443×10−3, cl

3 = 1.032×10−3, cl
4 = 1.487×10−6,

cl
5 = 1.277×10−6, cl

6 = 2.503×10−6.
The activation memory is now dominated by cl

6NW ×B, where cl
6 ≈ 1.72cb

6. Thus, we
highlight that once W > 0.58N, LoBART likely no longer reduces memory. Note that we
also tried incorporating the terms N2 and W in the least-squared regression analysis, but their
resulting coefficients are small, making both terms negligible. This is expected as quadratic
self-attention is replaced by local attention of width W , and the width W only determines the
receptive field of each and every position in N, resulting in the NW term.

The memory requirement for training BART and LoBART in Figure 6.6a enables us to
choose an operating point. For example, the experimental setups shown in Table 6.10 are
constrained by the maximum GPU memory of 32 GB illustrated in Figure 6.6a, e.g., for full
attention, N = 4096 results in a GPU out of memory issue.
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Fig. 6.6 Operating points for a batch size of 1 and summary length of 144 tokens. (i) Section 6.3
studies local attention to reduce the complexity from quadratic to linear. As the local attention width
W decreases, the gradient of linear complexity decreases. (ii) Section 6.2 studies sentence filtering
(i.e., content selection) to move an operating point to the left.

A further note on Model, Optimizer, and Activation

The constant term in Equation 6.2, cb
1 = 6.054 GB, is independent of batch size, system, or

implementation (given the same floating-point precision). This term comprises model and
optimizer memory as follows (in 32-bit floating point, 1 variable takes 4 bytes):
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1. Model Parameter: BART has 406,290,432 parameters, yielding 406290432× 4 =

1.625×109 bytes = 1.51 GB.

2. Model Gradient: Each parameter has one corresponding gradient variable, e.g. .grad
in PyTorch. Thus, this also occupies 1.51 GB.

3. Optimizer: Adam optimizer [136] stores first moment and second moment for each
and every model parameter, hence, taking 3.02 GB.

4. Activation: The terms corresponding to cb
2, ...,c

b
6 are associated with activation buffers

cached for computing gradients in backpropagation. These terms grow linearly with
batch size. The dominant term cb

6N2B grows quadratically with the input length N,
motivating the encoder’s local self-attention design. Chen et al. [22] proposes a method
to save the activation memory by only caching buffers of a subset of layers, and
re-computing the rest dynamically during backpropagation. This results in repeated
computations and more training time.

Time Analysis BART & LoBART

Unlike memory, the time requirement is both system and implementation-dependent. In this
analysis, we show the results using our infrastructure consisting of a 32 GB V100 GPU and
32-core Intel Xeon 4215R CPU (3.20GHz). We compute the time required for 50 forward
and backward passes in 12 settings for each model configuration. Similar to the memory
analysis, we perform least-squared regression where the results are shown in Figure 6.6b.
It can be seen that although LoBART reduces memory requirement, when it comes to time
requirement, LoBART is only comparable to BART. This is due to the implementation of
local self-attention that involves additional processes such as chunking.

6.4 Efficient Encoder-Decoder Attention

The previous section (Section 6.3) showed that time and memory are dominated by the
encoder’s self-attention. Models such as LoBART adopt local attention in its encoder to
mitigate this bottleneck, while keeping the original decoder. Training is fast because attention
is highly parallelizable. However, during inference, the decoder uses its histories, becoming
less parallelizable. To understand when the decoder might become a bottleneck, we fix the
input length N and measure the computational time as a function of the target length M,

Time= c̄1 + c̄2M+ c̄3M2 (6.17)
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in three operating modes as follows:

1. Forward+Backward, e.g., at training time

2. Forward only, e.g., forward-pass where the input to the decoder is provided in advance

3. Inference, e.g., the decoder using its own back histories as the input.

Through a regression analysis method, the results in Table 6.3 show that the relative decoder
cost during inference is almost one order of magnitude larger than that during training, e.g.
forward+backward or forward only. The regression analysis in Table 6.3 also reveals that the
encoder-decoder attention cost is greater than the decoder self-attention cost. Therefore, this
motivates the study on efficient encoder-decoder attention where the goal is to reduce the
computational time or the complexity of the encoder-decoder attention.

Mode c̄2/c̄1 (10−3) c̄3/c̄1 (10−6)

Forward+Backward 1.08 0.17
Forward only 1.14 0.25

Inference 9.96 1.30

Table 6.3 Empirical computational time as a function of the target length M where c̄1, c̄2, c̄3 are the
coefficients in Equation 6.17. The analysis is based on the HuggingFace implementation of BART
[316] and the input length is 1024.

6.4.1 Sparsity in Encoder-Decoder Attention

In summarization tasks, we hypothesize that the model might perform content selection
implicitly. If this hypothesis holds true, it could result in sparsity in the encoder-decoder
attention. For example, the attention weights could concentrate on a few salient input
sentences. Based on this hypothesis, this section will investigate it in detail.

First, let M = the summary length, N = the input length, N1 = the number of input
sentences, and N2 = the average number of words in a sentence (such that N = N1N2).
The standard encoder-decoder attention in Equation 6.18 (scaling factor omitted) where
Q ∈RM×D and K,V ∈RN×D has the complexity O(MN) =O(MN1N2). Note that we fix
the representation dimension D, so D is omitted in our complexity notation.

A = softmax(QKT )V (6.18)
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If the attention is concentrated on some r sentences,6 by selecting appropriate r, the speed
of the encoder-decoder attention can be improved by a factor of N1/r on average. This is
equivalent to approximating Equation 6.18,

A≈ Â = softmax(QK̂T )V̂ (6.19)

where K̂, V̂ ∈RrN2×D, resulting in O(MrN2).

Word-level and Sentence-level Attention Weight Plots

To understand the encoder-decoder attention on summarization tasks empirically, we average
the attention weights over all heads and plot the results in Figures 6.7, 6.8, 6.9, and 6.10. For
instance, Figure 6.7 shows that the decoder attends particularly to input sentences #1,#2,#13
in the summary generation. Compared to Figure 6.7, Figure 6.8 shows a wider spread of
attention over sentences in a more abstractive task. When using LoBART, Figure 6.9 and
Figure 6.10 show a similar trend of the sparsity to BART scenarios. These figures also
explain Figure 6.11a (in Section 6.4.2) that ∑

Ir
m

i αs
m,i is only low or moderate because most

sentences get assigned some attention weights, despite being non-salient.

6Motivated by the observations shown in Figures 6.7, 6.8, 6.9, and 6.10.
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(a) Word-Level

(b) Sentence-Level (αs
m,i)

Fig. 6.7 Example of BART’s encoder-decoder attention evaluated on CNNDM test set. Blue vertical
lines indicate input sentence boundaries and green horizontal lines indicate target sentence boundaries.
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(a) Word-Level

(b) Sentence-Level (αs
m,i)

Fig. 6.8 Example of BART’s encoder-decoder attention evaluated on XSum test set. Blue vertical lines
indicate input sentence boundaries and green horizontal lines indicate target sentence boundaries.
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(a) Word-Level

(b) Sentence-Level (αs
m,i)

Fig. 6.9 Example of LoBART’s encoder-decoder attention evaluated on Podcast test set. Blue vertical
lines indicate input sentence boundaries and green horizontal lines indicate target sentence boundaries.
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(a) Word-Level

(b) Sentence-Level (αs
m,i)

Fig. 6.10 Example of LoBART’s encoder-decoder attention evaluated on arXiv test set. Blue vertical
lines indicate input sentence boundaries and green horizontal lines indicate target sentence boundaries.

6.4.2 Approximating Encoder-Decoder Attention

In Section 6.4.1, it was demonstrated that the encoder-decoder attention is sparse. This
section aims to compute an approximation of the attention mechanism where only r input sen-
tences are attended over instead of all sentences. Let the subscript (i, j) denote the position of
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the j-th word in the i-th input sentence, e.g., K= [k1,1,k1,2,k1,J1︸ ︷︷ ︸
sent1

, ...,ki,1,ki,Ji︸ ︷︷ ︸
senti

, ...,kN1,1,kN1,JN1︸ ︷︷ ︸
sentN1

].

At inference time, as the outputs are generated sequentially, i.e.,

am = softmax(qmKT )V (6.20)

the top-r sentences can be determined independently for each qm. Consider the following
sum of attention weights as sentence saliency at decoding step m of sentence i,7 similar to
the sentence-level RNN-based attention score in Section 5.4 and Section 6.2.2:

α
s
m,i =

1
Zm

Ji

∑
j=1

exp(qm ·ki, j) (6.21)

where Zm = ∑∀i′∑∀ j′ exp(qm ·ki′, j′). We then compute ∑i αs
m,i up to r sentences ranked by

αs
m,i. This is based on the assumption that if the attention weights are sparse, summing αs

m,i

only on the top-r sentences could yield a value close to 100%. The experimental results in
Figure 6.11a show that r = 25 is required to achieve the sum of attention weights at 90%. In
addition to the vanilla BART model, we can fine-tune BART explicitly to make the attention
sparse using the following criterion,

LA = Lxent + γLsparse (6.22)

where Lxent is the teacher-forced cross entropy loss, Lsparse =
1
M ∑

M
m=1H(αααs

m), and entropy
H(αααs

m) = −∑
N1
i=1 αs

m,i logαs
m,i. We show in Figure 6.11b that the fine-tuned models (both

γ = 0.1 and γ = 1.0) retain close to 100% of attention weights for small r. Next, we will
investigate how selecting r sentences impacts the summarization performance.

7Multi-head attention: we omit the heads in the equations and expressions for simplicity. Both BART and
LoBART models have 16 heads. In Figure 6.11, we average αs

m,i over heads, before the summation. When
computing an uncertainty measure such as entropy H(.) or KL-divergence KL(.), we compute the measure
for each head separately and take the average. In obtaining Ir

m, we average αs
m,i over heads, before the top-r

operation, i.e. all heads get assigned the same subset of sentences, but the differences are across layers and
decoding timesteps.
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Fig. 6.11 Sum of attention weights against the number of retained sentences (r) evaluated on CNNDM.

To obtain an empirical upper bound performance of the approximation in Equation 6.19, for
each qm, we can get ideal k,v corresponding to the top r sentences ranked by αs

m,i,

Ir
m = [(i, j) s.t. i ∈ top-r(αs

m,i)] (6.23)

and hence, K̂m = [ki, j : (i, j) ∈ Ir
m], and the same method is applied to obtain V̂m.

6.4.3 Exploiting Sentence Structure

The previous sections discussed sparsity and an ideal approximation of encoder-decoder
attention. We note that the ideal approximation of the attention involves computing ideal
selection (Ir

m in Equation 6.23) which requires computing the attention weights on all input
words before summing into the sentence level (αs

m,i in Equation 6.21). This process cannot
make the decoder more efficient.

Motivated by the hierarchical architecture in Chapter 5, we propose a method to exploit
the sentence structure in the source document and to allow a compact approximation, using
the following partition for the sentence-level attention score (Equation 6.21),

α
s
m,i ≈ α̃

s
m,i = softmax( f1(qm) · f2(ki,1, ...,ki,Ji)) (6.24)

where ∑
N1
i=1 α̃s

m,i = 1.0, f1 and f2 are generic functions that transform qm and ki,1, ...,ki,Ji into
the same embedding space, respectively. The exact forms of f1 and f2 adopted in this work
will be discussed in Section 6.4.4. Essentially, this method modifies the standard encoder-
decoder attention such that it performs sentence selection based on α̃s

m,i (Equation 6.24) and
subsequently computes subset attention Â (Equation 6.19).
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The modified encoder-decoder attention consists of two components: i) sentence-level
attention over N1 sentences; and ii) word-level attention over rN2 words. To analyze its
complexity, let p denote a unit of matrix multiplication cost and q denote a unit of softmax
cost. The costs associated with attention are:

(i) Sentence-level (Equation 6.24): pMN1D+qMN1

(ii) Word-level (Equation 6.19): 2pMrN2D+qMrN2

The additional cost associated with the sentence-level representation on the encoder side
grows with the input length N = N1N2. Thus, as opposed toO(MN1N2) in the case of vanilla
encoder-decoder attention, the overall complexity of the modified attention is,

Complexity =O(MN1 + kwMrN2 + keN1N2) (6.25)

where kw ≈ 2pD+q
pD+q and ke depends on the exact form of sentence-level computation.

6.4.4 Model-based Neural Approximator

In Section 6.4.3, a general framework to approximate the encoder-decoder attention by
exploiting the sentence structure was proposed. In this section, we present a realization of the
framework using an RNN model. To utilize the simple partition and sentence-level structure
in Equation 6.24, we use a linear mapping for f1 and a bidirectional RNN for f2 as follows:

f1(qm) = Wqqm (6.26)

f2(ki,1, ...,ki,Ji) = Wkhi (6.27)

hi = RNN(ki,1, ...,ki,Ji) (6.28)

As illustrated in Figure 6.12, the standard transformer model is extended by augmenting two
layers as follows:

1. Sentence-level encoder-decoder attention computing the approximated attention α̃s
m,i

as defined in Equation 6.24.

2. Sentence encoder computing the sentence-level representation as in Equation 6.28.
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Encoder Layerx 12

Sentence Encoder

Self Attention

Encoder-Decoder Attention

Sent-Level 
Enc-Dec Attn

Feedforward

x 12

Fig. 6.12 Modified architecture with model-based approximator where the base model can be BART
(or local-attention BART). Model-based neural approximation components are shown in orange.

KL Loss and Integrated Training

Let θθθ dec denote the original decoder and θ̃θθ denote the neural approximator. The parameters
θ̃θθ are trained by minimizing KL-divergence,

LKL =
1
M

M

∑
m=1

KL(αααs
m ∥ α̃αα

s
m) (6.29)

where

KL(αααs
m ∥ α̃αα

s
m) =

N1

∑
i=1

α
s
m,i log

(
αs

m,i

α̃s
m,i

)
(6.30)

In addition, θθθ dec could also be trained simultaneously using the teacher-forced cross-entropy
loss Lxent. This setup is referred to as integrated training, and the combined training loss is,

LI = Lxent +λLKL (6.31)

Note that LI cannot be optimized in an end-to-end fashion because the top-r operation in
Equation 6.23 is not differentiable. Hence, we interleave the training, i.e., update θθθ dec at
fixed θ̃θθ and update θ̃θθ using LKL only:

∆θθθ dec = ∇θθθ decLI|θ̃θθ = ∇θθθ decLxent|θ̃θθ +λ∇θθθ decLKL|θ̃θθ (6.32)

∆θ̃θθ = ∇
θ̃θθ
LI =�����:0

∇
θ̃θθ
Lxent +λ∇

θ̃θθ
LKL (6.33)
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where �����:0
∇

θ̃θθ
Lxent indicates that the gradient of Lxent with respect to θ̃θθ is not included in

computing ∆θ̃θθ . In addition, since during training, we compute both αs
m,i (ideal) and α̃s

m,i

(approx), we can use either of them in the top-r selection. Thus, inspired by scheduled
sampling [11], we try mixing them using a scheduled mechanism as follows: αs

m,i with
probability 1− step

epoch_size , otherwise α̃s
m,i.

6.5 Experiments

The experiments in this chapter focus on long-document summarization. This work exam-
ines sentence filtering (Section 6.2) and efficient attention mechanisms (Section 6.3 and
Section 6.4) in the context of adapting pre-trained transformer models to abstractive summa-
rization tasks. First, long-input summarization datasets are introduced. Then, the hierarchical
RNN model from the previous chapter is compared against pre-trained transformer baselines.

6.5.1 Datasets

The details about AMI and CNN/DailyMail are provided in the previous chapter (Sec-
tion 5.5.1). In addition, this chapter uses additional long-document summarization datasets,
including Spotify Podcast Summarization, arXiv, PubMed, and XSum datasets, which are
described below. Table 6.4 summarizes the statistics of the datasets. For the datasets ex-
amined, AMI, Podcast, arXiv, and PubMed are considered long-document tasks as their
average document has over 1,000 tokens which is more than the limit of top-performing
summarization models such as BART [159]. The Podcast dataset has the highest compression
ratio of nearly 100, indicating that it has the highest redundancy.
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Dataset #Doc
Source Document

Summary Ratio†
Avg. 90th% #Sent

AMI 137 6,200 9,641 783.9 172 36.0
CNN/DailyMail 312k 870 1,463 67.4 67.4 12.9

XSum 227k 489 984 27.9 27.9 17.5
Podcast 106k 5,727 11,677 86.6 61.1 93.7

arXiv 216k 8,584 16,108 364.9 367 23.5
PubMed 133k 3,865 7,234 86.2 260 44.8

Table 6.4 Data statistics measured by the average number of tokens and 90th percentile. The AMI
dataset is already processed into utterances, and we treat each utterance as one sentence. For other
datasets, we use the NLTK tokenizer to split input texts into sentences. †The ratio between the average
number of tokens in a document per the average number of tokens in a summary.

Spotify Podcast Summarization

Spotify Podcast dataset [38] is part of TREC8 Challenge 2020. The dataset contains 105,390
episodes from different podcast shows on Spotify.9 The podcasts were selected to be
predominantly in English. The episodes are of various audio quality, many topics, and
structural formats, e.g., interviews, conversations, monologues etc. The audio files are
available, and the mean duration of an episode of 31.6 minutes. Metadata, including show
description, episode description and other information, is provided. One set of transcripts
of all audio files is given. The ASR system used was Google Cloud Platform’s Cloud
Speech-to-Text API (GCP-ASR). A set of 1,600 episodes was manually evaluated, and the
word error rate was found at 18.1%. The first release contains 105,360 episodes from 18,376
shows – Figure 6.13 shows the histogram plot of the number of episodes for each show. The
creator-provided episode descriptions are used as ground-truth summaries. Since there are
different data pre-processing criteria and different splits, we summarize all the splits used
in our experiments in Table 6.5. The average number of words per episode (mean±std) is
5727.8±4152.7, and the average number of words per summary is 61.1±63.2.

8https://trec.nist.gov/
9https://podcastsdataset.byspotify.com/

https://trec.nist.gov/
https://podcastsdataset.byspotify.com/
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Fig. 6.13 Histogram plot of the number of episodes for each show.

Data Split Size Description

All - 105,390 All episodes available in the first release

CUED train 92,294 First 100k in All minus those with description < 5 tokens
dev 4,927 Last 5,390 in All minus those with description < 5 tokens

SPTF brass 66,242 All minus filtering by Spotify
brass_sub 66,142 SPTF_brass minus those in the SPTF_toy set
train 60,415 CUED_train that are in SPTF_brass_sub
dev 2,189 CUED_dev that are in SPTF_brass_sub
test 1,027 Held-out test set released in August 2020 the competition

Table 6.5 Spotify Podcast data splits. brass set [125] was obtained by filtering the entire summarization
training set using three heuristics: (1) too long (>750 characters) or too short (<20 characters); (2)
description too similar to other descriptions; (3) description too similar to its show description where
sentence similarity is calculated using the sklearn library.

arXiv and PubMed Summarization

arXiv10 and PubMed11 are two datasets of long and structured documents, consisting of
academic articles (scientific papers) with abstracts as summaries proposed by Cohan et al.
[39]. The datasets are obtained from arXiv and PubMed OpenAccess repositories. The arXiv
dataset contains 203,037, 6,436, and 6,440 in training, validation, and test splits, respectively.

10https://arxiv.org/
11https://pubmed.ncbi.nlm.nih.gov/

https://arxiv.org/
https://pubmed.ncbi.nlm.nih.gov/
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The PubMed dataset contains 119,924, 6,633, and 6,658 in training, validation, and test splits,
respectively

XSum

Extreme Summarization (XSum) dataset is introduced by Narayan et al. [209]. XSum
contains news articles extracted from the BBC. The goal of XSum is to have a highly
abstractive summarization dataset, so the first sentence of each news article is treated as the
summary. As a result, there are 36% novel unigrams12 in the XSum reference summaries on
average compared to 17% in the CNN/DailyMail reference summaries. However, it should
be noted in some cases, the information in the first sentence is not present in the subsequent
parts of the article, and this leads to hallucination [193], and Chapter 7 will investigate
hallucination or information consistency. The train, validation, and test splits are 204,045,
11,332, and 11,334 documents.

A note on reference summaries

Despite being used widely, it should be noted that standard datasets including CNN/DailyMail
and XSum have pseudo summaries instead of real summaries [250]. For example, the ref-
erence summaries in CNN/DailyMail are news ‘highlights’, which are bullet point items
(usually a few sentences) that appear at the top of each news article. Although they can be
(and have been) used as summaries, they are primarily designed to grab readers’ attention
instead of summarizing the news. For XSum, the summaries were created by extracting the
‘first sentence’ of the article from the BBC where some of these first-sentence summaries even
contain information that is not present in the article [193]. A first-sentence summary is also
called a lead sentence, which is meant to quickly grab readers’ interest rather than acting as a
summary. For Spotify Podcast, creator-provided descriptions are treated as summaries. Al-
though some descriptions provide good overviews about the corresponding podcast episodes,
up to a quarter of them are considered bad summaries in human evaluation.13

6.5.2 Comparing Hierarchical RNN and Transformer

An initial investigation is to compare the performance of the hierarchical RNN model (HIER)
developed in Chapter 5 to the performance of foundation model based systems. The results
in Table 6.6 show that: on the AMI dataset, HIER performs better than BART as expected.
The AMI transcripts are much longer than the maximum length of BART, meaning that there

12Novel unigrams refer to unigrams or words that do not appear in source documents.
13The information about the podcast summary assessment dataset is provided in Appendix A.
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is a significant information loss due to truncation, and even self-supervised pre-trained BART
does not perform better than HIER. On the other hand, on the CNN/DailyMail dataset, both
HIER and BART systems can handle the entire input sequence (though with some exceptions
for BART). BART significantly outperforms HIER on CNN/DailyMail, demonstrating the
effectiveness of the pre-training + fine-tuning paradigm. On the Spotify Podcast dataset,
despite having truncated documents as the inputs, BART is able to perform better than HIER
similar to CNN/DailyMail. This suggests that in the scenario when the size of training data is
large (e.g., in the order of 100k samples for CNN/DailyMail and Podcast), using a foundation
model such as BART can be effective. Nevertheless, the fact that the source documents still
exceed the maximum limit of BART, the subsequent experiments will investigate methods
to handle long sequences. Lastly, the initial results of LoBART (introduced in Section 6.3)
show that it performs better than BART on both AMI and Podcast. These results show the
effectiveness of expanding context length through attention localization. LoBART will be
examined in detail in further experiments in Section 6.3.

AMI CNN/DailyMail Spotify Podcast‡

Model MaxLen #Param R1 R2 RL R1 R2 RL R1 R2 RL

LeadSent - - 24.38 3.65 15.99 38.65 17.00 30.55 19.73 4.37 12.56
HIER 1000×50† 53M 44.36 14.62 41.10 35.73 14.00 33.01 24.28 10.11 22.25
BART 1024 406M 40.75 13.17 38.00 44.03 20.92 40.99 31.55 12.86 28.18

LoBART 4096 409M 42.18 13.62 38.56 * * * 32.09 13.11 28.43
LoBART 8192 413M 43.01 14.40 40.31 * * * 31.85 12.97 28.22

Table 6.6 Comparison between HIER and BART where both models are trained on a target dataset.
AMI results are the average of 3 runs. ‡The results are on the development set of CUED-split. †HIER
splits the input text into sentences where a sentence can have up to 50 tokens and the maximum
number of sentences is 1000. LoBART is discussed in Section 6.3 where LoBART(4k) has W = 1024
and LoBART(8k) has W = 512. ‘*’ indicates that LoBART’s results are the same as BART’s results on
CNN/DailyMail. This is because LoBART is an extension of BART to handle sequences longer than
the maximum length of BART. However, the documents in CNN/DailyMail are within the maximum
length of BART, so there is no difference in the results.

6.5.3 Sentence Filtering

In the previous chapter, the hierarchical model did not require a sentence filtering stage to
operate (i.e., there was no truncation). In contrast, this chapter considers using foundation
models for summarization tasks, and the maximum length of the source document is limited.
For example, to fine-tune the vanilla BART model, the source document has to be truncated
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to 1,024 tokens as BART only has a positional embedding up to the 1024-th token. In this
experiment, we investigate sentence filtering in the following scenarios of fine-tuning BART.

Sentence Filtering Baselines

During training, the input sequences are truncated to be within the maximum length of 1,024
tokens. Four simple sentence filtering baselines are considered as follows,

1. Truncate: truncate the sentences that exceed the maximum length

2. Random: randomly select sentences such that the total number of tokens does not
exceed the maximum length

3. TextRank: compute score using TextRank [198] (described in Section 4.1.1) with
GloVe embedding [227]

4. HIER: following the previous chapter (in Section 5.4), the hierarchical model (HIER),
trained on CNN/DailyMail and fine-tuned on Podcast

Results in Table 6.7 show that while truncation is a strong baseline, HIER yields the best
performance among the baselines considered. Random selection performs poorly as expected.
Unexpectedly, the TextRank algorithm yields the worst results. This is likely due to the
sentence embedding obtained by averaging GloVe embeddings and non-salient words such
as ‘the’, ‘and’, ‘or’ that were not excluded in the computation. As the TextRank baseline is
considerably worse than the Truncation baseline, this work did not try to further improve the
TextRank baseline.

Method
ROUGE F1

R1 R2 RL

Random 25.65 6.89 22.10
Truncate 29.09 9.92 25.37
TextRank 24.97 6.40 21.47

HIER 29.37 10.02 25.51
Table 6.7 Comparison of sentence filtering baselines applied at the inference stage. The downstream
abstractive summarizer is BART-large with a maximum positional embedding of 1024 fine-tuned on
Podcast (at the training stage, the input sequences were truncated to 1024). The evaluation is on the
development set of the SPTF-split podcast data

Subsequently, we investigate the scenario where sentence filtering is applied at both training
and inference stages. Based on the results in Table 6.7, we select HIER as the default filtering
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method. Table 6.8 shows that the best summarisation performance is achieved when sentence
filtering is applied at both training and inference stages.

Stage ROUGE F1

Training Inference R1 R2 RL

Truncate Truncate 29.09 9.92 25.37
Truncate HIER 29.37 10.02 25.51

HIER HIER 29.74 10.25 25.71
Table 6.8 Sentence filtering applied at both training time and test stages. The evaluation is on the
development set of the SPTF-split podcast data.

Training Model-based Multi-task Content Selection (MCS)

In preliminary experiments, the number of selected sentences is varied from the model limit
to a few sentences, and it is found that more aggressive selection at test time degrades the
performance. Therefore, MCS selects input sentences up to the model limit. The training
criterion of MCS is defined as LMCS = λLlabel +(1−λ )Lseq2seq (in Equation 6.9). This
experiment examines the following setups:

• λ = 0.0: MCS is the same as HIER (experimented in Section 5.4). The model is
trained only on Lseq2seq. At inference, it uses only the attention score.

• λ = 1.0: This model is similar to the extractive models in Hsu et al. [114], Pilault et al.
[231] where it is trained on extractive labels only.

• λ ∈ [0.0,1.0]: This is when the model is trained in the multi-task setup.

In Table 6.9, we show that when coupled with BART, MCS yields better summarization perfor-
mance than both Attention-only (λ = 0.0) and Extractive-only (λ = 1.0) baselines. Further-
more, we also found that MCS achieves a higher recall rate of sentences with sim(Si,Y )> 0
than the two baselines.

Comparing Oracle and Model-based Sentence Filtering

The previous experiment examined the methods for training MCS. However, there exist
sentence filtering approaches such as truncation or oracle methods (Section 6.2.1). The aim
of this experiment is, therefore, to compare these sentence filtering approaches. At training,
we investigate five different training methods (show on the X-axis of Figure 6.14) on BART:
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System %Recall R1 R2 RL

Attention-only (Lseq2seq) 38.85 26.90 9.70 18.78
Extractive-only (Llabel) 35.26 26.39 8.90 18.03

Multi-task (LMCS) 40.50 27.28 9.82 19.00
Table 6.9 The impact of test-time content selection methods on BART(1k) trained using Oracle-pad-
rand. Optimal λ = 0.2 is tuned in the range [0.0,1.0] on the validation set.

Truncation, MCS, Oracle-pad-lead, Oracle-pad-rand, Oracle-no-pad. At inference, we also
apply all sentence filtering methods on each of the training setup. Note that in practice an
oracle method can be used at training as the groud-truths are available. However, at inference,
an oracle method only demonstrates an empirical upper bound.

In Figure 6.14, since any oracle method only represents an upper-bound performance
at test time, the best performance is obtained by MCS (in blue), and the upper-bound
performance is obtained by the optimal oracle method (in green). The results show that
although applying Oracle-no-pad at training (i.e., using optimal set of source sentences)
yields the highest upper bound, the abstractive model in fact does not learn how to perform
abstraction. For instance, with truncation (TRC) or MCS at the inference stage (i.e., test
time), Oracle-no-pad yields the lowest performance level. The best way to fine-tune the
abstractive model shown in Figure 6.14 is using Oracle-pad-rand. Compared to Oracle-pad-
lead, Oracle-pad-rand is better. This is likely because it introduces more diversity to the
abstractive model. Compared to the model-based MCS method, Oracle-pad-rand is also
computationally less expensive.
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Fig. 6.14 The impact of training-time content selection methods on BART(1k).

In addition, the results in the following experiments (Table 6.13 in Section 6.5.5) show
that when there is no sentence filtering at the inference stage (i.e., truncation is performed),
LoBART(4k) and LoBART(8k) benefit from Oracle-pad-rand, whereas BART(1k) does not.
This is because, in the 1k setting, sentence filtering is more aggressive; as a result, the large
mismatch between training and inference leads to a poor result. Thus, we suggest that the
best sentence filtering during training is Oracle-pad-rand given that sentence filtering will be
used at the inference stage, or the input span is long.

6.5.4 Local Attention Model

Based on the analysis in Section 6.3, this work trains different configurations of BART and
local-attention BART (LoBART) models up to our VRAM limit of 32 GB (V100). The
results in Table 6.10 and Figure 6.15 show that:

1. Expanding the model to accommodate longer input spans, BART(1k)→ BART(2k),
improves over the baseline BART(1k). This is as opposed to training longer-span
models by freezing bottom layers, which does not show any improvement over fine-
tuning vanilla BART.

2. Using larger window size W leads to improved performance in all experiments.

3. Although LoBART(8k) with W = 512 can process longer input spans than LoBART(4k)
with W = 1024, it performs worse and we suggest that this is because LoBART(8k)’s
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window is too small. For example, the previous analysis in Section 6.3.1 suggests that
W should be larger than 700, to efficiently utilize transfer learning from BART.

System Max N W VRAM R1 R2 RL

BART(N=1k) 1024 Full 8.9 26.43 9.22 18.35

LoBART(2k) 2048 128 9.6 25.88 8.89 17.87
LoBART(2k) 2048 256 10.2 25.93 8.80 17.82
LoBART(2k) 2048 512 11.6 26.35 8.98 18.19
LoBART(2k) 2048 1024 14.2 26.44 9.26 18.25
BART(2k) 2048 Full 14.5 26.63 9.41 18.65

LoBART(4k) 4096 128 12.8 26.42 9.02 18.12
LoBART(4k) 4096 256 14.1 26.66 9.22 18.33
LoBART(4k) 4096 512 16.7 26.75 9.54 18.54
LoBART(4k) 4096 1024 22.0 27.02 9.57 18.78

LoBART(8k) 8192 128 19.3 26.45 9.04 18.23
LoBART(8k) 8192 256 21.1 26.72 9.30 18.36
LoBART(8k) 8192 512 27.1 26.90 9.47 18.50

Table 6.10 Summarization results on the Podcast dataset. BART & LoBART memory requirement in
training and performance. (nk) denotes the maximum input length of n×1024. VRAM (in GB) is
limited to 32 GB due to the available GPU for training.
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Fig. 6.15 ROUGE-1 on the Podcast dataset for BART and LoBART with different N and W values –
the training is constrained by a maximum VRAM of 32 GB.
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Ablation on Impact of Initialization

The previous investigation showed that applying local attention to BART is effective for
long-document summarization. It was assumed that BART achieved good performance
due to pre-training. This ablation will study this in more detail where we compare three
initialization: random initialization (no pre-training), BART-large (with pre-training), and
BART-large-CNNDM (with pre-training + adapting to summarization). The results in
Table 6.11 verify that pre-training is crucial as shown by a large gap with performance
between random intialzation and BART-large initialization. Also, transfer learning further
improves the performance as shown by the gain from BART-large-initialization.

System Initialization R1 R2 RL

BART(1k)
Random 14.61 0.82 11.54
BART-large 25.82 9.07 17.99
BART-large-CNNDM 26.43 9.22 18.35

Table 6.11 Podcast results. The impact of transfer learning. Truncation is applied at both the training
and test stages.

Next, the impact of initialization is examined on LoBART. The arXiv dataset is chosen as it
allows the comparison between LoBART and LED [10]. The results in Table 6.12 show an
improvement from transfer learning (BART-large→ BART-large-CNNDM) in both Truncate
and Oracle-pad-rand setups. In addition, we also compare LoBART against LED. LED,
a concurrent work to LoBART, also applies local attention to the encoder of BART. LED
is only trained on truncated inputs and it is initialized from BART-large, and LED(4k) is
comparable to to LoBART(4k) with truncation and initialized from BART-large. Despite the
similarity, LoBART(4k) achieved slightly better performance than LED(4k).

System Train† Initialization R1 R2 RL

LED(4k) Truncate ∗BART-large 44.40 17.94 39.76

LoBART(4k)

Truncate BART-large 46.17 17.96 40.74
Truncate BART-large-CNNDM 46.90 18.88 41.50
Oracle-pad-rand BART-large 45.25 17.40 39.96
Oracle-pad-rand BART-large-CNNDM 46.59 18.72 41.24

Table 6.12 arXiv results. The impact of transfer learning on initializing LoBART. At test time, there
is no content selection. ∗To our understanding, LED-large was initialized from BART-large. The
results of LED(4k) is quoted from its paper. †Sentence filtering method at training.
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6.5.5 Combined Approach: Sentence Filtering + Local Attention

The previous experiments studied sentence filtering and local attention, and both methods
were shown to be effective for long-document summarization. The aim of this experiment
is to investigate the combination of both techniques: LoBART and sentence filtering as
illustrated in the pipeline in Figure 6.16. This section will evaluate this pipeline on the
Podcast, arXiv, and PubMed datasets.

ORACLEpad-rand

MCS

Local Attention
BART

Summary

Reference

len N0 len N len M

Train

Test

Fig. 6.16 Combined Approach Pipeline: Sentence Filtering and Local Attention Model

Spotify Podcast Results

Oracle-pad-rand is selected at training and model-based Multi-task Content Selection (MCS)
is selected at inference because this setup yielded the best performance in the previous
experiments in Section 6.5.3. These sentence filtering methods are coupled with BART and
LoBART systems. Table 6.13 demonstrates that performance gain is achieved in all settings
when adding MCS. By comparing different configurations with MCS, it can be seen that the
gain from MCS in LoBART(8k) system is the lowest. This is because the average length is
5727, meaning that many podcast inputs LoBART(8k) do not benefit from sentence filtering.

For the Podcast Summarization Challenge 2020 (Section 6.5.7), the best single model
system (CUED-filt) used an attention-based sentence filtering (i.e., HIER) at both stages,
and HIER was combined with fine-tuned BART. Here, this combined approach outperforms
CUED-filt by improved sentence filtering at both stages as demonstrated by BART(1k)-
ORC+MCS. Additionally, local self-attention allows training on longer sequences, and the
LoBART(4k)-ORC+MCS system has yielded the best results. Lastly, although LoBART(8k)
requires higher computational cost to train, it does not perform as well as LoBART(4k) due
to its smaller attention window, and it also has a lower improvement from adding MCS.
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System Max N W
Sent. Filtering

R1 R2 RL
Train. Infer.

BART(1k) 1024 Full ✗ ✗ 26.43 9.22 18.35
BART(1k) 1024 Full ✗ MCS 26.82 9.39 18.57
BART(1k) 1024 Full ORC ✗ 25.54 9.00 17.83
BART(1k) 1024 Full ORC MCS 27.28 9.82 19.00

LoBART(4k) 4096 1024 ✗ ✗ 27.02 9.57 18.78
LoBART(4k) 4096 1024 ✗ MCS 27.53 9.95 19.08
LoBART(4k) 4096 1024 ORC ✗ 27.36 10.04 19.33
LoBART(4k) 4096 1024 ORC MCS 27.81 10.30 19.61

LoBART(8k) 8192 512 ✗ ✗ 26.90 9.47 18.50
LoBART(8k) 8192 512 ✗ MCS 27.02 9.52 18.62
LoBART(8k) 8192 512 ORC ✗ 27.16 9.84 19.08
LoBART(8k) 8192 512 ORC MCS 27.49 9.98 19.25

Table 6.13 The results on the Podcast test set. The impact of sentence filtering at both stages: training
stage = ORC (Oracle-pad-rand) and inference stage = Model-based MCS.

System Max N W
Sent. Filtering arXiv PubMed
Train. Infer. R1 R2 RL R1 R2 RL

BART(1k) 1024 Full ✗ ✗ 44.96 17.25 39.76 45.06 18.27 40.84
BART(1k) 1024 Full ✗ MCS 46.11 18.79 40.83 46.46 19.54 41.91
BART(1k) 1024 Full ORC ✗ 42.03 15.62 37.15 43.20 17.02 39.19
BART(1k) 1024 Full ORC MCS 47.68 19.77 42.25 46.49 19.45 42.04

LoBART(4k) 4096 1024 ✗ ✗ 46.90 18.88 41.50 47.40 20.43 42.95
LoBART(4k) 4096 1024 ✗ MCS 48.05 20.11 42.58 47.76 20.76 43.27
LoBART(4k) 4096 1024 ORC ✗ 46.59 18.72 41.24 47.47 20.47 43.02
LoBART(4k) 4096 1024 ORC MCS 48.79 20.55 43.31 48.06 20.96 43.56

Table 6.14 The results on arXiv and PubMed (complementary with the results in Table 6.15). The
impact of sentence filtering at both stages: training stage = ORC (Oracle-pad-rand) and inference
stage = Model-based MCS.
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ArXiv and PubMed Results

To verify the effectiveness, this set of experiments examines BART(1k) and LoBART(4k)
with sentence filtering on arXiv and PubMed. First, when applying Oracle-no-pad, we
examine the percentage of input documents that are shorter than the abstractive summarizer’s
input span (e.g., 1024 for BART). In the 1k setting, this percentage is only 2.8% on arXiv
(12% on PubMed). In the 4k setting, this percentage is 39% on arXiv (71% on PubMed).
These findings that suggest that an oracle method with padding is required; otherwise, the
abstractive summarizer may not learn how to perform abstraction as found on the Podcast
experiment in Figure 6.14. Based on the best configurations on Podcast, we train BART(1k)
and LoBART(4k) using truncation (TRC) or Oracle-pad-rand. At inference, the hierarchical
model fine-tuned on arXiv/PubMed for the model-based MCS approach is used.

The results on ArXiv: Table 6.15 shows the results on arXiv (and PubMed) as reported
in previous work and our systems. These results show that both BART(1k)+MCS and
LoBART(4k)+MCS outperform all existing systems. To better understand the advantages of
the approach, the following systems are compared as follows:

Type System
arXiv PubMed

R1 R2 RL R1 R2 RL

Pr
ev

io
us

W
or

k

Abs Discourse-Aware [39] 35.80 11.05 31.80 38.93 15.37 35.21
Mix Ext+TLM [231] 41.62 14.69 38.03 42.13 16.27 39.21
Ext ExtSum-LG+Rd[324] 44.01 17.79 39.09 45.30 20.42 40.95
Abs Pegasus [340] 44.21 16.95 38.83 45.97 20.15 41.34
Abs DANCER [86] 45.01 17.60 40.56 46.34 19.97 42.42
Abs BigBird(3k) [338] 46.63 19.02 41.77 46.32 20.65 42.33
Abs LED(4k) [10] 44.40 17.94 39.76 - - -
Abs LED(16k) [10] 46.63 19.62 41.83 - - -
Mix CTRLsum(BART+BERT) [101] 46.91 18.02 42.14 - - -

T
hi

s
W

or
k Abs †BART(1k) 44.96 17.25 39.76 45.06 18.27 40.84

Mix ‡BART(1k)+MCS 47.68 19.77 42.25 46.49 19.45 42.04
Abs ‡LoBART(4k) 46.59 18.72 41.24 47.47 20.47 43.02
Mix ‡LoBART(4k)+MCS 48.79 20.55 43.31 48.06 20.96 43.56

Table 6.15 The main results on arXiv and PubMed of the combined approach compared to existing
approaches. †denotes truncation applied, and ‡denotes Oracle-pad-rand applied at training time.
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• CTRLsum [101] versus our BART(1k) baseline: CTRLsum extends BART by conditioning
it with extracted keywords V using a BERT-based model, e.g., p(Y |X ,V ). Their BERT-based
model uses a sliding window allowing it to extract V in long sequences, but their BART is
still limited to the first 1,024 tokens. As a result, CTRLsum performs better than vanilla
BART(1k). The results of BART(1k)+MCS show that explicitly performing sentence filtering
is more effective than extracting keywords and modifying the conditional probability.

• LED [10] & BigBird [338] versus our LoBART(4k) system: LoBART(4k) has a similar
architecture to LED(4k) without the global attention pattern for special tokens. Instead,
LoBART(4k) benefits from knowledge transferred from training on CNNDM (previously
shown in Table 6.12) and Oracle-pad-rand at the training time, which yields a larger gain
when MCS is applied (i.e., the system trained with truncated data has a smaller gain when
MCS is applied). Compared to BigBird, LoBART(4k) has a longer input span, e.g. 3,072
vs. 4,096. However, BigBird benefits from utilizing more recent summarization-specific pre-
training (Pegasus) [340] which is better than our transfer learning. BigBird also incorporates
a global attention pattern similar to LED as well as a random attention pattern. LoBART
without MCS performs worse, so this suggests that an improvement for LoBART could be
made by incorporating global and random attention patterns. Nevertheless, we show that
adding MCS to either BART(1k) or LoBART(4k) yields a significant improvement, resulting
in state-of-the-art results at the time of conducting the experiments in both settings. Moreover,
although the gain from adding MCS is comparable to the gain observed in extending LED(4k)
to LED(16k), sentence filtering adds less training cost.

The results on PubMed: Similar to the results on arXiv, LoBART(4k)+MCS achieves
state-of-the-art results shown in Table 6.15. In contrast to the arXiv results, BART(1k)+MCS
does not outperform LoBART(4k) nor BigBird, and the gain from MCS is not as high in both
1k and 4k settings. These findings are likely because PubMed documents (avg. 3,865 tokens)
are on average shorter than arXiv documents (avg. 8,584 tokens). Additionally, Table 6.15
shows that local attention yields better performance on PubMed, while MCS yields better
performance on arXiv. Therefore, the next investigation will be on the performance of MCS
at different input lengths.

Fine-grained analysis on input lengths: A fine-grained analysis is conducted by partitioning
the test sets by input lengths. Figures 6.17a and 6.17b show the performance of various
systems relative to the performance of BART(1k) at different input lengths. The results on
arXiv and PubMed illustrate that as the input length N increases, (1) the improvement of
systems with MCS increases and subsequently plateaus out; (2) the improvement of systems
without MCS decreases once the input exceeds the length limit but then plateaus, suggesting
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that fixed-span systems without sentence filtering perform worse once the maximum fixed-
span is reached. For instance, below 4,000 input words, LoBART(4k) without MCS performs
better than BART(1k)+MCS.
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Fig. 6.17 ROUGE-1 relative to that of BART(1k) system evaluated on different partitions by length.

6.5.6 Exploiting Sparsity in Encoder-Decoder Attention

Section 6.4 previously discussed the decoder’s cost in the training and inference stages,
which motivated the study of efficient encoder-decoder attention. This section will examine
the observed sparsity (Section 6.4.1), the approximation of encoder-decoder attention using a
subset of input sentences (Section 6.4.2), and the summarization performance of the modified
architecture (Section 6.4.3 and Section 6.4.4).



138 Abstractive Summarization with Foundation Models

First, to investigate the approximation of the encoder-decoder attention, this experiment ex-
amines selection baselines and the empirical upper bound performance via ideal selection.
Note that Ir

m denote the subset of r selected source sentences at the decoder time step m.

1. Ir
m = N/A: Vanilla encoder-decoder attention where there is no sentence selection

(r = All and Ir
m = N/A), i.e., all source sentences are used in computing the attention.

This setup is a baseline without approximation

2. Ir
m = Random: Random selection of the subset of source sentences. This setup should

represent a weak baseline

3. Ir
m = Ideal: Ideal selection of the subset of source sentences is based on Equation 6.23.

This process guides the decoder to attend over only top sentences instead of attending
over all sentences. This setup is the empirical upper bound of the approximation.

As the approximation based on a subset of source sentences is expected to perform better
on a more extractive task, the first experiment is conducted on widely-used CNN/DailyMail
(CNNDM). The base abstractive summarization system is BART fine-tuned on CNNDM
where its performance is shown in the first row in Table 6.16.

Previous work on CNNDM [169] used the top-3 sentences as the extractive summary,
and an example of a sentence-level attention plot in Figure 6.7b shows that salient sentences
can be under five sentences. Hence, this experiment sets the number of retained sentences (r)
set to 5. The results in Table 6.16 show that:

• For the vanilla model, despite the sum of attention weights being around 50% at r = 5
(in Figure 6.11a), the model is sufficiently sparse, and constraining to r ideal sentences
(All→ Ir,Ideal

m ) results in small performance degradation.

• Forcing for sparsity (in Figure 6.11b) does not yield a significant performance im-
provement; but this forcing also makes the model more sensitive to sentence selection.
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System r Ir
m

† R1 R2 RL

Vanilla All N/A 44.03 20.92 40.99
(γ = 0.0) 5 Random 39.06 14.32 36.07

5 Ideal 43.94 20.82 40.81

LA-tuned All N/A 41.62 19.39 38.62
(γ = 0.1) 5 Random 28.43 7.72 24.00

5 Ideal 44.22 21.01 41.19

LA-tuned All N/A 40.28 18.47 37.44
(γ = 1.0) 5 Random 21.38 4.22 17.69

5 Ideal 43.61 20.46 40.60

Table 6.16 Sparsity and †Selection Method (Ir
m) described above on CNNDM.

Through these results, this experiment verifies that sparsity can be exploited such that
constraining the encoder-decoder attention to only 5 sentences can achieve comparable or
better performance than attending over all sentences.

Approximated Encoder-Decoder Attention Performance via Neural Approximator

The previous experiment only examined the upper bound performance that could be achieved
by exploiting the sparsity. This experiment, on the other hand, investigates the model-based
neural approximation outlined in Section 6.4.4. The modified encoder-decoder attention
consists of (1) sentence-level attention over N1 source sentences to select top-r sentences;
and (2) word-level attention over rN2 words.

Baselines of the modified architecture are:

• Vanilla + Random: Vanilla model and inference obtained by random selection (Ir,Rnd
m )

• Vanilla + Ideal: Vanilla model and inference obtained by ideal selection (Ir,Idl
m )

Modified Architecture: It is augmented by the model-based neural approximator for select-
ing top-r. The selection is done by predicting the sentence-level encoder-decoder attention
score (Ir,Apx

m ) for each head and each layer. The modified architecture can be in three
different setups, which are described in detail in Section 6.4.4:

• KL-only: Training loss is LKL
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• Integrated Training (Ideal): Training loss is LI (in Equation 6.31) where ideal top-r
sentences are selected at training, i.e., via αs

m,i

• Integrated Training (Approx): Training loss is LI (in Equation 6.31) where r sentences
are selected at training based on the sentence-level encoder-decoder attention scores
predicted by the neural approximator, i.e., via α̃s

m,i

• Integrated Training (Mixed): Training loss is LI (in Equation 6.31) where r sentences
are selected at training using αs

m,i with probability 1− step
epoch_size , otherwise α̃s

m,i

The results in Table 6.17 show that the modified architecture with KL-only training clearly
outperforms the random selection baseline, and the performance degradation of this system
can be further reduced by integrated training. The performance level of the modified
architecture is close to the ideal selection baseline. These results verify the effectiveness of
the modified archirecture that attends to a subset of sentences. Also, Table 6.17 shows that
the best setup is integrated training (Approx), which uses Ir,Apx

m as reference in training. This
result is likely because integrated training is initialized from the KL-only setup.

Model Train Inference R1 R2 RL

Vanilla ✗ All 44.03 20.92 40.99
Vanilla ✗ Ir,Rnd

m 39.06 14.32 36.07
Vanilla ✗ Ir,Idl

m 43.94 20.82 40.81

Modified Arch. KL-only Ir,Apx
m 43.02 20.02 39.89

Modified Arch. Integrated Training (Ideal) Ir,Apx
m 43.03 20.04 40.05

Modified Arch. Integrated Training (Approx) Ir,Apx
m 43.72 20.40 40.70

Modified Arch. Integrated Training (Mixed) Ir,Apx
m 43.31 20.21 40.35

Table 6.17 Performance on CNNDM where r = 5 for both training and inference stages. KL-only =
Model θ̃θθ trained on LKL; Integrated Training = θθθ dec and θ̃θθ trained on LI. Rnd = Random, Idl = Ideal,
Apx = Approximation, Mix = Scheduled between Idl and Apx.

In addition to CNNDM, the modified architecture is applied to a BART system trained on
XSum (≤1k words), and to LoBART trained on Podcast and arXiv (≤4k words). Figure 6.18
shows that in all datasets investigated, the performance of the modified architecture (both
using KL-only and integrated training) converges to the ideal selection upper bound. Also,
the system trained using integrated training achieves better performance than the system
trained with KL-only. These results also confirm that the performance of the proposed
method converges to that of the full attention baseline across all models and datasets.
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Fig. 6.18 Performance (ROUGE-1) of BART & LoBART. The integrated training is based on Ir,Apx
m .

Optimal number of sentences: This experiment investigates the optimal number of sen-
tences r∗ which is the number of sentences that the ideal selection system’s performance
plateaus or reaches the full attention baseline’s performance. Shown in Figure 6.18, the val-
ues of r∗ are approximately 5, 10, 30, and 30 for CNNDM, XSum, Podcast, and arXiv,
respectively. Although XSum has fewer sentences on average compared to CNNDM,
r∗XSum >r∗CNNDM. This is because XSum is more abstractive; hence, requires information
from more sentences. For longer summarization tasks as shown by Podcast and arXiv, the
performance degradation appears larger, meaning that the task of constraining to salient
sentences in longer tasks is more challenging, and larger r is required.

In summary, these results demonstrate empirically that a neural network can predict sparsity,
therefore, allowing efficient sentence selection. The summarization performance of the
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modified encoder-decoder approach converges to that of the full attention baseline, while
switching the complexity from O(MN1N2) to O(MN1 + kwMrN2 + keN1N2).

However, this framework requires additional modules to the original attention mechanism,
and the real gain in speed will depend on the balance of the sparsity against the computational
cost of the additional modules. Consequently, the challenge is to make these additional
modules highly efficient. As the particular network realization selected in this experiment
is to show the feasibility of the framework, it may have limitations which could prevent it
from yielding a wall-clock time improvement in practice. The choice of using RNN for the
sentence encoder in Equation 6.28 leads to additional computational cost (specifically ke),
and this additional cost could be high as the computational cost of RNN grows with N1N2D2.
As the goal is to obtain a sentence-level representation, it is possible to replace the RNN with
a hierarchical attention that runs over sentences. This would instead lead to a computational
cost that grows with N1N2D. Sentence-level query and key mappings in Equations 6.26
and 6.27 could also incur a large computational cost.

6.5.7 Ensemble of Summarization Models

Before concluding this chapter on abstractive summarization with foundation models, this
experiment aims to examine ensemble methods (discussed in Section 2.4), which can be
useful in obtaining the best performance. For example, in machine learning competitions,
one could build a class of models on a dataset to achieve the best performance. Although
system combination is common in the areas of speech recognition [70, 78] and machine
translation [146, 273, 265, 73], applying ensemble methods to natural language generation
(NLG) tasks such as summarization can be challenging due to the diverse set of possible
outputs, and it has received less attention in the NLG research. This experiment investigates
ensemble methods for summarization, and this section summarizes ensemble-based systems
submitted to the Spotify Podcast Summarization Challenge at TREC 2020 and the Medical
Problem List Summarization (ProbSum) at BioNLP 2023.

Spotify Podcast Summarization Challenge 2020

Hosted at TREC14 2020, this challenge is to build a summarization system for generating
a summary that captures the most important information for a podcast (given an audio
file and ASR transcript). Our systems are fine-tuned BART and fine-tuned BART with
the sentence filtering with HIER model (described in Section 5.4). In order to achieve

14Text REtreival Conference (TREC): https://trec.nist.gov/

https://trec.nist.gov/
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the best performance possible, we applied sequence-level training loss LSL (described in
Section 2.2.2) and token-level ensemble.

This challenge adopted ROUGE as an automatic evaluation method during development. The
results in Table 6.18 show the: (1) applying sentence filtering at both training and inference
stages improves the BART-based system; (2) As a backbone, BART fine-tuned on XSum is
better than BART fine-tuned on CNNDM. This is likely because XSum is closer to Podcast
(e.g., higher compression ratio and more abstractive) than CNNDM; (3) sequence-level
training (via LSL loss) significantly improves the ROUGE scores, similar to the findings in
previous work [224]; (4) ensemble further improves the performance, and the ensemble with
different data shuffles is more effective than the ensemble with different checkpoints. This is
likely because of the diversity in the ensemble members.

System R1 R2 RL

*Fine-tuned BART-CNNDM 26.57 9.14 23.43
Fine-tuned BART-CNNDM (w/ HIER at inference) 26.96 9.53 23.70
Fine-tuned BART-CNNDM (w/ HIER at training and inference) 26.96 9.75 23.71

*Fine-tuned BART-XSum (w/ HIER at training and inference) 27.10 9.96 23.92
†Fine-tuned BART-XSum (w/ HIER at training and inference) + LSL 27.91 10.25 24.67

*Ensemble of 3 shuffles* 28.56 10.83 25.23
Ensemble of 3 checkpoints 28.12 10.44 24.87
*Ensemble of 3 shuffles × 3 checkpoints 28.57 10.86 25.28

Table 6.18 ROUGE F1 scores on the test set of Podcast (SPTF-test). *These systems were submitted
to the competition, and human evaluation was performed by NIST as shown in Table 6.19. †The base
model for each ensemble is Fine-tuned BART-XSum (w/ HIER at training and inference) + LSL.

Subsequently, four systems (noted by * in Table 6.18) were submitted to the competi-
tion. NIST15 human annotators evaluated the summaries of 179 randomly selected podcast
episodes. Human evaluation was performed on a 4-point scale (Excellent, Good, Fair, Bad)
as well as eight Yes/No questions. For example, Q1 is "Does the summary include names
of the main people (hosts, guests, characters) involved or mentioned in the podcast?". The
exact guideline for human evaluation can be found in Appendix A.

Human evaluation results in Table 6.19 show that the ensemble of 3 receives the highest
human rating at 1.777 on average, compared to the BART baseline at 1.564 and creator-
provided description at 1.291. We note that on this subset of 179 episodes, the ensemble

15The National Institute of Standards and Technology (NIST)
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of 3 also achieves ROUGE-L similar to the ensemble of 9. These results demonstrate the
effectiveness of the token-level ensemble technique as measured by both automatic and
human evaluation, and our ensemble approach achieved the best result out of 8 participating
teams in the summarization challenge.

System Avg %E %EG %EGF

Creator Description 1.291 15.6 39.7 73.7

Fine-tuned BART-CNNDM 1.564 21.8 50.3 84.4
Fine-tuned BART-XSum w/ HIER† 1.687 25.7 56.4 86.6
Ensemble of 3 shuffles 1.777 26.3 58.7 92.7
Ensemble of 3 shuffles × 3 checkpoints 1.704 27.4 58.1 84.9

Table 6.19 NIST Evaluation on randomly selected 179 episodes in the test set. Avg = Average of
Excellent (3 points), Good (2 points), Fair (1 point), Bad (0 points). %E is the percentage of episodes
graded Excellent, %EG is the percentage of episodes graded Excellent or Good, and %EGF is the
percentage of episodes graded Excellent, Good, or Fair. †HIER sentence filtering is applied at both
training and inference.

System Q1 Q2 Q3 Q4 Q5 Q6(↓) Q7 Q8

Creator Description 55.9 34.1 72.1 55.3 63.7 3.4 77.7 52.0

Fine-tuned BART-CNNDM 63.7 44.1 82.7 61.5 74.9 6.7 88.3 70.4
Fine-tuned BART-XSum w/ HIER† 62.0 43.0 87.2 63.1 79.3 7.8 88.8 73.7
Ensemble of 3 shuffles 63.7 39.1 89.9 63.1 80.4 7.8 88.3 77.1
Ensemble of 3 shuffles × 3 checkpoints 62.0 40.8 86.0 60.3 80.4 10.1 86.6 76.5

Table 6.20 NIST Evaluation on randomly selected 179 episodes in the test set. Q1-Q8 are the
percentage of yes answers where a higher number is better except Q6. †HIER sentence filtering is
applied at both training and inference.

Medical Problem List Summarization Challenge (ProbSum at BioNLP) 2023

The Problem List Summarization Task (Shared Task 1A) at the BioNLP Workshop 2023 is to
summarize patients’ medical progress notes in a limited data setting [80]. The data consists
of 765 progress notes along with medical summaries and the test set (held-out) consists of
237 progress notes. This task has two important challenges. First, the data is in the medical
domain. Second, the data is small in size. To address the medical domain problem, this work
employs Clinical-T5 [157], which is a T5 model initialized from scratch and pre-trained
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on the union of MIMIC-III and MIMIC-IV databases.16 Clinical-T5 is fine-tuned to the
ProbSum training set. To address limited training data, ensemble techniques are used. This
is because when working with a small dataset, individual models could be prone to overfit
specific aspects of the data. By training multiple models on the same dataset, each model can
potentially capture different aspects of the data.

Ensemble Baseline: Firstly, this work compares different ensemble methods, including
weight averaging, token-level ensemble, and MBR decoding. A progress note in this dataset
consists of assessment, subjective, and objective parts. To study the importance of each
section, initial experiments trained a T5 model on each section individually and found that
the assessment part is the most informative in generating the summary.

For simplicity, the notation is θθθA for model trained on assessment-only input part and
θθθAS for model trained on assessment+subjective input. This work trains nine individual
θθθA models and nine individual θθθAS models where all models are initialized from Clinical-
T5-Large weights, and have the same training hyperparameters except random seeds for
data shuffling. The results in Table 6.21 show that: (1) Weight averaging does not yield
an improvement over a single model. This is likely because individual models end up in a
different region of the loss surface. A possible improvement is using Greedy Soup [318]
where a new model is added only if it improves weight averaging performance on some
held-out data; (2) Both token-level ensemble and MBR decoding yield better performance
than single models. This suggests that combining models at a higher level could improve the
robustness and an ensemble less sensitive to the training loss surface.

Method ROUGE-L
θθθA θθθAS

Individual 29.84±0.69 29.44±0.45

Weight Averaging 29.39 28.00
Token-level Ensemble 30.50 30.04
MBR Decoding 30.72 30.30

Table 6.21 ROUGE-L on the test data of ProbSum. This table compares combination methods of nine
A models and nine AS models. ± indicates a standard deviation using 9 systems.

Hierarchical Ensemble of Summarization Models (HESM): As an extension to standard
ensemble techniques, this experiment investigates the Hierarchical Ensemble approach

16Initially, zero-shot prompting, oracle extractive summarization, and abstractive summarization based on
T5 and Clinical-T5 approaches are compared using 5-fold cross-validation. The results showed that Clinical-T5
achieved the best performance, so it was selected as the base model in the subsequent ensemble experiment.
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proposed in Section 2.4. This experiment utilizes the previous nine θθθA models and nine θθθAS

models. The results of different hierarchical combination setups are provided in Table 6.22.
The first block shows the performance when combining one θθθA and one θθθAS in a token-level
ensemble, followed by an MBR combination stage over 9 of these ensembles. Similarly,
the second block shows the performance when combining three θθθA and three θθθAS each
in a token-level ensemble fashion followed by an MBR decoding stage over 3 of these
ensembles. Overall, we observe gains from the hierarchical ensemble, and based on this, the
HESM system achieved the best performance out of 10 participating teams in the ProbSum
competition [80].

Method Num in each TokEns MBR Num. Models ROUGE-L
θθθA θθθAS

Token-level Ensemble 1 1 ✗ 2 31.17±0.67
HESM 1 1 9 18 32.31

Token-level Ensemble 3 3 ✗ 6 31.50±0.42
HESM 3 3 3 18 31.87
HESM 3 3 9 54 31.88

Table 6.22 ROUGE-L of HESM on the test data. (a, b) denotes token-level ensemble consisting of a
θθθA models and b θθθAS models. MBR = c denotes the outputs of c token-level ensembles combined
using MBR decoding. For HESM(3,3) w/ MBR=3, ensembles with non-overlap members are chosen.

6.6 Chapter Summary

This chapter investigated abstractive summarization in the context of utilizing foundation
models. Given the enormous size of foundation models, it can be difficult to simply fine-tune
them on long-input summarization tasks. Thus, the chapter has examined two complementary
directions to use foundation models on abstractive summarization.

First, sentence filtering can reduce the number of tokens to be within the limit of the base
model, and applying the oracle with random padding method at the training time and the
model-based MCS method at inference time was the most effective. Second, this chapter
studies efficient models where local attention is applied to the BART model. Through experi-
ments, local attention adaption was shown effective as well as complementary to sentence
filtering. The combined approach achieved state-of-the-art summarization performance
on various long-input summarization tasks at the time of conducting the experiments. In
addition, this section shows that there is sparsity in the encoder-decoder attention that allows
us to reduce the computational cost with minimal degradation. The experiments showed
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that the summarization performance of the modified encoder-decoder attention that exploits
the sentence structure and sparsity converges to that of the full attention baseline. This
chapter also investigated ensemble methods for summarization models, which resulted in the
performing systems in two summarization competitions.

So far, Chapter 5 and Chapter 6 have only focused on improving abstractive summa-
rization, and the performance has been measured by the ROUGE score. However, as the
summarization systems improve, they can reach the point where the ROUGE score starts
correlating only weakly with human judgements [50]. Another aspect is that these advanced
summarization systems, especially those with foundation models, are capable of generating
highly fluent texts. However, they may not necessarily generate summaries that are consistent
with the source documents. Therefore, the focus of the next chapter will be assessing the
information consistency between the source documents and the summary.





Chapter 7

Automatic Summary Assessment

Chapter 5 and Chapter 6 discussed abstractive summary generation. The generated summaries
were evaluated against reference summaries using automatic metrics (e.g., ROUGE) or human
evaluation (e.g., in the Spotify Challenge in Section 6.5.7). In contrast, this chapter focuses
on automatic summary assessment without gold-standard references. The goal of automatic
summary assessment is to rank generation systems or rank hypothesis summaries. First,
Section 7.1 discusses the limitations of existing assessment methods, which necessitates
further improvements of the assessment methods. Section 7.2 focuses on information
consistency via question answering (QA) where existing QA based approaches and their
limitations are first discussed, and then this section proposes Multiple-choice Question
Answering and Generation (MQAG), which can assess information consistency without span-
based comparisons. Section 7.3 focuses on zero-shot methods, which can assess any aspect
of summarization, based on large language models (LLMs) prompting. Zero-shot methods
include standard LLM prompting and a novel LLM comparative assessment framework.
Subsequently, Section 7.4 includes experiments, results, and discussions.

7.1 Motivation

Assessment, or evaluation methods, are important for the comparison and improvement
of automatic generation systems. As manual evaluation can be time-consuming, tedious,
and difficult to scale and reproduce, it necessitates the need for automatic assessment
methods. Designing a reliable automatic method for natural language generation (NLG) task
is challenging and is still an open problem for researchers. Summarization, which is one of
the NLG tasks, can be even more difficult due to the specific requirements in each use case.
For example, given a source document, there could be multiple good summaries which could
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also depend on the specific requirements, while in contrast in machine translation, the set of
possible outputs is less diverse.

The background chapter (in Section 4.3) discussed summary assessment and existing
methods, including reference-based and reference-free methods. For example, n-gram based
methods such as ROUGE [162] are widely used in summary assessment. However, ROUGE
is reference-based, and it has been shown to correlate weakly with human judgements
[215, 229, 12, 67, 50, 49]. Furthermore, modern summarization systems, such as those based
on large pre-trained language models [159, 340], are capable of generating highly fluent
output; however, these systems have been shown to generate false or unsupported information
[143]. This phenomenon is now commonly referred to as hallucination [348, 193, 123]. In
particular, it has been shown that the current abstractive summarization systems tend to be
less faithful, on average, as they are more abstractive [61, 204, 150]. As a result, the focus
of developing automatic methods has been on information consistency, which is to evaluate
whether the generated outputs are factually consistent with their source documents.

To assess information consistency, several forms of methods have been proposed such as
knowledge representation [90], textual entailment [68, 143, 193], and question answering
(QA) [66, 297, 61, 261, 49]. These methods have been described in Section 4.3. The
QA-based methods, in particular, have shown promising results in assessing information
consistency, and Section 7.2 will delve into the details of QA-based methods in addition to
Section 4.3 as well as propose an improvement to QA-based methods.

In addition, given the impressive zero-shot performance of large language models (LLMs)
across various natural language tasks [15, 31], interesting questions arise. For example,
whether, or to what extent, LLMs can be used in automatic summary assessment (as well as
broader generative tasks), and what prompts or setups are effective in using existing LLMs.
To this end, Section 7.3 will delve into summary assessment using zero-shot LLMs.

7.2 Information Consistency via Question Answering

A question answering (QA) approach consists of a question-generation system and an
answering model. Figure 7.1 illustrates a general framework for information consistency
assessment. For example, in QA-based method, knowledge representation is done by question
generation, and a comparison is done by question answering.

This question answering approach is motivated by extrinsic evaluation [277], a process
by which the quality of the summary is evaluated by its impact on a downstream task such as
document categorization [191], information retrieval [240], and question answering [202, 37].
Extrinsic evaluation using a downstream question answering has been studied, for example,
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Fig. 7.1 General Framework for Information Consistency Assessment

Morris et al. [202] used four multiple-choice GMAT1 reading comprehension tests and
measured how many questions were answered correctly when presenting different contexts,
including source documents, their summaries, and no context. To automate an extrinsic eval-
uation with question answering, QA-based methods are designed to automatically measure
to what extent a summary provides sufficient information to answer questions derived from
the source document [66, 297, 61, 261]. Before discussing our proposed improvement to QA
methods, below will first describe span-based methods.

7.2.1 Span-based Question Answering

Generally, question answering based methods work as follows. Given automatically generated
questions, the first answer is derived from the source, the second answer is derived from the
summary, and then the two answers are compared. The answers are generally in the form
of extractive text spans, so we refer to these span-based question answering and generation
methods as SpanQAG.

Following Section 4.3, the notation for the formulae measuring the consistency is as follows:

• X = source document

• Y = summary (to be assessed)

• Y ∗ = reference summary (if available)

• Q = question

• A = answer

1Graduate Management Admission Test
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• PG(.) = question generation, which is a probability distribution over question (and
answer) given a context

• PA(.) = question answering, which is a probability distribution over options given a
question and a context

• f (.) = answer verification, which is a function to score two answers

Question Generation (QG): One of the challenges with a QA-based approach is question
generation, which is the process used to generate a good series of questions. The QG stage
is generally modelled by the distribution PG(.) where the most basic form is PG(Q|context).
This QG model could be trained on a reading comprehension dataset such as NewsQA [287],
RACE [151] or SQuAD [247] as a sequence-to-sequence task. A good QG model should
cover all aspects of the context. Good coverage can be achieved by, for example, conditioning
the question generation on both context and entity, i.e. PG(Q|context,entity), where important
entities could be extracted using name entity recognition [297]. If computational cost is not a
constraint, an alternative method is Monte Carlo approximation where a series of questions
and answers are sampled from the distribution PG(Q|context).

Question Answering (QA): Given a question and a context, question answering is to output
an answer. This QA stage is modelled by PA(A|Q,context). For example, given the extractive
nature of the task, an encoder-only model such as BERT is usually used as a QA system
[297]. For each token, this model predicts the probability of the token being the start or the
end of the extractive span.

Answering verification and scoring f (.): Once two answers are obtained, they are then
compared using f (.) to get the score. This process is referred to as answer verification (i.e.,
answer comparison), and it is typically implemented using exact token matching, token
overlap F1, BERTScore, or a learned metric [51]. Additionally, Dong et al. [56] proposed
to correct unfaithful entities in summaries using span-based question answering such that
an entity in a summary is iteratively masked and an extractive answering is used to verify
the entity using the source document. Nevertheless, given the nature of existing span-based
methods where the answering system extracts answer spans before the two answer spans are
compared, these methods have limitations in that they require span comparison in the answer
verification stage, which can be challenging in abstractive summarization. To avoid span-
based answer verification, the next section proposes an alternative question answering-based
approach where multiple-choice question generation and answering systems are used where
the answers are now in the form of probability distributions rather than text spans.
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Having described a general framework of a QA-based approach, which consists of a QG
system, a QA system, and an answer verification method, here we provide examples of
existing QA-based approaches. The following QA-based methods are grouped into:

• recall-oriented: it measures how much of the salient information (e.g., in the source
document or reference summary) can be determined using the summary.

• precision-oriented: it measures how much of the information in the summary can be
verified using the source document.

• both: it combines recall-oriented and precision-oriented methods.

Recall-oriented methods

• APES, proposed by Eyal et al. [66], is one of the first QA-based methods. APES generates
questions from the reference summary, i.e. PG = PG(Q|Y ∗), and it uses a QA system to
determine the total number of questions answered correctly according to the summary. For
each summary to assess, questions are successively generated from a reference summary, by
masking each of the named entities in the reference, and the masked entities are treated as
target answers. The answering system PA in APES is based on Chen et al. [20]’s model.

APES(X ,Y ) = E
Q,A∼PG(Q,A|Y ∗)

[ f (A,PA(A|Q,Y ))] (7.1)

The expectation in Equation 7.1 is approximated using samples drawn from PG(Q,A|Y ∗). This
method can be considered recall-oriented as it measures how much of the salient information
in the reference summary can be determined using the summary.

• SummQA, proposed by Scialom et al. [262], extended APES by generating the questions
from the source document, i.e. PG = PG(Q|X), and probing the summary for information
retrieved from the input text. This method is recall-oriented as it measures how much of the
salient information in the source document (as represented by the generated questions) can
be determined using the summary.

SummQA(X ,Y ) = E
Q,A∼PG(Q,A|X)

[ f (A,PA(A|Q,Y ))] (7.2)

Similar to APES, SummQA masks entities to generate questions, and masked entities are
used as reference answers. SummQA weighs each question equally, so it lacks a way to
select questions that reflect the most important information of the input compared to APES
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assuming that the reference summary Y ∗ already contains only salient information. Hence,
the authors of SummQA later proposed QuestEval [261] as an improvement.

Precision-oriented methods

• QAGS, proposed by Wang et al. [297], assesses the faithfulness of a summary based on the
hypothesis that the summary Y is considered unfaithful (with respect to the source document
X) if, given a question, the answer extracted from X is different from the answer extracted
from Y . This measure is precision-oriented as it measures how much of the information in
the summary (as represented by the generated questions) can be verified using the source.

QAGS(X ,Y ) = E
Q∼PG(Q|Y )

[ f (PA(A|Q,X),PA(A|Q,Y ))] (7.3)

The QG system is based on BART fine-tuned to the NewsQA dataset [287] and the QA
system is based on BERT fine-tuned on the SQuAD-2.0 dataset [246].

• FEQA, proposed by Durmus et al. [61], is precision-oriented similar to QAGS. This
approach masks important text spans (e.g., noun phrases, entities) in the summary. Each span
is considered the gold answer, and the corresponding question is generated using the QG
model. The QA model then finds answers to these questions in the source document, and the
answers are compared against the gold answers.

FEQA(X ,Y ) = E
Q,A∼PG(Q,A|Y )

[ f (A,PA(A|Q,X))] (7.4)

The QG system is based on BART fine-tuned to adapted QA2D dataset [47] and the QA
system is based on BERT fine-tuned to SQuAD-1.1 [247] or SQuAD-2.0 [246].

Recall and Precision oriented (QuestEval)

As an extension to precision-oriented QAGS/FEQA and recall-oriented SummQA, Scialom
et al. [261] proposed QuestEval. This approach generates questions from both the source
and the summary separately to obtain a precision score and a recall score, and QuestEval
is a combination of the precision-based and recall-based scores. Compared to SummQA,
QuestEval-Recall is different in that it assigns a weighting function g(Q,X) to take into
account the importance of each question with respect to the source document X , and a trained
model is used to predict the importance score.
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QuestEval-Precision(X ,Y ) = E
Q,A∼PG(Q,A|Y )

[ f (A,PA(A|Q,X))] (7.5)

QuestEval-Recall(X ,Y ) = E
Q,A∼PG(Q,A|X)

[g(Q,X) · f (A,PA(A|Q,Y ))] (7.6)

Finally, the QuestEval score is the harmonic mean (i.e., F1-score) of their precision and recall
scores. Both QG and QA systems are trained on SQuAD-2.0 [246] with a T5 backbone.

Lastly, we note that SpanQAG methods are based on a hypothesis that the quality of a
generated summary is linked to the number of (relevant) questions that can be answered by
using the summary, and the relevancy of questions is modelled by the importance score in
QuestEval [261] or unanswerability in QAGS [297].

7.2.2 Multiple-choice Question Answering and Generation (MQAG)

Since current summarization systems generate highly fluent summaries, the focus is now on
assessing whether summaries contain the same information as that of the source, or whether
it is contradictory. One way to view information would be to consider the set of questions
that are answerable given a certain passage. If a summary is consistent with the source, then
one would expect the set of answerable questions by the summary to overlap with those
of the source and yield similar answers. Though span-based QA approaches are similarly
motivated, existing span-based frameworks use text similarity measures, either in the form
of lexical or representation space. In contrast, we attempt to measure information using
multiple-choice questions, which allows for a more abstract understanding of information
and enables the convenient use of standard information-theoretic measures. In addition,
a summarization system may inject world knowledge that it acquired during pre-training.
For example, a summarization system could contain an entity which is not directly in the
source, but the entity can be linked via reasoning paths using world knowledge as observed
by Dong et al. [57]. For example, the source may only mention the city "Cambridge", while
the summary may refer to it as "UK". In this example, it can be challenging for span-based
methods, while we expect multiple-choice systems to be capable of matching this example.
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Source X
...............
...............
...............
...............

Summary Y

............

............

Multiple-Choice
Question Generation

Answering System

Question?
a) option 1
b) option 2
c) option 3
d) option 4

prob. dist.
given X

prob. dist.
given Y

Statistical Distance (e.g. KL-Div)

MQAG score

Fig. 7.2 Multiple-choice Question Answering and Generation (MQAG) framework. The answers
are represented by probability distributions over choices instead of text spans in span-based question
answering approaches.

MQAG Score as Information Consistency Measure

Notation: X = source document, Y = summary, Q = question, and O = o1,o2,o3, ... = options
associated with the question Q.

The Multiple-choice Question Answering and Generation (MQAG) framework is illustrated
in Figure 7.2, and MQAG computes information (in)consistency as follows,

I(X ,Y ) = E
Q,O∼PG(Q,O|Y )

[D (PA(O|Q,X),PA(O|Q,Y ))] (7.7)

I(X ,Y ) =
∫

Q,O

D (PA(O|Q,X),PA(O|Q,Y ))PG(Q,O|Y )dOdQ (7.8)

I(X ,Y )≈ 1
N

N

∑
i=1
D
(

PA(O(i)|Q(i),X),PA(O(i)|Q(i),Y )
)

(7.9)
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where {Q(i),O(i)} is sampled from PG(Q,O|Y ), the question-option generation model,
PA(O(i)|Q(i),X) and PA(O(i)|Q(i),Y ) are the option distributions given the source and sum-
mary, respectively, and D is a statistical distance such as KL-divergence. Compared to
existing SpanQAG such as QAGS [297] that extracts answer spans and performs text com-
parison, the proposed method computes a probability mass function (PMF) over generated
options and then the PMFs can be compared directly. Based on the information inconsistency
score in Equation 7.9, we define the MQAG score as,2

MQAG-Score(x,y) = 1−I(x,y) (7.10)

We refer to Equation 7.10 as the MQAG-Sum score as the questions are generated from
the summary Y . MQAG-sum is precision-oriented similar to QAGS [297] and FEQA [61].
Furthermore, it is possible to generate questions, {Q,O} using the source X instead of the
summary Y , {Q(i),O(i)} is sampled from PG(Q,O|X). We will refer to this variant as the
MQAG-Src score. MQAG-Src is expected to measure the amount of source information
present in the summary, i.e., the coverage of the summary, while MQAG-Sum is expected to
measure the consistency of the summary with respect to the source. MQAG-Src is recall-
oriented similar to SummQA [262]. To account for consistency (i.e., precision) and coverage
(i.e., recall) similar to QuestEval [261], we also consider a simple combination,

MQAG-F1 = 2 ·MQAG-Sum×MQAG-Src
MQAG-Sum+MQAG-Src

(7.11)

Statistical Distances D

Given two probability distributions over options O (e.g., one conditioned on source X , and
the other conditioned on summary Y ), a statistical distance D measures the distance between
the probability distributions. There are multiple statistical distances which can be used. In
this work, we consider some of the main distances and investigate their properties as well as
their empirical performance in our MQAG framework as follows,

• KL-Divergence:

DKL = ∑
o∈O

PA(o|Q,X) log
(

PA(o|Q,X)

PA(o|Q,Y )

)
(7.12)

2If D > 1, when using KL-divergence, the MQAG score can be negative, but the maximum value is 1.0.
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• One-Best (i.e. argmax matching):

DOB =

0, if ox = oy

1, otherwise
(7.13)

where ox = argmaxo PA(o|Q,X) and oy = argmaxo PA(o|Q,Y ). DOB simply determines
whether the two answers match or not.

• Total Variation:
DTV =

1
2
∥PA(O|Q,X)−PA(O|Q,Y )∥1 (7.14)

• Hellinger:

DHL =
1√
2

∥∥∥√PA(O|Q,X)−
√

PA(O|Q,Y )
∥∥∥

2
(7.15)

Examples of the properties of the statistical distances on Bernoulli distributions are illustrated
in Figure 7.3. It can be seen that KL divergence is unbounded, which means the value can be
exceedingly large. One-best, in contrast, is bounded between 0.0 and 1.0; however, one-best
is discontinuous. Total variation and Hellinger distance are continuous and bounded between
0.0 and 1.0.
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Fig. 7.3 Statistical distances between two Bernoulli distributions p1 = [p1;1− p1] and p2 = [p2;1− p2]
at different values of p1. We show 4 plots of different values of p1 = 0.00, 0.25, 0.50, 0.75, and Y-axis
represents distance D and X-axis represents p2.

7.2.3 MQAG Realization

This section describes question generation system, question answering system, answerability
of generated questions, as well as the datasets for system development.

Question Generation (G1, G2)

text
passage G1

question

answer G2
distractors question

options = {answer,
distractor1, distractor2, ...}

Fig. 7.4 Question Generation Pipeline which consists of two generation systems.

Multiple-choice question generation is implemented in two stages as illustrated in Figure 7.4.
The motivation for two generation systems is based on initial experiments which showed
that a single-generation system (generating the question and 4 options together) often gave
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low-quality distractors, and using two-generation systems improved the quality of distractors.
In this setup, the first model G1 generates the question Q and answer A, then the second
model G2 generates the distractors O\A given Q and A.

PG(Q,O|Y ) = PG2(O\A|Q,A,Y )PG1(Q,A|Y ) (7.16)

where O = {A,O\A} denotes all options/choices. In this work, we set the number of options
to 4 as we use the RACE dataset. Both G1 and G2 are sequence-to-sequence T5-large models
[244]. The question answer generation system G1 can be fine-tuned to either RACE or
SQuAD, and the distractor generation system G2 is fine-tuned to RACE.

Question Answering (A)

The answering stage contains one model A, which is Longformer-large [10] with a multiple-
choice setup illustrated in Figure 7.5 following Yu et al. [335], Raina and Gales [245]. The
input to the model is a concatenation of context, question and option. The answering model
A is fine-tuned to RACE.

context + question + option1

A
context + question + option2
context + question + option3
context + question + option4

logit1
logit2

logit3

logit4

softmax

prob1

prob2

prob3

prob4

Fig. 7.5 Question Answering System

Answerability of Generated Questions

Because not all generated questions are of high quality, this work considers filtering out
low-quality questions through question-context answerability measures [147, 117]. This
work considers a simple answerability measure based on the entropy of the probability
distribution over the options. We define the effective number of options,

NY (Q,O) = 2H[PA(O|Q,Y )] (7.17)

where
H[PA(O|Q,Y )] =−∑

o∈O
(PA(o|Q,Y ) logPA(o|Q,Y )) (7.18)
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is base-2 entropy, so NY (Q,O) ranges from 1.0 to the number of options, e.g. 4.0. When Q
is generated from Y but NY (Q,O) is high, this question Q should be deemed unanswerable
as it is not answerable even when using the same context. As a result, we use NY (Q,O) as
an answerability criterion to reject questions which have NY (Q,O) higher than a threshold
denoted by N τ

Y .

System Development Data

RACE [151] is a multiple-choice reading comprehension dataset where each example consists
of context, question, answer, and 3 distractors (i.e., incorrect options). SQuAD [247] is a col-
lection of question-answer pairs derived from Wikipedia articles, and the correct answers can
be any sequence of tokens in the given context. The statistics are provided in Table 7.1 where
abstractiveness is measured by 1.0 minus the length of the longest sequence that exists in both
the context and the answer per the answer length: 1.0−ROUGE-LPrecision(Answer,Context).

Dataset Size
Length

Abstractiveness
Context Answer

SQuAD 98.2k 317.8 11.0 0.0%
RACE 97.7k 138.3 11.3 39.1%

Table 7.1 Statistics of datasets for training MQAG systems. Length = the number of tokens. Abstrac-
tiveness of 0% indicates that in SQuAD the answer always exists in the context.

7.3 Zero-shot Methods

The previous section proposed MQAG, a bespoke method based on question answering for
information consistency assessment. This section, on the other hand, aims to utilize recent
advances in NLP where large language models (LLMs) have enabled zero-shot capabilities
across various NLP tasks [15, 309, 31]. An interesting application of LLMs is in the
automated assessment of natural language generation (NLG), a highly challenging area with
great practical benefit. Investigating the ability and application of pairwise comparisons
via LLMs has been relatively underexplored, with recent work using pairwise rankings for
information text retrieval [237] and separately for assessing LLM-based chat assistants on
open-ended questions where outputs are compared to that of a baseline system [26, 351].

Pairwise comparison or comparative assessment [285] is motivated by the fact that
humans often find it more intuitive to compare two options rather than scoring each one
independently. For example, scoring each example directly usually requires a detailed rubric,
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but it can be subjective and, therefore, challenging to perform absolute score prediction.
On the other hand, comparative assessment requires only a preference between two options
without precisely quantifying the exact level of the assessment. In this section, we explore
and compare two options for exploiting the emergent abilities of LLMs for zero-shot NLG
assessment: (1) absolute score prediction, and (2) comparative assessment which uses relative
comparisons between pairs of candidates. These methods are illustrated in Figure 7.6.
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<context>

Summary: <x_5>
Provide a score between 1 
and 10 that measures the 
summaries’ coherence
Answer: 2
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ranking
[!!, !", !&, !$, !%, !#]

<context>

Summary A: <x_1>
Summary B: <x_5>

Which Summary is more 
coherent, Summary A or 
Summary B?

Answer: Summary A is the 
more coherent summary

LLM Prompt Scoring 

LLM Comparative Assessment 

[!!, !$, !&, !", !#, !%]
ranking

Fig. 7.6 Prompting methods: prompt-scoring and comparative assessment. In prompt-scoring, an
LLM is prompted to generate a raw score, while in comparative assessment, the LLM compares
candidates in a pairwise manner, and the comparisons are subsequently converted into scores or ranks.

7.3.1 LLM Prompt Scoring

As a baseline for utilizing an LLM in a zero-shot setup, we consider a simple approach by
prompting an LLM to assess the quality of a summary between 1-10, for a particular attribute.
This approach is referred to as LLM prompt scoring shown in Figure 7.6.

Applying ChatGPT in a prompt scoring manner to summary assessment was also investi-
gated in recent works by Wang et al. [301], Kocmi and Federmann [140]. Also, concurrent
work, G-Eval [167], extends standard prompt scoring by using detailed prompts (e.g., gener-
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ated by an LLM) as well as computing a continuous score through the expected score over
a score range (e.g., 1-5 normalized by their probabilities). As the aim of this work is to
compare LLM prompt scoring and LLM comparative assessment, we consider simple prompt
templates shown in Figure 7.7. We apply prompt scoring on both open-source moderate-sized
LLMs such as FlanT5 and Llama2 and closed-source ChatGPT.

Passage: 
<context>

Summary: <Summary>

Score the response between 1 and 10 based 
on how consistent the summary is

<context>

Summary: <Summary>

Provide a score between 1 and 10 that 
measures the summary’s consistency

Prompt 1

Prompt 2

Fig. 7.7 Scoring template 1 and template 2 for the prompt-scoring approach

7.3.2 LLM Comparative Assessment

As an alternative approach to LLM prompt scoring, this work proposes LLM comparative
assessment. Instead of prompting an LLM to give a score for each individual example, this
method prompts an LLM to make a comparison between a pair of examples.

Assume that there is a context X (e.g., a text passage or dialogue) and a set of N candidate
responses, {Y1,Y2, ...,YN}. For a given attribute (e.g., coherence, consistency, fluency) the
N candidates have true underlying scores, {u1,u2, ...,uN}.3 The objective is to accurately
predict the true ranks, {r1,r2, ...,rN}, of the candidate scores. In comparative assessment,
one uses pairwise comparisons to determine which of the two input responses is better. Let
zi j ∈ {0,1} represent the true outcome of whether yi is higher ranked than y j, such that
zi j = 1(ui > u j). Here, an LLM is used to model the probability that response Yi is better
than response Yj, pi j,

3In a comparative assessment setup, predicted scores often only have relative meaning. The relative
values, nevertheless, are equivalent to the ranks of the candidates. Thus, the performance of LLM comparative
assessment can still be evaluated using system-level or summary-level correlations (described in Section 4.3.3)
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pi j = P(zi j|Yi,Yj,X) (7.19)

which can be converted into hard decisions, ẑi j, by selecting the most likely outcome,

ẑi j =

1, if pi j > 0.5

0, otherwise
(7.20)

Let C = {ck}k=1...R represent a set of comparisons, where R is the total number of compar-
isons, and each comparison c = (i, j) indicates the indices of the two considered candidate
responses. For example, the set of all possible comparisons, C= {(i, j) | i, j∈ [1, ...,N], i ̸= j},
could be used. As the maximum number of comparisons R grows quadratically with N, a
smaller subset of comparisons can be used in order to reduce the computation. This will be
discussed in "Comparisons to Ranks". Also, it should be noted that the LLM could be biased
in the sense that p ji ̸= 1− pi j. Debiasing the LLM is not in the scope of this work, but it is
covered in Liusie et al. [173]

Comparative Assessment Prompt Design

To leverage the emergent ability of LLMs, we use comparative prompts that probe a model to
decide which of the two candidates is better. Let f (.|T ) be a function that converts candidate
responses Yi and Yj as well as context X into a prompt P using a prompt template T ,

P = f (Yi,Yj,X |T ) (7.21)

The focus is on finding a simple, general and robust assessment method. Extensive prompt
engineering is not in the scope of the investigation (despite possible performance gains), but
it is an interesting future direction. We evaluate two simple and suitable prompts in our initial
investigations. Our prompts for comparative assessment are shown in Figure 7.8.
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Passage:
<context>

Summary A: <Summary 1>
Summary B: <Summary 2>

Which Summary is more consistent relative 
to the passage, Summary A or Summary B?

<context>

Summary A: <Summary 1>
Summary B: <Summary 1>

Which Summary is more consistent, 
Summary A or Summary B?

Prompt 1

Prompt 2

Fig. 7.8 Comparative prompt templates 1 and 2. When assessing different attributes, only the attribute
is changed (e.g., consistent→ engaging) and for response assessment, the word ‘summary’ is replaced
with ‘response’.

A central aspect of LLM comparative assessment is the methodology of obtaining com-
parative decisions. In this work, we consider two approaches for leveraging LLMs for
comparative assessment; first for when one has output token-level probabilities (Prompt-
Based Classifier) [174], and second for when only the output texts are available.

• Prompt-Based Classifier: If output probabilities are available, an efficient method to get
probability estimates of the predictions is to leverage prompt-based classifiers. Let P(Y |X ;θθθ)

represent an LLM’s conditional language model distribution of the output sequence Y given
the textual input X . For prompt-based classifiers, the LM probabilities of specific label words
(Yk) are used as a proxy for the class decisions. For example in summarization assessment,
given a prompt P ending in ‘... which summary is better’, one can set Yi = ‘Summary A’ and
Yj = ‘Summary B’ and define the probability that response i is better than response j as:

pi j =
P(Yi|P;θθθ)

P(Yi|P;θθθ)+P(Yj|P;θθθ)
(7.22)
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• Text Generation: Alternately, if only limited API access is available, responses can be
sampled from the conditional LM given the input prompt P ,

Ỹ (k) ∼ P(Y |P;θθθ) (7.23)

Let g(Ỹ ) ∈ {0,1} be a function that maps the text response to the comparative decision, and
Ỹ is rejected unless Ỹ is in a predefined set such as {Summary A,Summary B}. By generating
K output samples from the LLM, one can estimate the comparative probability pi j by looking
at the fraction of generated samples that selects Yi over Yj.

pi j =
1
K

K

∑
k=1

g(Ỹ (k)) (7.24)

Comparisons to Ranks

Although the full set of possible comparisons yields the most information for the rankings,
this requires R = N× (N−1) comparisons, which can be computationally expensive. For
computational efficiency, we can consider 3 different comparison selection strategies:

• random: comparisons are randomly selected from the set of all possible comparisons.

• no-repeat: if (Yi,Yj) is selected then (Yj,Yi) will not be selected.

• symmetric, if (Yi,Yj) is selected, then (Y j,Yi) will also be selected.

Given a set of selected comparisons C and weights of a comparative assessment system θθθ ,
one can generate a predicted rank ordering r̂1:N of the candidate responses. A simple but
effective approach is to sort the candidates by the win-loss ratio.

win-loss-ratio of Yi =
the number of wins of Yi

the number of comparisons involving Yi
(7.25)

which can then be ordered to convert the scores into predicted ranks r̂1:N .

7.4 Experiments

The experiments in this chapter first examine assessment methods, including model-free and
model-based methods, and provide benchmark results for the proposed long-input podcast
summary assessment data. Then, with the aim of selecting reference summary-document
pairings for training, we apply summary assessment for data selection, and we investigate the
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summarization methods trained on different selection methods. The next set of experiments
examines the proposed MQAG system (Section 7.2.2). Further, to exploit large language
models for zero-shot NLG assessment (Section 7.3), the experiments compare comparative
assessment to standard prompt engineering.

7.4.1 Datasets

A summary assessment dataset generally consists of a set of source documents X , system-
generated summaries Y , and human-evaluated scores z,

Dataset =
{

X ( j),
(

Y ( j)
i ,z( j)

i

)
i=1,...,N

} j=1,...,M

(7.26)

where in this example, there are N summarization systems and M source documents.4

To evaluate automatic assessment methods on a dataset (in the format in Equation 7.26),
correlations between predicted scores by automatic methods and human-evaluated scores
are used. These correlations can be system-level or summary-level correlations, which are
described in Section 4.3.3.

In addition to using existing datasets (which are predominantly based on news sum-
marization datasets), this work creates a new summary assessment dataset, which we call
Podcast Summary Assessment (PSA). The podcast data was previously used in Chapter 6
for developing summarization systems, and a portion of the podcast data was annotated for
the Spotify Summarization Challenge. We compile the annotated portion to make the PSA
dataset. This new dataset has two unique aspects: (1) long-input, speech podcast-based,
documents; and (2) an opportunity to detect inappropriate reference summaries in podcast
corpus. Table 7.2 provides an overview of the datasets that will be used in our experiments,
and their descriptions are provided below.

QAG-CNNDM & QAG-XSum

Wang et al. [297] annotated 235 CNN/DailyMail summaries of the system in Gehrmann et al.
[82] and 239 XSum summaries of fine-tuned BART [159]. The annotation was performed at
the sentence level to indicate if hallucination occurs or not. Subsequently, for each summary,
the faithfulness (consistency) score is obtained by averaging the sentence-level human scores.

4Note that SummEval has multiple aspects of human-evaluated scores.
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Corpus Type Size Length AnnotationSrc. Sum.

QAGS-CNNDM News 235 355.8 54.4 Faithfulness
QAGS-XSum News 239 403.7 19.7 Faithfulness
XSum-H News †5×500 442.1 20.5 Faithfulness, Factuality
SummEval News †16×100 404.0 63.7 Coherence, Faithfulness, Fluency, Relevance

Podcast Summary
Podcast †20×179 5950 88.3

4-point scale Overall (Informative & Fluency)
Assessment (§A) and 8 binary attributes (e.g. names, topic, etc.)

Table 7.2 Summary of datasets annotated for summary assessment. Length statistics is the number of
words calculated using the NLTK tokenizer. †#systems (N) × #documents (M).

XSum-Hallucination (XSum-H)

Maynez et al. [193] annotated 2500 XSum summaries using 3 crowd-sourced workers on
two aspects: (1) Faithfulness = whether the information is faithful with respect to the source
document at the token level. The judgements are then averaged; (2) Factuality = whether the
summary level is factual with respect to the source document as well as world knowledge.

SummEval

Proposed by Fabbri et al. [67], this dataset consists of human judgements of 16 summarization
systems on 100 news articles randomly selected from the test set of the CNN/DailyMail
dataset [104, 208]. Each of the summaries was annotated on four aspects: (1) relevancy
(how well the summary selects important content from the source, and summaries with
redundancies should be penalized), (2) consistency (how factual the summary is with respect
to the source document, and summaries that contain hallucinated facts should be penalized),
(3) coherency (how well all sentences are connected, and summaries should not just be a
heap of related information), and (4) textitfluency (the quality of individual sentences such as
no formatting problems, capitalization errors, or ungrammatical sentences). Each summary
was graded on a 5-point scale by three expert annotators for each of the dimensions.5.

Podcast Summary Assessment

Based on the Spotify Podcast Challenge at TREC 2020 [125], we compiled podcast sum-
maries from 19 summarization systems and the creator descriptions of 179 podcasts, making
the corpus of 3580 document-summary pairs. The human evaluation was performed on

5Note that REALSumm [13] (although not used in this thesis) is a similar corpus based on 100
CNN/DailyMail documents and 25 summarization systems. Their 2500 summaries were evaluated using
the Lightweight Pyramid method [269]
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a holistic 4-point scale considering a combination of consistency, coverage, and fluency.
Compared to existing summary assessment data which are predominantly from news summa-
rization, this dataset has unique aspects in its long-input (e.g., the input documents are more
than 10 times longer than CNN/DailyMail articles on average) and speech-based documents.
The anonymized version of this corpus has been made available under the CC-BY-4.0 license
at https://github.com/potsawee/podcast_summary_assessment. More information about this
dataset and the benchmark of summary assessment methods are provided in Appendix A.

7.4.2 MQAG

First, preliminary experiments are conducted to ensure that MQAG is reasonable. Then, dif-
ferent configurations of MQAG are investigated, including the analysis of statistical distances,
variants of MQAG, and answerability. Two MQAG variants are built: MQAGSQuAD and
MQAGRACE, which differ in the training data of the question+answer generator G1, while
the distractor generator G2 and answering system A are both trained on RACE. As shown in
Table 7.1, MQAGRACE is expected to yield more abstractive QA pairs than MQAGSQuAD.

MQAG: Statistical Distances

As discussed in Section 7.2.2, we compare statistical distances for MQAG with the generator
trained on SQuAD and MQAG with the generator trained on RACE. The results for different
distances are shown in Table 7.3. It can be seen that in both configurations, KL-divergence
yields lower correlations than other distances, and on average total variation slightly out-
performs the one-best distance and achieves similar performance to the Hellinger distance.
This is likely because total variation and Hellinger distances are continuous and bounded
unlike KL-divergence or one-best distances. Note that total variation is selected as the main
distance for subsequent experiments. Another observation is that MQAGSQuAD, despite
generating more extractive questions, achieves higher correlations than MQAGRACE on most
tasks except on Podcast and SummEval.

https://github.com/potsawee/podcast_summary_assessment
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Distance
QAG- XSum-H

PSA SumE
CNN XSum Faith Fact

Config: MQAG-Sum, G1 = SQuAD
KL-Div (DKL) 0.478 0.374 0.177 0.226 0.251 0.936

One-Best (DOB) 0.476 0.354 0.295 0.254 0.677 0.872
Total Var (DTV) 0.508 0.396 0.269 0.267 0.225 0.870
Hellinger (DHL) 0.499 0.399 0.266 0.269 0.201 0.870
Config: MQAG-Sum, G1 = RACE

KL-Div (DKL) 0.450 0.283 0.135 0.179 0.789 0.954
One-Best (DOB) 0.453 0.225 0.240 0.221 0.839 0.928
Total Var (DTV) 0.462 0.309 0.221 0.244 0.770 0.933
Hellinger (DHL) 0.473 0.323 0.215 0.244 0.751 0.927

Table 7.3 Comparison of Statistical Distances using MQAG-Sum without answerability.

MQAG-Sum, MQAG-Src, MQAG-F1

Motivated by span-based methods that can be categorized into: precision-oriented, recall-
oriented, or both (in Section 7.2.1), this experiment examines three variants of MQAG scores:
MQAG-Sum (precision), MQAG-Src (recall), MQAG-F1 (both). Our results in Table 7.4
show that MQAG-Src, which assesses how much source information is contained in the
summary by generating questions from the source, achieves lower PCCs than MQAG-Sum
on all datasets. This finding aligns with our expectation, as the summaries were graded
by humans predominantly on the consistency aspect (which MQAG-Sum was designed to
measure) rather than the quantity of source information present (which MQAG-Src measures).
When combining MQAG-Src and MQAG-Sum into MQAG-F1, we only observe a small gain
on two test settings. Therefore, MQAG-Sum is selected as our main MQAG configuration
for the remaining investigations.
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QAG XSum-H
PSA SumE

CNN XSum Faith Fact

Config: G1 = SQuAD, D = Total Variation
MQAG-Sum 0.508 0.396 0.269 0.267 0.225 0.870

MQAG-Src 0.272 0.017 0.093 0.037 0.470 0.707
MQAG-F1 0.490 0.393 0.286 0.261 0.475 0.863

Config: G1 = RACE, D = Total Variation
MQAG-Sum 0.462 0.309 0.221 0.244 0.770 0.933

MQAG-Src 0.233 0.143 0.069 0.087 0.144 0.588
MQAG-F1 0.468 0.301 0.217 0.252 0.731 0.866

Table 7.4 Comparison of MQAG-Src, MQAG-Sum, and MQAG-F1 without answerability.

MQAG: Answerability

So far, all of the generated questions are used in computing the MQAG score. However, the
question generation system could generate unanswerable questions. Thus, this experiment
examines whether filtering out unanswerable questions could improve performance. This
work proposes using a simple entropy-based score from the answering system (defined in
Equation 7.17) to measure answerability. This measure is the effective number of options
which is bounded between 1 and 4 as there are four options in our setup.

Figure 7.9 shows the results as the answerability score is swept from 4.0 (keeping all
questions) to 1.0 (only keeping those that the answering system A is highly confident). It can
be seen that as we filter out high-entropy questions, there is an upward trend in performance
across all tasks. In addition, as shown in the figure, settingN τ

Y at 2.0 seems to be a reasonable
answerability threshold. At this threshold, N τ

Y = 2.0, out of 50 automatically generated
questions, about 36 questions are kept for MQAGSQuAD and about 30 questions are kept for
MQAGRACE. The number of remaining questions is similar across all datasets as shown in
Table 7.5. Thus, we set N τ

Y = 2.0, and the performance of MQAG using this answerability
criterion is presented and compared against baseline systems in Table 7.6.

System QAG-CNNDM QAG-XSum XSum-H PSA SummEval

MQAGSQuAD 35.0 37.4 34.0 34.7 37.0
MQAGRACE 30.5 30.0 30.0 30.5 31.1

Table 7.5 The percentage of remaining questions at N τ
Y = 2.0.
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Fig. 7.9 ∆PCC of MQAG-Sum with total variation (i.e. PCC − PCCNτ
Y=4.0) against the answerability

threshold N τ
Y on X-axis. MQAG without answerability is equivalent to setting Nτ

Y = 4.0, and the
results at this operating point can be seen on the right-most point in each plot. As we reduce the
threshold (Nτ

Y ↓), more questions are rejected.

Comparison of MQAG Against Baselines

The previous experiments investigated different configurations of MQAG, and the findings
suggested an optimal setup as follows. (1) statistical distance is total variation (2) the
variant is MQAG-sum, where generation stage G generates questions from summary y (3)
the answerability threshold N τ

Y is set to 2.0. This experiment compares MQAG, based on
the optimal setup, against existing baselines. The experimental results are shown in Table
7.6. The observation is that MQAG achieves a higher correlation than the best span-based
method on 5 out of 6 tasks. When compared to all existing baselines, MQAG achieves state-
of-the-art performance on 4 out of 6 tasks. To investigate the impact of the abstractiveness of
summaries on the evaluation performance, we split QAG-XSum and XSum-H datasets6 into
two portions of the same size by abstractiveness as measured by the longest sequence in the

6XSum summaries are more abstractive than CNNDM summaries, so using XSum should enable us to
investigate the impact of abstractiveness better than CNNDM.
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summary that exists in the source per the length of the summary (i.e., ROUGE-L precision
of summary y using source x as the reference). The results in Table 7.8 show that although
MQAGRACE achieves lower PCCs than MQAGSQuAD (in Table 7.6) when evaluated on the
more abstractive split, the performance MQAGRACE is much closer to that of MQAGSQuAD.
In addition, compared to MQAG, span-based methods show a larger drop in PCCs in the
more abstractive split. This finding further illustrates the benefits of comparing answer
distributions rather than text spans.

Method
QAG XSum-H

PSA SumEvl
CNNDM XSum Faithful Factual

Baselines: Other Approaches
ROUGE-1 0.337 0.012 -0.050 0.008 0.326 0.458
OpenIE-TripleMatching 0.381 0.131 0.019 -0.020 0.706 0.548
BERTScore 0.584 0.008 0.185 0.154 0.718 0.645
Entailment (BERT Model) 0.159 0.169 0.362 0.209 0.228 0.619
Baselines: SpanQAG
QAGS 0.437 0.200 0.101 0.080 0.464 0.812
FEQA 0.322 0.283 0.297 0.171 0.603 0.464
QuestEval 0.250 0.173 0.421 0.197 0.579 0.838
Multiple-choice Question Answering and Generation (MQAG)
MQAGSQuAD 0.519 0.407 0.324 0.292 0.502 0.890
MQAGRACE 0.502 0.313 0.306 0.270 0.855 0.945

Table 7.6 Pearson Correlation Coefficient (PCC) between the scores of evaluation methods and human
judgements. PCCs are computed at the summary level on QAG and XSum-H, and at the system level
on Podcast and SummEval. PCCs on Podcast are computed on 15 abstractive systems. Underline
denotes where MQAG outperforms the best SpanQAG system, which is 5 out of 6 tasks. When
compared to all baselines, MQAG achieves the highest PCC on 4 out of 6 tasks.
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Method
QAG XSum-H

PSA SumEvl
CNNDM XSum Faithful Factual

Baselines: Other Approaches
ROUGE-1 0.318 0.053 -0.030 0.001 0.282 0.627
OpenIE-TripleMatching 0.337 0.130 0.019 -0.025 0.700 0.671
BERTScore 0.523 0.018 0.183 0.153 0.686 0.835
Entailment (BERT Model) 0.167 0.190 0.380 0.202 0.207 0.141
Baselines: SpanQAG
QAGS 0.341 0.166 0.085 0.052 0.357 0.421
FEQA 0.275 0.277 0.300 0.155 0.504 0.270
QuestEval 0.181 0.175 0.415 0.176 0.425 0.812
Multiple-choice Question Answering and Generation (MQAG)
MQAGSQuAD 0.470 0.409 0.335 0.284 0.441 0.773
MQAGRACE 0.460 0.308 0.322 0.266 0.779 0.920

Table 7.7 Spearman’s rank correlation coefficient – complementing Table 7.6.

Method
QAG-XSum XSum-H
Low High Low High

QAGS 0.190 0.184 0.101 0.159
FEQA 0.296 0.163 0.290 0.124
QuestEval 0.215 0.061 0.398 0.326

MQAGSQuAD 0.431 0.328 0.334 0.254
MQAGRACE 0.277 0.295 0.319 0.249

Table 7.8 Performance as measured by PCC on the low abstractiveness and high abstractiveness of
QAG-XSum and XSum-H (Faithful). The results on the entire datasets are in Table 7.6.
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As MQAG is based on the Monte-Carlo approximation (Equation 7.9), sampling questions,
answers, and distractors are stochastic and sampling N could potentially be computationally
expensive. Thus, we perform an ablation study about the impact of the number of samples
on the performance and variance. Second, although the previous section investigated training
data, e.g. RACE versus SQuAD, another aspect of MQAG is the choice of model backbones.
To ablate this, we both fine-tune different pre-trained backbones to MQAG as well as use
zero-shot GPT-3 prompting.

Ablation 1: Impact of the Number of Questions (N)

As MQAG is a sampling-based approach, one of the concerns is the computational cost. This
experiment analyses the impact of the number of generated questions on the performance
of MQAG. The mean and standard deviation are presented in Figure 7.10 as N is varied
from 1 to 50. The results show a smooth increase in correlation, which is expected because
the framework is based on a Monte-Carlo approximation, and a similar finding was also
observed in the results of QAGS [297].

Figure 7.10 also shows that the variance decreases with N. This shows the stability of
MQAG. Although the performance curve has not completely plateaued at N = 50, since the
computational cost of MQAG scales linearly with N, sampling 50 questions seems to be a
reasonable compromise between computational efficiency and performance. It should be
noted that the current approach does not explicitly measure the diversity of the generated
questions. It would be possible to measure diversity, for example, by clustering generated
questions. However, this work demonstrates empirically that diversity can be achieved
through the exhaustive Monte-Carlo sampling, as the performance increases. This is because
the performance is expected to remain similar if additional questions are not different from
the ones already generated. An interesting next step would be to investigate if the same or
similar performance can be achieved with as low N as possible, for example, by generating a
smaller but more diverse set of questions and options such as varifocal question generation
where questions are generated based on different focal points [217].
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Fig. 7.10 Mean and standard deviation of Pearson correlation (Y-axis) of MQAGRACE on QAG-
CNNDM when the number of generated questions N is varied from 1 to 50 (X-axis). Standard
deviation is obtained via bootstrapping.



7.4 Experiments 177

Ablation 2: Model Choices

So far, the experiments have only used the same backbones: T5-large for question generation
and Longformer for question answering. This ablation investigates the significance of
pre-trained backbones by swapping to less capable models, e.g., T5-large→ T5-base for
generation, and Longformer(4096)→ RoBERTa(512) [170] for answering. The results in
Table 7.9 show that: (1) For the generation stage, using a smaller model does not result in
lower performance. This could be because T5-base has higher perplexity, and yields more
diverse questions. (2) In contrast, for the answering stage, when using RoBERTa, with a
shorter input length, the performance on SummEval (the input length is mostly shorter than
512) remains almost the same. However, as the input length is longer in other datasets, we
observe a drop in PCC when using RoBERTa.

Model Pearson Corr.
Generation Answering SummEval QAG-XSum PSA

T5-base RoBERTa 0.949 0.242 0.471
T5-base Longformer 0.949 0.293 0.647
T5-large RoBERTa 0.930 0.211 0.350
T5-large Longformer 0.930 0.229 0.772

Table 7.9 Ablation on model choices in MQAG using N=20. SumE = SummEval (Consistency
aspect), QAG-X = QAG-XSum, Podc = Podcast Assessment.

Additionally, given the impressive results of large language models (LLMs) across natural
language generation tasks, we investigate the performance of LLMs in a zero-shot fashion
instead of using fine-tuned T5 for multiple-choice question generation. Specifically, we use
OpenAI GPT-3 [15] (text-davinci-003) where we query 50 questions and 4 options using the
following prompt format:

Write 50 diverse multiple-choice questions with 4 options from the
following context: {context}

We found that GPT-3 generated 50 questions as specified in the prompt around 26% of the
examples and the remaining only have 20 questions. The majority of questions (more than
95%) have 4 options, while the remaining have 2 options. In Table 7.10, the results show
that zero-shot GPT-3 performs worse than our fine-tuned T5 systems in both multiple-choice
question generation tasks. This illustrates that there is some sensitivity due to the quality of
generated questions, and using our fine-tuned T5 is a better option than zero-shot GPT-3.
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Backbone
QAG

CNNDM XSum

T5 (SQuAD) 0.508 0.396
T5 (RACE) 0.462 0.309

GPT-3 0.392 0.130
Table 7.10 Pearson Coefficient Correlation (PCC). GPT-3 versus fine-tuned T5 using DTV without
answerability for the multiple-choice question generation stage.

7.4.3 Zero-shot Methods

The previous set of experiments assessed summaries on the consistency aspect using our pro-
posed MQAG. In this experiment, the focus is on the zero-shot performance of large language
models (LLMs) that could assess summaries on any aspect, including consistency. Two LLM
prompting techniques are investigated: standard LLM prompt scoring (Section 7.3.1) and the
proposed LLM comparative assessment (Section 7.3.2).

Experimental Setup

We investigate two families of open-source instruction-tuned LLMs. The first system is the
encoder-decoder FlanT5 [32] or T5 [244] that have been instruction tuned on a diverse set of
1000 NLP tasks [305]. The second system is the decoder-only Llama2-chat [286], which are
Llama2 systems tuned on publicly available instruction datasets. We investigate a range of
model sizes; 220M, 770M, 3B and 11B for FlanT5, and 3B and 13B for Llama2.

Each LLM is used in both setups: prompt-scoring and comparative assessment. For the
comparative assessment results, we consider the full set of possible comparisons, where all
pairs of candidates in both permutations are compared by the framework, e.g., N× (N−1)
comparisons where N is the number of candidates. Comparisons are made using the prompt-
based classifier (as described in Section 7.3.2) using the prompt templates shown in Figure 7.8,
where the system outputs a probability for Response A and Response B. The winner of the
comparison is the response with the highest probability, where candidates are then ranked in
order of their win-ratio (as described in Section 7.3.2). For the Llama2 systems, comparative
prompts are appended with ‘Answer:’ while scoring prompts end with ‘Score:’.

Experimental Results

The experiments are conducted on SummEval and Podcast Summary Assessment because
these two datasets have multiple summaries from different systems for each document, allow-
ing pairwise comparison. Regarding evaluation, summary-level ranking is also considered as
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our MQAG method has already achieved high system-level correlations. Note that although
the following section provides the results of summary assessment tasks, the investigation can
conducted on other natural language generation (NLG) tasks such as dialogue generation or
data-to-text generation. This is because the zero-shot framework is flexible, and not limited to
only assessing summarization. The results on dialogue generation or data-to-text generation,
though are not in the scope, can be found in our paper [173].

SummEval: Table 7.11 analyzes the effectiveness of comparative assessment on SummEval,
where the following observations can be made:

Approach
COH CON FLU REL

SCC PCC SCC PCC SCC PCC SCC PCC

Baselines (reproduction)
BERTScore (w/ Doc) 0.410 0.417 0.327 0.340 0.265 0.284 0.403 0.415
QuestEval 0.182 0.178 0.306 0.377 0.228 0.281 0.268 0.296
MQAGRACE 0.170 0.188 0.288 0.355 0.193 0.223 0.166 0.213
Baselines (reported in existing work)
UniEval (single-best) [354] 0.546 - 0.472 - 0.433 - 0.463 -
UniEval (continual) [354] 0.575 - 0.446 - 0.449 - 0.426 -
GPTScore FlanT5-3B [74] 0.470 - 0.436 - 0.421 - 0.344 -
GPTScore FlanT5-11B [74] 0.456 - 0.438 - 0.424 - 0.343 -
GPTScore GPT3 [74] 0.401 - 0.475 - 0.410 - 0.343 -
ChatGPT scoring [301] 0.451 0.456 0.432 0.512 0.380 0.443 0.439 0.473
Prompt Scoring (§7.3.1)
FlanT5-220M 0.040 -0.015 -0.002 -0.060 0.002 -0.039 0.028 -0.051
FlanT5-770M -0.036 -0.047 -0.016 -0.008 -0.015 -0.002 0.000 0.019
FlanT5-3B 0.145 0.120 0.198 0.151 0.039 -0.013 0.152 0.132
FlanT5-11B 0.007 -0.012 0.112 0.078 0.032 0.027 0.057 0.052
Llama2-chat-7B 0.086 0.086 0.090 0.102 0.018 0.014 0.078 0.089
Llama2-chat-13B 0.099 0.029 0.069 0.022 0.012 0.015 0.092 0.032
Comparative Assessment (§7.3.2)
FlanT5-220M 0.040 0.047 -0.002 0.015 0.002 0.010 0.028 0.039
FlanT5-770M 0.298 0.318 0.263 0.317 0.206 0.233 0.351 0.370
FlanT5-3B 0.512 0.525 0.471 0.477 0.325 0.368 0.448 0.468
FlanT5-11B 0.442 0.464 0.372 0.426 0.302 0.349 0.434 0.476
Llama2-chat-7B 0.279 0.286 0.246 0.241 0.202 0.189 0.356 0.367
Llama2-chat-13B 0.409 0.416 0.399 0.445 0.308 0.345 0.453 0.492

Table 7.11 SummEval results (averaged over both prompts per system for prompt-scoring and
comparative assessment) measured by summary-level SCC and PCC. COH = Coherency, CON =
Information Consistency, FLU = Fluency, REL = Relevance.
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(1) Moderate-sized LLMs are ineffective in the prompt-scoring set-up, with the best system
(FlanT5-3B) achieving Spearman correlations of only between 0.10 and 0.20. The perfor-
mance difference with ChatGPT prompt-scoring implies that scoring is likely an emergent
ability only effective for larger LLMs.

(2) LLMs are able to achieve considerably higher correlations in the comparative assessment
set-up, with performance higher for nearly all systems. Furthermore, comparative assessment
leads to more robust performance, with most models with more than 3B parameters achieving
Spearman correlations within the range of 0.30 and 0.50.

(3) Comparative assessment enables LLMs of under 1B parameters to perform well, with
FlanT5-770M achieving moderate correlations. However, performance improves signifi-
cantly when using LLMs with more than 3B parameters, although for SummEval there are
diminishing (if any) performance gains by scaling up the LLM.

(4) The best comparative assessment LLM (FlanT5-3B) is competitive with all other zero-
shot methods, including ChatGPT scoring (which is an LLM with two orders of magnitude
more parameters), and achieves the best correlation in 3 of the 4 aspects considered.

(5) Comparative assessment achieves competitive performance with UniEval. Although
UniEval has better overall performance, UniEval was designed for bespoke tasks and aspects
(it is fine-tuned on synthetic data created for particular attributes) where the results in
Table 7.12 show that UniEval has noticeable degradation in out-of-domain settings.7 In
contrast, our proposed comparative assessment is zero-shot and more general than UniEval.

7The results on data-to-text assessment (WebNLG) in Liusie et al. [173] also shows noticeable degradation.
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Approach
System-level Summary-level
SCC PCC SCC PCC

Baselines (reproduction)
BERTScore (w/ Ref) 0.739 0.793 0.251 0.264
BERTScore (w/ Doc) 0.686 0.718 0.219 0.225
UniEval (continual) 0.420 0.542 0.228 0.231
QuestEval 0.425 0.579 0.204 0.218
MQAGRACE 0.779 0.855 0.126 0.138
Longformer-SFT∗ 0.896 0.926 0.196 0.203
Prompt Scoring (§7.3.1)
Llama2-chat-7B 0.885 0.892 0.026 0.023
Llama2-chat-13B 0.800 0.918 0.253 0.259
Comparative Assessment (§7.3.2)
Llama2-chat-7B 0.882 0.941 0.374 0.387
Llama2-chat-13B 0.971 0.986 0.455 0.474

Table 7.12 Podcast Summary Assessment results measured by SCC and PCC. ∗Longformer with
Supervised Fine-tuning on the assessment task using 5-fold cross-validation.

Podcast Assessment: When considering podcast summarization (which has long inputs of
over 5,000 tokens on average), only Llama2 models (which have a limit of 4,096 tokens)
were used (as FlanT5 has a limit of 1,024 tokens). Table 7.12 shows that comparative
assessment yields highly impressive performance for long-input podcast summarization,
with comparative assessment out-competing all other baselines. Furthermore, although
prompt-scoring has good system-level correlations, the lack of granularity leads to poor
summary-level performance.

In conclusion, the zero-shot method with comparative assessment has demonstrated the
flexibility of the framework in that it can be used to assess any aspect as shown on SummEval.
In addition, it is effective in long-input summarization such as Podcast summarization.
However, we note that the limitations of the approach could be due to the number of
comparisons required, which grows quadratically with the number of candidates, coupled
with running LLM inference can lead to large computational expenses.
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7.5 Chapter Summary

This chapter investigated automatic summary assessment. As modern summarization systems
have become highly fluent, the focus has been on assessing information consistency between
the source and the summary. We propose MQAG – a novel scheme for assessing information
consistency between source and summary based on the distance between multiple-choice
answer distributions instead of text-based answer spans in existing question-answering
methods. Our experiments demonstrated the potential of this alternative approach which
outperforms existing techniques on various datasets. The realization of the framework
exploits current multiple-choice question generation and answering systems. Its performance
is expected to increase as backbone systems improve, for example, the diversity of questions
generated and the selection of options. Also, the framework is more interpretable than
black-box neural networks as generated questions and answers can be examined, allowing
more insight into summary assessment.

Furthermore, following the success of zero-shot LLM in various NLP tasks, we examine
LLM on summary assessment and propose the comparative assessment framework. Our
experimental results demonstrated that comparative assessment with a moderate-size LLM
outperforms vanilla prompt-scoring. LLM comparative assessment is flexible and effective,
achieving comparable to approaches designed specifically for assessing NLG tasks.



Chapter 8

Generative AI Information Consistency

Chapter 7 investigated summary assessment, where one key aspect is assessing information
consistency between the source document and the summary. Motivated by summary assess-
ment methods, this chapter will extend the information consistency assessment methods
to broader generative AI information consistency assessment with a focus on assessing
long-form large language model (LLM) generation.

Despite the advances in scaling up foundation models and self-supervised learning,
generative AI models may make up facts or misleading information in their responses with
respect to actual knowledge, and this phenomenon is referred to as hallucination in the
field of AI [123].1 First, Section 8.1 provides an introduction and existing work about
hallucination detection. Section 8.2 proposes SelfCheckGPT, which is a family of methods
inspired by summary assessment for hallucination detection in generative large language
models. Section 8.3 discusses data collection and annotation required for investigating
language model hallucination. Section 8.4 provides experiments and discusses the results.
Section 8.5 discusses the limitations and potential improvements to SelfCheckGPT.

8.1 Generative AI Hallucination

Generative AI models are being used in a range of domains such as text generation, image
generation, and audio generation [14, 16]. These models are capable of high-quality outputs
such as fluent and coherent texts and realistic images. Generative AI models are trained on
a large amount of data, which enables them to handle users’ queries in a zero-shot manner
[32, 218, 341]. The models might be tasked with queries beyond the knowledge obtained

1A hallucination is an incorrect prediction made by an AI model. In the context of language models, a
hallucination is a response which contains non-factual information with respect to actual knowledge. This
corresponds to non-factuality in summarization defined by Maynez et al. [193] in the previous chapter.
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from the training data, therefore, they must perform extrapolation, which could lead to novel
responses. In some cases such as image generation, novel responses could be considered
creative. However, in other cases such as text generation, novel responses could mean
unfaithful as defined in Section 4.3. This is similar to inconsistency in summarization where
the summary is not grounded by the source document or world knowledge investigated in
Chapter 7. For example, language models could mix information from different sources and
make a wrong inference, or they could make up facts that are not grounded by any sources.
These problems are generally referred to as hallucinations. Therefore, it is important to
understand the limitations of generative AI models and develop a mechanism to prevent them
from returning such hallucinations.

8.1.1 Language Model Hallucination

Large language models like GPT-3 [15] and PaLM [31] are effective in generating realis-
tic text for various applications but they have a tendency to hallucinate, underscoring the
importance of evaluating their capabilities and limitations. The NLP community has devel-
oped several benchmarks to evaluate LLMs, such as SuperGLUE [298], BIG-Bench [275],
MMLU [103], and HELM [161], covering a wide range of tasks. Yet, the specific challenge
of hallucination in LLM output remains insufficiently addressed in these evaluations.

Hallucination has been studied in natural language generation (NLG) tasks, including
summarization [119], machine translation [97, 356], dialogue generation [272], as well as
other NLG tasks surveyed in Ji et al. [123]. However, it is less investigated in open-domain
language model generation. One reason is that hallucinated contents are specific to the
language model generating the responses, and therefore, a specifically crafted dataset is
required to investigate each individual language model, which makes hallucination detection
more challenging to standardize. Also, existing hallucination detection resources, such
as HADES [166], are obtained by perturbing factual texts and thus may not reflect true
open-domain LLM hallucination.

A possible approach to hallucination detection is to leverage existing intrinsic uncertainty
metrics to determine the parts of the output sequence that the system is least certain of
[337, 74]. However, uncertainty metrics such as token probability or entropy require access
to token-level probability distributions, information which may not be available to users for
example when systems are accessed through limited external APIs. An alternate approach
is to leverage fact-verification approaches, where evidence is retrieved from an external
database to assess the veracity of a claim [284, 99]. However, facts can only be assessed
relative to the knowledge present in the database. Additionally, hallucinations are observed
over a wide range of tasks beyond pure fact verification [143, 193].
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Recently, Azaria and Mitchell [1] trained a multi-layer perception classifier where an
LLM’s hidden representations are used as inputs to predict the truthfulness of a sentence.
However, this approach is a white-box approach that uses the internal states of the LLM,
which may not be available and requires labelled data for supervised training. Another
recent approach is self-evaluation [126], where an LLM is prompted to evaluate its previous
prediction, e.g., to predict the probability that its generated response is true.

Sequence Level Uncertainty Estimation

Token probabilities have been used as an indication of model certainty. For example, Ope-
nAI’s GPT-3 web interface allows users to display token probabilities (as shown in Figure 8.1),
and further uncertainty estimation approaches based on aleatoric and epistemic uncertainty
have been studied for autoregressive generation [325, 181]. Additionally, conditional lan-
guage model scores have been used to evaluate properties of texts [337, 74].

Fig. 8.1 Example of OpenAI’s GPT-3 web interface with output token-level probabilities displayed.

Predictive entropy (in Equation 8.1) has been used to measure the model’s uncertainty in
classification tasks [76, 180, 182]. The predictive entropy of a random variable X which
takes a value x from a set of possible values X is:

H(X) =− ∑
x∈X

P(x) logP(x) (8.1)
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Recently, semantic uncertainty has extended predictive uncertainty to natural language gener-
ation (NLG) [145]. As there can be multiple ways of generating the same concept in NLG,
semantic uncertainty aggregates the likelihood of the outputs with the same meaning. It
approximates the set of all possible outputs using Monte-Carlo samples. The authors demon-
strated the effectiveness of semantic uncertainty on question-answering. For example, if pre-
dicted sequences of What’s is capital of France? are [Paris, It’s Paris, Rome]
with probability [0.5, 0.4, 0.1]. These outputs correspond to two groups with probability [0.9,
0.1], and the predictive entropy is computed as in Equation 8.1.

Fact Verification

Existing fact-verification approaches follow a multi-stage pipeline of claim detection, evi-
dence retrieval and verdict prediction [99, 355]. Such methods, however, require access to
external databases and can have considerable inference costs.

8.1.2 Grey-Box Factuality Assessment

This section will introduce methods that can be used to determine the factuality of LLM
responses in a zero-resource setting when one has full access to output distributions.2 This
thesis will use ‘factual’ to define when statements are grounded in valid information, i.e.
when hallucinations are avoided, and ‘zero-resource’ when no external database is used.

Uncertainty-based Assessment

To understand how the factuality of a generated response can be determined in a zero-
resource setting, we consider LLM pre-training. During pre-training, the model is trained
with next-word prediction over massive corpora of textual data. This gives the model a
strong understanding of language [122, 244], powerful contextual reasoning [346], as well
as world knowledge [175]. Consider the input "Lionel Messi is a _". Since Messi is a
world-famous athlete who may have appeared multiple times in pre-training, the LLM is
likely to know who Messi is. Therefore given the context, the token "footballer" may be
assigned a high probability while other professions such as "carpenter" may be considered
improbable. However, for a different input such as "John Smith is a _", the system will
be unsure of the continuation which may result in a flat probability distribution. During
inference, this is likely to lead to a non-factual word being generated.

2Alternate white-box approaches such as that of Azaria and Mitchell [1] require access to full internal
states, and are less practical and so not considered in this work.
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This insight allows us to understand the connection between uncertainty metrics and factuality.
Factual sentences are likely to contain tokens with higher likelihood and lower entropy, while
hallucinations are likely to come from positions with flat probability distributions with high
uncertainty.

Token-level Probability

Notation:

• θθθ is a (large) language model

• X is the LLM’s response (to be assessed)

• xi is the i-th sentence

• xi, j is the j-th token in xi, and the number of tokens in xi is J

• pi, j = P(xi, j|x1,1, ...,xi, j−1;θθθ) is the probability of the token generated by the LLM at
the j-th token of the i-th sentence.

For i-th sentence, two probability metrics are defined as follows:

Avg(− log p)i =−
1
J ∑

j
log pi, j (8.2)

Max(− log p)i = max
j

(
− log pi, j

)
(8.3)

where Avg(− log p)i is the average of token-level probabilities, and Max(− log p)i measures
the sentence’s likelihood by assessing the least likely token in the sentence.

Entropy

Entropy measures can utilize more information in the output distribution. The entropy of the
output distribution at the token level is defined as follows:

Hi, j =− ∑
w∈W

P(w|x1,1, ...,xi, j−1;θθθ) logP(w|x1,1, ...,xi, j−1;θθθ) (8.4)

where P(w|x1,1, ...,xi, j−1;θθθ) is the probability of the token w being generated at the j-th
token of the i-th sentence andW is the set of all possible tokens in the vocabulary. Similar
to the probability-based metrics, two entropy-based metrics are defined for sentence-level
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measures as follows:

Avg(H)i =
1
J ∑

j
Hi, j (8.5)

Max(H)i = max
j

(
Hi, j

)
(8.6)

The average token-level entropy in Equation 8.5 is a sum of conditional entropies via the
entropy chain rule. This measure has been shown to be a Monte-Carlo approximation (with 1
sample) of the total uncertainty in an autoregressive prediction by Malinin and Gales [181].

8.1.3 Black-Box Factuality Assessment

A drawback of grey-box methods is that they require output token-level probabilities. Though
this may seem a reasonable requirement, for massive LLMs only available through limited
API calls, such token-level information may not be available (such as with ChatGPT).
Therefore, this work considers black-box approaches which remain applicable even when
only text-based responses are available.

Proxy LLMs

A simple approach to approximate the grey-box approaches is by using a proxy LLM θ̃θθ , i.e.
another LLM that we have full access to, such as LLaMA [286]. A proxy LLM can be used
to approximate the output token-level probabilities of the black-box LLM θθθ that generates
the text. Hence, the measures previously defined in the grey-box section is approximated by:

P(.|x1,1, ...,xi, j−1;θθθ)≈ P(.|x1,1, ...,xi, j−1; θ̃θθ) (8.7)

As this method only requires access to the text X , the probability and entropy measures can
then be computed as in Equations 8.2, 8.3, 8.5, 8.6 without the probability distribution of
θθθ . It should be noted that the proxy LLM method is based on the assumption that the proxy
LLM θ̃θθ has a distribution similar to the original LLM θθθ . If the two LLMs are different, this
method is expected to perform poorly as different LLMs have different generating patterns,
i.e., poor approximation in Equation 8.7.

8.2 SelfCheckGPT

SelfCheckGPT is a family of sampling-based methods that are designed to detect whether
responses generated by LLMs are hallucinated or factual. The motivating idea of SelfCheck-
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GPT is that when an LLM has been trained on a given concept, the sampled responses are
likely to be similar and contain consistent facts. However, for hallucinated facts, stochasti-
cally sampled responses are likely to diverge and may contradict one another. By sampling
multiple responses from an LLM, one can measure information consistency between the
different responses and determine if statements are factual or hallucinated. The variants of
SelfCheckGPT derive from different methods that can be used for measuring the information
consistency between two texts. These methods (or variants of the SelfCheckGPT approach)
include BERTScore (in Section 8.2.1), MQAG (in Section 8.2.2), n-gram language model
(in Section 8.2.3), natural language inference (NLI) model (in Section 8.2.4), and LLM
prompting (in Section 8.2.5). As SelfCheckGPT only leverages sampled responses, it has the
added benefit that it can be used for black-box models, and it requires no external database.
To the best of our knowledge, SelfCheckGPT is the first work to analyze model hallucination
of general LLM responses, and is the first zero-resource hallucination detection solution that
can be applied to black-box systems.

Notation: Following the notation used in the grey-box section,

• X is the LLM’s response (to be assessed) from a given query

• xi is the i-th sentence in X

• xi, j is the j-th token in xi

• {S1,S2, ...,SN} are stochastic responses from the same LLM using the same query

• sn
i is the i-th sentence in Sn

• S(xi) is the hallucination score of xi

SelfCheckGPT draws N stochastic LLM response responses using the same query. It then
measures the consistency between the response and the stochastic responses. SelfCheckGPT
is designed to predict the hallucination score of the i-th sentence, S(xi), such that S(xi) ∈
[0.0,1.0],3 where S(xi)→ 0.0 if the i-th sentence is grounded in valid information and
S(xi)→ 1.0 if the i-th sentence is hallucinated. The following sections will describe each of
the SelfCheckGPT variants.

8.2.1 SelfCheckGPT with BERTScore

Having described a general framework of SelfCheckGPT, its first variant is SelfCheckGPT
with BERTScore. This method compares the response X against the samples {S1,S2, ...,SN}

3With the exception of SelfCheckGPT with n-gram as the score of n-gram language model is not bounded.
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using BERTScore [343]. Let B(., .) denote the BERTScore between two sentences. This
computes the average BERTScore of xi with the most similar sentence from each drawn
sample as follows:

SBERT(xi) = 1.0− 1
N

N

∑
n=1

max
k

(B(xi,sn
k)) (8.8)

This way if the information in a sentence appears in many drawn samples, one may assume
that the information is factual, whereas if the statement appears in no other sample, it is likely
a hallucination. In this work, RoBERTa-Large [170] is used as the backbone of BERTScore.

8.2.2 SelfCheckGPT with Question Answering

LLM
e.g. GPT-3

Giuseppe Mariani was an Italian
professional footballer who played as a
forward. He was born in Milan, Italy,
and died in Rome, Italy. [truncated]

Passage

QG

Question: Where...
A. Milan
B. rome
C. Turin
D. Florence

Giuseppe Mariani was an Italian painter,
sculptor, and engraver. He was born in
Naples, Italy, in 1882, and died in Paris,
France, in 1944. Mariani's work has been
exhibited at the Musée d'Orsay, [truncated]

Giuseppe Mariani was an Italian violinist,
pedagogue and composer. He was born in
Pavia, Italy, on 4 June 1836, and died in
Rome on 10 October 1914. [truncated]

stochastic
(beam = 10)

randomly-drawn passages

Do answers
agree?

QA

Fig. 8.2 SelfCheckGPT with MQAG.

We consider using the MQAG framework (proposed in Section 7.2.2) to measure consistency
for SelfCheckGPT. MQAG assesses consistency by generating multiple-choice questions
over the main generated response, which an independent answering system can attempt to
answer while conditioned on the other sampled responses. First, in the generation stage G,
for the sentence xi, we draw questions Q and options O:

Q,O∼ PG(Q,O|xi) (8.9)
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For each drawn question Q and associated options O, the answering stage A selects two
answers:4 AX is the answer grounded on the response to be assessed X and ASn is the answer
grounded on the sample Sn,

AX = argmax
o

[PA(o|Q,X ,O)] (8.10)

ASn = argmax
o

[PA(o|Q,Sn,O)] (8.11)

We compare AX is to ASn for sample in {S1, ...,SN}, yielding the number of matches Nm and
the number of not-matches Nn:

Nm =
N

∑
n=1

J

∑
j=1

I[AX = ASn ] (8.12)

Nn =
N

∑
n=1

J

∑
j=1

I[AX ̸= ASn] (8.13)

where I[.] = 1.0 if the statement is true; otherwise I[.] = 0.0. A simple (inconsistency) score
for xi and question Q based on the match and not-match counts is defined as:

SQA(xi,Q) =
Nn

Nm+Nn
(8.14)

Furthermore, to take into account the answerability of generated questions, we apply the
Bayes Theorem as follows. Let P(F) denote the probability of the i-th sentence being
non-factual, and P(T) denote the probability of the i-th sentence being factual. For a question
Q, the probability of i-th sentence being non-factual given a set of matched answers Lm and a
set of not-matched answers Ln is:

P(F|Lm,Ln) =
P(Lm,Ln|F)P(F)

P(Lm,Ln|F)P(F)+P(Lm,Ln|T)P(T)

=
P(Lm,Ln|F)

P(Lm,Ln|F)+P(Lm,Ln|T)
(8.15)

4This is equivalent is the one-best method of MQAG defined in Equation 7.9 and Equation 7.13.
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where we assume the sentence is equally likely to be False or True, i.e. P(F) = P(T). The
probability of observing Lm,Ln when the sentence is False (i.e., non-factual):

P(Lm,Ln|F) = ∏
A∈Lm

P(A = AR|F) ∏
A′∈Ln

P(A′ ̸= AR|F)

= (1−β1)
Nm(β1)

Nn (8.16)

and probability of observing Lm,Ln when the sentence is True (i.e., factual):

P(Lm,Ln|T) = ∏
A∈Lm

P(A = AR|T ) ∏
A′∈Ln

P(A′ ̸= AR|T )

= (β2)
Nm(1−β2)

Nn (8.17)

where Nm and Nn are the number of matched answers and the number of not-matched answers,
respectively. Hence, we can simplify Equation 8.15:

P(F|Lm,Ln) =
γ

Nn
2

γ
Nm
1 + γ

Nn
2

(8.18)

where γ1 =
β2

1−β1
and γ2 =

β1
1−β2

. Lastly, instead of rejecting samples having an answerability
score below a threshold,5 we find empirically that soft-counting (defined below) improves
the detection performance. We set both β1 and β2 to 0.8.

N′m = ∑
n s.t. An∈Lm

αn; N′n = ∑
n s.t. An∈Ln

αn (8.19)

where αn = PU(answerable|Q,Sn). Therefore, the SelfCheckGPT-QA score with the Bayes
theorem that considers soft-counting is

SQA(xi,Q) = P(F|Lm,Ln) =
γ

N′n
2

γ
N′m
1 + γ

N′n
2

(8.20)

Ultimately, SelfCheckGPT with QA is the average of inconsistency scores across q,

SQA(xi) = EQ [SQA(xi,Q)] (8.21)

5α is between 0.0 (unanswerable) and 1.0 (answerable). Standard-counting Nm and Nn can be considered
as a special case of soft-counting where α is set to 1.0 if α is greater than the answerability threshold and
otherwise α is 0.0.
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SelfCheckGPT with MQAG: Implementation

MQAG developed in the previous section (in Section 7.2.2) is used in SelfCheckGPT-
QA. MQAG has two generators: G1 generates the question and associated answer, and G2
generates distractors. The two-stage generation is,

Q,A∼ PG1(Q,A|xi) and O\A ∼ PG2(O\A|Q,A,X) (8.22)

where O = {A,O\A}= {o1, ...,o4}. In addition, to filter out bad (unanswerable) questions,
we define an answerability score [245]:

α = PU(answerable|Q,context) (8.23)

where the context is either the response X or sampled passages Sn, and α → 0.0 for unan-
swerable and α → 1.0 for answerable. We use α to filter out unanswerable questions which
have α lower than a threshold or use α in the soft-counting measure discussed previously.

8.2.3 SelfCheckGPT with n-gram

Given samples {S1, ...,SN} generated by an LLM, one can use the samples to create a new
language model that approximates the LLM. In the limit, as N gets sufficiently large, the new
language model will converge to the LLM that generated the responses. We can therefore
approximate the LLM’s token probabilities using the new language model.

In practice, due to time and/or cost constraints, there can only be a limited number of
samples N. Consequently, we train a simple n-gram model using the samples {S1, ...,SN} and
the main response X . This is similar to the proxy LLM method described in Section 8.1.3, but
this method instead trains an n-gram model on X and {S1, ...,SN} to obtain an approximated
probability distribution. For simplicity of notation, this notation for n-gram will omit i in
xi, j, and let w j denote xi, j the j-th token of the i-th sentence. An n-gram model makes the
following approximation,

P(w j|w1: j−1)≈ P(w j|w j−n+1: j−1) (8.24)

and the probability of xi, j is approximated by counting the occurrences of n-grams,

p̃i, j = P(w j|w j−n+1: j−1) =
Count(w j−n+1: j)

Count(w j−n+1: j−1)
(8.25)
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where Count(w j−n+1: j) is the occurrence of the n-gram w j−n+1: j in {X ,S1, ...,SN}. Note
that including X in training can be considered as a smoothing method where the occurrence
of each n-gram in X is increased by 1. SelfCheckGPT with n-gram computes the average of
the log-probabilities of the sentence in response X ,

SAvg
n-gram(xi) =−

1
J ∑

j
log p̃i, j (8.26)

where p̃i, j is the probability (of the j-th token of the i-th sentence) computed using the n-gram
model. Similar to the grey-box approach, we can also use the maximum of the negative log
probabilities,

SMax
n-gram(xi) = max

j

(
− log p̃i, j

)
(8.27)

8.2.4 SelfCheckGPT with NLI

Natural Language Inference (NLI) determines whether a hypothesis follows a premise, clas-
sified into either entailment/neutral/contradiction. NLI measures have been used to measure
faithfulness in summarization, where Maynez et al. [193] use a textual entailment classifier
trained on MNLI [313] to determine if a summary contradicts a context or not. Inspired by
the NLI-based summary assessment method, we consider using the NLI contradiction score
as a SelfCheckGPT score.

For SelfCheck-NLI, we use DeBERTa-v3-large [102] fine-tuned to MNLI as the NLI
model. The input for NLI classifiers is typically the premise concatenated to the hypothesis,
which for this methodology is the sampled passage Sn concatenated to the sentence to be
assessed xi. Only the logits associated with the ‘entailment’ and ‘contradiction’ classes are
considered,

P(contradiction|xi,Sn) =
exp(zc)

exp(ze)+ exp(zc)
(8.28)

where ze and zc are the logits of the ‘entailment’ and ‘contradiction’ classes, respectively.
We use this normalization instead of taking the probability of P(contradiction) out of the 3
classes directly to bound the score within 0.0 and 1.0.

SNLI(xi) =
1
N

N

∑
n=1

P(contradiction|xi,Sn) (8.29)

8.2.5 SelfCheckGPT with Prompt

LLMs have recently been shown to be effective in assessing information consistency between
a document and its summary in zero-shot settings such as in Chapter 7 and Luo et al. [179].
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LLM
e.g. GPT-3

Giuseppe Mariani was
an Italian professional
footballer who played
as a forward. He was
born in Milan, Italy. He

died in Rome, Italy.
[truncated]

Giuseppe Mariani was an
Italian painter, sculptor,
and engraver. He was
born in Naples, Italy, in
1882, and died in Paris,
France, in 1944.
[truncated]

Giuseppe Mariani was an
Italian violinist,
pedagogue and
composer. He was born
in Pavia, Italy, on 4 June
1836. [truncated]

Stochastically-generated responses

SelfCheckGPT Score
(e.g. how often is the sentence supported by the samples)

N samples

Does {sample1}

support {sentence}?

Answer: [Yes/No]

LLM

sample1 sampleN

Does {sampleN}

support {sentence}?

Answer: [Yes/No]

LLM's passage
to be evaluated at

sentence-level 

...

...

No Yes No... ...

Fig. 8.3 SelfCheckGPT with Prompt. Each LLM-generated sentence is compared against stochastically
generated responses with no external database. A comparison method can be, for example, through
LLM prompting as shown above.

Based on these findings, we propose to query an LLM to assess whether the i-th sentence is
supported by sample Sn (as the context) using the following prompt.

------------------------------------------------

Context: {}

Sentence: {}

Is the sentence supported by the context above?

Answer Yes or No:

------------------------------------------------

Initial investigation showed that GPT-3 (text-davinci-003) will output either Yes or No 98%
of the time, while any remaining outputs can be set to N/A. The output from prompting
when comparing the i-th sentence, xi, against sample Sn is converted to score zn

i through the
mapping {Yes: 0.0, No: 1.0, N/A: 0.5}. The final inconsistency score is then calculated as:

SPrompt(xi) =
1
N

N

∑
n=1

zn
i (8.30)
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SelfCheckGPT-Prompt is illustrated in Figure 8.3. Note that our initial investigations found
that less capable models such as GPT-3 (text-curie-001) or LLaMA-7B failed to effectively
perform consistency assessment via such prompting. The reason why LLaMA-7B cannot per-
form LLM prompting is likely because it has not been adapted to follow human instructions.
In contrast, as we will show in the experimental section (in Section 8.4), the chat variants of
the newer Llama-2 are capable of performing LLM prompting.

8.3 Resources for Evaluating Hallucination in LMs

Prior to this work, resources for studying hallucination detection were limited to NLG tasks
such as summarization and machine translation, or artificially perturbed texts. For example, as
used for summary assessment in the previous chapter, QAG-CNNDM/XSum [297], XSum-
Hallucination [193], SummEval [67] are datasets where summaries have consistency or
factuality annotations. In machine translation, Guerreiro et al. [97] recently released a dataset
consisting of 3,415 annotated for hallucination detection. In general text language model
generation, HADES [166] was constructed by perturbing factual texts. and thus may not
reflect true open-domain LLM hallucination.

Although these datasets are developed for hallucination detection, none of them were
developed for assessing real language model generation. As a result, this work introduces a
new dataset for benchmarking hallucination detection approaches. This new dataset, based
on real GPT-3 generation, is constructed as follows:

1. Generate synthetic Wikipedia articles using GPT-3 (text-davinci-003) on the individu-
als/concepts from WikiBio [156]

2. Manually annotate the factuality of the passage at a sentence level

3. Evaluate the system’s ability to detect hallucinations6

WikiBio is a dataset where each input contains the first paragraph (along with tabular infor-
mation) of Wikipedia articles on a specific concept. We rank the WikiBio test set in terms of
paragraph length and randomly sample 238 articles from the top 20% of longest articles (to
ensure no very obscure concept is selected). GPT-3 (text-davinci-003) is then used to gen-
erate Wikipedia articles on a concept, using the prompt "This is a Wikipedia passage
about {concept}:". Table 8.1 provides the statistics of GPT-3 generated passages.

6In the experiments described in Section 8.4.1, we consider two scenarios of non-factuality. First, ’NonFact’
is when both major-inaccurate and minor-inaccurate labels are grouped into the non-factual class. Second,
’NonFact∗’ is a more challenging task of detecting major-inaccurate sentences in passages that are not total
hallucination passages.
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#Passages #Sentences #Tokens/passage

238 1908 184.7±36.9

Table 8.1 The statistics of WikiBio GPT-3 dataset where the number of tokens is based on the OpenAI
GPT-2 tokenizer. ± indicates standard deviation.

We then annotate the sentences of the generated passages using the guidelines shown in
Figure 8.4 such that each sentence is classified as either:

• Major Inaccurate (Non-Factual, 1): The sentence is entirely hallucinated, i.e. the
sentence is unrelated to the topic.

• Minor Inaccurate (Non-Factual, 0.5): The sentence consists of some non-factual
information, but the sentence is related to the topic.

• Accurate (Factual, 0): The information presented in the sentence is accurate.

Is it related to
the context

Major Inaccurate
(Non-factual 1)

No

Is it Factual?
e.g. using Wikipedia /

Google Search

Yes

No Minor Inaccurate
(Non-factual 0.5)

Yes

Accurate
(Factual 0)

Fig. 8.4 Flowchart of the annotation process

Of the 1908 annotated sentences, 761 (39.9%) of the sentences were labelled major-inaccurate,
631 (33.1%) minor-inaccurate, and 516 (27.0%) accurate. 201 sentences in the dataset had
annotations from two different annotators. To obtain a single label for this subset, if both
annotators agree, then the agreed label is used. However, if there is disagreement, then the
worse-case label is selected (e.g. {minor inaccurate, major inaccurate} is mapped to major
inaccurate). The inter-annotator agreement, as measured by Cohen’s κ [40], has κ values of
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0.595 and 0.748, indicating moderate and substantial agreement [291] for the 3-class and
2-class scenarios, respectively.7

Annotation 3-label 2-label

Cohen’s κ 0.595 0.748

Table 8.2 Inter-annotator agreement where 3-label means selecting from accurate, minor inaccurate,
major inaccurate. 2-label is calculated by combining minor/major into one label.
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Fig. 8.5 Document factuality scores histogram plot

Passage-level scores can then be obtained by averaging the sentence-level labels in each
passage. These scores are essentially the consistency scores for passages. The distribution of
passage-level scores is shown in Figure 8.5, where we observe a large peak at +1.0. We refer
to the points at this peak as total hallucination, which occurs when the information of the
response is unrelated to the real concept and is entirely fabricated by the LLM.

Lastly, to increase the reproducibility of this work and to provide a resource for hallucination
detection, this dataset is open-sourced at https://huggingface.co/datasets/potsawee/wiki_bio_
gpt3_hallucination.

73-class refers to when selecting between accurate, minor inaccurate, major inaccurate. 2-class refers to
when minor/major inaccuracies are combined into one label.

https://huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination
https://huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination
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8.4 Experiments

The generative LLM used to generate passages for the dataset is GPT-3 (text-davinci-003)8,
the state-of-the-art system at the time of creating and annotating the dataset. To obtain the
main response, we set the temperature to 0.0, and set the maximum number of tokens to
the model’s limit. For the stochastically generated samples, we set the temperature to 1.0
and generate N=20 samples. For the proxy LLM approach, we use LLaMA [286], one of
the best-performing open-source LLMs currently available at the time of conducting the
experiments. For SelfCheckGPT-Prompt, we consider both GPT-3 (which is the same LLM
that is used to generate passages) as well as ChatGPT (gpt-3.5-turbo) which was recently
released in March 2023.

8.4.1 Sentence-level Hallucination Detection

First, we investigate whether SelfCheckGPT hallucination detection methods can identify
the factuality of sentences. In detecting non-factual sentences, both major-inaccurate labels
and minor-inaccurate labels are grouped together into the non-factual class, while the factual
class refers to accurate sentences. In this setup, there are 1392 (out of 1908) sentences with
the non-factual label and 516 sentences with the factual label. In addition, we consider a
more challenging task of detecting major-inaccurate sentences in passages that are not total
hallucination passages, which we refer to as non-factual∗. In this setup, there remain 206
non-factual∗ passages (or 1632 sentences). Out of 1632 sentences, 485 sentences have the
non-factual label. Figure 8.6 and Table 8.3 show the performance of SelfCheckGPT methods,
where the following observations can be made:

1) LLM’s probabilities p correlate well with factuality. The results show that probability
measures (from the LLM generating the texts) are strong baselines for assessing factuality.
Factual sentences can be identified with an AUC-PR of 53.97, significantly better than the
random baseline of 27.04, with the AUC-PR for hallucination detection also increasing
from 72.96 to 83.21. This supports the hypothesis that when the LLMs are uncertain about
generated information, generated tokens often have higher uncertainty, paving a promising
direction for hallucination detection approaches. Also, the probability p measure performs
better than the entropyH measure of top-5 tokens.

2) Proxy LLM perform noticeably worse than LLM (GPT-3). The results of proxy LLM
(based on LLaMA) show that the entropyH measures outperform the probability measures.
This suggests that using richer uncertainty information can improve factuality/hallucination

8This series of GPT models is now more commonly referred to as GPT-3.5.
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Method
Sentence-level (AUC-PR) Passage-level (Corr.)

NonFact NonFact* Factual Pearson Spearman

Random 72.96 29.72 27.04 - -
GPT-3 (text-davinci-003)’s probabilities (LLM, grey-box)
Avg(−logp) 83.21 38.89 53.97 57.04 53.93
Avg(H)† 80.73 37.09 52.07 55.52 50.87
Max(−logp) 87.51 35.88 50.46 57.83 55.69
Max(H)† 85.75 32.43 50.27 52.48 49.55
LLaMA-30B’s probabilities (Proxy LLM, black-box)
Avg(−logp) 75.43 30.32 41.29 21.72 20.20
Avg(H) 80.80 39.01 42.97 33.80 39.49
Max(−logp) 74.01 27.14 31.08 -22.83 -22.71
Max(H) 80.92 37.32 37.90 35.57 38.94
SelfCheckGPT (black-box)
w/ BERTScore 81.96 45.96 44.23 58.18 55.90
w/ QA 84.26 40.06 48.14 61.07 59.29
w/ Unigram (max) 85.63 41.04 58.47 64.71 64.91
w/ NLI 92.50 45.17 66.08 74.14 73.78
w/ Prompt (Llama2-chat-7B) 89.05 44.01 63.06 61.52 72.65
w/ Prompt (Llama2-chat-13B) 91.91 57.10 64.34 75.44 75.54
w/ Prompt (ChatGPT) 93.42 53.19 67.09 78.32 78.30

Table 8.3 Sentence-level detection performances are measured by AUC-PR where the PR plot is
shown in Figure 8.6. Passage-level ranking performances are measured by Pearson correlation
coefficient and Spearman’s rank correlation coefficient w.r.t. human judgements, and the scatter plots
are provided in Figure 8.9 and Figure 8.10. †GPT-3 API returns the top-5 tokens’ probabilities, which
are used to compute entropy.

detection performance, and that previously the entropy of top-5 tokens is likely to be in-
sufficient. However, when using other proxy LLMs such as GPT-NeoX or OPT-30B, the
performance is near that of the random baseline. We believe this poor performance occurs as
different LLMs have different generating patterns, and so even common tokens may have a
low probability in situations where the response is dissimilar to the generation style of the
proxy LLM. We note that a weighted conditional LM score such as BARTScore [337] could
be incorporated in future investigations.

3) SelfCheckGPT outperforms grey-box approaches. It can be seen that SelfCheckGPT-
Prompt considerably outperforms the grey-box approaches (including GPT-3’s output prob-
abilities) as well as other black-box approaches. Even other variants of SelfCheckGPT,
including BERTScore, QA, n-gram, and NLI outperform the grey-box approaches in most
setups. Interestingly, despite being the least computationally expensive method, SelfCheck-
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(c) Factual Sentences

Fig. 8.6 PR-curve of sentence-level detection tasks on the GPT-3 generated WikiBio passages.

GPT with unigram (max) works well across different setups. Essentially, when assessing a
sentence, this method picks up the token with the lowest occurrence given all the samples.
This suggests that if a token only appears a few times (or once) within the generated samples
(N = 20), it is likely non-factual.

4) SelfCheckGPT with n-gram. In Table 8.4, when investigating the n-gram performance
from 1-gram to 5-gram, the results show that simply finding the least likely token/n-gram is
more effective than computing the average n-gram score. Additionally, as n increases, the
performance of SelfCheckGPT with n-gram (max) drops. This is because as n increases,
although the n-gram model can take into account more information, it requires more data to
train the n-gram model and this could increase exponentially with n, e.g., for unigram, the
size of all possible unigram is the vocabulary size |V |, and this size becomes |V |n for n-gram.
Figure 8.7 shows ablation results where the 20 samples are randomly drawn to investigate
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the impact of N on the performance. These results show that the performance of the bigram
model starts to match the unigram model when N is near 20.

n-gram
Sent-level (AUC-PR) Passage-level

NonFact NonFact* Fact Pear. Spear.

Avg(−logp)
1-gram 81.52 40.33 41.76 40.68 39.22
2-gram 82.94 44.38 52.81 58.84 58.11
3-gram 83.56 44.64 53.99 62.21 63.00
4-gram 83.80 43.55 54.25 61.98 63.64
5-gram 83.45 42.31 53.98 60.68 62.96
Max(−logp)
1-gram 85.63 41.04 58.47 64.71 64.91
2-gram 85.26 39.29 58.29 62.48 66.04
3-gram 84.97 37.10 57.08 57.34 60.49
4-gram 84.49 36.37 55.96 55.77 57.25
5-gram 84.12 36.19 54.89 54.84 55.97

Table 8.4 The performance using different n-gram models in the SelfCheckGPT with n-gram method.
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Fig. 8.7 Ablation on the number of samples N and passage-level correlation obtained by drawing
samples randomly from 20 samples with replacement.

5) SelfCheckGPT with NLI. The NLI method outperforms all black-box and grey-box
baselines, and its performance is close to the performance of the Prompt method. As
SelfCheckGPT with Prompt can be computationally heavy, SelfCheckGPT with NLI could
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be the most practical method as it provides a good trade-off between performance and
computation.

Threshold for sentence-level hallucination detection

A threshold can be tuned on a development set for the best performance to find the optimal
operating threshold. For example, we can optimize for the best F1 score on the WikiBio GP3
Hallucination dataset. By varying the threshold between 0.0 and 1.0 as shown in Figure 8.8,
the optimal threshold for SelfCheckGPT-NLI for detecting non-factual sentences is 0.5397
and for detecting factual sentences is 0.2948. We note that the optimal threshold varies
depending on the task, variant, and criterion, e.g., in this particular example, we use the F1
score. Alternative criteria are, for instance, balanced accuracy or any other metric that might
align better with the task of interest.
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Fig. 8.8 Case study on finding the optimal threshold for SelfCheckGPT-NLI on the WikiBio-GP3
Hallucination dataset based on the F1-score as the criterion.

8.4.2 Passage-level Factuality Ranking

Previous results demonstrate that SelfCheckGPT is an effective approach for predicting
sentence-level factuality. An additional consideration is whether SelfCheckGPT can also
be used to determine the overall factuality of passages. Passage-level factuality scores are
calculated by averaging the sentence-level scores over all sentences.

Spassage =
1
N ∑

i
S(xi) (8.31)
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where S(xi) is the sentence-level score, and N is the number of sentences in the passage.
Since human judgement is somewhat subjective, averaging the sentence-level labels would
lead to ground truths with less noise. Note that for Avg(− log p) and Avg(H), we compute
the average over all tokens in a passage. Whereas for Max(− log p) and Max(H), we first
take the maximum operation over tokens at the sentence level, and we then average over all
sentences following Equation 8.31.

Our results in Table 8.3 and Figure 8.9 show that all SelfCheckGPT methods correlate far
better with human judgements than the other baselines, including the grey-box probability
and entropy methods. SelfCheckGPT-Prompt is the best-performing method, achieving
the highest Pearson correlation of 78.32. Unsurprisingly, the proxy LLM approach again
achieves considerably lower correlations.
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(a) GPT-3 Avg(− log p)
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(b) LLaMA-30B Avg(H)
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(c) SelfCheckGPT-BERTScore
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(d) SelfCheckGPT-MQAG
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(e) SelfCheckGPT-Unigram(max)
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(f) SelfCheckGPT-NLI

Fig. 8.9 Scatter plot of passage-level scores where Y-axis = Method scores, X-axis = Human scores.
Correlations are reported in Table 8.3.



206 Generative AI Information Consistency

0.0 0.2 0.4 0.6 0.8 1.0
Human Score (0=Factual, +1=Non-Factual)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ho
d 

Sc
or

e

(a) SelfCheckGPT-Prompt (Llama2-13B)
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(b) SelfCheckGPT-Prompt (GPT-3.5)

Fig. 8.10 Scatter plot of passage-level scores where Y-axis = Method scores, X-axis = Human scores,
in addition to Figure 8.9

8.4.3 Ablation Studies

Given various components in the SelfCheckGPT method, we perform ablation studies to
investigate: (1) the zero-resource constraint where we compare SelfCheckGPT against each
variant with external knowledge; (2) the number of samples as SelfCheckGPT is based
on sampling; (3) the model choice in proxy LLM baselines; (4) the model choice in the
SelfCheckGPT with Prompt.

External Knowledge (instead of SelfCheck)

If external knowledge is available, one can measure the informational consistency between
the LLM response and the information source. In this experiment, we use the first paragraph
of each concept that is available in WikiBio.9 Our findings in Table 8.5 show the following.
First, SelfCheckGPT, with BERTScore/QA using self-samples, can yield comparable or
even better performance than when using the reference passage. Second, SelfCheckGPT
with n-gram shows a large performance drop when using the WikiBio passages instead of
self-samples. This failure is attributed to the fact that the WikiBio reference text alone is not
sufficient to train an n-gram model. Third, in contrast, SelfCheckGPT with NLI/Prompt can
benefit considerably when access to retrieved information is available. These results suggest
that information consistency methods such as NLI and LLM-prompting are effective when
there is a reference. While, other methods such as BERTScore, QA, and n-gram are more
sensitive to the reference. Therefore, if there is an external database for the use case, it could

9This method is no longer zero-resource as it requires retrieving relevant knowledge from external data.
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be more effective to adopt retrieval and compare (via NLI or LLM-prompting). Whereas if
there is no database, SelfCheckGPT can also be effective.

Method
Sent-lvl AUC-PR Passage-lvl

NoFac NoFac* Fact Pear. Spear.

SelfCheck-BERTScore 81.96 45.96 44.23 58.18 55.90
WikiBio+BERTScore 81.32 40.62 49.15 58.71 55.80

SelfCheck-QA 84.26 40.06 48.14 61.07 59.29
WikiBio+QA 84.18 45.40 52.03 57.26 53.62

SelfCheck-unigram 85.63 41.04 58.47 64.71 64.91
WikiBio+unigram 80.43 31.47 40.53 28.67 26.70

SelfCheck-NLI 92.50 45.17 66.08 74.14 73.78
WikiBio+NLI 91.18 48.14 71.61 78.84 80.00

SelfCheck-Prompt 93.42 53.19 67.09 78.32 78.30
WikiBio+Prompt 93.59 65.26 73.11 85.90 86.11

Table 8.5 The performance when using SelfCheckGPT samples versus external stored knowledge.

The Impact of the Number of Samples

Although sample-based methods are expected to perform better when more samples are
drawn, drawing more samples has higher computational costs. Thus, we investigate per-
formance as the number of samples varied. Our results in Figure 8.11 show that: (1) the
performance of SelfCheckGPT increases smoothly as more samples are used, with perfor-
mance gain diminishing as we generate more samples. (2) SelfCheckGPT with n-gram
requires the highest number of samples before its performance reaches a plateau. (3) Self-
CheckGPT requires at least around 5 samples to perform well while having more than 10
samples only yields a diminishing return in performance.

Model Choice for the Proxy LLM Method

Figure 8.12 illustrates that LLaMA is far better than other LLMs, and the performance of the
proxy LLM method generally increases with model size. Similarly, the average probability,
Avg(p), is closer to that of GPT-3 when using a larger proxy LLM as shown in Table 8.6.

The implications of these results are that: (1) the model size is not the only factor and
the amount of pre-training data can be more important similar to other tasks where smaller
models (such as LLaMA-7B) have been shown to outperform larger models [286]. (2)
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Fig. 8.11 The performance of SelfCheckGPT methods versus the number of samples.

the probability Avg(p) correlates with the detection performance. It is in line with the
second point (#2) in Section 8.4.1 where models that have different generation patterns,
corresponding to the model with low Avg(p), achieve low performance.
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Fig. 8.12 Performance of the Avg(H) method using a proxy LLM where the model sizes are:
LLaMA={7B, 13B, 30B}, OPT={125m, 1.3B, 13B, 30B}, GPT-J=6B, and NeoX=20B.

Model Choice for the SelfCheckGPT-Prompt Method

Here, we investigate whether the LLM generating the text can self-check its own text. We
use the prompt template provided in Section 8.2.5 for both GPT-3 (text-davinci-003) and
ChatGPT (gpt-3.5-turbo). For ChatGPT, a standard system message "You are a helpful
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LLM Size Avg(p)

GPT-3 175B 72.02

LLaMA 30B 65.25
LLaMA 13B 64.71
LLaMA 7B 63.70

OPT 30B 53.81
NeoX 20B 54.49
OPT 13B 52.80

GPT-J 6B 52.50
OPT 1.3B 49.20
OPT 125m 40.91

Table 8.6 Average token probability, Avg(p), over all tokens in GPT-3 generated passages.

assistant." is used in setting up the system. At the time of conducting experiments, the
API costs per 1,000 tokens were $0.020 for GPT-3 and $0.002 for ChatGPT. The estimated
costs for running the models to answer Yes/No on all 1908 sentences and 20 samples are
around $200 for GPT-3 and $20 for ChatGPT. Given the cost, we conducted the experiments
on 4 samples in the ablation study comparing GPT-3 and ChatGPT. Table 8.7 shows the
breakdown of predictions made by GPT-3 and ChatGPT.

GPT-3
ChatGPT

Yes No

Yes 3179 1038
No 367 3048

Table 8.7 Breakdown of the predictions made by GPT-3 and ChatGPT when prompted to answer Yes
(supported) or No (not-supported).

The passage-ranking results in Table 8.8 show that GPT-3 can self-check its own text, and
is better than Llama-2-chat-13B model. However, ChatGPT shows an improvement over
GPT-3 in evaluating whether the sentence is supported by the context. Nevertheless, this
finding shows that (1) GPT-3 can self-check itself, and (2) the LLMs considered are able to
perform SelfCheckGPT-Prompt.
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Text-Gen SelfCheck-Prompt N Pear. Spear.

GPT-3 GPT-3 4 73.11 74.69
GPT-3 ChatGPT 4 76.47 76.41
GPT-3 Llama-2-chat-13B 4 72.89 72.97

GPT-3 ChatGPT 20 78.32 78.30
GPT-3 Llama-2-chat-13B 20 75.44 75.54

Table 8.8 Comparison of GPT-3 (text-davinci-003) and ChatGPT (gpt-3.5.turbo) as the prompt-based
text evaluator in SelfCheckGPT-Prompt. †Taken from Table 8.3 for comparison.

8.5 Chapter Summary

This chapter considers information consistency in the context of general language model
generation. We propose SelfCheckGPT, a zero-resource hallucination detection approach that
is applicable to any black-box LLM without the need for external resources. SelfCheckGPT
is inspired by summary and NLG assessment methods, including BERTScore, MQAG, NLI,
and zero-shot LLM Prompting. We collect, annotate, and release a new resource for real
LLM hallucination detection such as GPT-3. Based on experimental results, SelfCheckGPT
outperforms a range of considered black-box and grey-box baseline detection methods at
both the sentence and passage levels as well as competitive against methods that require an
external knowledge database.

Limitations and Future Work

Due to the rapid adoption of LLMs, hallucination detection has received growing interest
from the NLP community, and a number of new research works in this area have been
released in recent months concurrent with and following this work. For example, the survey
paper by Pan et al. [221] taxonomizes self-correction strategies, which are predominantly
proposed and developed in the past one-year span. Therefore, this section is meant to discuss
the limitations and potential improvements of SelfCheckGPT as suggested by the relevant
following work.

First, in this study, the generated texts were predominantly passages about individuals in the
WikiBio dataset. To further investigate the nature of LLM’s hallucination, a wider range of
concepts could be explored. To this end, the following work by Mündler et al. [205], for
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example, extended this idea and constructed a dataset based on Wikipedia comprising 30
diverse topics such as architecture, art, history, politics, sports, television, etc.

In addition, this work considers factuality at the sentence level, but as suggested by Min
et al. [200], a single sentence may consist of multiple pieces of information and contain
both factual and non-factual information. Hence, FActScore [200] considers a fine-grained
factuality evaluation by decomposing sentences into atomic facts (i.e., pieces of information)
by prompting an LLM to perform the decomposition in a zero-shot manner.

Lastly, we note that SelfCheckGPT is a post-hoc correction method, which addresses the
model output after it has been generated, unlike training-time methods which update the
model parameters or inference-time methods which use some feedback to guide the generation
process. A training-time method could mitigate hallucination by using reinforcement learning
with a reward function that measures the factuality of generated responses. Inference-time
methods have the potential to mitigate hallucination, for example, self-consistency decoding
[304] and tree-of-thought decoding [332]. SelfCheckGPT, as a post-hoc method, should be
complementary to training-time and inference-time methods.





Chapter 9

Conclusion

First, this thesis studied abstractive summarization and information consistency, and their
importance and challenges were outlined in Chapter 1. This thesis then introduced the
background to deep learning in Chapter 2 and foundation models in Chapter 3, which have
revolutionized artificial intelligence and NLP. These two chapters provided the basis for
recent developments in the area. Chapter 4 then provided the background of summarization,
which is the focus of this thesis.

After providing the background, this thesis investigated four main topics: (1) abstractive
summarization with hierarchical RNNs in Chapter 5, (2) abstractive summarization with
foundation models in Chapter 6, (3) information consistency in summarization in Chapter 7,
and (4) information consistency in broader generative AI in Chapter 8. Regarding the
first three topics, this thesis examines the existing technology and proposes techniques
for improvements. On the other hand, regarding the last topic, this thesis proposes a new
approach to address hallucination in generative language model generation, which is a
relatively unexplored area prior to this work. While the proposed method for addressing
hallucination in generative language model generation may not be perfect, as one of the first
attempts, it is anticipated that it will inspire future research and start new advancements in
the field. Lastly, this final chapter is intended to summarize the contributions made in each
of the previous main chapters and to present known limitations and potential future work.

9.1 Summary of Contributions

• Chapters 2, 3, and 4, provided a relevant literature review. The link between MBR
training and reinforcement learning was shown in Section 2.2.2, and hierarchical ensemble
of generative models was proposed in Section 2.4.
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• Chapter 5 proposed explicit utterance-level attention diversity model and unigram bias
decoding, and showed that both techniques improve the hierarchical RNN system on limited
data. Furthermore, It demonstrated that a multi-task learning method, which incorporates
dialogue act and salient utterance information, is useful for summarization. The hierarchical
model with multi-task and diversity objectives with unigram bias decoding was found to
be the best configuration for the meeting summarization dataset. For a real-world spoken
document application based on an ASR system with WER of around 20%, summarization
performance close to that obtained from manual transcription can be achieved.

• Chapter 6 contributed to improving abstractive summarization with foundation models
for long-span and efficient summarization in three directions. First, on content selection
via sentence filtering, this chapter distinguished between training time and inference time
methods, and provided a good practice for both phases. At the training time, this work
showed that the oracle method with random sentences padded yields the best results. At
the inference time, this work proposed multi-task content selection (MCS) that shows an
improvement over sentence filtering baselines. The experimental results demonstrated that
content selection is essential, in particular for longer documents such as the articles in the
arXiv dataset. Second, on efficient encoder via local self-attention, this work presented
the design considerations for local self-attention BART, and investigated the feasibility and
performance of different network configurations. By combining the local self-attention
technique with MCS, our system achieved state-of-the-art results at the time in terms of
ROUGE scores in all three long-span summarization tasks. Third, this work showed that the
computational cost of the transformer-based decoder becomes more significant at inference.
Towards reducing this cost, this work showed that there is sparsity in the encoder-decoder
attention that enables a reduction in the computational cost with minimal degradation in
performance. Next, by partitioning the sentence-level attention score and augmenting the
standard decoder, the modified model can perform sentence selection with the performance
converging to that of the full attention baseline, while achieving an improved complexity.

In addition to the three main contributions, Chapter 6 also applied ensemble methods,
which are underexplored in summarization. This work also introduced hierarchical ensemble
of summarization models (HESM) which combines the token-level ensemble method and
MBR decoding. Section 6.5.7 demonstrated the effectiveness of ensemble techniques where
our systems were ranked first in both the Spotify Podcast Summarization Challenge 2020
and the Medical Problem List Summarization Challenge (ProbSum at BioNLP) 2023.

• Chapter 7 proposed MQAG, a novel scheme for assessing information consistency between
the source and the summary based on the statistical distance between multiple-choice answer
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distributions instead of text-based answer spans in existing question-answering methods.
The experiments demonstrated the potential of this alternative approach which outperforms
existing techniques on summary assessment datasets. The realization of the framework
exploits current multiple-choice question generation and answering systems. Its performance
is expected to increase as backbone systems improve, for example, the diversity of questions
generated and the selection of options. Also, the framework is highly interpretable, allowing
more insight into summary assessment. In addition, Chapter 7 investigated zero-shot as-
sessment methods and proposed LLM comparative assessment, a simple and highly flexible
zero-shot approach to NLG assessment such as summary assessment. The experiments
demonstrated that for moderately sized LLMs, comparative assessment outperforms standard
LLM prompting absolute scoring, and is an effective automatic assessment, achieving near
state-of-the-art performance. Furthermore, this work also assembled and released a new
resource for summary assessment called Podcast Summary Assessment (PSA). The corpus
is unique in that the data consists of podcast episodes, instead of news articles which have
received more attention, and the documents are long which can be more challenging for
assessment methods. The benchmark of this new resource is provided in Appendix A.

• Chapter 8 provided the first (or one of the first) work to consider the task of hallucination
detection for general large language model responses. The chapter proposed SelfCheckGPT, a
zero-resource approach that is applicable to any black-box LLM without the need for external
resources, and demonstrated the efficacy of our method. The experimental results showed that
SelfCheckGPT outperforms a range of grey-box and black-box baseline detection methods at
both the sentence and passage levels. This work also released an annotated dataset for GPT-3
hallucination detection with sentence-level factuality labels.

9.2 Limitations and Future Work

Given that the work in this thesis is in a fast-moving field, some of the limitations in this
work, especially in the earlier part, have been further studied and/or addressed by following
works by other researchers. Thus, this section splits the limitations for the discussion into
two groups at the time of writing: (1) limitations with recently proposed solutions, and (2)
limitations for future work.

9.2.1 Limitations with Recently Proposed Solutions

• Automatic Evaluation. Given the use of ROUGE as the main evaluation metric in Chap-
ter 5 and Chapter 6, it is known that they might not correlate well with human judgements for
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strong generative models. Currently, LLM-as-a-judge [351] has become a common technique
for automatic evaluation.

• Context Length of Generative Models. In this thesis, extending the context length
of summarization still requires fine-tuning the model on a reasonable-size dataset, and its
maximum length is still limited to the order of 10,000 tokens. Recent work such as Position
Interpolation (PI) [21] demonstrates that the context length of Llama2 can be extended from
2,048 to 32,768 tokens with only around 1,000 fine-tuning steps. Furthermore, PoSE [357]
shows that by learning the positional encoding of two arbitrary adjacent chunks, it can extend
the context length of Llama2 to 128k tokens.

9.2.2 Limitations for Future Work

• Exploiting the Sparsity in Encoder-Decoder Attention. The proposed modified archi-
tecture requires additional modules to the original attention mechanism, and the real gain
in speed will depend on the balance of the sparsity against the computational cost of the
additional modules. Although the modified architecture should have an improved complexity,
the current realization does not result in an improvement in wall-clock speed. This is because
the model choice of using RNN for the sentence encoder in Equation 6.28 leads to a large
additional computational cost (specifically large ke) because the computational cost of RNN
grows with N1N2D2. Because the goal is to obtain a sentence-level representation, there is an
opportunity to replace RNN with hierarchical attention that runs over sentences, which could
instead lead to a computational cost that grows with N1N2D. Additional sentence-level query
and key mappings in Equation 6.26 and Equation 6.27 also incur a large computational cost.

•MQAG. We anticipate that MQAG could be extended in two directions. First, it could
be extended to other domains such as document paraphrasing. In document paraphrasing,
in addition to being consistent, all information should be included in the output. This
problem, for example, can be interesting, and we anticipate that MQAG as well as other
summary assessment methods could be applied to document paraphrasing. Second, the
current realization of MQAG can be slow with limited computational resources (e.g., it takes
around 3 seconds per question on one NVIDIA P100 GPU). To address this issue, future
work could explore a more efficient realization of MQAG, and also investigate if the same
or similar performance can be achieved with as few generated questions as possible, for
example, by generating a smaller but more diverse set of questions and options. Another
interesting could be aspect-control summary assessment where the assessment can be tailored
to specific concepts by controlling question generation.
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• LLM Comparative Assessment. The framework requires the full set of comparisons
resulting in N · (N−1) comparisons, which for large N can be computationally prohibitive
and difficult to scale up. Therefore, an interesting question is whether a similar performance
level can be achieved with a subset of comparison and how to select the subset for comparison
efficiently; for example, dynamic selection schemes either by considering sorting algorithms
or ELO competition schemes.

• SelfCheckGPT. Given that this is a more active area of research, the discussion about the
limitations and potential improvements to SelfCheckGPT are dedicated in Section 8.5.
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Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
et al. 2022. Bloom: A 176b-parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

[258] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. 2023. Are emergent abilities of
large language models a mirage? In Thirty-seventh Conference on Neural Information
Processing Systems.

[259] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural
networks, 61:85–117.

[260] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[261] Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo
Staiano, Alex Wang, and Patrick Gallinari. 2021. QuestEval: Summarization asks for
fact-based evaluation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 6594–6604, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

[262] Thomas Scialom, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano. 2019.
Answers unite! unsupervised metrics for reinforced summarization models. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3246–3256, Hong Kong, China. Association for Computa-
tional Linguistics.

[263] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point:
Summarization with pointer-generator networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1073–1083, Vancouver, Canada. Association for Computational Linguistics.

[264] Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust
metrics for text generation. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7881–7892, Online. Association for
Computational Linguistics.

[265] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine
translation models with monolingual data. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computational Linguistics.

[266] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Linguistics.

[267] Guokan Shang, Wensi Ding, Zekun Zhang, Antoine Tixier, Polykarpos Meladianos,
Michalis Vazirgiannis, and Jean-Pierre Lorré. 2018. Unsupervised abstractive meeting

https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/D19-1320
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/P18-1062


244 References

summarization with multi-sentence compression and budgeted submodular maximiza-
tion. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 664–674, Melbourne, Australia. Associa-
tion for Computational Linguistics.

[268] Matt Shannon. 2017. Optimizing expected word error rate via sampling for speech
recognition. arXiv preprint arXiv:1706.02776.

[269] Ori Shapira, David Gabay, Yang Gao, Hadar Ronen, Ramakanth Pasunuru, Mohit
Bansal, Yael Amsterdamer, and Ido Dagan. 2019. Crowdsourcing lightweight pyra-
mids for manual summary evaluation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 682–687,
Minneapolis, Minnesota. Association for Computational Linguistics.

[270] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative
position representations. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 464–468, New Orleans, Louisiana.
Association for Computational Linguistics.

[271] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K Reddy. 2021. Neural
abstractive text summarization with sequence-to-sequence models. ACM Transactions
on Data Science, 2(1):1–37.

[272] Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. 2021.
Retrieval augmentation reduces hallucination in conversation. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pages 3784–3803, Punta
Cana, Dominican Republic. Association for Computational Linguistics.

[273] K. C. Sim, W. J. Byrne, M. J. F. Gales, H. Sahbi, and P. C. Woodland. 2007. Consensus
network decoding for statistical machine translation system combination. In 2007
IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP
’07, volume 4, pages IV–105–IV–108.

[274] Kaiqiang Song, Chen Li, Xiaoyang Wang, Dong Yu, and Fei Liu. 2020. Automatic
summarization of open-domain podcast episodes. arXiv preprint arXiv:2011.04132.

[275] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar
Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-
Alonso, et al. 2022. Beyond the imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint arXiv:2206.04615.

[276] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Training very deep
networks. In Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc.

[277] Josef Steinberger and Karel Ježek. 2009. Evaluation measures for text summarization.
Computing and Informatics, 28(2):251–275.

https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/N19-1072
https://doi.org/10.18653/v1/N19-1072
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.1109/ICASSP.2007.367174
https://doi.org/10.1109/ICASSP.2007.367174
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf


References 245

[278] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. 2021.
Roformer: Enhanced transformer with rotary position embedding. arXiv preprint
arXiv:2104.09864.

[279] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems, pages
3104–3112.

[280] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford alpaca: An
instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca.

[281] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. 2020. Sparse
sinkhorn attention. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 9438–9447. PMLR.

[282] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. 2021. Long range arena
: A benchmark for efficient transformers. In International Conference on Learning
Representations.

[283] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Efficient trans-
formers: A survey. arXiv preprint arXiv:2009.06732.

[284] James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopoulos, and
Arpit Mittal. 2018. The Fact Extraction and VERification (FEVER) shared task. In
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER).

[285] Louis L Thurstone. 1927. A law of comparative judgment. Psychological review,
34(4):273.

[286] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971.

[287] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip
Bachman, and Kaheer Suleman. 2017. NewsQA: A machine comprehension dataset.
In Proceedings of the 2nd Workshop on Representation Learning for NLP, pages
191–200, Vancouver, Canada. Association for Computational Linguistics.

[288] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling
coverage for neural machine translation. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 76–85,
Berlin, Germany. Association for Computational Linguistics.

[289] Hans van Halteren and Simone Teufel. 2003. Examining the consensus between
human summaries: initial experiments with factoid analysis. In Proceedings of the
HLT-NAACL 03 Text Summarization Workshop, pages 57–64.

https://github.com/tatsu-lab/stanford_alpaca
http://proceedings.mlr.press/v119/tay20a.html
http://proceedings.mlr.press/v119/tay20a.html
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/P16-1008
https://doi.org/10.18653/v1/P16-1008
https://aclanthology.org/W03-0508
https://aclanthology.org/W03-0508


246 References

[290] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in neural information processing systems, pages 5998–6008.

[291] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver agree-
ment: the kappa statistic. Fam med, 37(5):360–363.

[292] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in neural information processing systems, pages 2692–2700.

[293] Andrew Viterbi. 1967. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE transactions on Information Theory, 13(2):260–
269.

[294] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019.
Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the
rest can be pruned. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5797–5808, Florence, Italy. Association for
Computational Linguistics.

[295] Rohit Voleti, Julie M Liss, and Visar Berisha. 2019. Investigating the effects of word
substitution errors on sentence embeddings. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7315–7319.
IEEE.
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Appendix A

Podcast Summary Assessment (PSA)

The podcast summary assessment (PSA) dataset is a collection of podcast summaries gen-
erated by summarization systems at the Spotify Podcast Challenge at TREC 2020 [125].
The dataset consists of 179 podcast episodes (i.e., source documents). All episodes have
summaries from 19 summarization systems and 1 creator-provided description. The human
evaluation was performed by assessors at the National Institute of Standards and Technol-
ogy (NIST) for the TREC 2020 challenge, resulting in 3580 annotated document-summary
pairs in total. The evaluated summarization systems [125, 350, 184, 274, 219, 129] can be
categorized into:

• Reference1 = R1

• Extractive systems = E1, E2, E3

• Abstractive systems = A1, A2, A3,..., A16.

where the extractive summarization systems are based on TextRank [198], while abstractive
summarization systems use a form of deep learning and pre-trained sequence-to-sequence
models including BART [159] and T5 [244]. We note that the system descriptions are
anonymized (as labelled by E1, E2, A1, etc) due to a data permission restriction. Nonetheless,
without the summary generation system identity, the dataset can be used for evaluating
summary assessment methods. Table A.1 shows the length statistics, and compared to
SummEval (in Table 7.2) the documents in PSA are more than 10× longer, which makes this
dataset challenging.

1Creator-provided description has been used as the reference summary in training summarization systems.
It is worth noting that less than half of the descriptions were graded with the highest score (see Figure A.1b).
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#sentences #words

Transcript 303±258 5950±5092

Summary 5.9±9.2 88.3±75

Table A.1 Length of Podcast Summary Assessment (Avg.±Std.) based on the NLTK tokenizer.

NIST Manual Evaluation

The summaries were judged by NIST assessors on a 4-point scale (Excellent/Good/Fair/Bad)
considering both content and text quality as per the instructions (as described in Jones et al.
[125]) as follows:

• Excellent: (Content) the summary accurately conveys all the most important attributes
of the episode, which could include topical content, genre, and participants. In addition
to giving an accurate representation of the content, it contains almost no redundant
material which is not needed when deciding whether to listen. (Text Quality) It is also
coherent, comprehensible, and has no grammatical errors.

• Good: (Content) the summary conveys most of the most important attributes and
gives the reader a reasonable sense of what the episode contains with little redundant
material which is not needed when deciding whether to listen. (Text Quality) Occasional
grammatical or coherence errors are acceptable.

• Fair: (Content) the summary conveys some attributes of the content but gives the
reader an imperfect or incomplete sense of what the episode contains. It may contain
redundant material which is not needed when deciding whether to listen. (Text Quality)
It may contain repetitions or broken sentences.

• Bad: (Content) the summary does not convey any of the most important content items
of the episode or gives the reader an incorrect or incomprehensible sense of what
the episode contains. It may contain a large amount of redundant information that is
not needed when deciding whether to listen to the episode. If the content quality is
considered bad, the summary is considered bad regardless of the text quality.

Figure A.1 shows the distribution of human judgements using the criteria above. It can be
seen that around a quarter of creator-provided descriptions are graded Bad. This finding
indicates that the training data for summarization can be quite noisy, and a potential way to
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improve the summarization system development could involve filtering the training data to a
smaller subset based on the scores predicted by an assessment system.2

Additionally, 8 binary attributes for each summary are included in addition to the overall
scores. The annotators labelled 8 binary attributes by answering binary questions (i.e.,
answering ‘yes’ or ‘no’): Q1) Are the names of the main people included?; Q2) Is there any
additional information about the people mentioned?; Q3) Is the main topic included?; Q4)
Is the format of the podcast mentioned?; Q5) Is there any context on the title?; Q6) Is there
redundant information?; Q7) Is the summary in good written English? Q8) are the start and
end points good?
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Fig. A.1 The distribution of human judgements in the PSA dataset.

Benchmarking Podcast Summary Assessment

Here, we provide a benchmark for existing summary assessment baselines on the new
dataset. The summary assessment baselines are described in the main text of this thesis (in
Section 4.3). In Table A.2, the baselines are categorized by whether they are reference-based
(i.e., comparing against reference) or reference-free (i.e., comparing against document);
unsupervised or supervised where supervised methods require gold-standard scores (i.e.,
human judgements). In total, there are 19 summarization systems evaluated (M = 19)
excluding the creator description. However, given the nature of these summarization systems
(e.g., some are extractive, while the rest are abstractive) extractive summaries by default
will have high overlapping scores such as ROUGE-L against their source documents. This
observation is, for example, shown in Figure A.2. As a result, we consider two sets of
summarization systems: (1) 19-system where all summarization systems are included;

2Sentence filtering introduced in Section 6.2 reduced the length of the input sources, while this data filtering
reduces the number of training instances.
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(2) 15-system where the three extractive systems and vanilla BART-large fine-tuned to
CNN/DailyMail (which is highly extractive) are excluded.
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(a) ROUGE-L (summary, reference)
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(b) ROUGE-L (summary, document)

Fig. A.2 Scatter plots and best-fitted lines on abstractive systems. Blue = abstractive systems, Orange
= extractive systems, Green = BART-large-cnn.

Method
Against

Type
System-level Summary-level

Ref Doc 19-sys 15-sys 19-sys 15-sys

ROUGE-L ✓ Unsupervised 0.905 0.864 0.350 0.246
TripleMatch ✓ Unsupervised 0.838 0.746 0.079 0.052
BERTScore ✓ Unsupervised 0.826 0.739 0.197 0.251

ROUGE-L ✓ Unsupervised -0.200 0.364 -0.036 0.250
TripleMatch ✓ Unsupervised -0.159 0.453 -0.123 0.143
BERTScore ✓ Unsupervised -0.128 0.686 0.118 0.219

SpanQAG [B-512] ✓ Unsupervised -0.112 0.517 -0.045 0.123
SpanQAG [L-4096] ✓ Unsupervised -0.115 0.503 -0.071 0.118
Entailment [B-512] ✓ Unsupervised 0.356 0.114 0.102 0.021
Entailment [L-4096] ✓ Unsupervised -0.192 0.392 -0.105 -0.059

CNN model ✓ Weakly Supervised 0.728 0.563 0.171 0.019
CNN model ✓ Supervised 0.901 0.902 0.299 0.183
BERT model ✓ Supervised 0.905 0.869 0.237 0.156

Longformer model ✓ Supervised 0.909 0.896 0.278 0.196

Table A.2 Spearman correlation coefficients (19 systems – excluding creator description). Inc./Exc. =
Including/Excluding extractive summaries.
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