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Summary

Many important applications, including speech recognition, document categorisation and

bioinformatics, require the classification of variable-length sequences of observations. This

is often performed using statistical techniques that learn the relationships between class la-

bels and observation sequences using sets of labelled training data. A number of standard

generative and discriminative statistical models are commonly used. Unfortunately, the

assumptions associated with these models are often incorrect for many applications, po-

tentially affecting classification accuracy. This thesis focuses upon systematic techniques

for relaxing model assumptions and allowing additional dependencies to be represented.

The first approach discussed in this thesis are augmented statistical models. These

are a powerful approach for extending standard generative (base) models using a set of

additional sufficient statistics. Augmented model sufficient statistics are typically defined

using a local exponential expansion of the base model, and allow a wide range of com-

plex temporal and spatial dependencies to be modelled. In this work, the properties of

both first-order and higher-order augmented models are examined. A maximum-margin

distance-based training algorithm is then proposed. This directly optimises the decision

boundary between pairs of augmented models, enabling model parameters to be estimated

even when the normalisation terms cannot be calculated. Algorithms for base model pa-

rameter estimation are also proposed.

The second contribution of this thesis are continuous rational kernels. These are a

new form of dynamic kernel that combines latent-variable generative models and weighted

finite-state rational kernels to create flexible classifiers of continuous-observation sequences.

By varying the generative models and rational kernels, continuous rational kernels allow

a wide range of different kernel feature-spaces (and hence dependencies) to be modelled

using only a small number of efficient and standardised algorithms. In addition to ker-

nel feature-spaces, continuous rational kernels can also be used as a simple approach for

generating the vectors of sufficient statistics used in augmented statistical models.

The final contribution of this thesis are conditional augmented (C-Aug) models. These

use the same sufficient statistics as standard augmented models but are defined within a

conditional-probability framework. The use of augmented model sufficient statistics allows

C-Aug models to share many of the benefits of generative augmented models, including the

ability to represent a wide range of temporal and spatial dependencies. Furthermore, by

directly modelling the posterior probabilities of the correct class labels, C-Aug models are

an inherently discriminatory approach that avoids many of the normalisation difficulties

of standard augmented models. This allows C-Aug models to be applied to a wide range

of classification tasks. Finally, a lattice-based framework is proposed that allows C-Aug

models to be applied to simple continuous speech recognition tasks.



iii

Acknowledgements

First, I would like to thank my supervisor Mark Gales. By providing the right balance of

advice, suggestions and criticism, he helped to make this work possible. In particular, I am

grateful for the time and support he has given me over the last three years, regardless of the

direction I decided to pursue. I am also grateful to the Schiff Foundation for kindly funding

my studies in Cambridge, and for enabling me to attend several international conferences

and workshops. I would also like to thank Corpus Christi College for providing financial

support for conference expenses.

Over the last three years, I have benefited greatly from interactions with other members

of the Machine Intelligence Laboratory at Cambridge University. Although there are

too many people to thank everyone individually, I would like to extend my thanks (in

no particular order) to Xunying Liu, Khe Chai Sim, Kai Yu and Chris Longworth for

many useful discussions. I also owe my thanks to Patrick Gosling and Anna Langley for

maintaining the computing systems on which much of this work depended. I would like

to thank Katy Jones and my father for proof-reading various parts of this thesis.

Special thanks go to Katy who has helped and supported me throughout much of my

time in Cambridge. Finally, my biggest thanks go to my parents for their unwavering

support and encouragement over the years.



iv

Acronyms

A-GMM Augmented Gaussian mixture model

A-HMM Augmented hidden Markov model

BMM Buried Markov model

C-Aug Conditional augmented (model)

CG Conjugate gradient

CML Conditional maximum likelihood

CMN Cepstral mean normalisation

CN Confusion network

CRF Conditional random field

CTS Conversational telephone speech

CVN Cepstral variance normalisation

EM Expectation maximisation

GD Gradient descent

GMM Gaussian mixture model

HCRF Hidden conditional random field

HLDA Heteroscedastic linear discriminant analysis

HMM Hidden Markov model

KKT Karush-Kuhn-Tucker

LVCSR Large vocabulary continuous speech recognition

MBR Minimum Bayes risk

MCE Minimum classification error

MFCC Mel-frequency cepstral coefficient

ML Maximum likelihood

MM Maximum margin

MMI Maximum mutual information

MPE Minimum phone error

MWE Minimum word error

PDF Probability density function

PLP Perceptual linear prediction

RBF Radial basis function

RVM Relevance vector machine

SCG Scaled conjugate gradient

SLDS Switching linear dynamical system

SSK String subsequence kernel

SVM Support vector machine

VTLN Vocal-tract length-normalisation

WER Word error rate



v

Mathematical Notation

A matrix

AT transpose of A

A−1 inverse of A

|A| determinant of A

x vector

xj j-th element of x

〈x,y〉 inner-product of x and y

x < y xi < yi, ∀i ∈ [1, d], where x and y are d-dimensional vectors

vec(A) vector form of matrix A

∇αf(α) vector derivative of a function f(α) with respect to α
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U finite-state transducer
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α augmented parameters
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1
Introduction

Many important applications, ranging from text classification [22, 54] and speech recog-

nition [6, 52, 100] to bioinformatics [47, 50, 61] and intrusion detection [76, 113], require

the classification of variable-length sequences of observations. Although many different

approaches for this classification have been proposed—including rule-based methods and

syntactic approaches—statistical techniques have been found to yield the best performance

in many cases [51]. Statistical classifiers, the focus of this thesis, use sets of training exam-

ples to estimate models that capture the relationships between class labels and observation

sequences, taking into account the uncertainties that may arise from differences between

examples. Class decision boundaries are then implied from these models.

Models for statistical classification are commonly categorised into two broad groups:

generative models and discriminative models. As the name suggests, generative models

approximate the probability density function associated with the observation sequences,

allowing sequence likelihoods to be calculated. Using a combination of Bayes’ rule and

Bayes’ decision rule, these likelihoods can then be used to calculate a set of class decision

boundaries. Generative models are typically defined using a number of independence and

conditional-independence assumptions that restrict the dependencies modelled. These as-

sumptions enable model complexity to be controlled and allow robust parameter estimates

to be obtained even when training data is limited. The second type of statistical model

discussed in this thesis are discriminative models. Defined using a set of sufficient statistics

(or features) extracted from the observation sequences, these directly model the decision

boundaries between classes. Discriminative models therefore avoid the need to maintain

valid generative and prior distributions. Furthermore, since the normalisation terms of

1



CHAPTER 1. INTRODUCTION 2

discriminative models are typically calculated as a summation over the set of class labels

(instead of an integration over all possible observation sequences), discriminative models

require few of the constraints normally present in generative models. This makes discrim-

inative models extremely flexible, and enables them to represent a wide range of complex

dependencies and distributions.

One of the difficulties often encountered when generative and discriminative models

are applied to practical applications is the selection of appropriate modelling assump-

tions. These assumptions determine the range and types of dependencies that can be

represented and are often specified using a combination of independence assumptions,

conditional-independence assumptions and sufficient statistics. If too many assumptions

are made, models may be a poor approximation to the underlying process, adversely af-

fecting classification performance. Conversely, with too few assumptions, models may

be too flexible, making robust parameter estimation difficult given the limited training

data available. When modelling static data (single observations), empirical approaches

are often used to identify which features to model. For sequence data, however, empirical

feature selection approaches can be difficult to implement since the range of potential se-

quence features/dependencies is vast. Instead, a small number of standard models—such

as hidden Markov models (HMMs)—are typically used. Unfortunately, for many appli-

cations, the independence and conditional-independence assumptions of these models are

incorrect, potentially reducing classification accuracy. In recent years, researchers have

therefore concentrated on developing statistical models that can represent more complex

dependencies.

Many different approaches have been proposed for extending the range of dependencies

modelled by both generative and discriminative statistical models. For generative models,

popular approaches include: segmental models [29, 91], factor analysed HMMs [106, 107],

switching linear dynamical systems [107], buried Markov models [8,9] and mixed memory

models [88,109]. For discriminative models, latent-variable extensions such as hidden con-

ditional random fields (HCRFs) [42,99], and kernel-based approaches such as Fisher [49,50]

and generative kernels [117,118], have been proposed. Unfortunately, although these tech-

niques all allow additional dependencies to be modelled, many require that the dependen-

cies are selected a priori using a combination of expert knowledge and empirical evidence.

For sequence data, this can be difficult since sequences often contain a huge number of dif-

ferent dependencies. To avoid such problems, this thesis examines a number of systematic

approaches for defining statistical models that include additional dependencies.

In this thesis, three approaches are presented for modelling complex dependencies in

sequences of observations. The first, based upon work in [117], are augmented statistical

models. These extend standard generative models—the base models—using a range of

additional sufficient statistics that are defined by a local exponential approximation to
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the base model. The additional statistics allow augmented models to represent a wide

range of temporal and spatial dependencies between observations that were not present

in the original, base, model. A novel variable-margin, maximum-margin training algo-

rithm based upon support vector machines (SVMs) [19, 125] is proposed for estimating

the augmented parameters associated with these sufficient statistics. Two algorithms for

maximum-margin estimation of the base model parameters are also proposed.

The second contribution of this thesis are continuous rational kernels. These are a new

form of dynamic kernel that combine latent-variable generative statistical models with

weighted finite-state rational kernels to create highly flexible classifiers of continuous-

observation sequences. By varying both the generative models and the rational kernels,

continuous rational kernels allow a wide range of different kernel feature-spaces (and hence

dependencies) to be modelled using only a small number of efficient and standardised

algorithms. This work focuses upon continuous rational kernels as a method for cal-

culating augmented model sufficient statistics. When augmented models are estimated

using distance-based training algorithms, continuous rational kernels allow models to be

trained without the use of derivative-specific dynamic programming algorithms. Instead,

augmented model calculations are performed using a small number of simple yet efficient

transducer operations.

The final contribution of this thesis are conditional augmented (C-Aug) models. These

use the same sufficient statistics as generative augmented models but are defined within a

discriminative framework. The use of augmented model sufficient statistics allows C-Aug

models to share many of the benefits of augmented models, including being able to model

a wide range of temporal and spatial dependencies. Additionally, by directly modelling

the posterior probabilities of the correct class labels, C-Aug models avoid many of the

normalisation difficulties faced by standard augmented models. This simplifies algorithms

for both training and inference, and enables C-Aug models to be applied to a wide range

of tasks. In this work, C-Aug model parameters are estimated using the discriminative

conditional maximum likelihood (CML) criterion [63]. A lattice-based framework is pro-

posed that allows C-Aug models to be applied to a simple continuous speech recognition

task.

1.1 Organisation of thesis

This thesis is split into three parts. The first, consisting of chapters 2 and 3, introduces

the reader to a range of standard statistical techniques for classifying sequence data. The

second, in chapters 4–7, contains the main contributions of this thesis, namely: deriva-

tions, analyses, and implementation of generative augmented models, continuous rational

kernels, and conditional augmented models. Chapters 8 and 9 then present detailed ex-
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perimental results and offer a number of conclusions and suggestions for future work.

A more detailed chapter-by-chapter breakdown is given below.

Chapter 2 provides a brief introduction to statistical classification of sequence data.

A range of generative and discriminative techniques are discussed, with examples given of

each. Many common generative and discriminative training criteria are considered.

Chapter 3 introduces dynamic kernels as an alternative approach for sequence clas-

sification. Dynamic kernels map sequences of observations into high-dimensional (often

implicit) feature-spaces, where kernel-based classifiers—such as support vector machines—

can be used to determine the class decision boundaries.

Chapter 4 then introduces generative augmented models. After the initial deriva-

tions, this chapter focuses upon the additional temporal and spatial dependencies that

can be represented within the augmented model framework. Detailed examples of aug-

mented models are presented, along with dynamic programming algorithms for calculating

augmented model sufficient statistics. Comparisons with a number of standard dynamic

kernels are given.

Chapter 5 proposes continuous rational kernels as a powerful form of dynamic kernel

that uses both latent-variable generative models and weighted finite-state transducers to

calculate complex kernel feature-spaces for sequences of continuous observations. Calcu-

lation of augmented model sufficient statistics within this framework is discussed.

Chapter 6 combines ideas from the previous two chapters and describes a distance-

based framework for estimating augmented model parameters. This allows model pa-

rameters to be estimated by positioning a linear decision boundary in a score-space. A

variable-margin SVM is proposed for maximum-margin estimation of both the base model

and the augmented model parameters.

Chapter 7 introduces conditional augmented (C-Aug) models. These are defined

using the same complex sufficient statistics as generative augmented models, but within a

discriminative framework. C-Aug models overcome many of the normalisation difficulties

of augmented models, allowing them to be applied to a wider range of tasks. Training and

inference are discussed, as are extensions for sentence-based speech recognition.

Chapter 8 discusses two sets of experiments. The first uses augmented models and

C-Aug models to rescore confusable word-pairs extracted from a large vocabulary speech

recognition task. The second, based upon the TIMIT database, evaluates augmented and

C-Aug models using a range of phone classification and recognition experiments.

Chapter 9 concludes with a summary of the thesis and suggestions for future topics

of research.



2
Statistical Classification

Statistical classification techniques are often categorised into two broad groups: generative

models and discriminative models. This chapter considers both types. Generative models,

discussed first, model the likelihood of observations given the class labels. Given a prior

distribution over the class labels, decision boundaries are calculated using a combination of

Bayes’ rule and Bayes’ decision rule. Although model parameters are often estimated using

the maximum likelihood training criterion, discriminative training criteria—for example

maximum mutual information (MMI)—have become increasingly popular in recent years.

A second, increasingly popular, group of models for statistical classification are dis-

criminative models, such as conditional random fields (CRFs) and support vector machines

(SVMs). These directly model the class decision boundaries avoiding the need to maintain

valid generative and prior distributions. Parameter estimation for discriminative models

is inherently discriminatory and is typically performed using training criteria such as con-

ditional maximum likelihood and maximum margin estimation.

Both generative and discriminative models can be applied to either static (single obser-

vations) or dynamic (sequences of observations) data. Discussion in this chapter focuses

upon the classification of sequence data.

2.1 Generative models

Generative models are one of the most popular forms of statistical model for classifying

sequence data. As their name suggests, these model the probability density function

associated with the observations, enabling observation sequences, O = {o1, . . . ,oT }, to be

5
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randomly generated from distributions of the model. Alternatively, given an observation

sequence, generative models allow the sequence likelihood to be calculated. This second

use is the basis of many generative model classification techniques, and is the main focus

of this section.

First, consider a generative model, p(O|ω;λ), with observations O, class label ω, and

model parameters λ. Given a prior distribution over the class labels, P (ω), Bayes’ rule

can be used to convert the generative model likelihood into a class posterior [30, 121],

P (ω|O;λ) =
p(O|ω;λ)P (ω)

p(O)
(2.1)

where p(O) is known as the evidence and is typically calculated as
∑

ω∈Ω p(O|ω;λ)P (ω),

and Ω is the set of all class labels. Throughout this work, parameters of the prior dis-

tribution are assumed to be known and fixed a priori; they are therefore omitted from

equations to simplify notation.

Once observation likelihoods have been converted into class posterior probabilities,

decision boundaries can be calculated using Bayes’ decision rule. This assigns each ob-

servation sequence a class label corresponding to the class with the highest posterior

probability given that sequence [30]. For generative models, this can be written as,

y = arg max
ω

P (ω|O;λ)

= arg max
ω

(

p(O|ω;λ)P (ω)

p(O)

)

(2.2)

where y is the class label assigned to a sequence O. When the correct generative and prior

distributions are known, the class labels generated by equation (2.2) minimise the expected

generalisation error. In practice, however, the true distributions are often not known and,

instead, parametric approximations are typically used.1 Since these approximations are

normally incorrect, decision boundaries calculated using equation (2.2) may yield sub-

optimal classification performance. However, with carefully chosen models and robust

parameter estimation schemes, good classification performance can often be obtained [30].

2.1.1 The exponential family

Many generative statistical models are based upon members of the linear exponential

family [131]. Popular examples are the Gaussian, Poisson and Bernoulli distributions.

For an observation sequence, O = {o1, . . . ,oT }, the general form of a member of the

exponential family (an exponential model) is given by,

p(O;λ) =
1

τ(λ)
h(O) exp

(

〈

λ,T (O)
〉

)

(2.3)

1Non-parametric generative models can also be defined. These make few assumptions about the func-

tional form of the probability distribution function and instead attempt to imply structures directly from

the data. Non-parametric techniques are not considered further in this thesis.
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where λ are the natural parameters, h(O) is a reference distribution, T (O) are fixed-

dimensional sufficient statistics extracted from the observation sequence, and 〈·, ·〉 denotes

an inner-product between two vectors. To simplify notation, the class-label dependence, ω,

is omitted from the model likelihood, reference distribution and sufficient statistics. The

normalisation term, τ(λ), is calculated as the expectation of the unnormalised distribution

over all possible observation sequences,

τ(λ) =

∫

h(O) exp
(

〈

λ,T (O)
〉

)

dO (2.4)

where
∫

dO denotes an integration over observation sequences. To ensure that the model

in equation (2.3) is valid, the normalisation term must be real and bounded. This is typi-

cally achieved using a combination of carefully selected sufficient statistics and parameter

constraints.2

One of the most important aspects of exponential models are the sufficient statistics.

These control the temporal and spatial information extracted from observation sequences,

and define the types of ‘dependency’ that can and cannot be modelled. The selection of

sufficient statistics is an application-dependent problem that is typically approached using

a combination of expert knowledge and empirical evidence. Unfortunately, for sequence

data, this choice is especially difficult since the range of available statistics grows expo-

nentially with sequence length. Therefore, to simplify the selection process, independence

assumptions are often introduced. These reduce the number of potential statistics by

eliminating statistics that measure the correlation between quantities that are assumed

to be independent. A simple, though popular, example of an exponential model indepen-

dence assumption is that observations within a sequence are independent and identically

distributed (i.i.d.) according to the distribution, p(o;λ), with parameters λ and suffi-

cient statistics T (o). Expressing the sequence likelihood as the product of independent

observation likelihoods, p(O;λ) can be written as,

p(O;λ) =

T
∏

t=1

1

τ(λ)
h(ot) exp

(

〈

λ,T (ot)
〉

)

=
1

τ(λ)T

( T
∏

t=1

h(ot)

)

exp

( T
∑

t=1

〈

λ,T (ot)
〉

)

(2.5)

where T is the number of observations in the sequence. From equation (2.5) it is clear that

the exponential sequence model p(O;λ) has a reference distribution h(O) =
∏T

t=1 h(ot),

2Although there are relatively few restrictions on the types of sufficient statistics that are used for

exponential models, some choices may result in unbounded normalisation terms for λ 6= 0. A simple

example of this is the vector of sufficient statistics T (o) = o. As o varies, the exponential argument,

〈λ, T (o)〉, can become infinitely positive or negative. When the argument is negative, the exponential

term in equation (2.4) tends towards a lower bound of zero. When the argument is positive, however, the

term may become unbounded, potentially resulting in an infinitely large normalisation term.
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natural parameters λ, and sufficient statistics T (O),

T (O) =

T
∑

t=1

T (ot) (2.6)

where T (ot) are sufficient statistics for the distribution of individual observations, p(ot;λ).

One of the most popular exponential distributions for p(ot;λ) is the Gaussian dis-

tribution. This has easy-to-calculate sufficient statistics and a closed-form normalisation

term that allows likelihood calculations and parameter estimation to be performed with

minimal computational expense. For an observation o, the Gaussian likelihood can be

written as,

N (o;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(

− 1
2(o−µ)TΣ−1(o−µ)

)

(2.7)

where µ and Σ are the distribution mean and variance respectively. Rewriting equation

(2.7) in the canonical form of equation (2.3), allows the Gaussian sufficient statistics, T (o),

and natural parameters, λ = {λ1,λ2}, to be calculated,

T (o) =

[

o

vec(ooT)

]

; λ1 = Σ−1µ ; λ2 = −1
2vec(Σ−1) (2.8)

Given these parameters and statistics, equations (2.5) and (2.6) can be used to define a

simple model for sequences of independent Gaussian-distributed observations. Sufficient

statistics for this model are given by,

T (O) =

T
∑

t=1

[

ot

vec(oto
T
t )

]

(2.9)

Unfortunately, for many ‘real-world’ tasks, the assumption that observations within

a sequence are independent and identically distributed is unrealistic. Instead, it is often

necessary for distributions to capture complex temporal or spatial dependencies within

the sequence. Although it is possible to represent these dependencies using exponential

models, a large number of sufficient statistics and model parameters are often required,

making robust parameter estimation difficult. A popular alternative is to introduce latent

variables and conditional-independence assumptions.

2.1.2 Latent-variable models

Latent-variable models are a popular approach for defining statistical models that incor-

porate complex spatial or temporal dependencies. Defined using a set of latent variables

(representing some hidden state of the model), these allow observation sequence likelihoods

to be written in terms of conditional distributions of the observations given the hidden

states. When conditional-independence assumptions are introduced, this decomposition
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often allows latent-variable models to offer a good compromise between model complexity

and the ability to represent complex distributions.

For an observation sequence, O = {o1, . . . ,oT }, let θ = {θ1, . . . , θT } be the sequence

of latent-variables (hidden states) associated with the observations. Observation sequence

likelihoods for latent-variable models are typically defined by marginalising the joint dis-

tribution of observation and latent-state sequences over all possible state sequences. In

practice, however, the joint distribution of the states and observations is often decomposed

into a prior distribution of the latent-states, P (θ;λ), and a conditional distribution of the

observations given the latent-state sequence, p(O|θ;λ),

p(O;λ) =
∑

θ∈Θ

p(O,θ;λ) =
∑

θ∈Θ

P (θ;λ)p(O|θ;λ) (2.10)

where λ are the model parameters, and Θ is the set of all possible state sequences.3 In

practice, the state-dependent output distribution, p(O|θ;λ), often cannot be calculated

directly. Instead, it is usually decomposed into a number of conditional distributions that

relate the likelihood of an observation to the previous observations in the sequence,

p(O|θ;λ) = p(oT |oT−1,oT−2, . . . ,o1,θ;λ)×

p(oT−1|oT−2, . . . ,o1,θ;λ)×

...

p(o1|θ;λ) (2.11)

Unfortunately, even moderate-length observation sequences can result in a massive ex-

pansion of models and model parameters. To reduce the number of model parameters,

the back-history {ot−1, . . . ,o1} associated with each observation ot is often truncated to

include only the first l terms,

p(O|θ;λ) =

T
∏

t=1

p(ot|ot−1, . . . ,ot−l,θ;λ) (2.12)

The simplified model in equation (2.12) typically requires fewer parameters than the full

expansion in equation (2.11). Buried Markov models [8, 9] are one example where the

current observation is assumed to depend on a small number of prior observations. More

commonly, however, the back-history is truncated completely (l = 0), eliminating all

3In the general case, latent variables can be represented by a vector of continuous-valued elements.

Decomposing the observation sequence likelihood into a conditional distribution with respect to the con-

tinuous latent variables therefore yields the expression,

p(O; λ) =

Z

P (θ; λ)p(O|θ; λ)dθ

An example of a continuous latent-variable model is the switching linear dynamical system (SLDS) [107].

See below for further details.
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references to previous observations. This restricts the modelling of temporal dependencies

to the latent-state prior, P (θ;λ), and allows the output distribution in equation (2.12) to

be simplified,

p(O|θ;λ) =

T
∏

t=1

p(ot|θ;λ) (2.13)

Although equation (2.13) is much simpler than the output distribution in equation (2.11),

the dependence of observations on the complete state sequence can still make calculations

difficult. To avoid these difficulties, many popular latent-variable models such as Gaussian

mixture models (GMMs) and hidden Markov models (HMMs) introduce an additional

assumption that the observations, ot, are dependent upon only the current state, θt.

When this simplification is applied to equation (2.13), the latent-variable model likelihood

in equation (2.10) can be rewritten as,

p(O;λ) =
∑

θ∈Θ

P (θ;λ)

( T
∏

t=1

p(ot|θt;λ)

)

(2.14)

where p(ot|θt;λ) is a state-conditional output distribution. The ability of latent-variable

models to break complex sequence distributions into a number of simpler distributions is

important since it provides an effective method for separating different types of depen-

dency. This separation makes it easier to control the complexity of different aspects of

latent-variable models. For example, when modelling sequences with strong spatial depen-

dencies but relatively weak temporal dependencies, a latent-variable model can be defined

such that full-covariance Gaussian output distributions (with many parameters) are used

to model the within-observation spatial dependencies, whereas relatively simple first-order

Markov constraints (requiring relatively few parameters) are used when modelling tempo-

ral dependencies in the latent-state prior distribution.

In practice the choice of latent-variable prior and output distributions is often restricted

by the need to sum over all possible latent-state sequences during likelihood calculations.

This choice is especially important when long sequences are considered since the number

of valid state-sequences grows exponentially with sequence length. To avoid these com-

putational difficulties, state-prior and output distributions are typically selected from the

small set of distributions that allow the summation to be simplified. Popular examples of

distributions that allow this simplification are given in the sections below.

Gaussian mixture models

Mixture models are one of the simplest and most common forms of latent variable model.

Constructed using a set of M mixture-components and a vector of model parameters λ,

mixture models allow observations to be generated using a two-stage process. First a

mixture-component, m, is randomly selected according the prior distribution P (m) = cm.
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Then, given m, a single observation is sampled from a mixture-component-dependent out-

put distribution, p(o|m;λ). This output distribution is often a member of the exponential

family. The generation process repeats until the required number of observations have

been generated.

The mixture-model likelihood of a single observation, o, is calculated as a superposition

of contributions from the mixture-component output distributions. For an M -mixture-

component model, this allows the observation likelihood, p(o;λ), to be written as,

p(o;λ) =
M
∑

m=1

cmp(o|m;λ) (2.15)

where λ are model parameters, and cm ∈ λ are the mixture-component priors (or weights).

When observations within a sequence, O = {o1, . . . ,oT }, are assumed to be inde-

pendent and identically distributed according to an M -mixture-component distribution,

the likelihood, p(O;λ), of a sequence O can be written as a product of the individual

observation likelihoods,

p(O;λ) =
T
∏

t=1

p(ot;λ) =
T
∏

t=1

M
∑

m=1

cmp(ot|m;λ) (2.16)

Finally, it is worth noting that although this section has presented mixture models in terms

of the general mixture-component output distributions, p(ot|m;λ), Gaussian distributions

with mean µm and variance Σm are used in many cases. The resulting models are known

as Gaussian mixture models (GMMs).

Hidden Markov models

Hidden Markov models (HMMs) are a popular form of latent-variable model that allows

simple temporal dependencies to be modelled according to a first-order Markov assump-

tion. This allows observation sequences to incorporate simple continuity constraints, mak-

ing HMMs popular for applications such as protein structure modelling in computational

biology [50, 61] and acoustic modelling in speech recognition [6, 52, 100].

Non−emitting state Emitting state Transition

2 3 4 51

Figure 2.1: A three-state left-to-right hidden Markov model

Consider the example HMM in figure 2.1. This has two non-emitting states (states 1

and 5) and three emitting states (states 2–4). The generative process starts in the first

non-emitting state, θ0, at time t = 0. For times t ∈ [1, T ], the HMM then transitions
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to a new state according to the state transition distribution, P (θt|θt−1;λ), where θt and

θt−1 denote the new and previous states respectively. These transitions follow a first-

order Markov assumption and can be compactly represented by the transition probability

matrix, a, with elements, aij =P (θt =j|θt−1 = i).4 HMM states are therefore conditionally

independent given the previous state. Upon entry to a state θt =j, a single observation, ot,

is generated according to the state-conditional output distribution, bj(ot) = p(ot|θt;λ),

where λ is the set of all HMM parameters. Observations are conditionally independent

given the current state.

When HMMs are used to classify observation sequences, O = {o1, . . . ,oT }, the latent

state sequence, θ = {θ1, . . . , θT }, is normally not known. It must therefore be marginalised

out HMM likelihood calculations by summing over all possible state sequences. The HMM

likelihood for an observation sequence O, is thus given by,

p(O;λ) =
∑

θ∈Θ

( T
∏

t=1

P (θt|θt−1;λ)

)( T
∏

t=1

p(ot|θt;λ)

)

(2.17)

=
∑

θ∈Θ

T
∏

t=1

aθt−1θt
p(ot|θt;λ) (2.18)

where Θ is the set of all possible state sequences, and aθ0θ1 denotes the transition from

the first non-emitting state θ0 to an emitting state θ1. It is worth noting that the first

and second terms of equation (2.17) correspond directly to the first and second terms of

the general latent variable model in equation (2.14). Since many data distributions have

both temporal and spatial dependencies, GMM state-conditional output distributions,

bj(ot) =
∑M

m=1 cjmN (ot;µjm,Σjm), are often used. The resulting HMM likelihoods are

given by,

p(O;λ) =
∑

θ∈Θ

T
∏

t=1

(

aθt−1θt

M
∑

m=1

cθtmN (ot;µθtm,Σθtm)

)

where θt =j is the current HMM state, and cjm, µjm and Σjm are state-conditional GMM

mixture-component priors, means and variances. Defining a new latent-variable φ that

includes both the HMM latent-states, j, and the GMM mixture-components, m, the HMM

likelihood can be rewritten as,

p(O;λ) =
∑

φ∈Φ

T
∏

t=1

aφt−1φt
cφt

N (ot;µφt
,Σφt

) (2.19)

where N (ot;µφt
,Σφt

) are the state/component Gaussian distributions, and φt = {j,m}

is a latent-variable that specifies both the HMM state and the GMM mixture-component

at time t.

4Different HMM topologies, for example left-to-right, are often implemented by placing constraints on

the matrix of transition probabilities.
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One of the main reasons for the popularity of HMMs within the machine-learning

community is the Markov assumption that states are conditionally-independent given the

previous state. This allows a number of efficient dynamic programming algorithms to be

used for HMM parameter estimation and inference. The most common algorithms are

the Forward-Backward algorithm [7,100] for HMM parameter estimation, and the Viterbi

algorithm [32, 128] for inference. The computational complexity of both algorithms is

linear with respect to both the observation sequence length and the number of HMM

latent states. The Forward-Backward and Viterbi algorithms are discussed in more detail

in appendix B.

The ability of HMMs to model temporal dependencies in sequences of observations,

coupled with efficient algorithms for training and inference, means that HMMs are com-

monly used as acoustic models for speech recognition. Despite their popularity, however,

HMMs are believed to be poor models of speech since the HMM conditional-independence

assumptions severely limit the temporal dependencies that can be modelled. In recent

years, many techniques have been proposed for overcoming these limitations. Two of the

most popular approaches are mentioned here, with more detailed examples given below.

The first is to introduce additional latent variables that allow more complex inter-state de-

pendencies to be modelled. Recent examples, applied to speech recognition, include: factor

analysed HMMs (FAHMMs) [106–108], switching linear dynamical systems (SLDSs) [107],

and segmental models [29, 91, 92]. The second approach is to relax the assumption that

observations are conditionally independent given the current state by introducing explicit

dependencies between observations. Two recent examples of this approach are buried

Markov models [8, 9] and mixed memory models [88, 109].

Switching linear dynamical systems

Switching linear dynamical systems (SLDSs) [107] are an extension of standard HMMs that

utilise additional latent variables to relax the HMM conditional-independence assump-

tions. In addition to the HMM-style discrete latent variables, θ = {θ1, . . . , θT }, switching

linear dynamical systems introduce a set of continuous latent variables, x = {x1, . . . ,xT },

that allows parameters of the state output distributions to vary with time. The first ele-

ment of the continuous latent variable, x1, can be initialised in a number of ways. These

range from re-initialising x at the start of every segment (phone or word boundaries), to

initialising x once at the start of each utterance and propagating state information across

segment boundaries (allowing longer-range dependencies to be modelled). The generative
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model of an SLDS is given by,

θt ∼ P (θt|θt−1;λ)

xt = Aθt
xt−1 + wθt

(2.20)

ot = Cθt
xt + vθt

where θt ∼ P (θt|θt−1;λ) denotes a first-order Markov process, Aθt
is a state-dependent

transform matrix that controls the trajectory of the continuous latent variable xt, and

Cθt
is a matrix that relates xt to the observations. The terms, wθt

and vθt
are noise

vectors—typically Gaussian distributed—associated with the continuous latent variables

and the observation vectors respectively.

The continuous latent variable, xt, converts the piece-wise-constant HMM state-space

to a more flexible piece-wise-linear state-space. This allows SLDSs to model observation

sequences more accurately than would be possible with HMMs. Additionally, when x is

allowed to propagate across segment boundaries (by only re-initialising at the beginning

of utterances), SLDSs allow longer-range dependencies to be modelled. Unfortunately,

the resulting dependence of observations on all previous states and observations can make

calculation of latent-state posteriors (and hence parameter estimation) intractable in many

cases. Model estimation and inference must therefore be performed using approximate

methods, for example [104, 105].

When SLDSs with GMM noise vectors were applied to a standard speech recognition

task, they were found to yield larger sequence likelihoods than comparable HMMs. This

implies that SLDSs are a better model of speech than HMMs [104]. Unfortunately, when

recognition performance was evaluated using a number of different speech recognition

tasks [104], recognition performance was disappointing. SLDSs are therefore believed to

be good models of speech, but poor classifiers.

Buried Markov models

Many attempts have been made at incorporating observational dependencies into latent-

variable models such as HMMs [9, 39, 95, 132]. One of the most recent, applied to the

task of speech recognition, are buried Markov models (BMM) [8, 9]. These relax the

HMM assumption that observations are conditionally independent given the current state

by introducing explicit dependencies between observations. The BMM likelihood for a

sequence O is given by the extended HMM likelihood,

p(O;λ) =
∑

θ∈Θ

T
∏

t=1

aθt−1θt
p(ot|z(θt), θt;λ) (2.21)

where z(θt) is a state-conditional set of elements selected from previous observation vec-

tors. An example of z(θt) is the set of observation elements {o(t−1),4, o(t−1),5, o(t−2),10, o(t−3),4}
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where o(t),i denotes the i-th dimension in the t-th observation. Note that only single di-

mensions of observations are selected to reduce the number of explicit dependencies. With

different dependencies modelled in different states, BMMs concentrate their modelling

power (parameters) on only the dependencies that are important for each state. This

reduces the number of parameters required, and allows robust parameter estimates to be

obtained without excessively large training sets.

BMM dependency selection is a complex process that is often approached in either an

ad-hoc fashion (typically trial-and-error) or through the use of automated feature-selection

methods, such as in [9]. One these dependencies have been determined, BMM parameters

can be estimated in linear time using maximum likelihood estimation within the expec-

tation maximisation (EM) framework [8, 9]. Alternatively, a number of discriminative

algorithms—such as maximum mutual information—can be used. Inference is typically

performed using a modified version of the Viterbi algorithm [8].

2.1.3 Parameter estimation for generative models

Many different algorithms have been proposed for estimating the parameters of genera-

tive models. Of these, maximum likelihood (ML) estimation [5,100] is the most common.

This updates model parameters in order to maximise the likelihood of the training data.

Alternatively, generative parameters can be estimated using discriminative training al-

gorithms. These typically update model parameters in order to minimise a differential

approximation to the generalisation error [111]. Popular discriminative training criteria

include: maximum mutual information (MMI) [5], minimum Bayes’ risk (MBR) [57], and

minimum classification error (MCE) [15,56]. Two additional discriminative training crite-

ria that have been proposed for use in speech recognition systems are the minimum word

error (MWE) [58, 85] and minimum phone error (MPE) [96, 97] criteria. In this thesis,

discussion will focus upon ML, MMI and MPE estimation of generative models.

Maximum likelihood (ML)

Maximum likelihood (ML) estimation [7, 100] is a standard approach for estimating pa-

rameters of statistical models. Given a set of n independent and identically distributed

training examples, O = {O1, . . . ,On}, with class labels, Y = {y1, . . . , yn}, maximum like-

lihood estimation adjusts model parameters in order to maximise the likelihood of the

training set. For generative models of the form p(O|y;λ), where y is the class label, the

ML objective function can be written as,

Fml(λ) = p(O|Y;λ) =

n
∏

i=1

p(Oi|yi;λ) (2.22)
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where λ is a vector of all generative model parameters. Maximising equation (2.22) with

respect to the parameters, λ, allows ML parameter estimates to be calculated. With

correct statistical models and a globally convergent optimisation algorithm, these estimates

converge towards the true parameter values in the limit of infinite training data. In

practice, however, the correct models are rarely known and optimisation algorithms are

often only locally convergent. The optimality of maximum likelihood solutions is therefore

not guaranteed. However, with careful initialisation, good performance can be obtained

for a variety of tasks [100, 138].

For simple generative models such as the Gaussian distribution, equation (2.22) can be

maximised analytically by calculating the partial derivatives of F ml(λ) with respect to the

model parameters, λ, and equating them to zero. Solving the resulting set of simultaneous

equations yields closed-form solutions for the model parameters. For more complex models,

such as the latent-variable models discussed earlier, analytic parameter estimates are often

not available. Instead, iterative algorithms such as expectation maximisation (EM) [27]

and the Forward-Backward algorithm [7, 100] can be used. These are discussed in more

detail in appendix B.

Maximum mutual information (MMI)

One of the most widely used discriminative training criteria for generative models is max-

imum mutual information (MMI) estimation [5]. Given independent and identically dis-

tributed training examples, O = {O1, . . . ,On}, with class labels, Y = {y1, . . . , yn}, maxi-

mum mutual information estimation updates model parameters in order to maximise the

posterior probability of the correct transcriptions,

Fmmi(λ) = P (Y|O;λ) =
n
∏

i=1

P (yi|Oi;λ) (2.23)

where λ is a vector containing all generative model parameters. Using Bayes’ rule, the

class-label posterior probabilities in equation (2.23) can be expressed in terms of the

generative model likelihoods, p(Oi|yi;λ), and class priors, P (yi),

Fmmi(λ) =
n
∏

i=1

(

p(Oi|yi;λ)P (yi)
∑

ω∈Ω p(Oi|ω;λ)P (ω)

)

(2.24)

where Ω is the set of all classes. Maximising equation (2.24) with respect to the parameters

of both the generative models and the prior distributions allows MMI estimates of the

model parameters to be calculated. Note that when the class priors are fixed during

training, the MMI objective function is equivalent to the conditional maximum likelihood

(CML) criterion [86].

For applications such as speech recognition, the set of all possible transcriptions, Ω,

is often unfeasibly large, making calculation of the objective function denominator im-

possible. To avoid this, the denominator summation is often approximated using a small
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number of ‘likely’ transcriptions. These transcriptions are usually calculated using Viterbi

decoding of ML-estimated models [97, 136] and are typically stored as lattices or N -best

lists. In these lattices and lists, acoustic model likelihoods are often scaled by a constant

0 < κ < 1 in order to match the acoustic and language model dynamic ranges, thereby

increasing the number of active hypotheses [136],

Fmmi(λ) =

n
∏

i=1

(

p(Oi, yi;λ)1/κP (yi)
∑

ω∈Ωi
p(Oi, ω;λ)1/κP (ω)

)

(2.25)

The acoustic model scale factor, κ, is typically set to the language model scale used

during decoding. Note that scaling the acoustic models has a similar effect to the time-

normalisation of conditional augmented model sufficient statistics (section 7.1). Both

reduce the dynamic range of the acoustic models and help to prevent a single hypothesis

from dominating the denominator score. This can increase the rate of convergence for MMI

and CML training, reducing the computational cost associated with parameter estimation.

Minimum Bayes’ risk (MBR)

A second form of discriminative training for generative models is the minimum Bayes’ risk

(MBR) criterion [57]. For a given loss function, MBR training attempts to minimise the

expected loss over all possible class labels. For training examples O = {O1, . . . ,On} and

sentence transcriptions Y = {y1, . . . , yn}, the MBR training criterion is typically written

as an expectation over the training data,

Fmbr(λ) =
∑

Y ′

P (Y ′|O;λ)l(Y ′,Y)

=
n
∑

i=1

∑

ω∈Ω

P (ω|Oi;λ)l(ω, yi) (2.26)

where Ω is the set of all classes, and l(ω, yi) is a task-specific loss function that calculates

the ‘loss’ (or error) of the hypothesised label ω, given the true class label, yi. When

the correct class-label posterior distribution is known and the loss function measures the

error rate, MBR training—minimising equation (2.26)—yields parameter estimates that

minimise the expected generalisation error. When the correct posterior distribution is not

known (as is often the case), the optimality of MBR estimation is not guaranteed.

An example loss function is given below for a speech recognition task.

2.1.4 Speech recognition

In the previous sections, generative statistical models were introduced. Although these

have been applied to a wide variety of tasks, including speech recognition [6, 52, 100] and

computational biology [61], this work will focus upon the task of speech recognition.
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Automatic speech recognition (ASR) is the process of generating sentence transcrip-

tions from recorded speech waveforms. The basic structure of a typical speech recognition

system is shown in figure 2.2. This system consists of five main blocks: the front-end,

acoustic models, language model, vocabulary and search algorithm.

algorithm
Search

processing
Front−end

model
Acoustic

Vocabulary
model

Language

hypothesis
Recognised

Speech

Figure 2.2: A typical speech recognition system

The first stage in a speech recognition system is the front-end. This converts recorded

speech utterances into sequences of observation vectors (frames), O = {o1, . . . ,oT }. These

observation sequences are then passed to the core of the speech recognition system: the

search algorithm. This uses Bayes’ decision rule to calculate the most likely word tran-

scription associated with the observation sequence,

Ŵ = arg max
W

P (W |O) = arg max
W

(

p(O|W )P (W )

p(O)

)

(2.27)

where p(O|W ) is the acoustic model, P (W ) is the language model and p(O) is the evi-

dence. The different parts of a speech recognition system are discussed in more detail in

the following sections.

Front-end processing

The first stage of a typical speech recognition system is the collection and processing of

speech waveforms. Waveforms are typically recorded using a microphone with a sampling

rate of 8kHz or 16kHz. The resulting sampled speech waveforms are rarely used directly

since the variability between different speakers and acoustic conditions can make wave-

form manipulation difficult. Instead, useful information about the speech signal is usually

extracted from the spectral shape of the waveforms [26]. The two most commonly used pa-

rameterisations for this information are Mel-frequency cepstral coefficients (MFCCs) [24]

and perceptual linear prediction (PLP) [46]. Both assume that the speech signal is quasi-

stationary, allowing it to be divided into short frames, often 10ms long. For each frame,

an observation vector is generated by analysing a short segment of speech within a prede-

fined window (typically 25ms). A Hamming windowing function is often used to reduce

the boundary effects in the subsequent processing [26].
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Given the short segment of speech within this window, an observation vector (a frame)

is calculated as follows. First, a fast-Fourier transform is used to calculate the segment

power spectrum in the frequency domain. This is then warped using either a Mel-frequency

scale (MFCCs) or a Bark-frequency scale (PLPs). The resulting power spectrum is fil-

tered and compressed. MFCC and PLP observation vectors are then generated using an

inverse discrete cosine transform (IDCT) or a linear prediction (LP) analysis respectively.

Thirteen-dimensional observation vectors are typically extracted.

In many speech recognition systems the MFCC and PLP features are extended using

first-order (delta) and second-order (delta-delta) dynamic features [33]. These increase

the feature-space dimensionality to 39, and help to overcome the HMM assumption that

observations are conditionally independent given the state sequence. Furthermore, many

state-of-the-art speech recognition systems use third-order dynamic features in order to

generate 52-dimensional vectors. These are then projected into a smaller 39-dimensional

space. One common projection scheme is heteroscedastic linear discriminant analysis

(HLDA) [34,62]. This performs both dimensionality reduction and feature-space decorre-

lation. In addition to HLDA, state-of-the-art speech recognition systems often include a

range of feature-space normalisation techniques such as vocal-tract length-normalisation

(VTLN) [70, 124], and cepstral mean and variance normalisation (CMN and CVN) [43].

Acoustic models

The most common form of acoustic model for speech recognition systems is the hidden

Markov model [52]. These are used to estimate the observation sequence likelihoods,

p(O|W ), given the complete sentence transcription. For speech recognition tasks with

a limited vocabulary it is often possible train HMMs for every possible word. However,

as the number of words in the vocabulary increases, it becomes increasingly difficult to

robustly estimate HMMs for all words. Instead, a pronunciation dictionary is typically

used to split words into smaller sub-word units known as phones [90]. After estimating

HMMs for each phone, word or sentence models can be generated by concatenating the

phone HMMs.

l ih v

Figure 2.3: A typical monophone speech recognition system

When phone HMMs are estimated without taking phonetic context into account,

they are known as context-independent or monophone models. The concatenation of the
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context-independent phones ‘l’, ‘ih’ and ‘v’ to form the word ‘live’ is illustrated in figure

2.3. In practice this approach is rather limited since phone realisation can vary greatly de-

pending upon the preceding and following phones. This effect is known as co-articulation.

To model these variations, context-dependent phone models can be used: triphones are the

most common. These depend upon both the preceding and the following phones, and may

be either word-internal (do not cross word boundaries) or cross-word (word boundaries are

ignored). In order to reduce the number of model parameters, triphone models often use

parameter tying—typically using decision trees [139]. In this work, context-independent

word and phone acoustic models are used. Model-based adaptation schemes [134] are not

used.

As discussed in section 2.1.3, parameters of HMM acoustic models can be estimated

using a number of different training criteria, including ML, MMI and MBR estimation. Al-

though ML-estimated HMM acoustic models are still widely used, discriminatively trained

models have become increasing popular due to their often superior generalisation perfor-

mance. Unfortunately, for speech recognition, many standard discriminative criteria—such

as MMI—minimise an approximation to the sentence error rate, whereas speech recogni-

tion systems are usually scored according to the word error rate. To reduce this mismatch,

the minimum phone error criterion was proposed [96, 97].

The MPE training criterion is based upon the minimum Bayes’ risk framework dis-

cussed in section 2.1.3, and uses a loss function that approximates the sentence phone

error rate [96, 97]. Since minimising the phone error rate is equivalent to maximising the

phone accuracy, MPE training involves maximising the objective function,

Fmpe(λ) =
n
∑

i=1

∑

W

P (W |Oi;λ)A(W,Wi) (2.28)

where A(W,Wi) is the phone accuracy for a hypothesised sentence transcription W ,

given the correct phone sequence Wi. Unfortunately, for many speech recognition tasks,

the set of all possible hypothesis sentences is unfeasibly large, making calculation of the

objective function in equation (2.28) impossible. To avoid this, the summation over all

possible sentence transcriptions is often approximated using a smaller number of ‘likely’

transcriptions (typically represented as a lattice).

For each hypothesised transcription, W , the function A(W,Wi) calculates the sen-

tence phone accuracy. Ideally, this should be calculated after the hypothesis has been

aligned with the reference transcription. In practice, however, this alignment can be com-

putationally expensive and, instead, an approximation is often used [96]. This calculates

the accuracy of individual phones in the hypothesised transcription using the function,

A(q) = max
z

{

−1 + 2e(q, z) if z = q

−1 + e(q, z) otherwise
(2.29)
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where e(q, z) calculates the proportion of the reference phone duration, z, that is over-

lapped by the hypothesised phone, q. With perfect alignment between the reference and

hypothesised phones, A(q), outputs values of 1, 0 and -1 for a correct phone, a substitution

or deletion, and an insertion.

Language modelling

In speech recognition systems, the prior distribution over sentence transcriptions, P (W ),

is often estimated using a language model. Given a sequence of words, W = {w1, . . . , wL},

the language model probability is usually written as a product of the conditional proba-

bilities of words given their history,

P (W ) = P (w1, . . . , wL) =

L
∏

l=1

P (wl|wl−1, . . . , w1) (2.30)

For continuous speech recognition tasks, the vocabulary is often too large to allow robust

estimation of P (W ). To improve robustness, the language model is often simplified using

the assumption that word probabilities depend only upon the last N − 1 words. This

allows the word history to be truncated,

P (W ) =

L
∏

l=1

P (wl|wl−1, . . . , wl−N+1) (2.31)

Popular language models are the bigram, trigram and four-gram models, withN equal to 2,

3 and 4 respectively. Although the n-gram language model probabilities in equation (2.31)

are easier to calculate than the probabilities in equation (2.30), robust estimation of the

probabilities for all possible word combinations is often not possible. Instead, smoothing

algorithms such as discounting and backing-off are commonly used [59].

In many speech recognition systems, the acoustic model and language model proba-

bilities have different dynamic ranges. To compensate for this mismatch, the dynamic

range of language model probabilities is often increased by scaling the language model

log-probabilities by a factor κ (the language model scale factor). The value of κ is usually

determined experimentally.

Search algorithm

The core of a speech recognition system is the search algorithm that determines the best

sentence transcription for a given observation sequence. As discussed above, this search

is usually expressed using Bayes’ rule and Bayes’ decision rule,

Ŵ = arg max
W

P (W |O)

= arg max
W

(

p(O|W )P (W )

p(O)

)

(2.32)
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where p(O|W ) is the acoustic model and P (W ) is the language model. Note that the

evidence, p(O), acts as a normalisation term and is often ignored during recognition.

As illustrated in equation (2.32), an ideal decoder should be able to search through all

possible sentence transcriptions in order to find the one that has the largest posterior

probability. In practice, however, direct evaluation of equation (2.32) is expensive and

rapidly becomes impractical as sentence lengths increase. To overcome this problem,

maximum likelihood HMM state-sequences are often used. These are typically calculated

using the Viterbi algorithm, a computationally efficient approximation to the forward

probability calculations used during training. Further details of the Viterbi algorithm are

given in appendix B.

Scoring

Performance of speech recognition systems is typically evaluated by comparing hypoth-

esised word transcriptions against known reference transcriptions. Scoring proceeds as

follows. Hypothesised transcriptions are first aligned against the reference transcriptions

using a dynamic programming string matching algorithm. Then, given the aligned hy-

potheses, the number of substitution (S), deletion (D) and insertion (I) errors is calcu-

lated by comparing the words in the reference and hypothesised transcriptions. The word

error rate (WER) is then calculated using the expression,

WER = 100

(

1 −
N −D − S − I

N

)

(2.33)

where N is the total number of words in the reference transcriptions [138]. Word error

rates are quoted as percentages.

2.2 Discriminative models

In recent years, discriminative models have become increasingly popular in the search

to find alternatives to generative models for segmenting and labelling observation se-

quences [111]. Defined using features or sufficient statistics extracted from the observation

sequence, discriminative models directly model the class decision boundaries, avoiding the

need to maintain valid generative or prior distributions. Unlike generative models which

are almost exclusively defined within a probabilistic framework, discriminative models can

be defined in a variety of ways.

In the next sections, three forms of discriminative model are considered. The first two,

conditional random fields (CRFs) [63] and hidden conditional random fields (HCRFs) [42,

99] are examples of probabilistic discriminative models. The third example, support vector

machines (SVMs) [10, 19, 125] are a popular distance-based approach.
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2.2.1 Conditional random fields (CRFs)

Conditional random fields (CRFs) [63] are one of the most popular forms of discrimi-

native statistical model within the machine learning community. As a generalisation of

maximum entropy Markov models (MEMMs) [78], CRFs use a single exponential distri-

bution to model the conditional probability of the label sequence, y = {y1, . . . , yT }, given

the observations, O = {o1, . . . ,oT },

P (y|O;α) =
1

Z(O;α)
exp

(

T
∑

t=1

∑

j

αjfj(yt, yt−1,O)

)

(2.34)

Z(O;α) =
∑

y

exp

(

T
∑

t=1

∑

j

αjfj(yt, yt−1,O)

)

(2.35)

where Z(O;α) is a normalisation term, αj are model parameters and fj(yt, yt−1,O) are

features extracted from the complete observation sequence. Note that although CRF fea-

tures may depend upon the complete observation sequence, dependencies on the label

sequence are limited to only the current and previous labels (a first-order Markov assump-

tion). This allows the normalisation summation in equation (2.35) to be calculated in

linear time using a Forward-Backward-style algorithm [7,63,100].5 It is worth noting that

when class labels are drawn from a finite set, the CRF normalisation term is finite, irre-

spective of the model parameters. This means that, unlike generative models, parameter

constraints on α are not required.

As a form of discriminative exponential model, CRFs can be written in terms of suf-

ficient statistics and natural parameters using the conditional version of the canonical

exponential model in equation (2.3),

P (y|O;α) =
1

Z(O;α)
exp

(

αTT (yt, yt−1,O)
)

(2.36)

Tj(yt, yt−1,O) =
T
∑

t=1

fj(yt, yt−1,O)

where α are natural parameters and T (yt, yt−1,O) are sufficient statistics calculated from

the CRF features. The exponential model reference distribution is given by h(O) = 1.

One of the most important decisions that must be made when defining CRFs is the

choice of features/sufficient statistics since these determine the spatial and temporal de-

pendencies that can be modelled. Unfortunately, CRFs suffer from the same problem as

generative exponential models (section 2.1.1) in that, for many applications, it is often

not clear what statistics to use. For sequences of discrete observations, expert knowledge

is often used to define CRF features using simple binary questions, such as ‘is ot capi-

talised and yt a noun?’ [63]. These features can either be used directly as CRF sufficient

5A detailed explanation of the Forward-Backward algorithm is given in appendix B.
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statistics [63] or post-processed using a combinatorial algorithm to generate additional

features that capture more complex dependencies [77, 93]. When sequences of continuous

observations are considered, however, the choice of CRF features/sufficient statistics can

be particularly difficult since there are few intuitive starting points for feature-selection.

Some of the most popular features are based upon either Gaussian-style statistics [42] or

a windowing approach [130].6

2.2.2 Hidden conditional random fields (HCRFs)

In the previous section conditional random fields were introduced as discriminative sta-

tistical models for applications where there is a one-to-one relationship between the ob-

servations and class labels. For applications such as speech recognition, however, this

one-to-one relationship can be inappropriate since the alignment between class labels and

observations is usually unknown. Hidden conditional random fields were introduced as

one method of overcoming this problem.

Hidden conditional random fields (HCRFs) [99] are a latent-variable extension of stan-

dard CRFs that allows the one-to-one relationship between observations and labels to be

relaxed. Similarly to CRFs, HCRFs directly model the posterior probability of a class

label y, given an observation sequence O = {o1, . . . ,oT },

P (y|O;α) =
∑

θ∈Θ

P (y,θ|O;α)

=
1

Z(O;α)

∑

θ∈Θ

exp
(

αTT (y,θ,O)
)

(2.37)

where α are the model parameters, T (y,θ,O) are HCRF sufficient statistics,7 and θ =

{θ1, . . . , θT } is a sequence of latent states, selected from the set of all possible latent state

sequences, Θ. The normalisation term, Z(O;α), is calculated as the expectation of the

unnormalised HCRF over all class labels and state sequences. When the HCRF latent

states follow a Markov assumption, the normalisation term can be calculated using a

Forward-Backward-style algorithm [42, 99].

As a latent-variable extension of conditional random fields, HCRFs suffer from the

same problem as generative exponential models and CRFs in that, for many applications,

it is often not clear which sufficient statistics to use. This choice is especially important for

HCRFs since the marginalisation of HCRF posterior distributions over all possible latent-

variable sequences may be infeasible for certain choices of latent variable and sufficient

6Note that in [42] and [130], experiments were performed using HCRFs (see below). However, the same

features can also be used for CRFs.
7Note that these sufficient statistics differ from the CRF statistics discussed previously in two ways.

First, there is the additional dependence on the latent state sequence. Second, since HCRFs have only a

single class label per observation sequence, the CRF dependence on yt and yt−1 can be replaced with a

simple dependence on y.
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statistics. One approach for defining HCRF latent variables and sufficient statistics is to

emulate the structure and sufficient statistics of latent-variable generative models [42,74].

For example, when latent variables are discrete and follow a first-order Markov assumption,

HMM-style sufficient statistics can be defined using the features [42],

TLM
y′ (y,θ,O) = δ(y=y′) ∀y′

T Tr
θθ′ (y,θ,O) =

T
∑

t=1

δ(θt−1 =θ)δ(θt =θ
′) ∀θ, θ′ (2.38)

TOcc
θ (y,θ,O) =

T
∑

t=1

δ(θt =θ) ∀θ

T G
θ (y,θ,O) =

T
∑

t=1

δ(θt =θ)

[

ot

vec(oto
T
t )

]

∀θ

where δ(y=y′) is the Kronecker delta: a function that is equal to one when y=y ′ and zero

otherwise. As illustrated in equation (2.38), HMM-style HCRF sufficient statistics are

composed of elements with four different functional forms. These correspond (in order)

to: a unigram prior over the class labels, HMM-style transition probabilities, mixture-

component priors, and mixture-component Gaussian sufficient statistics. The advantage of

using these statistics within a discriminative framework is that fewer parameter constraints

are required compared to equivalent generative models. For example, although generative

model variances must be positive-definite, discriminative models such as HCRFs require

no such constraints, making them very flexible. When HCRFs were applied to the TIMIT

phone classification task [38], good performance was obtained, with HCRFs outperforming

both ML and MMI estimated HMMs.

2.2.3 Parameter estimation for conditional models

Unlike generative statistical models where many different training criteria are used, proba-

bilistic discriminative models, such as CRFs and HCRFs, are almost invariably estimated

using the conditional maximum likelihood (CML) criterion. This is an inherently dis-

criminatory approach that attempts to directly maximise the posterior probability of the

training labels, Y = {y1, . . . , yn}, given the observation sequences, O = {O1, . . . ,On}.

Parameter estimates are obtained by maximising the CML objective function [63],

Fcml(α) = P (Y|O;α) =
n
∏

i=1

P (yi|Oi;α) (2.39)

where α are the CRF/HCRF model parameters. It is worth noting that the CML objec-

tive function, above, is identical to the MMI objective function in equation (2.23). The

difference between the two approaches lies in whether they update a generative model

(MMI) or a discriminative model (CML).



CHAPTER 2. STATISTICAL CLASSIFICATION 26

For many discriminative models, such as CRFs and HCRFs, analytic closed-form solu-

tions for the CML objective function in equation (2.39)—obtained by setting the gradient

to zero and solving for α—do not exist. Instead, models are typically estimated using

iterative algorithms: EM-style algorithms such as generalised iterative scaling [23, 63]

and improved iterative scaling [63,93] are commonly used for CRF parameter estimation.

Alternatively, gradient-based techniques can be used. These often have simpler imple-

mentations and have been shown to have faster convergence in many cases [114,129]. The

CRF objective function is convex, causing the objective function to have a single, global,

maximum. In contrast, the latent-variable structure of HCRFs yields a non-convex ob-

jective function that potentially has many local maxima. To minimise the effects of these

local maxima, HCRF parameters are usually estimated using stochastic gradient-based

methods [42, 74, 99, 130].

2.2.4 Support vector machines

Support vector machines (SVMs) [10,19,125] are based upon the intuitive concept of max-

imising the margin of separation—defined as the distance between the decision hyperplane

and the closest training examples—between two competing classes. This has been shown

to be related to minimising an upper bound on the generalisation error [125].

Consider a set of d-dimensional training examples, O = {o1, . . . ,on}, oi ∈ R
d, with

class labels, Y = {y1, . . . , yn}, yi ∈ {−1,+1}. When the training examples are linearly

separable, a linear decision hyperplane can be located such that all examples in the training

set are correctly classified. For a hyperplane with a gradient (weight) vector w and bias

b, the hyperplane decision function is given by the equation,

y = sign(wTo + b) (2.40)

Since this function is invariant under a positive rescaling of the hyperplane parameters,

parameter scaling must be fixed in order to obtain a unique solution. This is typically

achieved by defining canonical hyperplanes on both sides of the decision hyperplane, wTo+

b = 1 and wTo+ b = −1. Training examples are then constrained to lie outside the region

enclosed by the canonical hyperplanes. This arrangement is depicted in figure 2.4 for the

simple case of two-dimensional data.

In this figure, the optimal and canonical hyperplanes are depicted by the solid and dashed

lines respectively. As discussed above, the decision hyperplane is positioned such that no

training examples lie in the shaded region between the canonical hyperplanes. Examples

that lie on the canonical hyperplanes are known as support vectors and (as discussed below)

play an important role in the calculation and optimisation of the decision hyperplane.

The perpendicular distance between the optimal/decision hyperplane and the canonical

hyperplanes is known as the margin. Using the definition of the canonical hyperplanes,
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Class +1
Class −1

Margin

Optimal hyperplane

Support vectors

Figure 2.4: The optimal SVM hyperplane for linearly separable data

the size of this margin can be calculated using the expression [22],

Margin =
1

|w|
(2.41)

Statistical learning theory states that the decision hyperplane that minimises the prob-

ability of generalisation error is the one that maximises this margin [11, 22, 125]. Since

SVMs are designed to minimise generalisation error, the SVM primal objective function

is given by,

minimisew,b
1
2 〈w,w〉 (2.42)

subject to yi

(

〈w,oi〉 + b
)

≥ 1 ∀i ∈ [1, n]

where 〈·, ·〉 denotes an inner-product between two vectors, and oi are training examples.

Unfortunately, many data sets are noisy and contain outliers. For these data, it may

not be possible to find a linear decision boundary that correctly separates all training

examples. To enable SVM training to converge for such data, the margin constraints,

yi

(

〈w,oi〉 + b
)

≥ 1, are often relaxed to allow training examples to be misclassified. The

resulting constraints are known as the soft-margin SVM constraints, and are given by

yi(〈w,oi〉 + b) ≥ 1 − εi, where the slack variables, εi ≥ 0, measure the distance by which

an example has failed to meet the original margin constraint. To ensure that the margin

is not increased at the expense of unnecessary classification errors, the SVM objective

function is altered such that incorrectly classified training examples are penalised. The
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resulting SVM objective function and constraint are given by,

minimisew,b
1
2〈w,w〉 + C

n
∑

i=1

εi (2.43)

subject to yi

(

〈w,oi〉 + b
)

≥ 1 − εi ∀i ∈ [1, n]

and εi ≥ 0 ∀i ∈ [1, n]

where the regularisation parameter, C, controls the trade-off between maximising the

margin and reducing the number of misclassified examples.

Although the soft-margin SVM objective function in equation (2.43) can be optimised

in its primal form—for example [60]—it is often easier to consider the dual form of the

objective [125]. This can be written as,

maximiseαsvm

n
∑

i=1

αsvmi −
1

2

n
∑

i=1

n
∑

j=1

αsvmi αsvmj yiyj〈oi,oj〉 (2.44)

subject to
n
∑

i=1

αsvmi yi = 0

and 0 ≤ αsvmi ≤ C

where αsvmi are Lagrange multipliers associated with training examples, oi. The upper

bound, C, on the Lagrange multipliers limits the influence of individual examples, and is

typically selected using either a development set or a data-dependent algorithm such as

[55]. The dual objective function in equation (2.44) is a quadratic function of the Lagrange

multipliers and is, by definition, convex. This allows the optimisation to converge to a

single global solution. Although many algorithms have been proposed for training SVMs,

two of the most popular are sequential minimal optimisation [94] and the decomposition

and chunking algorithms in [55, 112].

At optimality, the Karush-Kuhn-Tucker (KKT) conditions ensure that only examples

that lie either on the margin, yi(〈w,oi〉 + b) = 1, or on the wrong side of the margin,

yi(〈w,oi〉 + b) ≤ 1, have non-zero Lagrange multipliers, αsvm
i > 0. These examples are

known as the support vectors [22, 125]. Using Lagrangian theory, the weight vector, w,

and bias, b, of the optimal hyperplane can be calculated using only the support vectors,

w =

n
∑

i=1

αsvmi yioi (2.45)

b = −
maxyi=−1(〈w,oi〉) + minyi=1(〈w,oi〉)

2
(2.46)

where maxyi=−1(·) selects the training example from the class −1 that is closest to the

decision hyperplane, and minyi=1(·) selects the example in class +1 that is closest.

Thus far, only linearly separable data sets (with and without noise) have been consid-

ered. For many classification tasks, however, examples are not linearly separable, and a



CHAPTER 2. STATISTICAL CLASSIFICATION 29

more complex representation of the decision boundary is needed. To accommodate these

tasks, Cover’s theorem [20] can be used. This states that examples can be made lin-

early separable with a high probability given a non-linear transformation, φ(o;λ), from

the observation-space to a feature-space of sufficiently high dimensionality. Linear deci-

sion boundaries in this high dimensional feature-space correspond to non-linear decision

boundaries in the original observation-space. By explicitly mapping all training examples

into the feature-space, the SVM dual objective function can be rewritten as,

maximiseαsvm

n
∑

i=1

αsvmi −
1

2

n
∑

i=1

n
∑

j=1

αsvmi αsvmj yiyj

〈

φ(oi;λ),φ(oj ;λ)
〉

(2.47)

subject to the same constraints as equation (2.44). In practice, however, for high-dimensional

feature-spaces, this explicit mapping of examples into the feature-space may be imprac-

tical. Instead, by noting that equation (2.47) is a function of only the distance between

feature-space points, and not the points themselves, SVMs can be written in terms of a

kernel function [1, 10, 125],

K(oi,oj ;λ) =
〈

φ(oi;λ),φ(oj ;λ)
〉

(2.48)

In general, this function may be any symmetric non-linear function that satisfies Mercer’s

condition [79, 115, 125].8 The advantage of expressing SVM training in terms of a kernel

function is that, for some feature-spaces, the feature-space mapping and inner-product

operations can be combined into a single efficient calculation. In such cases it is not

necessary to explicitly calculate the high-dimensional feature-space. When the implicit

feature-space has a much higher dimensionality than the observation-space, significant

computational savings can be achieved through the use of kernel functions.

Table 2.1: A selection of popular kernels

Kernel Functional form Kernel parameters

K(oi,oj)

Linear 〈oi,oj〉 –

Homogeneous polynomial (〈oi,oj〉)p Power, p

Inhomogeneous polynomial (〈oi,oj〉 + c)p Power, p; offset, c

Laplacian exp(−||oi − oj ||/σ) Variance, σ

RBF exp(−||oi − oj ||2/2σ2) Variance, σ

Over the last decade, many different kernel functions have been proposed for mapping

observations into high-dimensional feature-spaces. A small selection of popular kernels

are given in table 2.1. With the exception of the linear kernel, these kernels all have an

8Mercer’s condition simply states that the kernel matrix K(oi, oj ; λ)}n
(i,j)=1 must be positive semi-

definite. This ensures that an expansion
P

∞

k=1 akzk(oi)zk(oj) exists where {z1(o), . . . , zk(o), . . .} is some

unknown feature-space. The kernel thus defines a inner-product in this implicit (possibly incalculable)

feature-space.
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implicit kernel feature-space with a dimensionality that varies with the kernel parame-

ters. Although many kernels—for example, polynomial kernels—have a fixed dimensional

feature-space, others—such as the Laplacian and RBF kernels—generate feature-spaces

whose dimensionality varies with the number of training examples.

2.3 Summary

In this chapter, two different forms of statistical model were introduced: generative sta-

tistical models and discriminative statistical models.

Generative statistical models are probably the most prevalent form of statistical model

currently in use for machine classification of sequence data. Using a sometimes complex

parametric form, generative models approximate the probability distribution function as-

sociated with the observation sequence generation process, allowing sequence likelihoods

to be calculated. Given these likelihoods, class label posterior probabilities can be cal-

culated using Bayes’ rule, with the final class label selected using Bayes’ decision rule.

Various forms of generative model were introduced, ranging from simple exponential mod-

els to complex latent-variable models that model long-range temporal dependencies (e.g.

SLDSs). Maximum likelihood (ML), maximum mutual information (MMI), and minimum

phone error (MPE) training criteria were briefly discussed.

In the second half of this chapter, discriminative statistical models were introduced.

These directly model the class decision boundaries and avoid the need to maintain valid

generative models. Two different approaches were discussed. The first used an exponential

form to directly model the posterior probabilities of the class labels. The resulting dis-

criminative models did not need the strong independence assumptions typically required

by generative models. This allows them to model a much wider range of dependencies

(particularly temporal). The most common form of conditional model, the CRF, was

discussed, along with its latent-variable extension, the HCRF. Conditional maximum like-

lihood (CML) estimation was also briefly reviewed. Support vector machines, a second

form of discriminative model, were then discussed. These are distance-based classifiers,

trained using a maximum-margin training criterion.



3
Dynamic Kernels

Originally proposed in 1964 by Aizermann et al. [1], kernel-based classifiers have re-

cently become popular with the invention and popularisation of support vector machines

(SVMs) [10, 19, 125]. As discussed in the previous chapter, kernel-based techniques are

based upon a kernel function that maps examples into an (often implicit) high-dimensional

feature-space where linear classification can be performed. Over the last decade, many ker-

nels have been developed for mapping vector-based examples into a wide range of different

implicit feature-spaces [22]. However, when examples are best represented as sequences of

observations, the options are rather more limited.

In this chapter, dynamic kernels—kernels that map variable-length observation se-

quences into a fixed-dimensional feature-space—are discussed as a powerful approach for

applying standard kernel classification techniques to variable-length observation sequences.

The dynamic kernels in this chapter are split into two overlapping types: those that op-

erate on discrete observations, and those that operate on both discrete and continuous

observations. To avoid confusion, the second category of kernels are described as continu-

ous dynamic kernels in this work, reflecting the fact that kernels for continuous-observation

sequences are often harder to define than kernels for discrete-observation sequences. Sep-

arate sections are dedicated to discrete and continuous dynamic kernels, with particular

emphasis placed upon novel kernel mappings and concepts and approaches that will be

useful in later chapters. The dynamic kernels discussed in this chapter are: the bag-of-

words kernel, string kernels, marginalised count kernels, Fisher kernels, generative kernels

and sequence kernels.

31
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3.1 Discrete-observation dynamic kernels

There has recently been great interest in the use of dynamic kernels in the fields of com-

putational biology [49, 123] and text processing [54, 73]. Characterised by their sequences

of discrete observations, training examples in these fields are both easy to manipulate

and amenable to the application of dynamic-programming algorithms. Using such tech-

niques, researchers have developed a wide range of intuitive dynamic kernels, such as the

bag-of-words kernel [54], string kernels [73], marginalised count kernels [123] and rational

kernels [17, 18].

3.1.1 Bag-of-word kernels

One of the earliest applications of kernel-based techniques to sequence data was in text

categorisation [22, 54]. This is a supervised classification problem where documents are

classified into one or more predefined categories according to their content. For this task,

each document is represented as a sequence of T words, O = {o1, . . . , oT }, along with a

single class label, y (the document type).

The bag-of-words kernel [54] was proposed as a practical approach for mapping se-

quences of words into a fixed-dimensional feature-space. In its simplest form, the kernel

has a feature-space defined by the vector of word counts (every element of the vector cor-

responds to a single word). For a set of k words, the bag-of-words feature-space can be

written as,

φBoW(O) =















f(w1|O)

f(w2|O)
...

f(wk|O)















(3.1)

where w1 and w2 are specific words and f(w1|O) denotes the number of occurrences of the

word w1 in a sequence O. The disadvantage of this simplistic approach is that words with

similar meanings but different spellings, such as ‘compute’, ‘computed’ and ‘computing’,

are mapped into different regions of the feature-space, making the feature-space mapping

overly dependent on the tense and style used by the document’s author. To avoid this,

words can be replaced by their word-stems before the feature-space is constructed [54].

This reduces the number of features and ensures that similar words are treated equally,

for example, ‘compute’, ‘computed’ and ‘computing’ would all be mapped to the single

stem ‘comput-’. The word-stem-based bag-of-word feature-space is thus given by,

φBoWS(O) =









f(ws1|O)

f(ws2|O)
...









(3.2)
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where ws1 and ws2 are word stems. The word-stem bag-of-words kernel is defined as the

dot-product in the feature-space,

KBoWS(Oi,Oj) = φBoWS(Oi)
TφBoWS(Oj)

=
∑

ws∈WS

f(ws|Oi)f(ws|Oj) (3.3)

where WS is a dictionary containing all known word-stems. For large dictionaries, the

sparseness of the feature-space can make kernel calculations on the full feature-space in-

efficient. However, computational efficiency can be improved by replacing the summation

over all possible words in equation (3.3) with the simpler summation over only the words

that occur in Oi and Oj . For large dictionaries, this can reduce computational cost by

several orders of magnitude. Bag-of-words kernels can also be implemented efficiently

using the rational kernel framework. This is discussed in more detail in chapter 5.

3.1.2 String kernels

A second form of dynamic kernel for sequences of discrete observations is the string ker-

nel [73,110]. Although originally applied to the same document classification application as

the bag-of-words kernel, string kernels take a fundamentally different approach. Whereas

the bag-of-words kernel assumes that the smallest units within a document are words,

string kernels operate directly on the sequence of characters that make up these words.

Document similarity is based upon the number of shared substrings.

One of the simplest forms of string kernel is defined using a feature-space of n-gram

counts. These counts are defined as the number of occurrences of a contiguous substring

of n characters.1 For example, the 3-gram (trigram) features for the text ‘string kernel’

are: str, tri, rin, ing, ng , g k, ke, ker, ern, rne, nel, where ‘ ’ denotes a space. For long

substrings (large n) the feature-space can grow rapidly, resulting in high-dimensional,

sparse feature-spaces with dimensionality |∆|n, where ∆ is the set of input characters.

Fortunately, for typical documents, a large number of trigrams are unlikely to appear in

either the training or test set, for example: dqw or zzz. Such trigrams can be excluded from

the feature-space, significantly reducing computational complexity. An example trigram

feature-space is defined as,

φn-gram(O) =









f(aaa|O)

f(aab|O)
...









(3.4)

where f(aaa|O) is the number of occurrences of the trigram aaa in the observation se-

quence O. The definition can be extended to n-grams of any length.

1Note that when documents are tokenised into words rather than characters, the unigram kernel is

equivalent to the bag-of-words kernel.
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A second form of string kernel is the string subsequence kernel (SSK) [73], also known

as the gappy-n-gram kernel [18,71]. This uses similar features to the n-gram feature-space

above, except that characters in subsequences are no longer required to be consecutive.

Instead, subsequences are assigned weights according to how contiguous their constituent

characters are, with widely-spaced characters receiving a smaller weight than consecutive

characters. Weights are calculated by first calculating the subsequence length that con-

tains the feature-space characters. For example, for the word ‘speech’ and feature ‘pc’,

the subsequence length is 4 (for the character sequence ‘peec’). This subsequence length

is then combined with a decay factor, λ ∈ (0, 1), in order to determine the feature-space

weight. For the feature ‘pc’ the weight will be λ4. Next, using the subsequence feature-

space, the SSK kernel can be defined. Consider, for example, the feature-spaces calculated

for the three words: hat, mat and met.

Feature-space dimensions

at et ha ht ma me mt

φssk(hat) λ2 - λ2 λ3 - - -

φssk(mat) λ2 - - - λ2 - λ3

φssk(met) - λ2 - - - λ2 λ3

Given these feature-spaces, the SSK kernel is defined as the feature-space dot-product. The

string pairs hat/mat and met/met therefore have kernel values of K ssk(hat,mat) = λ4

and Kssk(met,met) = λ6 + 2λ4 respectively. With many possible features, it is rarely

possible to calculate SSK features directly (even for small documents with short features).

Instead, the kernel can be calculated using efficient dynamic programming algorithms [73].

These algorithms scale linearly with both subsequence length and with document lengths

Ti and Tj . Alternatively, as discussed in [18], string subsequence kernels can be calculated

efficiently within the finite-state transducer framework of rational kernels. This is discussed

in more detail in section 5.

3.1.3 Marginalised count kernels

In [123] marginalised kernels were proposed as a method of combining generative models

with traditional kernel classification techniques. Given a set of training examples, O =

{O1, . . . ,On}, parameters of a single latent variable generative model, p(O;λ) are first

estimated, capturing the high-level structure of the data. Next, for every observation, Oi,

the posterior probabilities of all possible generative model state sequences, P (θi|Oi;λ), are

calculated and used to weight examples in a feature-space φ({Oi,θi}). This feature-space

maps points {Oi,θi} from the ‘observation/state’-space to a high-dimensional space where

examples are linearly separable. Marginalised kernels are defined by the inner-product in
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this feature-space and are written as,

Kmar(Oi,Oj ;λ) =
∑

θi∈Θ

∑

θj∈Θ

P (θi|Oi;λ)P (θj |Oj;λ)K({Oi,θi}, {Oj ,θj}) (3.5)

where θi and θj denote state sequences associated with the observations Oi and Oj,

and K({Oi,θi}, {Oj ,θj}) is a kernel that calculates distances between the feature-space

points {Oi,θi} and {Oj ,θj}. The choice of kernel is restricted by the requirement that it

must allow distances between variable-length sequences of observations and states to be

calculated.

Although, in theory, K({Oi,θi}, {Oj ,θj}) can be any kernel function that maps se-

quences of observations/latent-states into a fixed-dimensional space, in practice the choice

is often more limited. This is because for many observation sequences, the computation

cost of summing over all possible latent state sequences, θi and θj , can be prohibitive. To

avoid this, the kernel must allow the summation to be simplified. One such kernel is the

count, or n-gram, kernel (note that when count kernels are used, K(·, ·) is assumed to be

independent of the latent-state sequences θi and θj). Using this kernel, first-order and

second-order marginalised count kernels, with feature-spaces φmc1(O;λ) and φmc2(O;λ),

can be defined [123],

φmc1
j (O;λ) =

T
∑

t=1

P (θt =j|O;λ) (3.6)

φmc2
jk (O;λ) =

T
∑

t=2

P (θt−1 =j, θt =k|O;λ) (3.7)

where φmc1
j (O;λ) is the j-th element of the first-order marginalised count kernel feature-

space and φmc2
jk (O;λ) is the jk-th element of a second-order feature-space. By extending

the marginalised count kernel to higher-order n-grams, more complex dependencies of the

form, φmcn
ij...k(O)=

∑T−n
t=1 P (θi

t, θ
j
t+1, . . . , θ

k
t+n|O), can be modelled.

3.2 Continuous-observation dynamic kernels

In the following sections, a number of dynamic kernels for classifying sequences of contin-

uous observations are presented.2

3.2.1 Fisher kernels

One of the most popular dynamic kernels for classifying sequences of continuous observa-

tions is the Fisher kernel [50, 89, 119, 127]. Defined using a generative model embedded

2Note that, in addition to classification of sequences of continuous observations, all of the kernels

discussed in this section can be used to classify discrete-observation sequences. The reverse is not true for

discrete dynamic kernels.
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within a kernel-based framework, Fisher kernels combine the generative model’s ability to

process variable-length sequences with the flexibility and generalisation performance of dis-

criminative kernel-based algorithms. Given a training set, O = {O1, . . . ,On}, parameters

of a single generative model, p(O;λ), are first estimated using the maximum-likelihood

criterion. The output of this model is a one-dimensional log-likelihood score. Since this

score yields little information about how examples differ, it is of limited use when defining

kernel feature-spaces. Instead, to capture the differences in the generative process between

different examples, a feature-space defined by the gradients of the generative model can

be used,

φF(O;λ) = ∇λ ln p(O;λ) (3.8)

Since the gradient of a statistical model is known as the Fisher score [25], feature-spaces

defined using this gradient are known as Fisher score-spaces [50].

For applications where only a small proportion of the training data is labelled, Fisher

score-spaces allow both labelled and unlabelled data to be utilised within a discrimina-

tive classification framework. This is possible since maximum-likelihood estimation of the

generative model does not require knowledge of the class labels, allowing all training data

(both labelled and unlabelled) to be used to estimate the generative model parameters.

When labelled training data is limited, the use of unlabelled data allows more robust

generative model parameter estimates to be obtained, resulting in a generative distribu-

tion that better reflects the dynamic properties of the complete training set. When this

distribution is used to map labelled training examples into the Fisher score-space, the

resulting Fisher scores are based upon information extracted from the whole training set

(both labelled and unlabelled examples), potentially improving classification performance.

Given the Fisher score-space in equation (3.8), Fisher kernels are defined using the

score-space inner-product [50],

KF(Oi,Oj ;λ) = φF(Oi;λ)TG−1φF(Oj ;λ) (3.9)

where G−1 is the score-space metric, defined using a generalised form of the Fisher infor-

mation matrix [50, 119],

G = EO

{

(

φF(O;λ) − µφ

)(

φF(O;λ) − µφ

)T
}

(3.10)

For many latent-variable generative models, the Fisher information matrix in equation

(3.10) has no closed-form solution. Instead it is usually approximated using an expectation

over the training examples [25]. Even with this approximation, the Fisher information

matrix and its inverse can still be expensive to calculate for high-dimensional score-spaces.

To avoid this, further approximations are often used to simplify calculation. The simplest

approach, proposed by Jaakkola et al., is to assume that the Fisher information matrix can

be approximated by the identity matrix [50]. This assumes that score-space elements are
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orthonormal and that the score-space is Euclidean. Alternatively, as used in this thesis, a

diagonal approximation to the Fisher information matrix can be used [119]. This provides

a reasonable approximation to the matrix whilst reducing the computational cost of the

matrix inversion from O(n3) to O(n).

3.2.2 Generative kernels

When Fisher kernels are applied to latent-variable models (in particular, mixture models),

‘wrap-around’ can occur [118]. This arises when multiple points in the observation-space

map to the same score-space point, increasing the confusability of the classes. To illus-

trate this, consider the Fisher score-space defined by a GMM base model containing two

widely-spaced mixture-components. If an observation is generated at the mean of the

first mixture-component, the Fisher scores relative to both mixture-component means are

zero (the first from a zero gradient, and the second from a zero posterior). An obser-

vation generated at the mean of the second mixture-component yields identical scores.

It is therefore impossible to separate the two observations. A similar effect occurs with

the mixture-component variances. By allowing different observations to be mapped into

the same score-space region, confusion between the classes can occur, potentially affecting

classification accuracy. This confusion is known as wrap-around [118].

For applications with fully labelled training sets, generative kernels offer a simple so-

lution [117, 118]. Instead of defining score-spaces using a single shared model, generative

kernels utilise separate generative models for each class, p(O;λ(1)) and p(O;λ(2)). Al-

though both models are likely to suffer from wrap-around, the combination of scores from

different models means that wrap-around in the final score-space is much less likely. The

chances of different observations mapping to the same score-space point is further reduced

by including the log-likelihood ratio of the two classes in the score-space. Generative

score-spaces are defined by,

φLL(O;λ) =









ln p(O;λ(1)) − ln p(O;λ(2))

∇λ(1) ln p(O;λ(1))

−∇λ(2) ln p(O;λ(2))









(3.11)

where λ = {λ(1),λ(2)}, and λ(1) and λ(2) are parameters for each of the generative models.

It is worth noting that when the base models used to define a generative kernel are identical

(i.e. the parameters are tied, λ(1) =λ(2)), a standard Fisher kernel is obtained.

3.2.3 Sequence kernels

In [12] sequence kernels were proposed. Unlike the kernels discussed thus far, sequence

kernels separate the definition of the high-dimensional feature-space from the handling of
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variable-length sequences. First, individual observations, ot ∈ O, are mapped into a high-

dimensional feature-space using a standard kernel feature-space mapping, φ(ot); polyno-

mial and RBF feature-space mappings are commonly used. This results in a variable-

length sequence of implicitly-defined feature-space points, Φ(O) = {φ(o1), . . . ,φ(oT )}. A

second mapping function, φs, then collapses this sequence of feature-space points into a

single fixed-dimensional vector. The sequence kernel feature-space, φseq(O), and kernel,

Kseq(Oi,Oj), are thus defined by,

φseq(O) = φs(Φ(O)) = φs
(

{φ(o1), . . . ,φ(oT )}
)

(3.12)

Kseq(Oi,Oj) = φs(Φ(Oi))
Tφs(Φ(Oj)) (3.13)

Although the definition of sequence kernels as a combination of two different feature-space

mappings appears to provide a wide range of options for defining application-specific

dynamic kernels, in practice, this is not the case. This is because the functional form of

φs is severely restricted by the need to compute both φs and Kseq(Oi,Oj) using only

dot-products of the implicit feature-space Φ(O). One such sequence mapping that meets

this criteria is the averaging operation [12],

φseq-av(O) = φs(Φ(O)) =
1

T

T
∑

t=1

φ(ot) (3.14)

Dot-products in this feature-space can be expressed entirely in term of dot-products of

the observation feature-spaces, φ(ot),

Kseq-av(Oi,Oj) = φs(Φ(Oi))
Tφs(Φ(Oj))

=
1

TiTj

Ti
∑

t=1

Tj
∑

τ=1

φ(ot)
Tφ(oτ ) (3.15)

This allows sequence kernels to be calculated efficiently. Unfortunately, the averaging

of observation features is equivalent to introducing an independence assumption between

observations. This causes all temporal information to be lost, severely limiting the appli-

cability of sequence kernels for classifying sequence data.

3.3 Summary

In this chapter, dynamic kernels were introduced as a powerful method for mapping

sequences of discrete and continuous observations into high-dimensional feature-spaces.

Standard distance-based classifiers such as the perceptron algorithm and SVMs can then

be trained using these feature-spaces. The dynamic kernels in this chapter were grouped

into two categories: those that operate on discrete-observation sequences, and those op-

erate on continuous-observation sequences. The three discrete dynamic kernels discussed
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were: the bag-of-words kernel, string kernels and marginalised count kernels. The three

continuous kernels discussed were: Fisher kernels, generative kernels and sequence kernels.



4
Augmented Statistical Models

One of the most popular approaches for inferring class decision boundaries from statistical

models is Bayes’ decision rule. When the correct statistical models and distributions are

known, this yields the set of decision boundaries that minimise the expected generalisa-

tion error. However, in practice, the correct models are often not known and, instead,

approximations are usually selected from a small set of standard generative or discrimi-

native statistical models. Unfortunately, the independence and conditional-independence

assumptions embedded within these models may be incorrect, potentially resulting in

suboptimal generalisation accuracy.

In recent years, several attempts have been made at extending standard generative

models to incorporate additional temporal and spatial dependencies. As discussed in

chapter 2, examples of these are: switching linear dynamical systems [107], segmental

models [29, 91, 92], buried Markov models [8, 9] and mixed memory models [88]. Unfortu-

nately, many of these models require the latent-variable and observational dependencies

to be selected a priori using expert knowledge or empirical evidence. For sequence data,

the vast number of possible dependencies can make this selection difficult.

In this chapter, augmented statistical models (augmented models) are introduced as a

systematic approach for extending generative models to include additional temporal and

spatial dependencies. Given a base generative model—typically an HMM—augmented

models are defined using a local exponential expansion of the base model [117]. This

expansion is used to define a vector of additional sufficient statistics that enable the base

model conditional-independence assumptions to be ‘broken’, allowing augmented models

to represent a wider range of distributions than the original, base, model. The forms of

40
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augmentation, and hence sufficient statistics, discussed in this chapter relate directly to

some of the dynamic kernel feature-spaces discussed in chapter 3.

4.1 Local exponential expansion

Augmented statistical models are a systematic and mathematically consistent approach

for extending standard generative models to include additional, complex, dependencies.

Given a base generative model, p̂(O;λ), augmented models are defined using a member

of the exponential family with a reference distribution, h(O) = p̂(O;λ) [117],

p(O;λ,α) =
1

τ(λ,α)
p̂(O;λ) exp

(

αTT (O;λ)
)

(4.1)

where α are known as the augmented parameters and T (O;λ) are sufficient statistics

defined from a Taylor-series expansion of the base model. In information-geometric terms,

augmented models can be viewed as defining a fibre-bundle that extends the base model

statistical manifold.

4.1.1 Taylor series expansion

Let O = {O1, . . . ,On} be a set of independent and identically distributed training ex-

amples, each generated according to some unknown data distribution, pT (O). Without

prior knowledge of the underlying physical process, these examples are often assumed

to originate from a standard generative model—typically a GMM or HMM. Estimating

parameters of this model using (for example) the maximum likelihood training criterion,

yields a generative distribution that most closely approximates the true data distribu-

tion.1 Throughout this thesis, the generative model and distribution are known as the

base model and distribution respectively, and are denoted by probability density functions

of the form p̂(O;λ).

Given a base model p̂(O;λ) with ML-estimated parameters λ̃, the base model distri-

bution that most closely approximates the true distribution can be written as p̂(O; λ̃).

Next, considering an infinite Taylor-series expansion of the base model about the base

distribution [117],

ln p̂(O;λ) = ln p̂(O; λ̃) + (λ − λ̃)T∇λln p̂(O;λ)
∣

∣

∣

λ̃

+
1

2
(λ − λ̃)T

(

∇λ∇
T
λ ln p̂(O;λ)

)∣

∣

∣

λ̃
(λ − λ̃) + · · · (4.2)

1Throughout this derivation, it is assumed that (for clarity) the base model parameters are estimated

using a maximum likelihood training criterion. This is not strictly necessary and, instead, other training

criteria can be used. Note that the definition of ‘most closely approximates’ depends upon the choice of

generative model training criterion.
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For many base models the infinite expansion in equation (4.2) is valid for all values of

λ and λ̃.2 In practice, however, the complete Taylor series often cannot be computed

explicitly and must, therefore, be truncated. Consider, for example the truncated series

that contains only the first-order and second-order derivatives of the base model (note

that this assumption is for presentational purposes only: in general series of any length

can be used),

ln p̂(O;λ) ≈ ln p̂(O; λ̃) + (λ − λ̃)T∇λln p̂(O;λ)
∣

∣

∣

λ̃

+
1

2
(λ − λ̃)T

(

∇λ∇
T
λ ln p̂(O;λ)

)∣

∣

∣

λ̃
(λ − λ̃) (4.3)

Although the truncated series in equation (4.3) is very similar to equation (4.2), the

removal of higher-order terms means that good approximations to ln p̂(O;λ) are only

obtained when the model parameters, λ, are sufficiently close to the base distribution

parameters, λ̃. This is a standard approximation for Taylor series expansions.

Additionally, since equation (4.3) is an expansion of a statistical model, two further

issues must be considered. The first is that, in many cases, the removal of higher-order

derivatives results in a model that is unnormalised (the total probability density is no

longer equal to one); to rectify this, a normalisation term can be introduced. The second

concern is that the dependencies modelled by the truncated series may differ from those in

the original model. To illustrate this, consider a truncated Taylor-series expansion of an

HMM, defined using only first-order and second-order derivatives of the HMM likelihood.

As discussed later in section 4.3.1, first-order derivatives of an HMM depend upon the

occupancies of single latent states, P (θt =j|O;λ), whilst second-order derivatives depend

upon occupancies of pairs of states, P (θt =j, θτ =k|O;λ). This means that whilst estima-

tion of the original HMM parameters requires calculation of only the state occupancies,

estimation of the approximate model requires calculation of both state and state-pair oc-

cupancies. A range of different dependencies can therefore be modelled that could not be

represented within the original model.3

By introducing a normalisation term, τ(λ, λ̃), and re-arranging the truncated Taylor-

series, equation (4.3) can be written as a log-linear generative model, p(O; λ̃,λ), with

2There exist a small number of functions that do not equal the sum of their Taylor series [120]. Base

models defined using these function therefore cannot be expanded in this way. Despite this, provided that

derivatives of these models are well-defined, augmented statistical models can still be defined using the

augmented model definition in equation (4.5).
3Note that when infinitely-long expansions are considered, all terms involving joint-posteriors of the

latent-variables cancel, leaving a series that exactly mimics the original HMM.



CHAPTER 4. AUGMENTED STATISTICAL MODELS 43

parameters λ (note that λ̃ are fixed parameters associated with base distribution),

ln p(O; λ̃,λ) = ln p̂(O; λ̃)+ (4.4)




λ − λ̃

(λ − λ̃) ⊗ (λ − λ̃)





T 



∇λln p̂(O;λ)
∣

∣

∣

λ̃
1
2vec(∇2

λ ln p̂(O;λ))
∣

∣

∣

λ̃



− ln τ(λ, λ̃)

where ∇2
λ denotes ∇λ∇

T
λ , ⊗ is the Kronecker product [41], and vec(A) converts the matrix

A into a vector. When λ is a d-dimensional parameter vector, it is clear that the log-

linear model, p(O;λ), calculates weights (the Taylor series coefficients) for the d(d + 1)

derivatives (the log-linear model sufficient statistics) using only d free parameters. This

tying of weights severely restricts the range of distributions that can be modelled.

Augmented statistical models (often referred to simply as augmented models) [117]

are defined by generalising the log-linear model in equation (4.4). The first generalisation

is to remove the parameter tying of the weights associated with each derivative: this

involves replacing the vector of λ− λ̃ and (λ− λ̃)⊗ (λ− λ̃) by a new vector of augmented

parameters, α, each of which can be varied independently. For second-order models, this

increases the number of model parameters from d to d(d + 1). The second generalisation

used when converting equation (4.4) to an augmented model is to replace the fixed base

distribution parameters λ̃ with a set of adjustable base model parameters, λ. Using

these generalisations, augmented statistical models can be defined in terms of base model

parameters λ and augmented model parameters α, [117]

p(O;λ,α) =
1

τ(λ,α)
p̂(O;λ) exp

(

αTT (O;λ)
)

(4.5)

where τ(λ,α) is a normalisation term. The augmented model in equation (4.5) is a

member of the exponential family with the reference distribution given by a distribution

of the base model. The model has natural parameters α and sufficient statistics T (O;λ),

T (O;λ) =















∇λln p̂(O;λ)
1
2!vec(∇

2
λ ln p̂(O;λ))

...
1
ρ!vec(∇

ρ
λ ln p̂(O;λ))















(4.6)

where ρ denotes the order of the model and ∇ρ
λ is a ρ-th order derivative with respect to

λ. Note that since α are the weights associated with the sufficient statistics, as α → 0

the augmented model likelihood tends towards the base distribution likelihood. When

α is non-zero, however, the sufficient statistics in equation (4.6) combine with the base

model sufficient statistics and allow augmented models to represent a wider range of data

distributions than the base model. Examples of these distributions are augmented GMMs

(section 4.2.3) and augmented HMMs (section 4.3).
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In order to generate valid probability density functions, augmented models must sat-

isfy the two axioms of probability [121]: they must be everywhere positive and the total

probability mass must equal one. The first axiom is always satisfied since both the base

model likelihood and the exponential extension are, by definition, non-negative. As dis-

cussed earlier, the second axiom must be enforced explicitly using the normalisation term,

τ(λ,α), calculated as the expectation of the unnormalised model over all possible obser-

vation sequences,

τ(λ,α) =

∫

p̂(O;λ) exp
(

αTT (O;λ)
)

dO (4.7)

In general, this integral has no closed-form solution and must, instead, be approximated

(typically using numerical integration). This can make augmented model parameter esti-

mation difficult since many generative model training criteria require explicit calculation

of the normalisation term. An alternative form of training that avoids the normalisation

calculation is discussed in chapter 6.

A further problem that can occur is that some choices of sufficient statistics (defined

by the base model) can result in the exponential term in equation (4.7) having no upper

bound, thereby causing the normalisation term τ(λ,α) to become infinitely large. For

many augmented models, this can be avoided by placing constraints on the augmented

parameters. These are often similar to the Gaussian constraint that variances must be

positive-definite. Sections 4.2.1 and 4.2.3 contain examples of constraints for augmented

Gaussians and augmented GMMs respectively.

4.1.2 Manifolds and fibre-bundles

In the previous section, augmented statistical models were motivated using a Taylor series

expansion of a base statistical model about a single distribution of that model. This can

be viewed from an information-geometric perspective in terms of fibre-bundles extending

a manifold of statistical distributions [3, 101, 117].

Manifold associated

with base model

S = p̂(O; λ)
�

�
�

���Base distribution XXXXXXz

Augmented model

fibre-bundle

p̂(O; λ,α)

-

Space of all

statistical distributions

S

Figure 4.1: Manifold representation of an augmented model
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First, consider a base model, p̂(O;λ). In the space of all statistical distributions, S, this

defines a statistical manifold, S, parameterised by the base model parameters λ. Points

on the manifold represent specific distributions of the base model. Given a set of training

examples, O = {O1, . . . ,On}, ML estimation of the base model parameters fixes a point

on the manifold (the base distribution) that lies ‘closest’ to the true data distribution.4

Augmenting this distribution with the additional sufficient statistics in equation (4.6)

creates a fibre-bundle that extends the base manifold [3, 117] (figure 4.1). This fibre-

bundle is defined by a combination of the base model parameters, λ, and the augmented

parameters, α (which represent the ‘distance’ travelled within the fibre-bundle). With

the addition of a normalisation term, points within this fibre-bundle represent probability

distributions.

For augmented parameters, α = 0, augmented model distributions lie on the base

model manifold and so yield no additional modelling power. However, as α becomes non-

zero, augmented models can represent a wide range of distributions within the fibre-bundle.

Since many of these distributions lie away from the manifold, augmented models are able

to represent many more distributions than is possible with just the base model. For data

sampled from some unknown distribution, augmented models are therefore more likely

to provide a better approximation to the true distribution than the original base model.

This makes them a powerful and systematic method for extending standard generative

statistical models.

4.2 Dependency modelling in augmented models

At this point, it is useful to contrast the dependencies embedded in augmented models,

with those of the base models from which they are derived. These dependencies are deter-

mined by both the base model and the augmented model sufficient statistics and typically

take two forms: independence assumptions and conditional-independence assumptions.

To determine how augmented models are affected by independence assumptions in

the base statistical model, consider a simple base generative model p̂(o1,o2;λ), with ob-

servations o1 and o2, and model parameters λ. Introducing the assumption that the

observations o1 and o2 are independent allows the base model to be expanded in terms of

two separate distributions, p(o1;λ) and p(o2;λ),

p̂(o1,o2;λ) = p(o1;λ)p(o2;λ) (4.8)

Next, augmenting this base model using the first-order (for clarity) sufficient statistics in

4The notions of ‘closeness’ and ‘closest’ are defined by the training criterion.
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equation (4.6), a first-order augmented model, p(o1,o2;λ,α), can be defined,

p(o1,o2;λ,α) =
1

τ(λ,α)
p̂(o1,o2;λ) exp

(

αT∇λ ln p̂(o1,o2;λ)
)

=
1

τ(λ,α)
p(o1;λ)p(o2;λ) exp

(

αT∇λ

[

ln p(o1;λ) + ln p(o2;λ)
])

=

(

1

τ1(λ,α)
p(o1;λ) exp

(

αT∇λ ln p(o1;λ)
)

)

×

(

1

τ2(λ,α)
p(o2;λ) exp

(

αT∇λ ln p(o2;λ)
)

)

(4.9)

where τ1(λ,α) and τ2(λ,α) are normalisation terms. From equation (4.9), it is clear

that first-order augmented models constructed from the base model p̂(o1,o2;λ) cannot

overcome the base model assumption that observations are independent. Similar results

can also be shown for higher-order augmented models. Augmented models therefore retain

base model independence assumptions.

The second form of assumption commonly used in generative models are conditional-

independence assumptions. To illustrate the effect of augmenting a base model with

conditional-independence assumptions, consider the simple mixture-model,

p̂(o;λ1,λ2) = 1
2p(o;λ1) + 1

2p(o;λ2) =

2
∑

i=1

1
2p(o;λi) (4.10)

where p(o;λ1) and p(o;λ2) are the mixture-component output distributions. In this ex-

ample, observations are conditionally independent given the mixture component that gen-

erated them. Augmenting the base mixture model using the first-order sufficient statistics

in equation (4.6), yields the augmented model, p(o;λ1,λ2,α1,α2),

p(o;λ1,λ2,α1,α2)

=
1

τ(λ1,λ2,α1,α2)
p̂(o;λ1,λ2) exp





[

α1

α2

]T [

∇λ1 ln p̂(o;λ1,λ2)

∇λ2 ln p̂(o;λ1,λ2)

]





=
1

τ(λ1,λ2,α1,α2)

(

2
∑

i=1

1
2p(o;λi)

)

exp

(

1
2αT

1 ∇λ1 ln p(o;λ1) + 1
2αT

2 ∇λ2 ln p(o;λ2)

)

=
1

2τ(λ1,λ2,α1,α2)

2
∑

i=1

p(o;λi) exp

(

1
2αT

1 ∇λ1 ln p(o;λ1)

)

exp

(

1
2αT

2 ∇λ2 ln p(o;λ2)

)

Since the augmented model observation likelihood is not a superposition of two inde-

pendent distributions (unlike the original base mixture-model), the assumption that ob-

servations are conditionally independent given the current mixture-component is broken.

This allows the augmented model to represent a wider range of data distributions than

is possible with the base model. The relaxation and removal of base model conditional-

independence assumptions in augmented models is discussed in more detail in the next

sections.
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4.2.1 Augmented exponential models

Consider a base statistical model selected from the exponential family with parameters λ

and sufficient statistics T (o). When a Euclidean space is assumed, the exponential model

likelihood, p̂(O;λ), is given by,

p̂(O;λ) =

T
∏

t=1

1

τ(λ)
h(ot) exp

(

λTT (ot)
)

(4.11)

where O = {o1, . . . ,oT } is a sequence of independent observations, h(ot) is the exponential

model reference distribution, and τ(λ) is a normalisation term. Augmenting this model

introduces additional sufficient statistics, defined by the first- and higher-order derivatives

of the model log-likelihood with respect to λ. First-order and second-order derivatives are

calculated using the expressions,

∇λln p̂(O;λ) =

T
∑

t=1

(

T (ot) −∇λln τ(λ)
)

(4.12)

∇λ∇
T
λ ln p̂(O;λ) = −

T
∑

t=1

∇λ∇
T
λ ln τ(λ) (4.13)

From equations (4.12) and (4.13), it is clear that second (and higher-order) derivatives

of the base exponential model are dependent on only the base model normalisation term,

τ(λ). Since, for a given set of base model parameters, this is constant with respect to the

observations, contributions from these derivatives can be included in the augmented model

normalisation term and need not be considered further. Similarly, equation (4.12) includes

the first derivative of the normalisation term; this is also constant and so can included into

the augmented model normalisation. Given these simplifications, a ρ-th order augmented

exponential model can be written simply as,

p(O;λ,α) =
1

τ(λ,α)

{ T
∏

t=1

1

τ(λ)
h(ot) exp

(

λTT (ot)
)

}

exp

( T
∑

τ=1

αTT (oτ )

)

=
1

τ(λ,α)

{ T
∏

t=1

1

τ(λ)
h(ot) exp

(

λTT (ot)
)

} T
∏

t=1

exp
(

αTT (ot)
)

=
T
∏

t=1

{

1

τ(λ + α)
h(ot) exp

(

(λ+α)TT (ot)
)

}

(4.14)

where τ(λ,α) denotes the augmented model normalisation and τ(λ) denotes the standard

exponential base model normalisation term.

At this stage, it is interesting to contrast the dependencies of the augmented model, in

equation (4.14), with the base exponential model in equation (4.11). As discussed earlier,

the statistics obtained when augmenting a base model are functions of the base model

sufficient statistics, causing independence assumptions to be retained. Since there are no
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conditional-independence assumptions to break, the augmented model in equation (4.14)

has an identical functional form to the original exponential model in equation (4.11),

resulting in no additional modelling power.

The apparent simplicity of equation (4.14) can be deceptive since it suggests that valid

augmented models are obtained for all values of λ and α. For many augmented models,

however, this is not true and constraints must be introduced. Consider, for example, a

Gaussian base distribution with parameters λ = {λ1,λ2} and sufficient statistics, T (o) =

[oT, vec(ooT)T]T,

p(o;λ) =
1

τ(λ)
exp





[

λ1

λ2

]T [

o

vec(ooT)

]



 (4.15)

As a member of the exponential family, this Gaussian distribution can be augmented

using equation (4.14). An augmented Gaussian (A-Gaussian) with augmented parameters

α = {α1,α2} can therefore be written as,

p(o;λ,α) =
1

τ(λ,α)
exp





[

λ1+α1

λ2+α2

]T [

o

vec(ooT)

]



 (4.16)

For this A-Gaussian to be a valid statistical model, the normalisation term, τ(λ,α), must

have an upper bound. This is true only when all parameters associated with the vec(ooT)

term are negative (the Gaussian variance is positive definite). The following constraints

are therefore required,

Base model: λ2 < 0 (4.17)

Augmented model: λ2 + α2 < 0 (4.18)

where a < b denotes the set of inequalities, ai < bi, i ∈ [1, d], and a and b are d-dimensional

vectors. The first constraint ensures that p(o;λ) is a valid base model, whereas the second

ensures that p(o;λ,α) is a valid augmented model. No constraints are required for λ1

and α1.

4.2.2 Augmented latent-variable models

Latent-variable generative models, one of the standard types of model used for statistical

pattern processing, can also be augmented. Consider, for example, an N -state latent-

variable base model with a latent-state prior distribution, P (θ;λ), state-conditional output

distributions, p(O|θ;λ), and parameters λ,

p̂(O;λ) =
∑

θ∈Θ

P (θ;λ) p(O|θ;λ) (4.19)
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where the latent state sequences, θ, are selected from the set of all possible sequences,

Θ. As discussed in section 2.1.2, observations are typically assumed to be condition-

ally independent given the current state. For the purposes of this discussion, let the

state-conditional output distributions, p(ot|θt = j;λ), be exponential distributions with

parameters λj ⊂ λ and sufficient statistics T (ot;λj).
5 Differentiating the base model

log-likelihood with respect to the output distribution parameters, λj , therefore yields a

set of augmented model statistics of the form (see appendix A for derivation),

∇λj
ln p̂(O;λ) =

T
∑

t=1

P (θj
t |O;λ)T (ot;λj) (4.20)

where θj
t denotes θt =j and P (θj

t |O;λ) is the posterior probability of the base model being

in state j at time t, given O. Augmenting the base latent-variable model in equation (4.19)

with the derivatives in equation (4.20), yields a first-order augmented model,

p(O;λ,α) =
1

τ(λ,α)
p̂(O;λ) exp

( N
∑

j=1

T
∑

t=1

P (θj
t |O;λ)αT

j T (ot;λj)

)

(4.21)

where α={α1, . . . ,αN} are augmented parameters associated with the base model suffi-

cient statistics, T (ot;λj), j ∈ [1, N ].

As for the augmented exponential model, it is interesting to compare the dependencies

embedded in the augmented model in equation (4.21) with those in the original, base,

model. Since the augmented model sufficient statistics in equation (4.20) are a function of

only the base model statistics, independence assumptions of the base model are retained

by the augmented model. Conversely, conditional-independence of observations given

the state is broken since the augmented model sufficient statistics depend on the state

posteriors, P (θj
t |O;λ), and so are a function of all observations and states.

More powerful augmented models can be constructed by introducing higher-order

derivatives of the base model. Consider, for example, second-order derivatives of the

base model log-likelihood with respect to the output distribution parameters, λj and λk,
6

∇λj
∇T

λk
ln p̂(O;λ) =

T
∑

t=1

T
∑

τ=1

D(θj
t , θ

k
τ |O;λ)

[

∇λj
ln p(ot|θt;λ)

][

∇λk
ln p(oτ |θτ ;λ)

]T

+

T
∑

t=1

P (θj
t |O;λ)∇λj

∇T
λk

ln p(ot|θt;λ)

where D(θj
t , θ

k
τ |O;λ) is a posterior-like term, defined by,

D(θj
t , θ

k
τ |O;λ) = P (θj

t , θ
k
τ |O;λ) − P (θj

t |O;λ)P (θk
τ |O;λ) (4.22)

5Note that in general observations may be modelled using any valid distribution. In this section,

exponential distributions are used to simplify the presentation.
6See appendix A for derivation.
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For some base models, the second-order ‘posterior’, D(θj
t , θ

k
τ |O;λ), allows dependencies

between discontiguous observations to be represented even when the base model does not

allow such dependencies to be modelled.7 This is discussed in more detail in section 4.3

(A-HMMs).

With their additional complexity, both in terms of computational cost and memory

usage, it is useful to examine the benefits of second- and higher-order augmented models

compared to simpler first-order models. Second-order models offer two major benefits.

The first is that they depend upon the posterior probabilities (occupancies) of pairs of

discontiguous states, allowing second-order augmented models to capture temporal corre-

lations between non-consecutive observations. This allows a wider range of dependencies

to be modelled than is possible with first-order augmented models (which depend only

upon the occupancies of individual states). The second advantage of higher-order aug-

mented models is that they contain many more sufficient statistics than comparable first

order models. For example, given a base model with a d-dimensional parameter vector, λ,

there are d first-order augmented model sufficient statistics, and d(d + 1)/2 second-order

sufficient statistics. Since each sufficient statistic acts as a degree of freedom in the space

of all statistical models, the additional statistics of second-order models allows a wider

range of distributions to be modelled than is possible with first-order augmented models.

Unfortunately, the additional modelling power of second-order augmented models

comes at a significant computational cost. With many more parameters than their first-

order equivalents, second-order models require significantly more training data for robust

parameter estimation, thereby increasing the computational cost of training. A further

cost arises from the complexity of the second- and higher-order augmented model sufficient

statistics. Whereas the computational and storage requirements for first-order statistic cal-

culations scale linearly with both sequence length and number of base model parameters,

the cost of calculating second-order derivatives varies quadratically in both. This can make

calculation and storage of higher-order augmented model sufficient statistics prohibitively

expensive. As discussed in chapter 5, however, continuous rational kernels can be used to

alleviate some of these difficulties. These use weighted finite-state transducer calculations

to avoid explicit calculation and storage of all possible higher-order statistics. Instead, an

efficient implicit representation is used that only calculates statistics as they are required.

7Note that this is only true when states of the base model are conditionally independent. When

states are independent, D(θj
t , θ

k
τ |O; λ) is always zero since the joint posterior for independent states is

calculated as the product of the separate posteriors, P (θj
t , θ

k
τ |O; λ) = P (θj

t |O; λ)P (θn
τ |O; λ) causing the

first and second terms of equation (4.22) to cancel. This result is consistent with the analysis in section

4.2 that augmented models can overcome only conditional-independence assumptions of the base model,

not independence assumptions.
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4.2.3 Illustrative example: first-order A-GMM

To illustrate the benefits of augmented models, consider a simple example: an augmented

GMM. Let p̂(O;λ) be a GMM base model with parameters λ = {cm,µm,Σm}M
m=1. For

observations, O = {o1, . . . ,oT }, the base model likelihood and first-order derivatives with

respect to µm and Σm are given by,

p̂(O;λ) =
T
∏

t=1

M
∑

m=1

cmN (ot;µm,Σm) (4.23)

∇µm ln p̂(O;λ) =

T
∑

t=1

P (θm
t |ot;λ)Σ−1

m (ot − µm) (4.24)

∇Σm ln p̂(O;λ) =
T
∑

t=1

P (θm
t |ot;λ)

2

[

−Σ−1
m + Σ−1

m (ot−µm)(ot−µm)TΣ−1
m

]

(4.25)

Augmenting the GMM in equation (4.23) with its derivatives with respect to the mixture-

component means—equation (4.24)—yields a first-order A-GMM,8

p(O;λ,α) =
1

τ(λ,α)

{

T
∏

t=1

M
∑

m=1

cmN (ot;µm,Σm)

}

×

exp
(

T
∑

t=1

M
∑

n=1

P (θn
t |ot;λ)αT

µn
Σ−1

n (ot − µn)
)

(4.26)

where αµn denotes the augmented parameters associated with the mean derivatives. As

an augmented latent-variable model, conditional-independence assumptions of the base

GMM are broken (A-GMM observations are dependent on all mixture-components), whilst

independence assumptions are retained.

To examine the effect that augmenting a GMM has on the distributions that can be

modelled, consider the simple one-dimensional example in figure 4.2. This compares the

performance of two models—a GMM and an A-GMM—on data generated using a symmet-

ric log-normal distribution. Given the data, parameters of a two-component GMM were

first estimated using ML estimation. As illustrated in figure 4.2, the resulting distribution

modelled the data poorly, achieving an average log-likelihood of -1.59. Next, the GMM

was augmented using equation (4.26) to form a two-component A-GMM with parameters

estimated using ML estimation (the normalisation term was calculated using numerical

integration). Figure 4.2 shows that the resulting A-GMM distribution approximates the

data much more closely than the original GMM. This is reflected in an average A-GMM

log-likelihood of the data of -1.45, compared to -1.59 for the GMM. Interestingly, the

two-component A-GMM also outperformed a four-component ML-estimated GMM (not

8Note that, for clarity, the variance derivatives in equation (4.25) are not included in the augmented

model.
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Figure 4.2: Modelling a ‘symmetric’ log-normal distribution

shown) that achieved a log-likelihood of -1.46, despite the augmented model having fewer

parameters.

Table 4.1: Modelling symmetric log-normal data using two-component GMMs and A-GMMs

Classifier Model parameters

c1 µ1 σ1 α1 c2 µ2 σ2 α2

GMM 0.50 -1.12 0.41 — 0.50 1.12 0.41 —

A-GMM 0.69 -2.21 1.03 2.20 0.31 0.35 0.07 0.46

Having compared the modelling ability of two-component GMMs and A-GMMs, it is

instructive to briefly examine the parameters of each after ML estimation on the symmetric

log-normal data. As shown in table 4.1, given a symmetric distribution of data, GMM

parameters are symmetric across the components. In contrast, although the A-GMM

generates an approximately (though not completely) symmetric distribution, the values

of its parameters are highly asymmetric, illustrating the non-linear effect of the mixture-

component posteriors on the A-GMM likelihood. It is this effect that gives augmented

models much of their additional modelled power.

The simple A-GMM in equation (4.26) is an example of an augmented model that is

valid regardless of the augmented parameter values. More complex A-GMMs, however,

may require constraints on the augmented parameters to ensure that the normalisation

term is bounded and that valid probability distributions are generated. One such model is

the A-GMM constructed using the GMM variance derivatives in equation (4.25). Here, the

augmented model sufficient statistics include terms of the form oto
T
t that interact with the

base model mixture-component variances. To ensure that the resulting A-GMM variances
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are positive-definite, constraints must be placed upon the augmented parameters; these

constraints are similar to the A-Gaussian constraints given in equation (4.18). For a

one-dimensional A-GMM with mean and variance derivatives, the constraints are given

by,9

1

σ2
m

−
M
∑

n=1

ασ2
n
P (θn

t |ot;λ)

σ4
n

(ot − µn)2

(ot − µm)2
> 0 m ∈ [1,M ], t ∈ [1, T ] (4.27)

where µm and σ2
m are the base GMM means and variances, and ασ2

n
are the augmented

parameters associated with the variance derivatives. Although more complex than the

A-Gaussian constraints in equation (4.18), the A-GMM constraints in equation (4.27)

perform a similar function.

4.3 Augmented HMMs (A-HMMs)

Hidden Markov models (HMMs) are one of the most popular statistical models for sequence

modelling. As discussed in section 2.1.2, standard HMMs are based upon a number of

conditional-independence assumptions that are believed to be incorrect for many tasks.

In this section augmented HMMs (A-HMMs) are discussed as a systematic approach for

breaking these conditional-independence assumptions, thereby allowing a wide range of

additional dependencies to be modelled.

Consider an HMM base model, p̂(O;λ), with M -mixture-component GMM state-

conditional output distributions and parameters λ. The HMM likelihood for a sequence

of observations, O = {o1, . . . ,oT }, is thus given by,

p̂(O;λ) =
∑

θ∈Θ

T
∏

t=1

aθt−1θt
cθt

N (ot;µθt
,Σθt

) (4.28)

where aij ∈ λ are state transition probabilities, cjm ∈ λ are the GMM output distribution

mixture-component priors, and µθt
∈ λ and Σθt

∈ λ are the means and variances of the

Gaussian mixture-component distributions. The latent-states, θt = {j,m}, include both

the HMM state, j, and the output-distribution mixture-component, m. This statistical

model contains two conditional-independence assumptions: states are independent given

the previous state, and observations are independent given the current state. For many

applications, these assumptions are incorrect and may degrade performance. One method

of overcoming these assumptions is to augmented the base HMM with additional suffi-

cient statistics defined by the derivatives of the base model. These can take many forms

9The A-GMM constraint in (4.27) is a more general form of the A-Gaussian constraints in equation

(4.18). For a one-component GMM, P (θn
t |ot; λ) = 1, allowing equation (4.27) to be reduced to the form

in equation (4.18).
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depending on the derivatives used to generate them: first-order sufficient statistics are gen-

erated by first-order derivatives of the base model, second-order statistics are generated

by second-order derivatives, etc.. In the following sections, first-order and second-order

A-HMM sufficient statistics are discussed in detail. The advantages and disadvantages of

each are discussed.

4.3.1 First-order statistics

Given an HMM base model, first-order A-HMM sufficient statistics are defined by the

first-derivatives of the HMM with respect to its parameters. For an N -state, M -mixture-

component HMM, log-likelihood derivatives with respect to the transition probabilities,

aij , and the mixture-component priors, cjm, are given by,10

∇aij
ln p̂(O;λ) =

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

aij
− P (θi

t−1|O;λ) (4.29)

∇cjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)

cjm
− P (θj

t |O;λ) (4.30)

where θjm
t and θj

t are used to denote θt = {j,m} and θt = j respectively. As illustrated

by the above equations, derivatives of the base model log-likelihood with respect to the

parameters aij and cjm contain two parts. The first is a summation over either transition

or mixture-component occupancies, P (θi
t−1, θ

j
t |O;λ) and P (θjm

t |O;λ), respectively. When

normalised by aij and cjm, these measure the ratio of actual-to-expected occupancies

of transitions and mixture-components. The second term in each equation arises from

the Lagrange multipliers used to maintain the sum-to-one constraints on the transition

probabilities and mixture-component priors. These represent a centring of the score-space.

In addition to derivatives with respect to transition probabilities and mixture-component

priors, log-likelihood derivatives with respect to the output distribution means and vari-

ances can be calculated. They are given by,

∇µjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)Σ−1

jm(ot − µjm) (4.31)

∇Σjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)

2

[

−Σ−1
jm + Σ−1

jm(ot−µjm)(ot−µjm)TΣ−1
jm

]

(4.32)

From equations (4.31) and (4.32), it is clear that first-order HMM derivatives with respect

to the mixture-component means and variances are calculated as posterior weighted sums

of the observations.

Examining equations (4.29)–(4.32), it is clear that HMM derivatives are dependent on

the posterior probabilities of all states θt ∈ θ associated with an observation sequence O.

10Derivations are given in appendix A.



CHAPTER 4. AUGMENTED STATISTICAL MODELS 55

Since these posteriors are, themselves, dependent on the whole observation sequence, the

derivatives are a function of all observations and latent states. When used as augmented

model sufficient statistics, these first-order derivatives break the conditional-independence

of observations given the current state. This can be clearly illustrated by an example.

Consider the A-HMM generated by augmenting the HMM base model in equation (4.28)

with the mean derivatives in equation (4.31),

p(O;λ,α) =
1

τ(λ,α)

∑

θ∈Θ

{

T
∏

t=1

aθt−1θt
cθt

N (ot;µθt
,Σθt

)

}

×

exp
(

T
∑

t=1

N
∑

k=1

M
∑

n=1

P (θkn
t |O;λ)αT

µkn
Σ−1

kn (ot − µkn)
)

(4.33)

where αµkn
are the augmented parameters. Regrouping the terms allows equation (4.33)

to be written similarly to a standard HMM, but with complex state-conditional output

distributions, p(ot|θt;λ), instead of the standard Gaussian distributions. The new output

distributions are defined by,

p(ot|θt;λ) = N (ot|θt;λ) exp
(

N
∑

k=1

M
∑

n=1

P (θkn
t |O;λ)αT

µkn
Σ−1

kn (ot − µkn)
)

(4.34)

and are dependent on a posterior weighted sum of contributions from all states and

mixture-components in the system. Since output distributions are dependent on all base

model states, conditional-independent of observations given the current state is broken.

With additional parameters and more complex output distributions, A-HMMs can there-

fore model a much wider range of distributions than normal HMMs (standard HMM

distributions can be obtained from an A-HMM by setting α = 0). With an appropriate

training criterion, A-HMMs can therefore generate better approximations to the true data

distribution than HMMs in many cases (or at worst, the same).

4.3.2 Second-order statistics

In addition to the first-order statistics described above, augmented models can be defined

using second-derivatives of the base HMM as sufficient statistics. These statistics are more

complex than their first-order equivalents and allow many additional dependencies to be

modelled. Example second-order derivatives with respect to the HMM state-conditional

output distribution mixture-component priors and means are given in equations (4.35)
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and (4.36),11

∇ckn
∇T

cjm
ln p̂(O;λ) = −

2

cjmckn

T
∑

t=1

δjkδmnP (θjm
t |O;λ) (4.35)

+

T
∑

t=1

T
∑

τ=1

{

D(θjm
t , θkn

τ |O;λ)

cjmckn
−
D(θj

t , θ
kn
τ |O;λ)

ckn

−
D(θjm

t , θk
τ |O;λ)

cjm
+D(θj

t , θ
k
τ |O;λ)

}

∇µkn
∇T

µjm
ln p̂(O;λ) = −

T
∑

t=1

δjkδmnP (θjm
t |O;λ)Σ−1

jm (4.36)

+
T
∑

t=1

T
∑

τ=1

D(θjm
t , θkn

τ |O;λ)Σ−1
kn (oτ −µkn)(ot−µjn)TΣ−1

jm

where δjk is the Kronecker delta and D(θjm
t , θkn

τ |O;λ) is a second-order posterior term,

defined by equation (4.22). For ease of reference it is reproduced below,

D(θjm
t , θkn

τ |O;λ) = P (θjm
t , θkn

τ |O;λ) − P (θjm
t |O;λ)P (θjm

τ |O;λ)

Despite their complexity, second-order statistics have a roughly similar form to the first-

order statistics discussed previously, with terms consisting of posterior-weighted functions

of the observations and HMM variables. Unlike the simpler first-order statistics, however,

equations (4.35) and (4.36), are based upon the second-order ‘posterior’, D(θ jm
t , θkn

τ |O;λ),

allowing explicit dependencies between non-contiguous states to be modelled. In a similar

fashion to the first-order posteriors discussed previously, the assumption that observations

are conditionally independent given the current state is broken.

Second-order sufficient statistics offer three main advantages when combined with the

first-order statistics discussed in the previous section. The first is that the combined set

of first-order and second-order sufficient statistics is much larger than the set of just first-

order statistics. Since these statistics act as degrees of freedom in the space of statistical

models, second-order A-HMMs can model a much wider range of probability distribu-

tions than first-order A-HMMs. The second advantage is that the additional second-order

statistics allow a wide selection of long-range dependencies to be modelled explicitly. This

enables complex models to be constructed that better represent the original data distri-

bution. The final advantage is that higher-order sufficient statistics contain more complex

functions of the observations (for example, second-derivatives with respect to the mixture-

component variances results in a fourth-degree tensor of the observations). This allows

complex dependencies to be represented.

11Note that many of the terms in equation (4.35) arise from the Lagrange multipliers that enforce the

sum-to-one constraint.
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Unfortunately, second-order statistics are more complex to compute than their first-

order relations since they require the calculation of joint posteriors of discontiguous states.

In this work, an efficient extension of the standard Forward-Backward algorithm, the

double-Forward-Backward algorithm, is used for calculating these posteriors. Details of

this algorithm are given in appendix B. Computational complexity for these calcula-

tions varies quadratically with sequence length and with the number of HMM states and

mixture-components.

4.3.3 Illustrative example: second-order A-HMM

To illustrate the benefits of second-order augmented models, consider a simple artificial

example with an alphabet {A,B} and training sequences: AAAA (labelled ω1), BBBB

(ω1), AABB (ω2) and BBAA (ω2). Estimating two-state class-conditional discrete HMMs

on this data using ML training yields identical models for ω1 and ω2,

c2A 0.5=c1A 0.5=
c1B 0.5= c2B 0.5=

1.0 0.5 0.5

0.50.5

j j j jstart 1 2 end

Classifiers based upon HMMs are unable to utilise the temporal information available in

the training sequences, resulting in models that are indistinguishable. The log-likelihood

of obtaining any of the training examples from the HMMs is thus -1.11. To discrimi-

nate between examples, additional information is therefore required. A simple method of

obtaining such information is to augment the HMMs using first-order and second-order

derivatives with respect to the mixture-component priors. Example values that these take

are shown in table 4.2.

Table 4.2: Selected first- and second-order HMM mixture-component-prior derivatives

Score-space Class ω1 Class ω2

element AAAA BBBB AABB BBAA

Log. Lik. -1.11 -1.11 -1.11 -1.11

∇c2A
0.50 -0.50 0.33 -0.33

∇c2A
∇T

c2A
-3.83 0.17 -3.28 -0.61

∇c2A
∇T

c3A
-0.17 -0.17 -0.06 -0.06

As shown in table 4.2, first-order derivatives of the base HMMs introduce discrimi-

natory information. Unfortunately, since A-HMMs are linear classifiers in the space of

first-order derivatives, they suffer from the XOR problem [30] and so fail to correctly clas-

sify the training examples. Second derivatives with respect to the same state/component,

∇c2A∇
T
c2A

ln p̂(O;λ), suffered from the same problem. When second derivatives with respect
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to different state/component pairs are considered, however, it becomes trivial to construct

a linear decision boundary between the two classes. Second-order A-HMMs defined using

cross derivatives can therefore correctly classify all the training examples.

Despite the simplicity of this example, it clearly illustrates the extra modelling ability

of second-order A-HMMs, compared to both standard HMMs and first-order A-HMMs.

In particular, it demonstrates the benefits of second-order statistics when temporal de-

pendencies are important.

4.4 Kernelised augmented models

Given the computational cost of calculating higher-order augmented models, it is natural to

ask whether similar forms of model can be obtained by kernelising the sufficient statistics

of simpler models, such as first-order augmented models. The advantage of a kernel

approach is that it allows a relatively small number of explicitly-calculated base model

derivatives to be mapped into a higher-dimensional implicit feature-space, which can then

be used to define the augmented model sufficient statistics. Augmented models defined in

this way therefore benefit from large numbers of sufficient statistics without incurring the

computational cost of explicit calculation.

Given a set of standard augmented model sufficient statistics, T (O;λ), let f(T (O;λ);ψ)

be a function that maps sufficient statistics into a high-dimensional feature-space, where

ψ are the parameters of this mapping. The augmented model defined using these new

sufficient statistics can be written as,

p(O;λ,α, ψ) =
1

τ(λ,α, ψ)
p̂(O;λ) exp

(

αTf(T (O;λ);ψ)
)

(4.37)

Unfortunately, calculation of the augmented model likelihoods in equation (4.37) requires

explicit calculation of the feature-space, f(· ;ψ). To avoid this, the augmented parameters,

α, can be expressed as a linear combination of the sufficient statistics associated with each

training example,

α =

n
∑

i=1

βif(T (Oi;λ);ψ) (4.38)

where βi is the weight associated with the i-th training example. Substituting equation

(4.38) into the augmented model in equation (4.37) allows kernelised augmented models

to be defined,

p(O;λ,β, ψ) =
1

τ(λ,β, ψ)
p̂(O;λ) exp

(

n
∑

i=1

βiK
(

T (Oi;λ),T (O;λ);ψ
)

)

(4.39)

where K(T (Oi;λ),T (O;λ);ψ) is a kernel function that calculates the feature-space inner-

product,

K(T (Oi;λ),T (O;λ);ψ) =
〈

f(T (Oi;λ);ψ),f(T (O;λ);ψ)
〉

(4.40)
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and 〈·, ·〉 denotes the inner-product between two vectors.12 The advantage of expressing

kernelised augmented models in this form is that kernel functions can be defined that

combine the the inner-product calculation and the feature-space mappings, f(·, ψ), into

a single operation. Examples of such kernels are the homogeneous polynomial kernel and

the radial basis function (RBF) kernel. Note that although this thesis only considers the

standard kernels discussed in section 2.2.4, a wide range of other kernels can be defined:

the only restriction is that kernels must be non-linear symmetric functions that satisfy

Mercer’s condition [79, 115, 125].13

One kernel that is particularly useful for defining kernelised augmented models is the

p-th order inhomogeneous polynomial kernel. This maps the explicitly-calculated sufficient

statistics, T (O;λ), into a feature-space containing the statistics raised to a power (up to

and including p, including cross-terms). To examine the implicit sufficient statistics that

this generates, consider the set of first-order augmented HMM statistics calculated using

derivatives with respect to the mixture-component means,

∇µjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)Σ−1

jm(ot−µjm) (4.41)

where θjm
t denotes θt = {j,m}. Kernelising this score-space using the inhomogeneous

polynomial kernel yields a feature-space that contains both the original score-space (4.41)

and higher-order powers. Consider, for example, the second-order powers: the score-space

squared,

(

∇µjm
ln p̂(O;λ)

)(

∇µkn
ln p̂(O;λ)

)T
= (4.42)

T
∑

t=1

T
∑

τ=1

P (θjm
t |O;λ)P (θkn

τ |O;λ)Σ−1
jm(ot−µjm)(oτ −µkn)TΣ−1

kn

Comparing the implicit second-order statistics in equation (4.42) with the explicit second-

order HMM derivatives in equation (4.36), it is clear that the two approaches yield similar,

though slightly different, results. In particular, the implicit statistics in equation (4.42)

correspond to the second term of the second-order HMM derivative. Despite the differ-

ences between the two forms of statistics, kernelised augmented models allow the number

of sufficient statistics to be increased without the computational cost associated with calcu-

lating higher-order statistics. Classification performance of kernelised augmented models

is discussed in chapter 8.

12Note that in this example, the sufficient statistic feature-space metric is assumed to be Euclidean,

resulting in a dot-product. For a more detailed discussion of metrics, see chapter 6.
13Mercer’s condition simply states that the kernel matrix K(oi, oj ; λ)}n

(i,j)=1 must be positive semi-

definite. This ensures that an expansion
P

∞

k=1 akzk(oi)zk(oj) exists where {z1(o), . . . , zk(o), . . .} is some

unknown feature-space. The kernel thus defines a inner-product in this implicit (possibly incalculable)

feature-space.
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4.5 Relationships with dynamic kernels

In chapter 3, the use of dynamic kernels for classifying variable-length sequences of data

was discussed in detail. Some of these kernels can be related to specific forms of augmented

statistical models. Examples discussed in this section are: Fisher kernels [50], marginalised

count kernels [123] and sequence kernels [12].

4.5.1 Fisher kernels

Fisher kernels [49,50] were introduced in chapter 3 are a form of dynamic kernel that allows

sequences of continuous observations to be mapped into a fixed-dimensional feature-space.

Defined using a generative model embedded within a discriminative framework, Fisher ker-

nels combine the generative model’s ability to process variable-length sequences with the

flexibility and generalisation performance of the discriminative classification framework.

Given a training set containing either labelled or unlabelled data, parameters of a single

generative model, p̂(O;λ), are first estimated—typically using the ML criterion. Differ-

ences in the generative process between examples are then captured by mapping examples

into the gradient-space of the generative model,

φF(O;λ) = ∇λ ln p̂(O;λ) (4.43)

This gradient-space is known as the Fisher score-space. Augmented models are defined

almost identically. First a base generative model, p̂(O;λ) is defined. Parameters of this

model are typically estimated using the ML or MMI criteria. A set of augmented model

sufficient statistics are then defined,

T (O;λ) =















∇λln p̂(O;λ)
1
2!vec(∇

2
λ ln p̂(O;λ))

...
1
ρ!vec(∇

ρ
λ ln p̂(O;λ))















(4.44)

Comparing the Fisher score-space in equation (4.43) with the augmented model sufficient

statistics in equation (4.44), it is clear that first-order augmented model sufficient statis-

tics and Fisher score-spaces are identical. There is, however, one important theoretical

difference between the two approaches. Fisher score-spaces define a feature-space that

allows distances between examples to be calculated (allowing distance-based classification

approaches to be used). In contrast, augmented models define a set of sufficient statistics

that are used to extend the base model: the result is a statistical model that (subject to

calculation of the normalisation term) calculates observation sequence likelihoods. Clas-

sification is performed using a combination of Bayes’ rule and Bayes’ decision rule.
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4.5.2 Marginalised count kernels

As discussed in section 3.1.3, marginalised kernels [123] are a form of dynamic kernel that

combines generative models with more traditional kernel classification techniques. De-

fined in terms of a general kernel, K({Oi,θi}, {Oj ,θj}), that calculates distances between

different observation/latent-state sequences, marginalised kernels are written as,

Kmar(Oi,Oj ;λ) =
∑

θi∈Θ

∑

θj∈Θ

P (θi|Oi;λ)P (θj |Oj ;λ)K({Oi,θi}, {Oj ,θj}) (4.45)

where θi ∈ Θ is a latent-state sequence associated with the observations, Oi. Unfortu-

nately, as discussed in section 3.1.3, the summation over all possible generative model

latent-state sequences, Θ, is often intractable and, instead, a count kernel [123] is often

used. This simplifies the summation and allows first-order and second-order feature-spaces

(corresponding to first-order and second-order count kernels) to be defined,

φmc1
j (O;λ) =

T
∑

t=1

P (θj
t |O;λ) (4.46)

φmc2
jk (O;λ) =

T
∑

t=2

P (θj
t−1, θ

k
t |O;λ) (4.47)

These marginalised count kernel feature-spaces resemble some of the augmented model

sufficient statistics defined in sections 4.3.1 and 4.3.2. Consider, for example, the aug-

mented model sufficient statistics defined by the first-order derivatives of an HMM base

model with respect to its mixture-component priors, cjm, and transition probabilities, aij,

∇cjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)

cjm
− P (θj

t |O;λ) (4.48)

∇aij
ln p̂(O;λ) =

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

aij
− P (θj

t−1|O;λ) (4.49)

Comparing the feature-spaces in equations (4.46) and (4.47) with the augmented model

sufficient statistics in equations (4.48) and (4.49), it is clear that the two are very simi-

lar. The biggest difference between the feature-spaces and the sufficient statistics are the

additional, P (θj
t |O;λ), terms in the sufficient statistics. These arise from the sum-to-one

constraints on the HMM mixture-component priors and transition probabilities and rep-

resent a centring of the score-space. The second difference between the two approaches

is the scaling of the latent-state posterior probabilities (by cjm or aij) in the sufficient

statistics. Although these scaling terms alter the dynamic range of the sufficient statis-

tics, when distance-based training of augmented models is used (section 6), their effect is

often negated by the use of a maximally-non-committal metric.

Despite their similarity, it is important to note that marginalised count kernels are

restricted to modelling linear chain dependencies in sequences of discrete observations,
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φmc
ij...k(O)=

∑T−n
t=1 P (θi

t, θ
j
t+1, . . . , θ

k
t+n|O). Conversely, augmented models can model com-

plex dependencies between observations within a sequence of continuous observations (sim-

ply by defining higher-order sufficient statistics).

4.5.3 Sequence kernels

A third form of dynamic kernel, that bears many similarities to kernelised augmented

models, are sequence kernels [12]. These define feature-spaces using a combination of two

mapping functions. First, a standard kernel—such as an inhomogeneous polynomial or

RBF kernel—is used to map all observations within a sequence into a high-dimensional

implicit representation. The resulting sequence of high-dimensional implicit ‘observations’

is then converted into a fixed-dimensional feature-space using a second mapping function.

Classification is performed in this fixed-dimensional space. Unfortunately, since the second

mapping must be calculated using only dot-products of the original observations, the

options for converting variable-length sequences into a fixed-dimensional feature-space are

very limited. In practice, an averaging operation is used: this assumes that all observations

are independent, preventing temporal dependencies from being captured.

Kernelised augmented models use the same types of mapping, but in the opposite or-

der. Sequences of observations are first converted into a fixed-dimensional set of sufficient

statistics. Since this is the first mapping, there are no restrictions on the functional form of

this mapping, allowing flexibility to capture a wide variety of temporal dependencies within

the sufficient statistics. These sufficient statistics are then mapped into a high-dimensional

feature-space using a standard kernel mapping function. Temporal dependencies captured

by the first mapping function are retained by the second. The advantage of the kernelised

augmented model order for feature-space mappings is that it gives the greatest flexibil-

ity to the most complex mapping (the sequence to fixed-dimensional mapping), allowing

temporal dependencies to be captured and used for classification. The overall result is

that kernelised augmented models can capture and utilise complex temporal dependen-

cies, whereas sequence kernels cannot.

4.6 Summary

In this chapter, generative augmented models were introduced as a systematic method for

extending standard, base, statistical models using a set of additional sufficient statistics.

These statistics are defined using a local exponential expansion of the base model and

allow many complex dependencies to be modelled. In particular, when latent-variable base

models are used, it was shown that the standard conditional-independence assumption—

that observations are independent given the current state—is broken, allowing a wide range

of additional distributions to be modelled. Detailed examples of augmented Gaussians,
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GMMs and HMMs were presented to illustrate the benefits of augmented models. In each

case, the nature of the additional statistics was discussed, as were methods of calculation.

Kernelised augmented models were then introduced as a powerful method of increasing

the number of augmented model sufficient statistics without incurring a proportional cost.

Finally, augmented models and their sufficient statistics were compared to a number of

popular dynamic kernels.



5
Continuous Rational Kernels

Rational kernels are a powerful form of discrete-observation dynamic kernel that allow

distances between sequences of discrete observations to be calculated. Unlike the dynamic

kernels discussed in chapter 3, rational kernels do not prescribe the kernel feature-spaces

that are generated. Instead, they provide a general framework, based upon weighted

finite-state transducers, that allows application-specific feature-spaces to be defined and

calculated.

Unfortunately, rational kernels only handle sequences of discrete observations. To

rectify this, this chapter proposes continuous rational kernels. These use a combination

of standard rational kernels and latent-variable generative models to calculate distances

between sequences of continuous observations. In addition to being a powerful form of

dynamic kernel, continuous rational kernels can also be used to generate the additional suf-

ficient statistics required by augmented models. For this task, continuous rational kernels

offer significant advantages over the statistic-dependent algorithms discussed in chapter 4.

In particular, the Forward-Backward and Double-Forward-Backward algorithms used for

calculating first- and second-order augmented model sufficient statistics can be replaced

by standardised algorithms that are calculated using only finite-state transducers. These

transducers are, in general, easier to define than the dynamic programming algorithms

that they replace.

This chapter is structured as follows. First an introduction to finite-state transducers

and standard, discrete, rational kernels is given. Continuous rational kernels are then

presented as an attractive method for classifying sequences of continuous observations. The

remainder of the chapter is then dedicated to discussing how continuous rational kernels

64



CHAPTER 5. CONTINUOUS RATIONAL KERNELS 65

can be used to calculate first- and second-order augmented HMM sufficient statistics.

5.1 Weighted finite-state transducers

In this section, weighted finite-state acceptors and transducers [80] are introduced as a

natural approach for representing and manipulating sequences of discrete observations.

Finite-state transducers, discussed first, are a flexible approach for representing sequence

transformations for sequences of discrete observations. Acceptors, a special type of trans-

ducer, allow sequences and lattices of discrete observations to be represented within the

finite-state transducer framework. Finally, a number of standard transducer and acceptor

operations are discussed.

5.1.1 Transducers

Finite-state transducers consist of a set of states, labelled from one to N , that are joined

by directed arcs. Transducers have a single start state—labelled as state one1—and one

or more end states, denoted by a double circle. States are connected using directed arcs

labelled in the form δ :γ where δ ∈ {Σ ∪ ε} and γ ∈ {∆ ∪ ε} are input and output symbols,

selected from the input and output alphabets, Σ and ∆, respectively. The null symbol, ε,

denotes a transition that either does not consume a symbol from the input sequence or

does not output a symbol. In later sections, to simplify transducer definitions, transitions

are grouped, with ∆ :∆ and ∆ : ε representing the sets of transitions {δ : δ, ∀δ ∈ ∆} and

{δ :ε, ∀δ ∈ ∆} respectively. Here, input and output alphabets are assumed to be identical.

a:ε a:ε

b:b/0.5

c:c/0.3

a:a/0.2

1 2

Figure 5.1: A finite-state transducer

With a combination of states and arcs, paths through transducers can be defined.

Paths start at state one and terminate in one of the designated end-states. Each path

represents a transformation of a single input sequence into a new, often different, output

sequence. For non-cyclic transducers, where states are only visited once per path, the

maximum length of an input sequence is determined by the number of arcs in the longest

path. When self-transitions and other loops are introduced, arbitrary-length input or

output sequences are possible.

1Since state numbering is arbitrary, transducer states can always be renumbered such that the start

state is labelled as state one.
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Table 5.1: Example transducer transformations

Input sequence Output sequence / weight

a* a a* a / 0.2

a* b a* b / 0.5

a* c a* c / 0.3

all others – / –

where ‘a*’ denotes zero or more occurrences of the symbol ‘a’

To illustrate some of the sequence transformations that are possible with transducers,

consider the simple transducer in figure 5.1. This transforms input sequences of the

form: zero or more a’s, followed by an a, b or c, followed by zero or more a’s, into an

output sequence that contains a single character: a, b or c. These transformations are

summarised in table 5.1. The use of self-transitions in the transducer in figure 5.1 means

that the transducer has a many-to-one mapping, with multiple input sequences, such as

{b} and {a, a, b, a}, being mapped to the same output sequence, {b}. Other mappings,

such as one-to-many and many-to-many, are also possible.

In addition to input and output symbols, each transducer arc may be assigned a scalar

weight, w ∈ K, selected from the set of valid weights, K. These weights are typically

specified using the notation δ :γ/w where δ, γ and w are the input symbol, output symbol

and weight respectively. In the absence of a specified weight, arcs are assigned a default

weight of 1̄ where 1̄ is defined by the transducer semiring. This semiring defines the

minimum set of operations required for propagating arc weights through a transducer,

and is written as (K,⊕,⊗, 0̄, 1̄) [81]. The symbols ⊕ and ⊗ denote operations of addition

and multiplication respectively. The zero value, 0̄, and the identity, 1̄, are selected to

satisfy the identity axioms of addition, x ⊕ 0̄ = x, and multiplication, x ⊗ 1̄ = x. Some

popular semirings, defined in table 5.2, are the real, log and tropical semirings.

Table 5.2: Popular semirings for transducers

Semiring K ⊕ ⊗ 0̄ 1̄

Real R
+ + × 0 1

Log R ∪ {±∞} ⊕log + +∞ 0

Tropical R ∪ {±∞} min + +∞ 0

where x ⊕log y = − log(exp(−x) + exp(−y))

Note that the log and tropical semirings are typically defined using negative log weights

instead of the more conventional (in speech) log weights. A weight of zero is therefore

specified in the log semiring as +∞.

When weights are manipulated in the real semiring, they behave as probabilities and

so are multiplied along paths and summed when paths merge. Unfortunately, although

the real semiring is a very natural basis for defining weights, many practical tasks, such as

speech, utilise small weights that underflow the limited floating-point precision of many
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computers. To avoid this, weights are often specified using the log semiring, an isomor-

phism of the real semiring. For clarity, all transducers in this thesis are defined in the real

semiring.

5.1.2 Acceptors

Similarly to transducers, acceptors are defined using a collection of finite states, joined by a

set of arcs. In contrast to transducers, however, acceptor arcs are labelled with only a single

symbol, δ. Acceptors therefore provide a natural representation for both sequences and

lattices of discrete observations. Consider, for example, the sequence {a, a, b, a} discussed

previously. Figure 5.2 demonstrates how this can be written as an acceptor.

a a
1 2 3

b
4

a
5

Figure 5.2: An acceptor for the input sequence {a, a, b, a}

As for transducers, arcs are each assigned a weight, w ∈ K (defaulting to 1̄), specified

using the labelling convention, δ/w. With only a single input/output symbol, acceptors

acts as either inputs or outputs depending upon the operation being performed.

5.1.3 Operators

One of the main advantages of using acceptors and transducers to represent sequences and

sequence transformations is that many sequence operations can be performed using a small

number of standardised and efficient algorithms. Examples of the transducer operations

used in this thesis are: inversion, composition [82] and shortest-distance [81] (transducer

weight).

Inversion is the simplest of the three operations. The inverse of a transducer U is

calculated by swapping the input and output symbols on all transducer arcs [80].

The inverse transducer, U−1, therefore ‘undoes’ the transformation of the original

transducer, U .

Composition is the process of chaining together transducers so that the output of the

first is used as the input for the second. This allows complex transformations to be

constructed from a number of simpler transducer transformations. The composition

of two transducers, U1 and U2, is defined as the transducer that, given any input

sequence, generates an equivalent output sequence to that generated from passing the

input through U1 and the output of that through U2. Mathematically, transducer

composition is written as U1 ◦ U2.
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Shortest-distance is the final operator in this section. Given an acceptor A or trans-

ducer U , the shortest distance operator calculates the sum of the weights of all

possible paths through A or U [81]. The shortest distance of an acceptor or trans-

ducer is typically denoted by [[A]] or [[U ]].

Using a combination of these transducer operators, rational kernels can be defined. These

provide a powerful framework for calculating ‘distances’ between variable-length sequences

of discrete observations using user-defined metrics.

5.2 Rational kernels

Using the weighted finite-state acceptors and transducers discussed in the previous sec-

tion, rational kernels [17, 18] can be defined. These provide a powerful framework for

defining and calculating high-dimensional kernel feature-spaces from sequences of discrete

observations using only simple transducer operations. For data that can be represented

using finite-state transducers, rational kernels offer two main advantages over other dy-

namic kernels. The first is that different kernel feature-spaces can be defined simply by

selecting different transducers. Distances (defined by the dot-product in the feature-space)

between observation sequences are then calculated using the standard algorithms of trans-

ducer inversion, composition and shortest-distance. The second advantage is that the

feature-space need never be calculated explicitly. This is especially important for appli-

cations with high-dimensional, sparse feature-vectors. In these situations, rational kernels

avoid the unnecessary calculation of feature-space elements with zero occupancy (i.e. those

associated with symbols that do not appear in the input) since transducer composition is

a lazy operation: paths are only instantiated as they are required. Paths for non-existent

symbols are therefore never created and so contribute no computational cost.

The in-depth operation of rational kernels is best explained using a simple example.

Let O = {o1, . . . , oT } be a sequence of length T , with discrete observations ot selected from

an input alphabet ∆. Since sequence lengths may vary, and discriminative classification

algorithms such as SVMs require fixed-dimensional feature-vectors, a mapping from O

to a fixed-dimensional feature-space, φ(O), is desired. One such mapping is the feature-

space defined by the counts of the occurrences of each symbol in the input alphabet. This

feature-space is known as the bag-of-words kernel [115], the count kernel, or the unigram

kernel. In vector notation, the feature-space is written as,

φ(O) =









f(a|O)

f(b|O)
...









(5.1)

where a and b are elements of the input alphabet and f(δ|O) denotes the number of

occurrences of the symbol δ in the sequence O. The distance between examples in the
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feature-space is given by the feature-space dot-product. This is known as the unigram

kernel. For two sequences, Oi and Oj , this distance is written as,

K(Oi,Oj) = φ(Oi)
T φ(Oj)

=
∑

δ∈∆

f(δ|Oi)f(δ|Oj) (5.2)

Calculation of the kernel in equation (5.2) requires that the feature-spaces for each example

are calculated explicitly. The computational cost of the kernel calculation is therefore

proportional to the dimensionality of the feature-space (the number of elements in the

input alphabet) regardless of the data. When feature-spaces are sparse (such as when

large alphabets are used), the above calculations can be inefficient since they require

initialisation and calculation of a large number of empty features. Instead, an approach,

based upon the finite-state transducer framework in section 5.1, can be used.

Using the above feature-space, consider two observation sequences Oi and Oj with

lengths Ti and Tj respectively. Within the finite-state transducer framework these are

represented as acceptors, denoted Ai and Aj respectively, with a structure similar to that

of figure 5.2. The observation sequences can be mapped into the unigram feature-space

by performing transducer composition of the acceptors, Ai and Aj , with the unigram

feature-space, U ,

U =
:∆ ∆

∆:ε ∆:ε

21

The composition of Ai with U yields an output acceptor, Ai ◦ U . This contains Ti

distinct paths, each of which has a weight of 1.0. Each path t, t ∈ [1, Ti], contains Ti state

transitions (arcs), each with an input symbol corresponding to ot. All output symbols

in the t-th path are null (ε) except for the t-th transition, which has an output symbol

ot. The number of distinct paths with an output label, δ, is thus equal to the number of

occurrences of δ in the input sequence, Ai. Since the weight of each path is 1.0, the total

weight of paths with an output symbol δ is f(δ|O)—the unigram count.

Although lattice-based unigram features offer a compact representation of the feature-

space, they can be difficult to manipulate directly. Fortunately, kernel-based classification

is based upon the feature-space dot-product which can be calculated within the transducer

framework. This dot-product is calculated using a combination of transducer inversion,

composition and shortest-distance, and is known as the unigram rational kernel [18]. The

kernel is written as,

K(Oi,Oj) = [[(Ai ◦ U) ◦ (Aj ◦ U)−1]]

= [[Ai ◦ U ◦ U−1 ◦ Aj ]] (5.3)
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where [[ · ]] denotes transducer shortest-distance (section 5.1.3). The inversion in the first

line ensures that the feature-space elements of Oi match with the corresponding feature-

space elements of Oj: the acceptor (Ai ◦ U) generates outputs symbols whereas the

acceptor (Aj ◦ U)−1 expects input symbols. When the two feature-space acceptors are

composed together, the input and output symbols are matched, resulting in a single ac-

ceptor with paths representing products of feature-space elements. Shortest-distance over

this acceptor performs a final summation over all dimensions, yielding the feature-space

dot-product.

When variable-length observation sequences are considered, the value of the unigram

kernel varies with both sequence similarity and length (penalising shorter sequences). To

remove this bias, sequence-length normalisation can be performed. This converts the

frequency counts in equation (5.1) into posterior probabilities by scaling the feature-space

by 1/T , resulting in a sequence-length normalised unigram kernel,

K(Oi,Oj) =
1

TiTj
[[Ai ◦ U ◦ U−1◦ Aj ]] (5.4)

where Ti and Tj denote the sequence lengths for the observations Oi and Oj respectively.

Although this section has concentrated on the unigram feature-space, the generality

of rational kernels allows many other feature-spaces to be constructed, for example, string

kernels (section 3.1.2) and marginalised count kernels (section 3.1.3). Rational kernels have

two major advantages over these other forms of kernel. The first is that regardless of the

feature-space being used, the basic algorithms for computing the feature-space dot-product

remain unchanged. This makes implementation of new feature-spaces significantly simpler

than with other methods. The second advantage is that, in addition to basic sequences of

observations, rational kernels can calculate distances between lattices. This is useful when

there is uncertainty in the observation labels since lattices allows multiple label sequences

to be represented. Rational kernels can therefore utilise all available information about

these labelling uncertainties, potentially improving classification performance.

Despite these advantages, rational kernels have one major disadvantage: they require

observations to have discrete labels. Many practical tasks, however, are based upon con-

tinuous observations. In the next section, a new form of rational kernel, the continuous

rational kernel, is proposed. This combines the benefits of the generative models in chap-

ter 2 with benefits of the rational kernels discussed above, to generate a flexible framework

for calculating distances between sequences of continuous observations.

5.3 Continuous rational kernels

Continuous rational kernels, proposed in this section, are one approach for extending

rational kernels to sequences of continuous observations. Defined using a combination
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of generative models and transducer-based rational kernels, continuous rational kernels

allow the benefits of rational kernels (standardised algorithms, ease of selecting different

feature-spaces) to be applied to tasks with sequences of continuous observations.

Similarly to Fisher kernels, a latent-variable base model is first defined; parameters of

this model are typically estimated using ML estimation.2 Given this model, Viterbi or

Forward-Backward alignment is then used to calculate the latent-states associated with

each observation. Viterbi alignment yields the single most likely state sequence, whereas

Forward-Backward alignment generates a lattice containing all possible state alignments

weighted by their likelihoods. By recording the state alignments, an alignment acceptor,

L, is produced. This compactly represents the observation sequences as a sequence or

lattice of latent states.

2

3

4

1

5

1 2 3 4 5 6 time

H
M

M
 s

ta
te

Figure 5.3: An example trellis for a three-state left-to-right HMM

When defining continuous rational kernels, Forward-Backward (FB) alignment is most

useful since it retains more information about the original observations than Viterbi align-

ment. When HMM base models are used, lattice acceptors generated using FB alignment

have an identical structure to the standard HMM ‘trellis diagram’ [13]—a simple trellis for

a three-state left-to-right HMM is shown in figure 5.3. Alignment acceptors generated us-

ing these trellises have a set of sequentially numbered nodes3 joined by arcs labelled with

likelihoods and the HMM state/mixture-component associated with their target node.

The weight of a particular path through the alignment acceptor is equal to the posterior

probability of that path given the observations.

Given two alignment acceptors, Li and Lj, continuous rational kernels are defined

as the distance between the acceptors. This distance is calculated using the standard

(discrete) rational kernel framework discussed in section 5.2. Putting the pieces together,

2Note that continuous rational kernels can be extended to multiple base models in a similar fashion to

that used when Fisher kernels are extended to form generative kernels. For clarity, this section will assume

that a single base model is used for all sequences.
3Although node labels are often presented in transducer diagrams, they are a notational convenience,

and are not used during calculation. For automatically generated acceptors, node labels are typically

generated sequentially.
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length-normalised continuous rational kernels are written as,

K(Oi,Oj) = [[(Li ◦ U) ◦ (Lj ◦ U)−1]]

= [[Li ◦ U ◦ U−1Lj]] (5.5)

where U is a transducer that maps the alignment acceptors Li and Lj into a high-

dimensional feature-space where distances can be calculated. Similarly to rational ker-

nels, different feature-spaces can be obtained by changing U . Additionally, by varying the

latent-variable base model, different alignment acceptors can be generated which, in turn,

alter the feature-space. Continuous rational kernels are therefore a highly flexible form of

continuous dynamic kernel.

In the following sections, continuous rational kernels are applied to the task of calcu-

lating the first-order and second-order augmented model sufficient statistics discussed in

chapter 4. By expressing the augmented model statistic calculations within a transducer

framework, the derivative-specific algorithms discussed in sections 4.3.1 and 4.3.2 can be

replaced by a single, standardised, transducer-based algorithm. Discussion in the next

sections will initially focus upon the definition and calculation of base model derivatives

for GMMs and HMMs. Then, given these derivatives, a method of combining derivative

feature-spaces and kernels to form Fisher and generative score-spaces and kernels is pre-

sented. These kernels can either be substituted directly in a kernel-based classifier—for

example a Perceptron or SVM—or used to train a pair of augmented models (see chapter

6 for a full discussion).

5.3.1 First-order GMM and HMM derivatives

In the next sections, techniques for calculating first-order derivatives of GMM and HMM

base models within the continuous rational kernel framework are discussed. As discussed

in chapter 4, these derivatives can be used to define augmented model sufficient statistics.

Derivatives are presented in the form of score-spaces and kernels (many of which are

based on unigram transducers) that can be substituted directly into the maximum-margin

augmented model training algorithms discussed in the next chapter.

Mixture-component probability kernels

One of the simplest types of augmented model sufficient statistic is that defined by the

first-order derivatives of an M -component GMM base model, p̂(O;λ), with respect to its

mixture-component priors, cm ∈ λ. Written as a score-space, φc(O;λ), these derivatives

are given by,

φc
m(O;λ) = ∇cm ln p̂(O;λ) =

T
∑

t=1

[

P (m|ot;λ)

cm
− 1

]

(5.6)
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where φc
m(O;λ) denotes the m-th element of the score-space (the derivative with respect

to cm). Given this derivative/score-space, it is interesting to examine how equation (5.6)

can be calculated within the continuous rational kernel framework.

First, a latent-state acceptor, L, is constructed using Forward-Backward alignment of

the base GMM using the continuous observation sequence, O. This acceptor has a lattice

structure containing all possible paths through the GMM. Each path is labelled with the

sequence of mixture-components that generated it, and is assigned a weight equal to the

probability of obtaining that sequence. Applying the unigram transducer in section 5.2 to

this lattice yields a feature-space with elements given by the posterior probabilities of the

GMM mixture-components,

φuni(O;λ) = L ◦ U =

T
∑

t=1













P (mt = 1|O;λ)

P (mt = 2|O;λ)

· · ·

P (mt = M |O;λ)













(5.7)

Examining the similarities between equations (5.6) and (5.7), it is clear that the first-order

derivatives of a GMM with respect to its mixture-components can be calculated using a

unigram transducer with arcs scaled by the mixture-component priors, cm. This scaled

transducer is known as U /c
gmm, and is written as,4

U/c
gmm =

∆:ε ∆:ε

21

11:1/(1/c )

M:M/(1/cM)

Substituting U /c
gmm into the general continuous rational kernel framework in equation (5.5),

yields a continuous rational kernel that calculates distances using a first-order GMM

mixture-component prior score-space,

Kc(Oi,Oj ;λ) =
1

TiTj
[[Li◦ U/c

gmm◦ U/c−1

gmm ◦Lj ]] (5.8)

where Ti and Tj are the lengths of the observation sequences Oi and Oj , and provide

sequence-length normalisation. Calculation of this kernel can be performed using only

standard transducer algorithms—custom dynamic programming techniques are not re-

quired.

More complex derivatives can also be calculated. Consider, for example, the first-

order derivatives of an N -state, M -mixture-component HMM with respect to the output

distribution mixture-component priors, cjm,

φc
jm(O;λ) = ∇cjm

ln p̂(O;λ) =
1

cjm

T
∑

t=1

P (θjm
t |O;λ) −

T
∑

t=1

P (θj
t |O;λ) (5.9)

4Note that the additional constant in equation (5.6) does not affect classification and so can be ignored.
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Similarly to the GMM derivatives in equation (5.6), feature-space elements consist of two

terms. The first is the scaled posterior probabilities of state/mixture-component pairings

and can be calculated using the scaled unigram transducer, U /c
hmm,

5

U/c
hmm =

∆:ε ∆:ε

2

11{1,1}:{1,1}/(1/c  )

{N,M}:{N,M}/(1/c   )NM

1

The second term in equation (5.9) is more complex since it is a function of the state poste-

riors, whereas the input acceptor L is labelled only in terms of state/mixture-component

pairs. State posteriors, P (θj
t |O;λ), must therefore be decomposed into a summation over

state/mixture-component posteriors,

P (θj
t |O;λ) =

M
∑

m=1

P (θjm
t |O;λ) (5.10)

As discussed above, the state/mixture-component posteriors can be calculated using the

transducer Uhmm (the unscaled version of U /c
hmm). Given these posteriors, the summation in

equation (5.10) can be performed by composing Uhmm with a special summation transducer,

S. For a three-state HMM with two mixture-components, this is defined as,

S = 1 3

2

4

ε{2,1}:

{2,2}: ε

{3,1}: ε

ε{3,2}:

5

{1,1}: ε

ε{1,2}:

:{2,2}ε

:{2,1}ε

:{3,2}ε

ε :{1,1}

:{1,2}ε

:{3,1}ε

To calculate the HMM component-prior kernel, the component-prior derivatives are first

expressed solely in terms of P (θjm
t |O;λ) by substituting equation (5.10) into equation

(5.9),

φc
jm(O;λ) =

1

cjm

T
∑

t=1

P (θjm
t |O;λ) −

T
∑

t=1

M
∑

m=1

P (θjm
t |O;λ) (5.11)

Using this expression for φc
jm(O;λ), the component-prior kernel can be calculated as a

5Note that the only difference between this transducer and U /c
gmm is that arcs are labelled with both

the state and mixture-component instead of just the mixture-component label; arc weights are adjusted

accordingly. If all GMM mixture-components within the HMM were uniquely identified (instead to being

referred to as mixture m of state j), then the GMM version of the scaled unigram transducer, U /c
gmm could

be used instead.
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length-normalised dot-product in the φc
jm(O;λ) score-space,

Kc
hmm(Oi,Ok;λ) =

1

TiTk

N
∑

j=1

M
∑

m=1

φc
jm(Oi;λ)φc

jm(Ok;λ)

=
1

TiTk

N
∑

j=1

M
∑

m=1

[

1

cjm

T
∑

t=1

P (θjm
t |Oi;λ) −

T
∑

t=1

M
∑

m=1

P (θjm
t |Oi;λ)

]

×

[

1

cjm

T
∑

t=1

P (θjm
t |Ok;λ) −

T
∑

t=1

M
∑

m=1

P (θjm
t |Ok;λ)

]

(5.12)

When the brackets are expanded, equation (5.12) can be written are the sum of three sep-

arate kernels, each of which is calculated using a different combination of the transducers

Uhmm, U/c
hmm and S. Substituting these transducer combinations into the general continuous

rational kernel framework, enables the HMM component-prior kernel to be expressed as a

sum of continuous rational kernels,

Kc
hmm(Oi,Ok;λ) =

1

TiTk

(

[[Li ◦ U/c
hmm ◦ U/c−1

hmm ◦ Lk]]

− 2[[Li ◦ U/c
hmm ◦ S−1 ◦ U−1

hmm◦ Lk]]

+ [[Li ◦ Uhmm ◦ S ◦ S−1 ◦ U−1
hmm◦ Lk]]

)

(5.13)

Calculation of this kernel is performed using the same operations as used for calculating the

first-order GMM-based component-prior kernel discussed previously. The only difference

is the choice of transducers and the inclusion of the summation transducer, S.

Transition probability kernels

In addition to derivatives with respect to the output distribution mixture-components,

HMM derivatives with respect to the base model transition probabilities can be calculated.

These are given by,

∇aij
ln p̂(O;λ) =

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

aij
− P (θi

t−1|O;λ) (5.14)

As for the mixture-component based derivatives, the score-space in equation (5.14) can be

calculated within the continuous rational kernel framework. The first term is similar to

a bigram feature-space and is calculated using a scaled version of the bigram transducer,

B/a. For a two-state HMM, B/a can be written as,

B/a =

x:s1

x:s2

x:s1

x:2

11

12

22

21

11

/(1/a  )

/(1/a  )

/(1/a  )

/(1/a  )

12

21

22s

s :ε

:εs2

1 ∆ ε:

1

ε∆:

3

a

a12

11
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where si denotes the set of state labels (calculated from the state/mixture-component

labels using the transducer S). Elements in the feature-space are indexed by xij, which

represents pairs of consecutive states. The second term, the state posterior, P (θ j
t |O;λ), is

calculated using the transducers Uhmm and S, as discussed previously. The HMM transition

probability kernel is thus calculated similarly to equation (5.13).

Fisher and generative score-spaces

In the previous sections, scaled unigram and bigram transducers were used for the calculat-

ing HMM derivatives with respect to the transition probabilities and mixture-component

priors. However, more powerful score-spaces can be defined using derivatives with respect

to the mixture-component means, µjm, and covariances, Σjm. Consider the score-space

of derivatives with respect to the means [118],6

φm
jm(O;λ) = ∇µjm

ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)Σ−1

jm(ot − µjm) (5.15)

Unfortunately, although the HMM-based latent-state acceptor—calculated using Forward-

Backward alignment on the observation sequence—allows state/mixture-component pos-

teriors to be calculated, it is not possible to weight the posteriors by the observations since

these are vector quantities, whereas transducer weights are scalar.

To overcome this problem, a new semiring—the vector semiring—is proposed. Un-

like standard semirings that assign scalar weights to arcs, the vector semiring enables

transducer arcs to be labelled with vectors of weights. It is defined as the semiring

(Rd+
,+,⊗vec, [ 0 ]d, [ 1 ]d) where [x ]d represents a d-dimensional vector with all elements

set to x. Semiring addition and multiplication are performed on a per-dimension basis,

with multiplication defined as, x⊗vec y = {x1y1, x2y2, . . . , xdyd}. For ease of comparison

with the standard semirings in table 5.2, vector semirings are summarised in table 5.3.

Table 5.3: The vector semiring

Semiring K ⊕ ⊗ 0̄ 1̄

Vector R
d+

+ ⊗vec [ 0 ]d [ 1 ]d

where x ⊗vec y = {x1y1, x2y2, . . . , xdyd}

Although, at first glance, vector semirings look straightforward, there are a number of

subtle issues that must be resolved. The first is that all acceptors and transducers within

a calculation must be expressed using the same semiring. Composition of a real-semiring

acceptor with a vector-semiring transducer therefore requires the acceptor weights, w, to

be mapped to a vector weight, [w]d. The second issue is that the shortest-distance of a

6Covariance derivatives have a similar functional form to derivatives with respect to the mean. For

brevity, they are omitted.
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vector semiring acceptor is a vector quantity instead of the scalar value required by the

kernel. To convert from the shortest-distance vector to a standard dot-product, the sum

of the vector elements must be computed.

The vector semiring allows the posterior probabilities generated by unigram trans-

ducers to be weighted by vector quantities. Unfortunately, for standard unigram trans-

ducers, these weights are time-independent whereas HMM derivatives with respect to

the mixture-component means—equation (5.15)—require that posteriors are multiplied

by time-dependent functions of the observations ot. To allow this, the unigram trans-

ducer self-transitions can be expanded to create a set of time-dependent paths that can be

weighted by a function of the t-th observation, Σ−1
jm(ot − µjm). The resulting transducer

is known as the Fisher transducer, and is thus given by,

F =

:∆ ε

:∆ ε

:∆ ε

∆∆: -1(o3
-/Σ µ∆)∆

:∆ ε

∆∆: -1(o1
-/Σ µ∆)∆

∆∆: -1(o2
-/Σ µ∆)∆

:∆ ε
1

2

3

4

f

T

The Fisher kernel with an HMM mean derivative score-space is given by,

Km(Oi,Oj) =
1

TiTj
[[Li ◦ F ◦ F−1 ◦ Lj]] (5.16)

Derivatives with respect to the state/mixture-component covariances can be calculated

by replacing the path weights in the Fisher transducer with the weights: − 1
2vec

[

Σ−1
jm +

Σ−1
jm(ot − µjm)(ot − µjm)TΣ−1

jm

]

.

5.3.2 Second and higher-order derivatives

In the previous sections continuous rational kernels were used to calculate first-order

derivatives of GMMs and HMMs with respect to their parameters. For many of these

derivatives, it was found that, with a few simple extensions, the standard unigram trans-

ducer, U (section 5.2), could be used within the continuous rational kernel framework.

In this section, methods for calculating higher-order derivatives of the base models are

considered.

As discussed in section 4.3.2, the reasons for considering higher-order derivatives of a

base model are clear. From an augmented model point-of-view, higher-order derivatives

represent additional sufficient statistics and more degrees of freedom. This allows higher-

order augmented models to model a wider range of data distributions. Similarly, from a

kernel point-of-view, second-order derivatives represent additional features that can be ex-

tracted from the observation sequence. These features expose the classifier to additional
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information, potentially improving class discrimination. Unfortunately, as discussed in

section 4.3.2, traditional dynamic programming approaches for calculating the joint pos-

teriors required by second- and higher-order derivatives require custom algorithms and

careful implementation. Continuous rational kernels, proposed in this work, allow such

algorithms to be replaced by finite-state transducers.

Consider, for example, the second derivative of a base HMM with respect to its mixture-

component priors,

∇ckn
∇T

cjm
ln p̂(O;λ) =

1

cjmckn

T
∑

t=1

T
∑

τ=1

(

D(θjm
t , θkn

τ |O;λ) − cjmD(θj
t , θ

kn
τ |O;λ) (5.17)

− cknD(θjm
t , θk

τ |O;λ) + cjmcknD(θj
t , θ

k
τ |O;λ)

)

−
2

cjmckn

T
∑

t=1

P (θjm
t |O;λ)δjkδmn

where

D(θjm
t , θkn

τ |O;λ) = P (θjm
t , θkn

τ |O;λ) − P (θjm
t |O;λ)P (θkn

τ |O;λ) (5.18)

Dynamic programming algorithms for calculating the joint posterior of being in state

{j,m} at time t and state {k, n} at time τ are based upon the complex Double-Forward-

Backward algorithm (appendix B), making direct calculation of second derivatives difficult.

However, when continuous rational kernels are used, standard algorithms can be reused

with new transducers. In particular, the transducer for calculating the joint posterior of

the states, P (θjm
t , θkn

τ |O;λ), is the gappy bigram transducer, G,

G =
∆ ∆:

∆ ε:

∆ ∆:

∆ ε:∆ ε:

1 32

This generates a feature-space of the form, φ
gb
jm,kn(O;λ),

φ
gb
jm,kn(O;λ) =

T
∑

t=1

T
∑

τ=1

P (θt = {j,m}, θτ = {k, n}|O;λ) (5.19)

Scaling each arc in this transducer by 1/cjmckn—in a similar fashion to the scaled unigram

transducers discussed earlier—yields a transducer that can be used to calculate the first

part of the first term of equation (5.17). All other terms in this equation can then be

generated using variants of the HMM gappy-bigram, G, unigram, Uhmm, and summation, S,

transducers. For example, the term P (θjm
t |O;λ)P (θkn

τ |O;λ) is calculated as the product

of two unigram feature-spaces. This product can be calculated within the transducer

framework as the concatenation, (L ◦ Uhmm) ⊗ (L ◦ Uhmm), of two unigram feature-spaces,
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Uhmm, where ⊗ denotes transducer concatenation. Other terms can be calculated using

similar techniques. By expanding the second-order derivative in equation (5.17) in a

similar way to equation (5.12), the second-order HMM component-prior kernel can be

written as the sum of continuous rational kernels.

Second derivatives of HMMs with respect to other model parameters can also be calcu-

lated. These take a similar form to equation (5.17) and are calculated using the transducers

introduced in this chapter. Higher-order derivatives are calculated using other gappy-n-

gram transducers, for example, the gappy-trigram transducer for third-derivatives. The

benefit of calculating these higher derivatives using the continuous rational kernel frame-

work is that many of the complexities of the alternative dynamic programming approach

(such as allocation of multi-dimensional arrays, caching of results, etc.) are avoided. In-

stead, standard, efficient, transducer composition algorithms are used.

5.3.3 Generative score-spaces and kernels

Throughout this chapter, transducers have been presented as a method for calculating

GMM and HMM derivatives. These derivatives can be used to define augmented model

sufficient statistics (chapter 6) or kernel score-spaces (chapter 3). In practice, however,

statistics and kernels are typically defined using a combination of different derivatives,

allowing many different types of dependency to be modelled. Consider, for example, a

typical first-order generative score-space,

φwmc(O;λ) =





























ln p̂(O;λ(1)) − ln p̂(O;λ(2))

∇c(1) ln p̂(O;λ(1))

∇µ(1) ln p̂(O;λ(1))

∇
Σ(1) ln p̂(O;λ(1))

−∇c(2) ln p̂(O;λ(2))

−∇µ(2) ln p̂(O;λ(2))

−∇
Σ(2) ln p̂(O;λ(2))





























(5.20)

where ∇c(ω) , ∇µ(ω) and ∇
Σ(ω) denote the vectors of derivatives with respect to the mixture-

component priors, means and variances of the base model p̂(O;λ(ω)). The corresponding

kernel,

Kwmc(Oi,Oj ;λ) = φwmc(Oi;λ)T φwmc(Oj ;λ) (5.21)

can be written as a sum of the kernels of the individual parts,

Kwmc(Oi,Oj ;λ) = Kllr(Oi,Oj ;λ) +Kc(Oi,Oj ;λ
(1))

+Km(Oi,Oj ;λ
(1)) + · · · (5.22)

where Kllr(Oi,Oj ;λ) is the dot-product of the log-likelihood ratios and K c(Oi,Oj ;λ
(1)),

Km(Oi,Oj ;λ
(1)), etc., are the individual derivative kernels, calculated using the transduc-

ers discussed previously.



CHAPTER 5. CONTINUOUS RATIONAL KERNELS 80

5.4 Summary

In this chapter finite-state transducers and rational kernels were introduced as a powerful

and flexible approach for calculating kernels and kernel feature-spaces for sequences of

discrete observations (such as those discussed in chapter 3). Many tasks, however, utilise

continuous observations and so cannot benefit from the rational kernel framework. To

rectify this, continuous rational kernels were proposed. These combine techniques from

latent-variable generative models and standard rational kernels, allowing powerful kernel

feature-spaces to be constructed from continuous observations in a systematic fashion.

Continuous rational kernels were shown to be a simple and attractive method for

calculating first-, second- and higher-order derivatives of GMMs and HMMs, allowing

augmented model sufficient statistics to be calculated. As discussed, calculation of these

statistics in the continuous rational kernel framework has significant advantages over the

dynamic programming techniques of sections 4.3.1 and 4.3.2 since differences between

derivatives are captured by the transducer definitions, not the algorithms. This allows

continuous rational kernels to be defined using only a small number of standard and

efficient algorithms. As discussed in both chapters 4 and 6, these derivatives and their

associated score-spaces can be used both to define augmented model sufficient statistics

and to train the augmented model parameters.



6
Training Generative Augmented Models

In chapters 4 and 5, augmented statistical models and their sufficient statistics were intro-

duced. Dynamic programming and continuous rational kernel approaches for calculating

these statistics were also discussed. This chapter extends these ideas by considering train-

ing algorithms for both the base model and the augmented model parameters.

In general, the intractable nature of many augmented model normalisation terms means

that standard generative model parameter estimation techniques such as ML and MMI

estimation cannot be used. To avoid these normalisation problems, this chapter introduces

a binary classification framework that uses distance-based algorithms to training pairs of

augmented models ‘against each other’ in a discriminative fashion. This allows augmented

model training to be expressed in terms of a linear decision boundary in a high-dimensional

score-space. The advantage of this approach is that the intractable augmented model nor-

malisation terms combine to form a bias that is inferred during training—the individual

normalisation terms need not be calculated explicitly. Additionally, by performing infer-

ence within the same framework, calculation of the normalisation terms, is never required.

In this work, a maximum margin criterion—SVMs—is used to estimate linear decision

boundaries.

This chapter is structured as follows. First, standard generative model training criteria

are reviewed. A distance-based binary classification framework is then proposed as an effi-

cient method for training pairs of augmented models. As discussed above, this framework

allows augmented model parameter estimation to be expressed in terms of a linear decision

boundary in a high-dimensional score-space. A variable-margin SVM is then proposed as

an attractive maximum-margin approach for estimating both the augmented model and

81
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the base model parameters. Finally, a ‘code-breaking’ approach for applying pair-trained

augmented models to large vocabulary speech recognition systems is introduced.

6.1 Direct estimation of parameters

As discussed in section 2.1.3, two of the most popular algorithms for parameter estima-

tion in generative statistical models are maximum likelihood (ML) [7,100] and maximum

mutual information (MMI) [5] estimation. Maximum likelihood estimation updates model

parameters in order to maximise the likelihood of the training set, whereas MMI attempts

to maximise the posterior probability of the correct class labels (a differential approxima-

tion to the error rate). Unfortunately both ML and MMI parameter estimation require

that the generative model normalisation term can be calculated. Since this is intractable

for many augmented models an alternative training criterion must be used. In this thesis

a distance-based learning criterion is proposed for training augmented model parameters

within a binary-classification framework.

6.2 Distance-based learning

Consider the binary classification task where observation sequences, O = {o1, . . . ,oT }, are

sampled from one of two class-conditional source distributions, ω1 or ω2. When the correct

class posterior distributions, P (ω1|O) and P (ω2|O), are known, the decision boundary that

minimises the probability of error is given by Bayes’ decision rule,

P (ω1|O)

P (ω2|O)

ω1
>
<
ω2

1 (6.1)

Unfortunately, the correct posterior distributions are often unknown. Instead, they are

normally approximated using class-conditional generative models and Bayes’ rule. In

this section it is assumed that the class-conditional generative models are defined by the

augmented models p(O;λ(1),α(1)) and p(O;λ(2),α(2)). These allow sequence likelihoods

to be calculated, which can then be converted into posterior probabilities using Bayes’

rule. Substituting these posterior probabilities into equation (6.1) yields the pairwise

augmented model decision function,

P (ω1) p(O;λ(1),α(1))

P (ω2) p(O;λ(2),α(2))

ω1
>
<
ω2

1 (6.2)

where P (ω1) and P (ω2) are the prior probability distributions for the classes ω1 and ω2

respectively. Expanding the augmented models using the definition in equation (4.5), and
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taking the natural logarithm of both sides allows equation (6.2) to be written as,

ln

(

p̂(O;λ(1))

p̂(O;λ(2))

)

+ α(1)T T (O;λ(1)) − α(2)T T (O;λ(2)) + b

ω1
>
<
ω2

0 (6.3)

b = ln

(

P (ω1) τ(λ
(2),α(2))

P (ω2) τ(λ(1),α(1))

)

(6.4)

where b is a bias that combines the class priors and the augmented model normalisation

terms into a single value. Rearranging, the decision function can be expressed as a linear

decision boundary in a high-dimensional score-space,









1

α(1)

α(2)









T 







ln p̂(O;λ(1)) − ln p̂(O;λ(2))

T (O;λ(1))

−T (O;λ(2))









+ b

ω1
>
<
ω2

0

⇒ wTφLL(O;λ) + b

ω1
>
<
ω2

0 (6.5)

where w defines the gradient of the linear decision boundary in terms of the augmented

model parameters, α(1) and α(2),

w =









1

α(1)

α(2)









; φLL(O;λ) =









ln p̂(O;λ(1)) − ln p̂(O;λ(2))

T (O;λ(1))

−T (O;λ(2))









(6.6)

and φLL(O;λ) is a feature-space that is defined entirely in terms of the observations O,

the base model parameters λ = {λ(1),λ(2)}, and the augmented model sufficient statistics

T (O;λ(1)) and T (O;λ(2)). This feature-space is known as the augmented model score-

space,1 and is identical to the generative score-spaces discussed in section 3.2.2 (a different

name has been used to emphasise the difference between score-spaces used to train aug-

mented models and score-spaces used to define features for kernel-based classifiers). To

ensure that sequences with different lengths map to similar regions of the score-space,

sequence-length normalisation is often used: this introduces an additional factor, 1/T ,

into all score-space elements, where T is the sequence length.

By expressing the augmented model decision boundary in the score-space form given in

equation (6.5), it is clear that augmented parameters can be estimated simply by position-

ing a linear decision boundary in a high-dimensional score-space. The advantage of this

approach over more traditional generative model estimation techniques—such as ML and

MMI estimation—is that it allows augmented parameters to be estimated without explicit

1The term ‘score-space’ is used in place of the more general term, ‘feature-space’, to emphasise the

similarities between equation (6.6) and the Fisher score-spaces of Jaakkola and Haussler [50] and the

generative score-spaces of Smith and Gales [118,119].



CHAPTER 6. TRAINING GENERATIVE AUGMENTED MODELS 84

calculation of the augmented model normalisation terms (which are often intractable). It

is worth noting, however, that there are two side-effects to training augmented models in

this fashion. The first is that the inclusion of the class-priors in the decision boundary

bias means that they are estimated along with the augmented parameters (unlike stan-

dard training where the priors are fixed before training). The second side-effect is that

including the normalisation term in the bias introduces an interaction between the base

model parameters, λ, and the augmented parameters, α = {α(1),α(2)}.

Unfortunately, not all linear decision boundaries in the augmented model score-space

correspond to valid augmented models. This is because a decision boundary requires

only that its bias (the ratio of the normalisation terms and class priors) is finite. In

contrast, for augmented models to be valid statistical models the normalisation terms

for both must be finite. Since the augmented model requirements are stricter than the

decision boundary requirements, some decision boundaries may not correspond to valid

augmented models. This may occur, for example, when both augmented models have

infinitely large normalisation terms whose ratio is fixed and finite. In this situation,

valid decision boundaries between the models can be obtained since the bias (the ratio

of the normalisation terms) is constant. In contrast, since both augmented models have

infinite normalisation terms, neither are valid statistical models. To avoid this, additional

constraints on the augmented parameters—such as those in sections 4.2.1 and 4.2.3—can

be introduced. In practice, however, since performance of augmented models is often

evaluated within a classification framework, these constraints can sometimes be omitted.

Examples of algorithms for positioning linear decision boundaries in high-dimensional

feature-spaces/score-spaces are the Perceptron algorithm [37,45,102], support vector ma-

chines (SVMs) [10, 19, 125], and the relevance vector machine (RVM) [122]. As discussed

in chapter 2, SVMs are based upon the intuitive concept of maximising the margin of

separation between two competing classes, an approach that has been shown to be related

to minimising an upper-bound on the generalisation error [125]. With good generalisation

performance, both theoretically and empirically [125], the following sections use SVMs to

estimate linear decision boundaries.

6.2.1 Estimating augmented parameters, α

As discussed above, estimating α(1) and α(2) for a pair of augmented models is equivalent

to estimating a linear decision boundary in the augmented model score-space φLL(O;λ).

One popular training algorithm for this decision boundary is the soft-margin SVM. This

implements a form of maximum-margin estimation and is implemented using the objective
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function and constraints given below [125],

minimisew,b
1
2〈w,w〉 + C

n
∑

i=1

εi (6.7)

subject to yi

(

〈w,φLL(Oi;λ)〉 + b
)

≥ 1 − εi ∀i ∈ [1, n]

and εi ≥ 0 ∀i ∈ [1, n]

where the slack variables, εi, allow SVM training to converge even when the training

set contains examples that cannot be perfectly classified. The regularisation parameter,

C, controls the trade-off between maximising the margin and minimising the number of

misclassified training examples.

Given a linear hyperplane that satisfies the augmented model constraint w1 = 1 (the

weight associated with the log-likelihood ratio is one), augmented model parameter esti-

mates, α(1) and α(2), can be calculated from w using the relationship in equation (6.6).

However, since SVMs do not explicitly enforce the augmented model constraint, SVM-

estimated hyperplanes often have gradients with w1 6= 1. To allow augmented parameter

values to be extracted from these hyperplanes, the hyperplane gradient and bias must

therefore be scaled by a factor 1/w1. Whilst this has no effect on the overall decision

boundary, it transforms w into a form suitable for extracting α(1) and α(2) using equa-

tion (6.6). The relationship between SVM-estimated gradients, w, and the augmented

parameters, α(1) and α(2), is therefore given by,

w

w1
=









1

α(1)

α(2)









(6.8)

where w1 is the first-element of the vector w and is associated with the log-likelihood ratio

of the base models. Unfortunately, this approach has the disadvantage that the final SVM

margin (after scaling) is determined during training instead of being fixed a priori. This

can make interpretation of distances between examples difficult, potentially limiting the

usefulness of any results.

To rectify this, variable-margin SVMs are proposed. These explicitly enforce the aug-

mented model constraint that w1 = 1, thus avoiding the need to scale the final hyperplane.

First consider the standard soft-margin SVM constraint,

yi

(〈

w,φLL(Oi;λ)
〉

+ b
)

≥ 1 − εi ∀i ∈ [1, n] (6.9)

Separating the terms that are associated with the log-likelihood ratio of the base models

from the score-space, φLL(Oi;λ), and hyperplane gradient, w, allows the score-space and

gradient to be written as,

φLL(Oi;λ) =

[

φLLR(O;λ)

φLL′(O;λ)

]

w =

[

1

w′

]

(6.10)
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where φLLR(O;λ) is a one-dimensional score-space containing only the log-likelihood ratio

of the base models, and φLL′(O;λ) is a score-space containing all score-space terms except

for the log-likelihood ratio.2 Substituting the expanded score-space and gradient into the

constraint in equation (6.9) yields the following variable-margin constraint,

yi

(

φLLR(Oi;λ) +
〈

w′,φLL′(Oi;λ)
〉

+ b
)

≥ 1 − εi

⇒ yi

(〈

w′,φLL′(Oi;λ)
〉

+ b
)

≥ 1 − yiφ
LLR(Oi;λ) − εi (6.11)

where the standard SVM margin is replaced by the variable margin, 1 − yiφ
LLR(Oi;λ).

For a given observation, Oi, this margin is set according to how well the base models

classify the example. For example, when Oi is incorrectly classified by the base models,

yiφ
LLR(Oi;λ) is negative, resulting in an increased margin. Conversely, the margin is

reduced for examples that are well classified by the base models.3 The overall effect of

varying the margin in this way is to increase the weight associated with examples that the

base models struggle with, whilst sacrificing the margin of easily classified examples.

Substituting the variable-margin constraint in equation (6.11) into the primal SVM

optimisation in equation (6.7), allows variable-margin SVMs to be trained. In practice,

however, SVMs are often trained in their dual representation. For variable-margin SVMs,

the dual objective is given by,4

maximiseαsvm

n
∑

i=1

αsvmi

(

1 − yiφ
LLR(Oi;λ)

)

−
1

2

n
∑

i=1

n
∑

j=1

αsvmi αsvmj yiyjK
LL′(Oi,Oj ;λ)

subject to

n
∑

i=1

αsvmi yi = 0 (6.12)

and 0 ≤ αsvmi ≤ C

where αsvm are Lagrange multipliers associated with each training example. The variable-

margin augmented model kernel, KLL′(Oi,Oj ;λ), is given by,

KLL′(Oi,Oj ;λ) =
〈

φLL′(Oi;λ),φLL′(Oj ;λ)
〉

= φLL′(Oi;λ)TG−1
LL′

φLL′(Oj;λ) (6.13)

where G−1
LL′

is a metric for the variable-margin augmented model score-space, φLL′(O;λ).

2Note that when sequence-length normalisation is used, both φLLR(O; λ) and φLL′ (O; λ) must be nor-

malised by 1/T , where T is the length of the observation sequence O.
3In some cases, the base models may have sufficient confidence in their prediction that yiLi > 1, resulting

in a negative margin. When this occurs, the variable-margin SVM algorithm may allow the example to be

misclassified—based upon the score-space terms, φLL′ (O; λ)—by a distance of
`

1 − yiφ
LLR(Oi; λ

´

without

incurring a penalty. The resulting classifier will still correctly classify the example since the negative

margin, combined with the LLR, gives an overall positive margin.
4See appendix C for the derivation.
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When variable-margin SVMs are used to estimate linear hyperplanes in the variable-

margin augmented model score-space, φLL′(O;λ), augmented model parameters, α(1) and

α(2), can be extracted directly from the hyperplane gradient (no scaling is necessary since

the constraint w1 = 1 is explicitly enforced by the training algorithm),

[

α(1)

α(2)

]

= w′ =
n
∑

i=1

αsvmi yiG
−1
LL′

φLL′(Oi;λ) (6.14)

Given an SVM-estimated hyperplane, equation (6.14) allows maximum-margin estimated

augmented parameters, α, to be calculated, thereby defining a pair of maximum-margin

augmented models. Unfortunately, since the normalisation terms of these augmented mod-

els are often intractable, inference may not be possible within the standard probabilistic

framework. Instead, inference must be performed within the SVM classification framework

where the normalisation terms need not be calculated. This allows class label decisions to

be determined using the distance of examples from the decision boundary. Since these dis-

tances represent the log-posterior ratio of the two augmented models—from the definition

in equation (6.2)—the classification outputs are probabilistic in nature. This probabilistic

interpretation allows SVM-trained augmented models to be used within standard system

combination setups.

Note that, as discussed in the previous section, constraints on the augmented param-

eters may be required to ensure that decision boundaries correspond to valid augmented

models. Depending upon the definition of the augmented model sufficient statistics (and

hence score-space), these constraints represent either upper or lower bounds on elements

of the hyperplane gradient. Unfortunately, there is no easy method of introducing these

constraints into the dual SVM objective function. However, since augmented models are

typically used for classification, these constraints can often be omitted.

6.2.2 Estimating base model parameters, λ

In the previous section base model parameters were fixed to create a static score-space.

This allowed the augmented parameters, α(1) and α(2), to be estimated using a maximum-

margin training criterion. Experiments have shown that augmented models trained in this

fashion often generalise well to unseen data despite the high-dimensionality of the score-

space. However, there is a mismatch between the training criteria used for estimation of the

base model parameters (ML/MMI) and that used for the augmented parameters (MM). To

maintain consistency whilst achieving good generalisation performance, maximum-margin

estimation of the base model parameters, λ, is therefore preferred.
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Explicit maximum-margin estimation of λ

Maximum margin estimation of the base model parameters, λ, is closely related to maxi-

mum margin estimation of the SVM kernel since changes in λ cause the augmented model

score-space to vary. Previous approaches to kernel optimisation have relied upon minimis-

ing an estimate of an upper bound on the generalisation error [4,14,21]. Unfortunately, this

approach requires two independent objective functions, calculated under different assump-

tions. Instead, in this work, a kernel optimisation approach is proposed that uses only a

single objective function: a generalised version of the variable-margin SVM dual-objective

function,5

maxαsvmminλ W (λ,αsvm) =

n
∑

i=1

αsvmi

(

1 − yiφ
LLR(Oi;λ)

)

−
1

2

n
∑

i=1

n
∑

j=1

αsvmi αsvmj yiyjK
LL′(Oi,Oj ;λ)

subject to

n
∑

i=1

αsvmi yi = 0 (6.15)

and 0 ≤ αsvmi ≤ C

This is a non-standard optimisation problem with no closed-form solution. Instead, letting

the k-th iteration estimates for λ, αsvm and W (λ,αsvm) be written as λ(k), αsvm(k) and

W (k), the iterative algorithm in figure 6.1 can be used.

# Initialisation

Initialise base model parameters, λ(0), using ML estimation

Determine initial support vectors, αsvm(0), using variable-margin SVM training

Calculate the objective function, W (0) = W (λ(0),αsvm(0))

# Iterate until convergence, W (k−1) −W k < threshold

Foreach k = 1 → MaxIter

Update λ: λ(k) =argminλW (λ;αsvm)|λ(k−1),αsvm(k−1)

Update α: αsvm(k) =argmaxαsvm W (αsvm;λ)|λ(k) ,αsvm(k−1)

Calculate new objective function, W (k) = W (λ(k),αsvm(k))

End

Figure 6.1: Explicit maximum-margin estimation of the base model parameters, λ

This algorithm operates as follows. First the base model parameters, λ, and the SVM

Lagrange multipliers, αsvm, are initialised. Then, fixing αsvm, gradient-descent is used to

5Maximising the margin is equivalent to minimising the norm of the weight vector, |w′|2 = w′Tw′ =
Pn

i=1

Pn

j=1 αsvm
i αsvm

j yiyjK
LL′ (Oi, Oj ; λ). Since αsvm is maximised (standard SVM training), the norm is

minimised when the kernel is minimised with respect to λ.
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minimise the objective function with respect to λ. Since this an unconstrained optimisa-

tion, the SVM Karush-Kuhn-Tucker (KKT) conditions (relating to the margin constraints)

may be broken. To resolve this, the augmented parameters are re-estimated by re-training

the SVM. This fixes the KKT conditions but may cause the objective function to be sub-

optimal with respect to λ. The process is therefore repeated until the objective function

is optimal with respect to both λ and α (with the KKT conditions satisfied).
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Figure 6.2: Variation of the SVM dual objective function during maximum-margin estima-

tion of the base models: (a) constant step-size (b) using back-off algorithm

Unfortunately the two-step algorithm in figure 6.1 introduces discontinuities into the

error surface, allowing small changes in the kernel parameters, λ, to create large changes

in the objective function. As illustrated in figure 6.2(a), this sensitivity to λ may cause

the objective function to take higher (worse) values than in previous iterations. This in-

stability can be alleviated by introducing a back-off algorithm: if the parameter update

increases the objective function, the previous parameter values are restored and the learn-

ing rate is reduced. The effects of this approach are illustrated in figure 6.2(b). Without

back-off, large fluctuations in the objective function are observed, with convergence oc-

curring after approximately 50 iterations. With back-off, the objective function decreases

monotonically, converging after just seven iterations.

Although the back-off algorithm stabilises the optimisation, it also biases the system

against large changes in the base model parameters. This increases the likelihood of

the optimisation converging to a local minimum. This is illustrated in figures 6.2(a)

and 6.2(b) since without back-off the system converges to an objective function of 255,

whereas with back-off the objective only reaches 265. Note, however, that without back-

off, convergence is not guaranteed (and is often not attained) due to the two-stage nature

of the optimisation process.
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Approximate maximum-margin estimation for λ

The maximum-margin base model parameter estimation algorithm discussed in the previ-

ous section is both computationally expensive and likely to converge to a local minimum.

This makes it unsuitable for many applications. Instead, in this section, an approximate

form of maximum-margin training for the base model parameters is proposed.

Given a ρ-th order augmented model, p(O;λ,α), let λML be ML-estimated base model

parameters,6 and αMM be maximum-margin-estimated augmented parameters. Consider a

υ-th order (υ ≥ ρ) Taylor series expansion of the augmented model about the fixed point

{λML,αMM},7

ln p(O;λ,α) ≈ ln p(O;λML,αMM) +
[

βT∇αln p(O;λ,α) (6.16)

+ δT
1 vec

(

∇α∇λln p(O;λ,α)
)

+ · · · + δT
υ−1vec

(

∇α∇
υ−1
λ ln p(O;λ,α)

)

+ γT
1 ∇λln p(O;λ,α) + · · · + γT

υ vec
(

∇υ
λ ln p(O;λ,α)

)

]

λML ,αMM

where ∇v
λf(·) denotes the v-th order derivative of f(·) with respect to λ. For clarity,

the multiplicative constants in the Taylor series—1/2!, 1/3!, etc.—are factored into the

Taylor-series coefficients β, δ and γ. Second- and higher-order derivatives with respect to

α are zero since augmented models are log-linear in α.

It is important to note that although this section will concentrate upon base model

parameter estimation, the definition of the augmented model sufficient statistics means

that changes in λ have a knock-on effect on the augmented parameters α. Optimising λ

may therefore require re-estimation of α. To take this link into account, the Taylor-series

expansion in equation (6.16) is constructed using derivatives with respect to both λ and

α, allowing interactions between the parameters to captured. A further point to note

is that, by truncating the Taylor-series expansion, the approximation in equation (6.16)

may allow additional dependencies to be modelled that were not present in the original

model to be represented. For example, as discussed in chapter 4, first-order HMM-based

augmented models depend upon only the occupancies of the latent-states. However, when

these augmented models are differentiated, terms that depend upon the occupancies of

pairs of states are generated. Since these were not present in the original model, additional

modelling power is obtained.

Using the augmented model definition in equation (4.5), the Taylor-series expansion

in equation (6.16) can be written in terms of the ML-estimated base statistical model,

p̂(O,λML). Consider, for example, a first-order Taylor-series expansion of a first-order

6As with many explanations in this thesis, ML-estimated base models are assumed for convenience. In

practice, however, parameters of the base models may be estimated using a wide range of different criteria.
7For clarity, the normalisation term, ln τ (λ,α), is not shown in equations (6.16–6.18). Since derivatives

of ln τ (λ,α) are independent of the observations, ln τ (λ,α) and its derivatives can be combined into a

single term and included in the decision boundary bias, b.
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augmented model about the point {λML,αMM},

ln p(O;λ,α) ≈ ln p̂(O;λML) (6.17)

+
[

(α+β+γ1)
T∇λ ln p̂(O;λ) + (γ1⊗α)Tvec

(

∇2
λ ln p̂(O;λ)

)

]

λML,αMM

where ⊗ denotes tensor multiplication. Regrouping the terms allows equation (6.17) to

be written as a second-order augmented model with base model parameters, λML, and

augmented parameters, α̂,

ln p(O;λ,α) ≈ ln p̂(O;λML)+ α̂T

[

∇λln p̂(O;λ)
1
2!vec

(

∇2
λln p̂(O;λ)

)

]

λML

(6.18)

α̂ =

[

αMM+β+γ1

2γ1⊗ αMM

]

Equation (6.18) can therefore be considered to be an approximation to the original first-

order augmented model. When the weights associated with cross-state derivatives are

constrained to be zero, maximum margin estimation of α̂T is equivalent to maximum

margin estimation of the base model parameters. The constraints on cross-state deriva-

tives are used to ensure that the approximate model is not more powerful than the original

model. This is particularly important for augmented models defined using latent-variable

base models since first-order models are based upon the occupancy counts of individual

states, P (θjm
t |O;λ), whereas the second-order model in (6.18) includes additional counts

for pairs of states, P (θjm
t , θkn

τ |O;λ). Since these counts are not present in the original

first-order model, the weights associated them must be zero in order to avoid introducing

additional dependencies. Despite these restrictions, provided that the ML-estimated base

model parameters are sufficiently close to the true MM-estimated parameters, equation

(6.18) allows maximum margin estimation of the base model parameters to be approxi-

mated simply by increasing the augmented model order by one. As the difference between

the ML and MM base model parameters increases, the augmented model order must be

increased by greater amounts.

Approximate estimation of λ has two major advantages when compared to explicit

optimisation. First, the time-consuming gradient-descent algorithm and repeated SVM

training is avoided. Second, by fixing the sufficient statistics, the variable-margin SVM

kernel remains fixed, allowing approximate MM estimation to converge to a unique solu-

tion, unlike the exact version. For tasks with complex error surfaces, approximate MM

may outperform the exact alternative.

Illustrative example

Consider the two-dimensional, two-class artificial problem shown in figure 6.3. Observa-

tions for each class were generated using class-conditional GMMs (each with three mixture-
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Figure 6.3: Maximum margin estimation of augmented and base model parameters (a) ML

and (b) MM estimated Gaussians with log-likelihood-ratio feature-space φLLR(O; λ); (c) ML

and (d) MM estimated Gaussians with augmented model score-space φLL(O; λ)

components). To emulate the mismatch normally present between the true source distri-

bution and the hypothesised models, Gaussian base models, p̂(O;λ(1)) and p̂(O;λ(2)),

were estimated on the data. These are illustrated as ellipses in figure 6.3. The boundary

of each ellipse represents a distance of one standard deviation from the mean.

Base model parameters were first estimated using ML training. Figure 6.3(a) shows

the positions of the base model distributions, Bayes’ decision boundary (dashed), and the

SVM decision boundary for a one-dimensional feature-space, φLLR(O;λ) (solid line),

KLLR(Oi,Oj ;λ) =
〈

φLLR(Oi;λ),φLLR(Oj ;λ)
〉

(6.19)

φLLR(O;λ) =
[

ln p̂(O;λ(1)) − ln p̂(O;λ(2))
]

(6.20)

From figure 6.3(a), it is clear that the log-likelihood ratio score-space derived from ML-

estimated Gaussians is a poor approximation to the true (Bayes’) decision boundary. Test

error for the score-space was 22.8%, compared to 23.0% for Gaussian classification without

the score-space, and 9.3% for the optimal minimum Bayes’ error decision boundary.

Using equation (6.15), explicit MM estimation of the base model parameters was then

performed. The resulting SVM decision boundary, shown in figure 6.3(b), is much closer

to the Bayes’ decision boundary and classification performance is significantly improved,

with the test error falling from 22.8% (ML base model) to 10.4% (MM base model). Next,

starting again with the ML base models, approximate MM estimation of λ was performed
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by augmenting the base models with their first-derivatives. Decision boundaries were

estimated using the φLL(O;λML) score-space and are shown in figure 6.3(c). Note that

although the decision boundaries for both exact and approximate estimation of the base

model parameters are almost identical, base model parameters estimated using approxi-

mate MM are unchanged. Finally, as shown in figure 6.3(d), both approximate and exact

MM estimation were performed. This yielded no additional improvement in performance.

In this example, exact and approximate MM estimation yielded similar results. This

is because, as discussed in section 4.2.1, the infinite Taylor series expansion for a member

of the exponential family can be truncated to a first-order expansion with no loss of

power. Approximate and exact MM estimation for Gaussian base models are therefore

equivalent. Since the decision boundary is determined using only the sum of the base

model and augmented model parameters, there are infinitely many different augmented

models that generate the same decision boundary (each with a slightly different base

model and augmented model parameters). When latent-variable base models are used,

however, approximate and exact MM of model parameters are rarely equal. This is because

truncating the Taylor series expansion alters the optimisation objective function.

6.3 Metrics

As discussed in the previous sections, parameters of augmented statistical models can be

estimated using a maximum-margin training criterion. This uses the ‘distances’ between

training examples to estimate augmented model parameters. These distances are measured

using a kernel defined by a score-space and a score-space metric. This section examines the

definition of the metric and proceeds as follows. First, a metric for calculating distances

between probability distributions is defined. It is then shown that this metric can also be

used when distances between examples are required (for maximum-margin training).

Manifold associated

with augmented model
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Figure 6.4: Augmented model metrics

Let p(O;λ) be a generative statistical model with parameters λ. As illustrated in figure

6.4, the set of all possible distributions of this model can be represented as a statistical

manifold, S, parameterised by λ. The distance between two points (distributions) on this
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manifold, ln p(O;λ) and ln p(O;λ+δλ), can be calculated using an inner-product [3],

KS =
〈

ln p(O;λ), ln p(O;λ+δλ)
〉

= u(O;λ)T GS u(O;λ) (6.21)

where the vector u denotes the direction of movement along the manifold. The matrix

GS is the Riemannian metric tensor for S. For statistical manifolds, this tensor is given

by the Fisher Information matrix [3, 25, 101, 117],

GS = EO

{

[

∇λ ln p(O;λ)
][

∇λ ln p(O;λ)
]T
}

(6.22)

Unfortunately, for many generative models, there is no closed-form solution for calculat-

ing GS . Instead, it is usually approximated as either an identity matrix [50], or as an

expectation over the training examples [25]. In this thesis, the latter approach is used.

Although equations (6.21) and (6.22) allows distances between distributions to be

calculated, different directions of movement along the manifold, u(O;λ), generate different

distances. To ensure uniqueness, the shortest distance is often used. As shown in [2], the

shortest distance is obtained when u(O;λ) is in the direction of the natural gradient,

u(O;λ) = G−1
S ∇λln p(O;λ) (6.23)

Substituting the natural gradient in equation (6.23) into the distance calculation in equa-

tion (6.21), allows the shortest distance across the manifold to be calculated. The shortest

distance between the distributions ln p(O;λ) and ln p(O;λ+δλ) is thus given by,

KS =
(

∇λln p(O;λ)
)T

G−1
S

(

∇λln p(O;λ)
)

(6.24)

Given this result, consider the manifold T of augmented model distributions parame-

terised by the augmented parameters α. Using equation (6.24), the distance between two

different augmented model distributions can be written as,

KT =
[

T (O;λ) − µT

]T
G−1

T

[

T (O;λ) − µT

]

(6.25)

where the manifold metric, G−1
T is calculated using the Fisher information matrix,

GT = EO

{

[

T (O;λ) − µT

][

T (O;λ) − µT

]T
}

(6.26)

and T (O;λ) are the augmented model sufficient statistics. The sufficient statistics mean

µT = EO

{

T (O;λ)
}

arises from differentiating the generative model normalisation term.

Unfortunately, although equations (6.25) and (6.26) allow distances between different

augmented model distributions to be calculated, parameter estimation for augmented

models requires the calculation of distances between training examples, not probability
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distributions. To determine how these distances relate to distances between distributions,

consider a set of i.i.d. training examples, O = {O1, . . . ,On}, sampled from an unknown

true distribution, and mapped into the space of augmented model sufficient statistics,

{T (O1;λ), . . . ,T (On;λ)}. The probability density function for these examples can be

written as [3],

p(T (Oi;λ); ξ) =

{

ξi 1 ≤ i < n

1 −
∑n−1

i=1 ξi i = n
(6.27)

where ξ is an n−1 dimensional parameter vector that explicitly specifies the likelihood

associated with each ‘observation’, T (Oi;λ). The likelihood of obtaining T (On;λ) is

defined such that the total probability mass associated with p(T (Oi;λ); ξ) is one.

As a probability distribution (albeit, an unusual one), p(T (Oi;λ); ξ) defines a statis-

tical manifold, U , in the space of all possible probability distributions. Since different

training examples represent different distributions on this manifold, distances between ex-

amples can be calculated using the results discussed above. By noting that the manifold

of all parametric augmented statistical model distributions, T , is a submanifold of the set

of distributions defined by p(T (Oi;λ); ξ), it is clear that the manifolds T and U must

share the same metric [3], i.e.

GU = G−1
T (6.28)

The metric for calculating distances between examples mapped into the space of aug-

mented model sufficient statistics is therefore the inverse of the Fisher information matrix.

This is identical to the inverse covariance of the sufficient statistics and corresponds to a

maximally non-committal metric (a simple whitening of the data). For consistency, when

examples are mapped into the augmented model score-space (containing the log-likelihood

ratio), an equivalent metric is applied to the log-likelihood ratio.8

6.4 Acoustic code-breaking

As discussed in sections 6.2.1 and 6.2.2, maximum margin estimation of generative aug-

mented model parameters is restricted to situations where utterances belong to one of

two classes. Unfortunately, many practical speech recognition tasks require that utter-

ance labels are chosen from a much wider range of class labels. It is therefore necessary

8Note: to ensure that Fisher information matrix has a full rank (allowing it to be inverted) the vector of

sufficient statistics, T (O; λ), must have linearly-independent elements. For some forms of base model, this

requires that linearly-dependent sufficient statistics are removed. Consider, for example, an M -mixture-

component GMM. Sufficient statistics for the M -th mixture-component are linearly dependent on the

other M−1 components due to the sum-to-one constraint on the component posterior probabilities, P (θt =

M |O; λ) = 1 −
PM−1

m=1 P (θt = m|O; λ). All statistics relating to the M -component must therefore be

removed.
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to examine how standard multiclass speech recognition tasks can be decomposed into a

series of binary classification problems.

The machine learning literature includes many techniques for decomposing multiclass

tasks into binary problems, for example [28] and [133]. Unfortunately, many of these

scale badly with the number of classes—often O(C 2) or O(C3), where C is the number of

classes. Furthermore, for large vocabulary speech tasks, the number of potential classes

(words) is usually too large for many traditional decomposition techniques. In this section,

an acoustic code-breaking technique similar to that described in [126] is described.

ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

TO IN DIDN’TIT ELABORATE

!NULLA

BUT

!NULL

!NULL

a) Word lattice b) Confusion network

DIDN’T ELABORATE

!NULLIN

BUT IT

TO

!NULL

c) Pruned confusion network

Figure 6.5: LVCSR conversion from multi-class to binary classification

Acoustic code-breaking is a three step process. Given the acoustic data for an utter-

ance, a standard HMM-based LVCSR system is first used to determine the most likely

utterance transcriptions. These transcriptions can be compactly represented using a word

lattice (see figure 6.5(a)). Lattice nodes are labelled with time-stamps and arcs are labelled

with words, language model probabilities and HMM acoustic model likelihoods. Next, us-

ing the algorithms in [75], the lattices are linearised to allow the competing words at each

time instance to be identified. These linearised lattices are known as confusion networks

(figure 6.5(b)). Each arc in the confusion network is labelled with a word, ωi, a start and

end time and the posterior probability of the word, F(ωi). The final step is to prune the

confusion networks so that, between each pair of nodes, only the two most likely words

(those with the highest word posteriors) remain. This pruning process is depicted in figure

6.5(c). The resulting pairs of words, for example BUT/IN in figure 6.5(c), are known as

confusable pairs. When acoustic data associated with a confusable pair is extracted, data

extraction must start at the earliest start time of the two words and finish at the latest

end time. This ensures that the full acoustic data for both words is included and that

neither word is truncated. The side effect of this process is that noise may be introduced

at the start or end of each confusable pair.

Applying the above process to the training data allows commonly occurring confusions

to be identified. Examples of each pair can then be located in the acoustic data and used
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to train binary classifiers. Locating the same confusions in the test data then allows the

confusable words in the LVCSR transcription to be rescored, potentially improving word

and sentence accuracy. Maximum-margin generative augmented models are particularly

suitable for this rescoring task since, with many complex sufficient statistics, augmented

models can capture a much wider range of acoustic subtleties than standard HMM-based

models. In addition, the use of a maximum margin training criterion allows augmented

models to generalise well despite many model parameters and relatively little training

data.

As discussed earlier in this chapter, maximum margin training of augmented model

parameters involves the estimation of a unigram prior over the words.9 For LVCSR tasks,

however, trigram and higher-order language models are commonly used to capture longer-

range dependencies between words. This information is reflected in the confusion network

posteriors. To improve the discriminative ability of pairwise classifiers it is therefore

useful to consider methods of incorporating this additional language model information

(details of word context) into the binary classifier. One method of doing this is to consider

a weighted combination of the confusion network classifiers and the length-normalised

pairwise augmented model classifiers,

1

T
ln

(

p(O;λ(1),α(1))P (ω1)

p(O;λ(2),α(2))P (ω2)

)

+ β ln

(

F(ω1)

F(ω2)

) ω1
>
<
ω2

0 (6.29)

where ω1 and ω2 are the confusable words. The relative weights of the augmented model

likelihoods and the confusion network posteriors are specified by the scalar weight β ≥ 0.

This weight is often empirically set to maximise the performance over a development set.

Alternatively, β can be determined automatically by appending the confusion network

log-posterior-ratio to the augmented model score-space,

φCN(O;λ) =

[

1
T φLL(O;λ)

lnF(ω1) − lnF(ω2)

]

(6.30)

When maximum margin training is performed using this score-space, a maximum margin

estimate of β is obtained. The ability of MM-estimated augmented models to generalise

well to unseen data means that, when training and test conditions are perfectly matched,

MM-estimated values of β are expected to yield good generalisation performance. When

conditions are mismatched, however, empirical estimates of β may yield better perfor-

mance. For example, in cross validation experiments, confusion network lattices are often

generated once using HMMs trained on all acoustic data. Posterior probabilities from

these confusion networks are therefore biased since they are based upon both the training

and test sets. Maximum margin estimated values of β can therefore be expected to be

9These unigram priors are part of the bias—equation (6.4)—that is estimated along with the decision

hyperplane gradient.
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larger than would otherwise be expected since the importance of the word posterior ratio

is over-estimated.

6.5 Summary

In this chapter a binary distance-based classification framework was proposed for aug-

mented model parameter estimation. This avoids the need to calculate the intractable

normalisation terms by reducing augmented model parameter estimation to the task of

estimating a linear decision boundary between pairs of augmented models in a high di-

mensional score-space. Variable-margin SVMs were proposed as a method of applying

the maximum-margin training criterion to this task. These generate decision boundaries

that generalise well to unseen data whilst maintaining the augmented model constraint

that the weight associated with the base model is one. Using this criterion, parameter

estimation algorithms for both the base model parameters and the augmented parameters

were introduced. Score-space metrics were then derived using an information geomet-

ric argument. Finally a code-breaking approach was discussed for converting multi-class

speech recognition problems into a series of binary classification tasks. Maximum-margin

estimated augmented models can be applied to the resulting binary tasks.



7
Conditional Augmented Models

In previous chapters, generative augmented models were introduced as a powerful form

of statistical model. Unfortunately, despite significant modelling benefits, the complexity

of augmented model normalisation terms often makes likelihood calculations difficult and

parameter estimation impractical. This severely limits the applicability of generative

augmented models for many practical tasks.

In this chapter conditional augmented (C-Aug) models are proposed as an attractive

alternative. These use the same sufficient statistics as generative augmented models but

directly model class posteriors instead of utterance likelihoods. This simplifies the model

normalisation by replacing the integration over all observation sequences with a simple

summation over class labels. For many tasks this allows the normalisation to be calculated

explicitly, making posterior probability calculations computationally feasible. Standard

statistical model training algorithms can therefore be used for estimating C-Aug model

parameters. In this work conditional maximum likelihood estimation—the discriminative

model equivalent of maximum likelihood—is used. Finally, this chapter shows how C-Aug

models can be extended to situations where observation sequences are transcribed with

sequences of labels. One of the most common examples of this (and that discussed in this

chapter) is continuous speech recognition.

This chapter is structured as follows. First, conditional augmented (C-Aug) models

are introduced as a discriminative multi-class classification technique. Model definitions

and properties are compared to those of generative augmented models. Parameter esti-

mation and inference using the conditional maximum likelihood (CML) criterion are then

discussed. Finally, a sentence-based classification framework (broadly equivalent to speech

99
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recognition) is proposed. This uses the CML and MPE training criteria to estimate phone

models within an efficient lattice-based framework.

7.1 Conditional augmented models

In this section conditional augmented (C-Aug) models are defined. These use the same

sufficient statistics as the generative augmented models in chapter 4, but directly model the

posterior probabilities of the correct class labels instead of utterance likelihoods. Defined

using an exponential model with sufficient statistics given by the vectors L(ω,O;λ) and

T (ω,O;λ), the C-Aug model posterior probability of the class ω ∈ Ω = [1, C], given an

observation sequence, O = {o1, . . . ,oT }, can be written as,

P (ω|O;λ,α) =
1

Z(O;λ,α)
exp





[

1

α

]T [

L(ω,O;λ)

T (ω,O;λ)

]



 (7.1)

where elements of the augmented parameters, α, and sufficient statistics, L(ω,O;λ) and

T (ω,O;λ), can be expanded in terms of the class-dependent base model parameters, λ(ω),

and augmented parameters, α(ω), using the expressions,

α = [α(1)T, . . . ,α(C)T]T

Lω′(ω,O;λ) = δω=ω′ ln p̂(O;λ(ω′)) ∀ω′ ∈ Ω (7.2)

Tω′(ω,O;λ) = δω=ω′T (O;λ(ω′)) ∀ω′ ∈ Ω

where T (O;λ(ω)) are the standard augmented model sufficient statistics defined by equa-

tion (4.6). The C-Aug model normalisation term is denoted by Z(O;λ,α). For compact-

ness, λ is used to denote the parameter vector
[

λ(1)T, . . . ,λ(C)T
]T

. The Kronecker-deltas,

δω=(), ensure that statistics from only a single base model are active at any one time, and

allow the C-Aug model to be rewritten as,

P (ω|O;λ,α) =
1

Z(O;λ,α)
p̂(O;λ(ω)) exp

(

αTT (ω,O;λ)
)

(7.3)

The C-Aug model in equation (7.3) has a similar structure to the generative augmented

models discussed in chapter 4. In practice, however, they are very different since the

C-Aug model normalisation term, Z(O;λ,α),1 is calculated as an expectation over all

possible class labels, Ω,

Z(O;λ,α) =
∑

ω∈Ω

p̂(O;λ(ω)) exp
(

αTT (ω,O;λ)
)

(7.4)

whereas generative augmented model normalisation terms are calculated as an expectation

over all possible observation sequences. Since applications typically use only a small

1For clarity, conditional augmented model normalisation terms are denoted Z(·) instead of τ (·) to em-

phasise that the expectation is calculated over all class labels instead of all possible observation sequences.
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number of different classes, the summation in equation (7.4) can be calculated explicitly.

Furthermore, the summation is bounded, thus avoiding the need for constraints on the

augmented parameters.

Although it may seem strange to embed a generative base model within a discrimina-

tive model, this is a perfectly valid operation since the base model is used only to define

a set of sufficient statistics. In contrast to other, ad-hoc, approaches to sufficient statistic

selection, the base model allows the same systematic approach used for augmented models

(chapter 4) to be applied when selecting C-Aug model sufficient statistics. Furthermore,

since the statistics are based upon derivatives of latent-variable base models, they allow C-

Aug models to overcome the conditional-independence assumptions of the base model (see

section 4.2.2). This enables C-Aug models to represent a wider range of spatial and tem-

poral dependencies than would otherwise be possible, allowing complex data distributions

to be modelled.

The classification ability of C-Aug models can be further improved by calculating

length-normalised base models and sufficient statistics that, when combined, form the C-

Aug model sufficient statistics. This normalisation is useful since both the base model

likelihoods and the augmented model sufficient statistics vary with sequence-length (from

the summation over all observations in the sequence) whereas the augmented parameters

associated with them do not. Length-normalisation prevents this mismatch by making

all terms length-independent. Similarly to augmented models, length-normalisation is

achieved by multiplying the base model likelihoods and sufficient statistics for observa-

tion sequences by a factor 1/T , where T is the number of observations within a sequence.

This allows C-Aug models to compare sequences of different lengths without classifica-

tion results being biased in favour of either longer or shorter sequences. Experimentally,

sequence-length normalisation has been found to improve classification performance.

A further advantage of sequence-length normalisation is that it compresses the dynamic

range of the unnormalised—without Z(O;λ,α)—C-Aug model scores. When Z(O;λ,α)

is calculated using these length-normalised scores, a larger number of competing hypothe-

ses contribute towards the overall model normalisation. In this respect, sequence-length

normalisation is similar to the acoustic de-weighting used during MMI and MPE estima-

tion of HMMs [96, 136] (see section 2.1.3 for more details). The main difference between

the two approaches is that acoustic de-weighting scales by a fixed amount, whereas the

scaling used by sequence-length normalisation varies according to sequence length.

As with all statistical models, the modelling power of C-Aug models is determined by

the number of sufficient statistics used: the more sufficient statistics, the more degrees of

freedom, and so the greater the power of the statistical model. Unfortunately, the ben-

efits of additional statistics are obtained only at the expense of increased computational

cost. Kernelised C-Aug models offer a potential solution. Defined similarly to kernelised
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CRFs [64], these use standard Mercer kernel functions to map sufficient statistics into a

higher-order feature-space where dot-products can be calculated efficiently. C-Aug models

are then defined to use these high-dimensional features as sufficient statistics. The result-

ing models benefit from the additional statistics but do not pay the computational cost

associated with calculating them. Kernelised C-Aug models are similar to the kernelised

augmented models discussed in section 4.4.

7.2 Parameter estimation

As discussed in the previous section, C-Aug models have a significant advantage over stan-

dard generative augmented models since the normalisation term can be calculated simply.

This makes direct training of the augmented model parameters using standard algorithms

possible. One such algorithm is conditional maximum likelihood (CML) estimation.

Given a training set of i.i.d. observation sequences, O = {O1, . . . ,On}, with class

labels Y = {y1, . . . , yn}, CML estimation adjusts model parameters in order to maximise

the log-posterior probability of the correct class labels Y, given the observations, O. This

can be written as,

Fcml(λ,α) = lnP (Y|O;λ,α) (7.5)

where Fcml(λ,α) is the CML objective function. Since the observation sequences, O ∈ O,

are independent and identically distributed, equation (7.5) can be expanded in terms of

the log-posterior probabilities of the class labels for individual observation sequences. This

enables the CML objective function, F cml(λ,α), to be rewritten as,

Fcml(λ,α) =

n
∑

i=1

lnP (yi|Oi;λ,α) (7.6)

where P (yi|Oi;λ,α) is the posterior probability of the class label yi given the observation

sequence, Oi. From equations (7.5) and (7.6), it is clear that CML optimisation maximises

the average log-posterior probability of the correct class labels—the same discriminative

objective as MMI estimation. Despite this similarity, the two approaches are implemented

differently since MMI training is a constrained optimisation problem that maintains the

generative model parameter constraints, whereas, with no constraints on α, CML train-

ing is an unconstrained optimisation problem. Unfortunately, for many C-Aug models,

equations (7.5) and (7.6) have no closed-form solution and instead iterative optimisation

techniques are typically used. Although many algorithms have been proposed for training

conditional models [23, 63, 93], this thesis will concentrate on gradient-based techniques

(which have been shown to yield faster convergence in many cases [114, 129]).

Consider a C-Aug model with base model parameters λ, augmented parameters α, and

sufficient statistics T (ω,O;λ). Substituting this model into the CML objective function
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in equation (7.6) yields the C-Aug CML objective,

Fcml(λ,α) =
n
∑

i=1

ln

(

1

Z(Oi;λ,α)
p̂(Oi;λ

(yi)) exp
(

αTT (yi,Oi;λ)
)

)

(7.7)

This contains two inter-related sets of parameters—the base model parameters, λ, and

the augmented parameters, α—that can be optimised using gradient-based methods. Pa-

rameter updates are based upon the objective function gradients with respect to α and

λ,

∇αF
cml(λ,α) =

n
∑

i=1

(

T (yi,Oi;λ) −
∑

ω∈Ω

P (ω|Oi;λ,α)T (ω,Oi;λ)
)

(7.8)

∇λF
cml(λ,α) =

n
∑

i=1

(

T (yi,Oi;λ) −
∑

ω∈Ω

P (ω|Oi;λ,α)T (ω,Oi;λ)
)

(7.9)

The first term in each derivative arises from differentiating the C-Aug model numerator;

the second term arises from the denominator (normalisation) derivatives. Note that the

gradient with respect to the base model parameters is derived using the simplifying as-

sumption that second-order derivatives of the base model are zero. This assumption is

motivated by the results in section 8.1.2.

Comparing equations (7.8) and (7.9) it is clear that the first-order derivatives of the

CML objective function with respect to the augmented model and base model parame-

ters are identical, allowing estimation algorithms for α and λ to share the same update

equations. Unfortunately, despite the similarity in parameter update equations, the error

surfaces over which α and λ are optimised can be very different since the second-order

derivatives of the objective function with respect to α and λ differ. This means that the

optimisation of augmented model parameters and the optimisation of base model param-

eters may differ.

This difference is especially clear when the second derivatives of the objective function

are calculated. Consider, for example, the second derivative with respect to the augmented

parameters, α,

∇α∇
T
αFcml(λ,α) =

n
∑

i=1

∑

ω∈Ω

[

∇αP (ω|Oi;λ,α)
]

T (ω,Oi;λ)T

=
n
∑

i=1

∑

ω∈Ω

P (ω|Oi;λ,α)T (ω,Oi;λ)T (ω,Oi;λ)T (7.10)

−
n
∑

i=1

∑

ω∈Ω

∑

ω′∈Ω

P (ω|Oi;λ,α)P (ω′|Oi;λ,α)T (ω′,Oi;λ)T (ω,Oi;λ)T

Since the sufficient statistic outer-products, T (·)T (·)T, are positive semi-definite matrices,

the Hessian matrix of the objective function, equation (7.10), is also positive semi-definite.
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The CML objective function is therefore convex with respect to the augmented parameters,

α. This means that the error function associated with the augmented parameters has only

a single, global, maximum, making optimisation robust to changes in both the optimisation

algorithm and the parameter initialisation. In contrast, the objective function Hessian

matrix with respect to λ is not positive-definite, causing the optimisation with respect to

the base model parameters to be non-convex. The error function used to update λ may

therefore have many local maxima, making optimisation sensitive to both the optimisation

algorithm and the parameter initialisation method.

In this work, parameter estimation was performed using four different gradient-based

optimisation algorithms: gradient ascent, stochastic gradient ascent, conjugate gradient,

and scaled conjugate gradient. The first three are well known algorithms and are discussed

in detail in [87, 98, 116]. The fourth, scaled conjugate gradient is a less well-known, but

powerful, optimisation algorithm that combines the benefits of conjugate gradient meth-

ods with a closed-form line-search algorithm that significantly reduces the computational

cost of conjugate-gradient approaches [83, 84]. Experiments that compare the rates of

convergence of these algorithms for CML estimation of C-Aug models are discussed in

section 8.2.3.

7.3 Inference

Given a trained C-Aug model, P (ω|O;λ,α), with parameters {λ,α}, consider the task of

assigning a class label y to an unseen example O. Applying Bayes’ decision rule, the class

label that minimises the probability of error is given by,

y = arg max
ω∈Ω

P (ω|O;λ,α) (7.11)

Inference thus proceeds as follows: the C-Aug posterior probabilities of all possible class

labels are first calculated. The class label with the largest posterior is then selected.

This process can be simplified by noting that the C-Aug model normalisation term is

class-independent and so identical for all posteriors associated with an observation se-

quence. The normalisation term thus scales all posteriors identically leaving the ordering

unchanged. It can therefore be ignored during inference, allowing the C-Aug model deci-

sion rule to be rewritten as,

y = arg max
ω∈Ω

[

p̂(O;λ(ω)) exp
(

αTT (ω,O;λ)
)

]

(7.12)

Without the normalisation term, this decision function is easier to implement than equa-

tion (7.11). The disadvantage, however, is that it is often hard to apply system combina-

tion techniques when probabilities are unnormalised. Note that there is little difference in

computational cost between the two approaches since the decision function for normalised
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posteriors can be implemented by caching the unnormalised posteriors calculated in equa-

tion (7.12). Given these unnormalised posteriors, the normalisation term can be calculated

at little cost, allowing C-Aug model normalisation to be performed using a simple division

by Z(O;λ,α).

7.4 Speech recognition

In the previous sections, C-Aug models were defined as a discriminative approach for

labelling observation sequences, O, with a single class label, y. However, for more complex

tasks such as speech recognition, the number of different class labels (one for each sentence

transcription) is vast. This, coupled with the variability of sentences in terms of length and

phone content, can make the definition and estimation of sentence-based statistical models

difficult. Instead, sentences are typically decomposed into sequences of words, which may

then be split into phones. Statistical models can then be defined for each of these phones.

By modelling sentences using only a relatively small number of phone models, sentence

variability can be captured in a robust fashion. In the following sections, a lattice-based

approach is discussed for constructing sentence-based C-Aug models using a small number

of simple phone-based models. These are known as C-Aug sentence models.

7.4.1 Sentence modelling

In this section, a discriminative framework that allows C-Aug models to be used for

transcribing complete sentences, without knowledge of the word or phone boundaries, is

discussed. In particular, a lattice-based approach for defining C-Aug sentence models is

proposed. This allows the posterior probability of correct sentences to be calculated using

only a relatively small number of phone models.

The first step when constructing a C-Aug sentence model is to define a base generative

model of the sentence. Consider an observation sequence, O = {o1, . . . .oT }, with a

phone transcription, W = {w1, . . . , wL}.
2 Since phones are often associated with multiple

observations, let A = {a1, . . . , aL} be an alignment that describes the mapping between

the phone labels, wi, and the observations in O that they relate to. The alignment, ai,

for a phone is typically specified using the phone start and end times. This alignment

is rarely known in practice, and must instead be inferred during training and inference.

Given an observation sequence, O, and sentence transcription, W , a generative base model

of the observations given the transcription, p̂(O|W ;λ), can be defined by marginalising

2Note that, to simplify the derivations of C-Aug sentence models, this section assumes that W is a

phone-based transcription instead of a more conventional word transcription.
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the alignment-dependent observation likelihoods over all possible phone alignments,

p̂(O|W ;λ) =
∑

A∈AW

p(O,A|W ;λ)

=
∑

A∈AW

p(O|A,W ;λ)P (A|W ;λ) (7.13)

where AW is the set of all valid phone alignments for the transcription W , p(O|A,W ;λ)

is a generative model of the observations given both the transcription and alignment, and

P (A|W ;λ) is a posterior distribution of the alignment given the phone sequence. To

maintain consistency with augmented and C-Aug models discussed previously, the base

generative distributions in this section are denoted by probability density functions of the

form, p̂(·). Other distributions are denoted using the more familiar notation, p(·) and

P (·).

When the generative sentence model is constructed using HMM phone models—as is

common in speech recognition—the phones w ∈ W are conditionally-independent given

the phone alignment, A. This allows the complete observation sequence, O, to be seg-

mented into shorter sequences, O(w), associated with individual phones. By definition,

these observation sequence segments are also conditionally-independent given the phone

alignment, allowing the transcription- and alignment-dependent observation likelihood,

p(O|A,W ;λ) in equation (7.13), to be expanded in terms of alignment-dependent phone

base models, p̂(O(w)|w,A;λ),

p̂(O|W ;λ) =
∑

A∈AW

P (A|W ;λ)
∏

w∈W

p̂(O(w)|w,A;λ) (7.14)

where O = {O(w1), . . . ,O(wL)} is the complete observation sequence, and O(w) are seg-

ments that contain the observations belonging to a particular phone w ∈ W in the tran-

scription. The posterior probability of the alignment given the transcription, p(A|W ;λ),

can be difficult to calculate since it requires the marginalisation of the joint observa-

tion/alignment likelihood over all possible observation sequences. To avoid this often in-

tractable calculation, this work assumes that P (A|W ;λ) is a uniform distribution. This

allows equation (7.14) to be written as,

p̂(O|W ;λ) =
1

|AW |

∑

A∈AW

∏

w∈W

p̂(O(w)|w,A;λ) (7.15)

where |AW | is the cardinality of AW . Equation (7.15) will be referred to as the sentence

base generative model.

Given the sentence base model, p̂(O|W ;λ), augmented model sufficient statistics can

be defined by considering first- and higher-order derivatives of the base model. In this sec-

tion, to maintain clarity, only first-order derivatives are considered.3 Using the definition

3To simplify discussions this chapter assumes that first-order C-Aug models are used. In practice,



CHAPTER 7. CONDITIONAL AUGMENTED MODELS 107

in equation (4.6), the augmented model sufficient statistics, T (W,O;λ), for the sentence

base model, p̂(O|W ;λ), are given by,

T (W,O;λ) = ∇λ ln





1

|AW |

∑

A∈AW

∏

w∈W

p̂(O(w)|w,A;λ)



 (7.16)

Augmenting the sentence base model in equation (7.15) with these sufficient statistics

breaks the conditional-independence of the observation segments, O (w), and their phone

transcriptions, w, on the base model alignment A. This allows long-range temporal depen-

dencies within the sentence to be modelled. Unfortunately, for many sentences, statistics

of this form (a summation over all possible alignments) make C-Aug sentence model cal-

culations computationally expensive.

To simplify the calculations, this work restricts the C-Aug sentence models consid-

ered to models that retain the original base model assumption that observation segments

are conditionally independent given the base model phone-alignment. Although this lim-

its the long-range temporal dependencies that can be modelled, it allows calculations to

be performed at a phone-level instead of a sentence-level. This enables efficient algo-

rithms to be derived for parameter estimation and inference. The base model conditional-

independence assumptions are maintained by forcing the C-Aug sentence model sufficient

statistic phone-alignments to match those of the base model. This allows the summation

over all phone-alignments in equation (7.16) to be replaced by a simple dependence on the

base model alignment, resulting in the set of alignment-dependent C-Aug sentence model

sufficient statistics, T (W,O|A;λ),

T (W,O|A;λ) = ∇λ ln

(

∏

w∈W

p̂(O(w)|w,A;λ)

)

=
∑

w∈W

∇λ ln p̂(O(w)|w,A;λ)

=
∑

w∈W

T (w,O(w)|A;λ) (7.17)

where T (w,O(w)|A;λ) are the augmented model sufficient statistics associated with the

phone base model, p̂(O(w)|w,A;λ).

Given both the base generative model in equation (7.15), and the sufficient statistics

this assumption is not necessary and higher-order models can be defined by varying the definitions of

T (W, O; λ), T (W, O|A; λ) and T (w, O(w)|A; λ).
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in equation (7.17), a sentence-level C-Aug model can be defined,4

P (W |O;λ,α)

=
1

Z(O;λ,α)
p̂(O|W ;λ) exp

(

αTT (W,O|A;λ)
)

=
1

Z(O;λ,α)

1

|AW |

∑

A∈AW

[

(

∏

w∈W

p̂(O(w)|w,A;λ)

)

exp

(

αT
∑

w∈W

T (w,O(w)|A;λ)

)

]

=
1

Z(O;λ,α)

∑

A∈AW

∏

w∈W

1

|AW |
p̂(O(w)|w,A;λ) exp

(

αTT (w,O(w)|A;λ)

)

(7.18)

where α are the C-Aug model augmented parameters, and Z(O;λ,α) is the normalisation

term, calculated as the expectation of the unnormalised C-Aug model over all possible

phone transcriptions,

Z(O;λ,α) =
∑

W∈W

∑

A∈AW

∏

w∈W

1

|AW |
p̂(O(w)|w,A;λ) exp

(

αTT (w,O(w)|A;λ)

)

(7.19)

and W ∈ W is a hypothesis from the set of all possible transcriptions for the observation

sequence, O. Together, equations (7.18) and (7.19) define C-Aug sentence models in terms

of a small number of phone models.

7.4.2 Lattice-based C-Aug sentence models

Unlike the simple C-Aug models discussed in section 7.1, exact calculation of the C-Aug

sentence model normalisation term is rarely possible since the calculation in equation (7.19)

typically involves a summation over a huge number of different sentence transcriptions and

alignments. Instead the summation over phone transcriptions, W ∈ W, and corresponding

alignments, A ∈ AW , can be approximated by considering only the most ‘likely’ sequences

and alignments. When HMM base models are used, a hypothesis lattice containing the

most likely (according to the base model) sentence transcriptions and alignments is often

generated using a standard speech recognition Viterbi decoder [48]. This lattice is similar

to the training lattices used during MMI and MPE training of HMMs [96]. Furthermore,

when hypothesis lattices are generated using Viterbi decoding, each hypothesised sentence

transcription has only one alignment—the most likely (or Viterbi) alignment. This allows

the 1/|AW | term, and the summation over all possible alignments, to be omitted from

calculations.

4Note that, in practice, C-Aug sentence models are often defined using length-normalised base models

and sufficient statistics (normalised by the sentence length, not the phone length). This is similar to the

acoustic de-weighting used when performing MMI and MPE training of HMMs [96,136]. A full discussion of

the effects of C-Aug model sequence-length normalisation is given in section 7.1. To simplify the notation,

all equations and derivations in this section use unnormalised models.
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For a lattice of competing hypotheses, L, the normalisation term in equation (7.19)

can be approximated as,

Z(O;λ,α) =
∑

{W,A}∈L

∏

w∈W

p̂(O(w)|w,A;λ) exp
(

αTT (w,O(w)|A;λ)
)

(7.20)

where the summation
∑

{W,A}∈L denotes a summation over all phone transcriptions (with

their associated Viterbi alignments) in the lattice L. The disadvantage of using the Viterbi

approximation is that the number of confusions the C-Aug model is trained to resolve is

reduced from all possible transcriptions to just the transcriptions in the lattice. General-

isation performance of the C-Aug model may therefore be affected. In practice, however,

for any reasonably sized lattice the number of different sentence hypotheses is large enough

that this is not believed to be a serious problem.

Unfortunately, the number of different sentence hypotheses in a typical lattice is of-

ten too large for the summation in equation (7.20) to be calculated in the form given.

Instead, by taking advantage of the lattice-structure of the hypotheses, the summation

can be simplified. Since calculations of the phone base models and sufficient statistics

are dependent upon only the current phone label and alignment, calculations can be as-

sociated with arcs of the hypothesis lattice (which correspond to a single phone label

and alignment). This means that the HMM likelihood score, p̂(O(w)|w,A;λ), in each

arc of the lattice L can be replaced with the unnormalised C-Aug phone model score,

p̂(O(w)|w,A;λ) exp
(

αTT (w,O(w)|A;λ)
)

, where w is the arc phone label and A is an

alignment that reflects the arc start and end times. The resulting lattice is known as the

denominator lattice and is denoted Lden.

Given the denominator lattice, the C-Aug model normalisation term in equation (7.20)

can be calculated as a summation of the scores for all possible lattice paths, weighted by

the path likelihoods. This summation can be calculated efficiently using the lattice weight

operation.5 Lattice weights are calculated by propagating arc weights (probabilities) from

the start node, through to the end node. When probabilities are propagated along paths

they are multiplied; when paths merge the probabilities are summed. This is similar to the

forward-pass of the Forward-Backward algorithm used for calculating HMM likelihoods

(appendix B). Given the denominator lattice, Lden, the C-Aug model normalisation term

can be calculated as,

Z(O;λ,α) = [[Lden]] (7.21)

where [[Lden]] denotes the lattice-weight (also known as the shortest distance). Computa-

tional cost of this calculation is linear in the number of lattice arcs (unlike the explicit

calculation in equation (7.20), which is linear in the number of hypotheses—a much larger

value).

5In finite state transducer terminology this is known as the lattice/acceptor shortest distance.
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Using a similar approach, the C-Aug model numerator term can be calculated. First, a

simple lattice representing the correct transcription is constructed. Arcs of this lattice are

then scored in a similar fashion to the denominator lattice discussed above. The resulting

lattice is known as the numerator lattice and is denoted, Lnum. By calculating the weight

of this lattice, the C-Aug model posterior can be written as the ratio of two lattice weights,

P (W |O;λ,α) =
[[Lnum]]

[[Lden]]
(7.22)

The use of lattices for calculating the numerator and denominator terms of C-Aug sentence

models yields a computationally efficient method for calculating C-Aug sentence model

posteriors. Furthermore, by representing competing hypotheses for the normalisation term

as a lattice, C-Aug model normalisation can be performed using millions of competing

hypotheses, instead of the thousands that could be used if N -best lists were used. This

allows better approximations to the normalisation to be calculated.

7.4.3 Conditional maximum likelihood estimation

As discussed in section 7.2, parameters of C-Aug models can be trained using the con-

ditional maximum likelihood (CML) criterion. Updates are typically performed using a

gradient-based optimisation algorithm: this work uses scaled conjugate gradient (SCG)

optimisation [83, 84]. In this section, a lattice-based implementation of CML estimation

suitable for training C-Aug sentence models is presented.

Given a set of training examples, O = {O1, . . . ,On}, with phone transcriptions, T =

{W1, . . . ,Wn}, the CML objective function is defined as the log-posterior probability of

obtaining the correct sentence transcriptions given the observation sequences, written as,

Fcml(λ,α) = lnP (T |O;λ,α) =
n
∑

i=1

lnP (Wi|Oi;λ,α) (7.23)

=

n
∑

i=1

ln

(

[[Lnum
i ]]

[[Lden
i ]]

)

(7.24)

where P (Wi|Oi;λ,α) is the C-Aug sentence model posterior probability of the transcrip-

tion, Wi, given the observation sequence Oi. The lattices Lnum
i and Lden

i are the numerator

and denominator lattices defined in the previous section.

Before deriving the update equations for CML estimation of C-Aug sentence model

augmented parameters, it is useful to define the unnormalised alignment-dependent C-Aug

model sentence posterior, S(O,W,A;λ,α), and its gradient, ∇αS(O,W,A;λ,α),

S(O,W,A;λ,α) =
1

|AW |

∏

w∈W

p̂(O(w)|w,A;λ) exp
(

αTT (w,O(w)|A;λ)
)

(7.25)

∇αS(O,W,A;λ,α) =
∑

w∈W

S(O,W,A;λ,α)T (w,O(w) |A;λ) (7.26)
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Given these scores, the gradient of the C-Aug sentence model with respect to the aug-

mented parameters, α, can be calculated,

∇αF
cml(λ,α) (7.27)

=
n
∑

i=1

∇α lnP (Wi|Oi;λ,α)

=

n
∑

i=1

{

∇α ln

(

∑

A∈AWi

S(Oi,Wi,A;λ,α)

)

−∇α lnZ(Oi;λ,α)

}

=

n
∑

i=1

{∑

A∈AWi
∇αS(Oi,Wi,A;λ,α)

∑

A∈AWi
S(Oi,Wi,A;λ,α)

−∇α lnZ(Oi;λ,α)

}

=
n
∑

i=1

{
∑

A∈AWi

∑

w∈Wi
S(Oi,Wi,A;λ,α)T (w,O

(w)
i |A;λ)

)

∑

A∈AWi
S(Oi,Wi,A;λ,α)

−∇α lnZ(Oi;λ,α)

}

=

n
∑

i=1

∑

A∈AWi

∑

w∈Wi

P (A|Wi,Oi;λ,α)T (w,O
(w)
i |A;λ)

)

(7.28)

−
n
∑

i=1

∇α lnZ(Oi;λ,α)

Using the definition of the normalisation term in equation (7.19), the normalisation deriva-

tive can be written as,

∇α lnZ(Oi;λ,α) =
1

Z(Oi;λ,α)

∑

W∈W

∑

A∈AW

∇αS(Oi,W ,A;λ,α)

=
1

Z(Oi;λ,α)

∑

W∈W

∑

A∈AW

∑

w∈W

S(Oi,W ,A;λ,α)T (w,O
(w)
i |A;λ)

=
∑

W∈W

∑

A∈AW

∑

w∈W

P (W,A|Oi;λ,α)T (w,O
(w)
i |A;λ) (7.29)

Finally, combining the results in equations (7.28) and (7.29), the CML derivative for C-Aug

sentence models can be calculated,

∇αF
cml(λ,α) =

n
∑

i=1

[

∑

A∈AWi

∑

w∈Wi

P (A|Wi,Oi;λ,α)T (w,O
(w)
i |A;λ)

)

(7.30)

−
∑

W∈W

∑

A∈AW

∑

w∈W

P (W,A|Oi;λ,α)T (w,O
(w)
i |A;λ)

]

The CML gradient for C-Aug sentence models is almost identical to the gradient for the

simpler C-Aug models discussed in section 7.1. The main difference between the two is that

C-Aug sentence models consider the sufficient statistics for all possible model alignments

(weighted by the posterior probabilities of those alignments).
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Similarly to the sentence-based objective function calculations, the gradient is often

intractable in the form given in equation (7.30). However, using the numerator and denom-

inator lattices, Lnum and Lden, defined in the previous section, the efficiency of derivative

calculations can be significantly improved. In particular, by noting that an arc’s con-

tribution towards the gradient is given by the arc’s sufficient statistics weighted by the

augmented model posterior probability of the arc given the observation sequence, the

summations over hypothesised transcriptions and alignments can be simplified to a simple

summation over lattice arcs. Equation (7.30) can thus be rewritten as,

∇αF
cml(λ,α) =

n
∑

i=1

[

∑

w,a∈Lnum
i

P num(w, a|Oi;λ,α)T (w,O
(w)
i |a;λ)

−
∑

w,a∈Lden
i

P den(w, a|Oi;λ,α)T (w,O
(w)
i |a;λ)

]

(7.31)

where w, a ∈ Lden
i denotes a phone label/alignment pair selected from the lattice Lden

i .

The lattice-based numerator and denominator posterior probabilities, P num(w, a|Oi;λ,α)

and P den(w, a|Oi;λ,α), are calculated using the C-Aug model scores in the numerator and

denominator lattice arcs (section 7.4.2).6 These scores are normalised using the hypotheses

in the lattices Lnum
i and Lden

i .

Note that since, in many cases, the numerator lattice will contain only a single Viterbi-

aligned phone sequence (the correct transcription), the phone/alignment posterior prob-

abilities in the numerator term of equation (7.31) can be safely ignored since they are

all one. However, explicit calculation of these posteriors has the advantage of providing

a natural framework for handling multiple pronunciations and alignments of the correct

sentence: simply define a numerator lattice that includes these alternative pronunciations

and alignments, and use equation (7.31) to perform the calculations. A second advantage

of retaining the phone/alignment posteriors is that the algorithms for calculating the gra-

dient contributions from the numerator and denominator terms are identical and so can

be shared.

To summarise, this section has described an efficient lattice-based method for calculat-

ing the CML objective function, F cml(λ,α), and its gradient, ∇αF
cml(λ,α). Substituting

these into a standard gradient-based maximisation algorithm allows the augmented pa-

rameters, α, to be estimated according to the conditional maximum likelihood criterion.

In this work, scaled conjugate gradient (SCG) [83, 84] optimisation was used.

6Note that the numerator posterior probability of the phone alignments given the transcriptions,

P (A|W, O; λ, α) in equation (7.30), is written as a joint phone/alignment posterior, P num(w, a|O; λ, α)

in equation (7.31). This is possible because the numerator lattice used to calculate the arc posterior

probabilities contains only the correct sentence transcription. This means that P num(W |O; λ,α) and

P num(w|O; λ, α) are both one.
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7.4.4 Minimum phone error estimation

In the previous section conditional maximum likelihood estimation of C-Aug sentence

models was discussed. This is similar to the MMI criterion used for training generative

models and attempts to maximise the expected log-posterior probability of the correct

sentence transcriptions. However, the most common performance measure for speech

recognition is the word error rate (or, in the case of this work, the phone error rate).7

This leads to a mismatch between the training criterion and the scoring function used to

evaluate recognition performance. This mismatch may affect recognition accuracy.

To minimise the mismatch between training and scoring, training can be performed

within the minimum Bayes’ risk (MBR) framework. As discussed in section 2.1.3, given

an application-dependent posterior distribution and loss function, MBR training attempts

to minimise the expected loss of the training data. One common form of MBR training for

speech recognition is the MPE training criterion [96,97], which minimises an approximation

to the phone error rate. MPE training is usually expressed in terms of maximising an

approximation to the phone accuracy of the training data,

Fmpe(λ,α) =
∑

T ′

P (T ′|O;λ,α)A(T ′, T )

=
n
∑

i=1

∑

W∈W

P (W |Oi;λ,α)A(W,Wi) (7.32)

where A(W,Wi) is the phone accuracy of the hypothesised transcriptions, W , given the

correct transcriptions, Wi. Similarly to the conditional maximum likelihood criterion con-

sidered previously, the summation over all possible phone transcriptions is often simplified

using a lattice that contains only the most likely phone transcriptions. This lattice is

known as the hypothesis lattice.

In this work a gradient-based optimisation algorithm is used to maximise the C-Aug

model MPE criterion. This uses the objective function derivatives with respect to the

7Recognition performance is usually calculated using a dynamic programming algorithm that calculates

the number of deletions, substitutions and insertions in the hypothesised transcription, compared to the

correct transcription. Phone recognition accuracy is then calculated using the formula,

phone accuracy (%) =
# phones − # deletions − # substitutions − # insertions

# phones

where # phones is the number of phones in the reference transcription. Word accuracy is calculated

similarly, except that the number of word substitutions, insertions and deletions words are used.
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augmented parameters, α, and is calculated using the expression,

∇αF
mpe(λ,α)

=

n
∑

i=1

∑

W∈W

A(W,Wi)∇αP (W |Oi;λ,α)

=

n
∑

i=1

∑

W∈W

A(W,Wi)P (W |Oi;λ,α)∇α lnP (W |Oi;λ,α)

=

n
∑

i=1

[

∑

W∈W

∑

A∈AW

∑

w∈W

P (W |Oi;λ,α)A(W,Wi)P (A|W,Oi;λ,α)T (w,O
(w)
i |A;λ)

−

[

∑

W∈W

P (W |Oi;λ,α)A(W ,Wi)

]

×

[

∑

W ′∈W

∑

A∈AW ′

∑

w∈W ′

P (W ′,A|Oi;λ,α)T (w,O
(w)
i |A;λ)

]

]

=

n
∑

i=1

∑

W∈W

∑

A∈AW

∑

w∈W

[

A(W,Wi) −Aavg(Wi)
]

× (7.33)

P (W,A|Oi;λ,α)T (w,O
(w)
i |A;λ)

)

where Aavg(Wi) is the weighted-average phone accuracy of all (hypothesised) sentences.

By approximating the sentence phone accuracy as the sum of the accuracies of the individ-

ual phones, both the objective function in equation (7.32) and the derivative in equation

(7.33) can be expressed using efficient lattice-based algorithms [96, 97]. These are identi-

cal to the MPE estimation algorithms for HMMs in [96]. The difference between the two

approaches lies in the hypothesis lattice arc scores: MPE estimation of HMMs uses arcs

scored with HMM phone likelihoods, whereas C-Aug model estimation uses the unnor-

malised C-Aug model scores defined in section 7.4.2.

Before considering C-Aug sentence model recognition, it is worth mentioning the ap-

proximation used to calculate the sentence phone accuracies during MPE training. The

sentence accuracy, A(W,Wi) is typically approximated as a sum of the accuracies of the

individual phones within that sentence. These ‘phone accuracies’ are usually calculated

using the equation,

A(w) = max
w′∈Wi

{

−1 + 2e(w,w′) if w′ = w

−1 + e(w,w′) otherwise
(7.34)

where e(w,w′) calculates the proportion of the reference phone duration, w ′, that is over-

lapped by the hypothesised phone, w. With perfect alignment between the reference and

hypothesised transcriptions, A(w) outputs values of 1, 0 and -1 for a correct phone, a sub-

stitution/deletion, and an insertion. The advantage of calculating the individual phone

accuracies instead of the sentence accuracy, A(W,Wi), is that A(w) is a local function
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of only the current hypothesised phone. This allows calculations to be performed on a

phone/arc basis instead of a sentence-basis, allowing lattice-based calculations to be used.

7.4.5 Recognition

Recognition with C-Aug sentence models is performed similarly to C-Aug model inference

and proceeds according to Bayes’ decision rule,

Ŵ = arg max
W∈W

P (W |O;λ,α) (7.35)

where W is the set of all possible sentence transcriptions. To reduce the computational

cost of C-Aug sentence model recognition, the posteriors in equation (7.35) need not be

normalised since the same normalisation term is used by all posteriors. The C-Aug model

decision function can therefore be written as,

Ŵ = arg max
W∈W

(

1

|AW |

∑

A∈AW

∏

w∈W

p̂(O(w)|w,A;λ) exp
(

αTT (w,O(w)|A;λ)
)

)

(7.36)

In practice, it is computationally expensive to evaluate the C-Aug sentence model posteri-

ors across all possible phone transcriptions and alignments.8 Instead a hypothesis lattice,

L, that represents the most likely transcriptions and alignments for the observation se-

quence, O, is often used. For HMM base models, this lattice is typically generated using

the Viterbi decoder of a standard speech recognition system.

Using the lattice-weight approach discussed in section 7.4.2, calculation of the most

likely sentence transcription in equation (7.36) can be simplified further. Let Lrecog

be the lattice obtained by assigning all arcs in the hypothesis lattice, L, the scores,

p̂(O(w)|w,A;λ) exp
(

αTT (w,O(w)|A;λ)
)

, where w is the arc phone label and A reflects

the arc start and end times. This lattice provides a compact representation of the posterior

probabilities of all possible sentences and alignments in the original lattice, L. Finally,

given the recognition lattice, Lrecog, the most likely phone transcription can be calculated

using a Viterbi approximation to the lattice weight. If multiple hypotheses are required,

an N -best list or lattice can be generated using multi-token Viterbi decoding [138].

7.5 Language modelling

Standard speech recognitions systems are typically constructed using a combination of

generative acoustic models (often HMMs) and statistical language models (usually n-

grams), which combine to form the sentence posterior probabilities used during recognition

8Note that the dependence of the C-Aug sufficient statistics on whole phones (instead of frames) means

that frame-by-frame recognition and pruning (such as that used during HMM and HCRF recognition)

cannot be used.
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[53,103,137]. In many systems, the acoustic models and language models complement each

other by modelling different aspects of the speech process. Acoustic models, trained using

a relatively small amount of transcribed audio data, capture the short-term dependencies

between observations within short speech segments (often corresponding to phones). In

contrast, language models are typically trained using large corpora of written text and

model the long-term relationships between words in phrases and sentences.

In previous sections, C-Aug sentence models were defined as a new form of discrimina-

tive acoustic model for speech recognition. Unfortunately, since they directly model the

posterior probabilities of the sentence transcriptions, they cannot be combined with a lan-

guage model in the same way as generative acoustic models. Instead, in this work a system

combination approach is used. This proceeds as follows. First, the C-Aug acoustic model

is used to generate a lattice that contains a number of hypothesised transcriptions. Then,

for each sentence in this lattice, a language model score is calculated. This is combined

with the C-Aug model acoustic score using a simple linear combination,9

sentence score(W ) = lnP (W |O;λ,α) + β lnP (W ) (7.37)

where W is a hypothesised transcription, lnP (W |O;λ,α) is the C-Aug acoustic model

score, and lnP (W ) is the language model score. The language model scale, β, is normally

determined empirically using a development set. The hypothesis with the largest sentence

score is used as the final sentence transcription. Similarly to model estimation and recog-

nition, calculation of language model scores and sentence scores can be performed entirely

within a lattice framework.

7.6 Comparison with CRFs and HCRFs

With many similarities between the C-Aug models discussed in this chapter and the

CRFs [63] and HCRFs [42, 99] discussed in chapter 2, it is useful to examine the dif-

ferences between the three approaches. To aid this comparison, the CRF, HCRF and

C-Aug model posterior probabilities, Pcrf(y|O;α), Phcrf(y|O;α) and Pcaug(y|O;λ,α′),

9Note that the linear combination of C-Aug model and language model scores in equation (7.37) can

also be interpreted as adding the language model score as an extra element in the C-Aug sentence model

sufficient statistics. The augmented parameter associated with this element is equal to β. During parameter

estimation, this may either be fixed (as described here) or estimated similarly to the other augmented

parameters (c.f. the inclusion of the confusion network posterior ratio in section 6.4).
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are restated below,

Pcrf(y|O;α) =
1

Z(O;α)
exp

(

αTT (yt, yt−1,O)
)

(7.38)

Phcrf(y|O;α) =
1

Z(O;α)

∑

θ∈Θ

exp
(

αTT (y,θ,O)
)

(7.39)

Pcaug(y|O;λ,α′) =
1

Z(O;λ,α′)
exp

(

α′TT ′(y,O;λ)
)

(7.40)

where the C-Aug model natural parameters and sufficient statistics are defined in terms

of the base model likelihoods, L(y,O;λ), and the augmented model sufficient statistics,

T (y,O;λ), using the expressions,

α′ =

[

1

α

]

T ′(y,O;λ) =

[

L(y,O;λ)

T (y,O;λ)

]

(7.41)

Examining equations (7.38)–(7.40), is is clear that CRFs, HCRFs and C-Aug models

share many of the same features. In particular, comparing the C-Aug model in equation

(7.40) with the CRF in equation (7.38), it is clear that C-Aug models are simply a special

form of conditional random field with a particular form of sufficient statistics.10 C-Aug

models can therefore be described as a systematic method for defining CRF feature-vectors.

More generally, however, C-Aug models are a systematic approach for defining sufficient

statistics for discriminative exponential models. The choice of statistics in C-Aug models

enables them to model a wide range of temporal and spatial dependencies. This modelling

power arises from the use of latent-variable generative models to calculate complex statis-

tics that capture a wide range of temporal and spatial dependencies. By confining the use

of latent-variables to the calculation of the sufficient statistics, C-Aug models retain the

convex structure of exponential models, allowing conditional maximum likelihood (CML)

estimation of the augmented parameters to converge to a global maximum. Note that this

is only true when the base model parameters of the C-Aug model are fixed (when opti-

misation of the base model parameters is performed, the C-Aug model sufficient statistics

vary, resulting in a non-convex objective function).

The use of latent-variables in discriminative models is not restricted to C-Aug mod-

els. Consider, for example, hidden conditional random fields (HCRFs). As illustrated in

equation (7.39), these explicitly introduce latent-variables into the posterior probability

calculations using a similar approach to that used for generative models (section 2.1.2).

The advantage of this approach is that, by introducing conditional-independence assump-

tions, HCRFs can model a wide range of a complex distributions using only a limited

10CRFs typically predict class labels for individual observations, ot ∈ O. When C-Aug model sufficient

statistics are used, however, the sufficient statistics collapse the whole observation sequence into a single

feature-vector. The CRF views this feature-vector as a single ‘compound-observation’ and predicts a single

class label.
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number of sufficient statistics. Unfortunately, introducing latent-variables directly in the

posterior probability calculations breaks the convexity of original exponential model. Con-

ditional maximum likelihood estimation of HCRF parameters may therefore only converge

to a local maximum of the objective function. This causes HCRF training to be sensitive

both to the initialisation of parameters and to the update algorithms used during training

(c.f. L-BFGS versus SGD versus R-PROP HCRF optimisation in [42, 74]). In contrast,

by restricting the use of latent-variables to the calculation of sufficient statistics, C-Aug

models retain the convex objective function of standard exponential models and so avoid

these difficulties.

7.7 Summary

In this chapter, conditional augmented (C-Aug) models were proposed as a powerful form

of discriminative statistical model. C-Aug models use the same sufficient statistics as

standard generative augmented models but directly model class posteriors instead of ut-

terance likelihoods. This simplifies the model normalisation calculations by replacing the

integration over all observation sequences with a simple summation over class labels. Class

label posterior probabilities can therefore be calculated efficiently. A method of C-Aug

model parameter estimation, based upon the conditional maximum likelihood criterion,

was presented. Finally, an extension was proposed that allows sequences of C-Aug models

(representing, for example, phones) to be combined to form complex models of sentences.

A number of lattice-based calculations for these extended models were derived. C-Aug

sentence models can be applied to a number of different tasks, including continuous speech

recognition.



8
Experimental Results

In this chapter, preliminary speech recognition experiments using augmented models

(chapter 4) and conditional augmented models (chapter 7) are presented. To illustrate the

properties of these models, data from two different databases was used. The first set of ex-

periments uses the acoustic code-breaking approach of [126] to extract a set of confusable

words from a 400 hour subset of the LDC Fisher corpus [31]. The resulting word pairs are

used to train and evaluate augmented models, both within a cross-validation framework

and as a method of rescoring transcriptions from a large vocabulary continuous speech

recognition (LVCSR) task. The second database is the TIMIT phone database [38, 44].

This is used for both classification and recognition experiments.

8.1 Cross-validation experiments

The database used for initial LVCSR experiments is the fsh2004sub subset of the LDC

Fisher data [31]. This consists of 400 hours of English-language conversational telephone

speech (CTS), balanced for both gender and topics of conversation. The acoustic data was

parameterised using 13 PLP features, along with their first, second and third derivatives.

The resulting 52-dimension acoustic feature-spaces were then projected down to 39 dimen-

sions using heteroscedastic linear discriminant analysis (HLDA) [34,62]. Vocal-tract length

normalisation (VTLN) [70,124] and cepstral mean and variance normalisations (CMN and

CVN) [43] were also applied. Next, using this data, a baseline LVCSR system was con-

structed. This uses ML-estimated, gender-independent, cross-word triphone HMMs as

acoustic models. After decision-tree state-tying the model set contains 6,000 tied states,

119
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each with 28 mixture-components. Given the ML-estimated HMMs, word lattices were

generated for each training utterance using Viterbi decoding. A weakened language model

was used to increase the number of confusions present in the lattices and prevent lattices

from being dominated by a single hypothesis (see section 2.1.3 for more details). In this

work, a heavily pruned bigram language model was used. Further details of the acoustic

models, language models and lattice generation are given in [31, 72]. Confusion networks

were generated using a trigram language model.

Next, using the acoustic code-breaking method described in the section 6.4, pairs of

confusable words were identified and extracted from the data set. For each pair, the num-

ber of examples of each word were equalised by sampling to avoid bias (random selection

yields an expected error rate of 50%). Binary classifiers were then trained for each pair

using the acoustic data from examples of that confusable pair. Unless otherwise noted,

classifiers used in the experiments are based upon ML-estimated HMMs with three emit-

ting states and GMM output distributions. When MMI base models were trained, uniform

class prior distributions were used (since there are an identical number of training exam-

ples in each class). The GMM output distributions typically have between one and sixteen

Gaussian distributed mixture-components, each with a diagonal covariance matrix. Fi-

nally, it is worth noting that the Fisher data used in these experiments was transcribed

using the ‘quick transcription’ process discussed in [16]. Transcriptions of training utter-

ances are therefore good but not necessarily perfect. Although this affects many of the

LVCSR experiments in this chapter, the overall effect on performance is believed to be

minor.

8.1.1 First-order augmented models

Initial experiments with first-order augmented models were performed within an eight-

fold cross-validation framework. Many score-spaces and word-pairs were evaluated. A

summary of the score-spaces used is given in table 8.1. Results for a small selection of

word pairs are shown in table 8.2.

Table 8.1: Summary of HMM score-spaces

Score-space Elements Description

φLLR(O; λ) LLR Log-likelihood ratio score-space

φF(O; λ) ∇ Fisher score-space

φLL(O; λ) LLR+∇ Augmented model score-space

φCN(O; λ) LLR+∇+CN Augmented model score-space + confusion network

where: LLR = log-likelihood ratio of the base models

∇ = derivatives with respect to the cjm, µjm and Σjm

CN = confusion network posterior ratio

For each example, multiple baselines are presented. The first is the error rate ob-
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Table 8.2: Cross validation results for HMM base models (% error)

Classifier Training Score-space # Base model comp.

criterion 1 2 4

AND/IN (12,004 examples)

CN n/a n/a —22.7—

HMM ML n/a 42.0 41.9 41.7

HMM MMI n/a 42.0 41.2 41.7

SVM MM φLLR(O; λ) 41.5 41.8 41.5

SVM MM φF(O; λ) 39.6 39.8 39.5

SVM MM φLL(O; λ) 40.0 39.7 39.7

AUG MM φLL(O; λ) 40.0 39.9 39.5

AUG MM φCN(O; λ) 22.7 23.8 25.5

CAN/CAN’T (7,522 examples)

CN n/a n/a —21.5—

HMM ML n/a 13.3 11.3 11.0

HMM MMI n/a 13.2 11.2 10.4

SVM MM φLLR(O; λ) 13.2 11.4 10.8

SVM MM φF(O; λ) 10.7 9.7 9.2

SVM MM φLL(O; λ) 10.7 9.5 9.2

AUG MM φLL(O; λ) 11.1 9.9 9.1

AUG MM φCN(O; λ) 9.3 8.7 8.4

KNOW/NO (8,950 examples)

CN n/a n/a —16.9—

HMM ML n/a 31.0 35.3 27.7

HMM MMI n/a 27.5 29.3 27.1

SVM MM φLLR(O; λ) 31.5 32.9 27.3

SVM MM φF(O; λ) 24.9 23.3 22.2

SVM MM φLL(O; λ) 25.1 23.0 22.0

AUG MM φLL(O; λ) 25.1 23.4 22.4

AUG MM φCN(O; λ) 14.0 14.1 15.8

tained from standard confusion network (CN) decoding. This is based upon both acoustic

information and word context (from the trigram language model) and measures the ac-

curacy of the LVCSR system from which the word pairs were extracted. For the word

pair CAN/CAN’T, 21.5% of the confusions were misclassified by the LVCSR system. The

second and third baselines are pairwise ML and MMI HMMs, trained using the acoustic

information from each pair. For CAN/CAN’T, these achieved an error rate significantly

below that of CN decoding (10.4% for MMI versus 21.5% for CN decoding), with MMI

HMMs generally outperforming ML models. Although, in general, pairwise classifiers out-

performed CN decoding, this was not always the case since the pairwise HMM classifiers

lacked the word context information of the confusion network language model. When

words are acoustically similar, this information can be very important. Consider, for

example, the homophone word-pair KNOW/NO. Standard phone-based speech recogni-

tion systems cannot separate the two words using acoustic information alone. Instead,
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a language model is used. In contrast, when ML and MMI estimated word HMMs were

trained using only the acoustic data, error rates of 27.7% for ML and 27.1% for MMI were

achieved. This ability to separate ‘identical’ words is believed to arise from word classi-

fiers basing decisions on the differences in the pronunciation of the start and end of words

(arising from longer-range word context). When explicit word context information (in the

form of a language model) is available, classification performance improves significantly.

For KNOW/NO, confusion network decoding yields an error rate of just 16.9% (compared

to 27.1% for MMI HMMs). For acoustically similar words, or other situations when word

context is important, CN decoding was often found to outperform pairwise HMMs.

Next, SVMs were trained using score-spaces constructed from the pairwise ML HMMs.

In all cases, the SVM regularisation parameter was determined automatically from the

training data using the algorithm in [55]. The simplest classifier, with only two param-

eters, was the one-dimensional φLLR(O;λ) score-space. As expected, this yielded similar

performance to the ML baseline in all cases. The second score-space was the Fisher

score-space, φF(O;λ), defined using the gradient-space of a single HMM (trained using

examples from both classes). Derivatives with respect to the HMM mixture-component

priors, means and variances were used, with gains over the HMM baselines observed in

all cases. The third and final SVM score-space was the generative score-space, φLL(O;λ).

Table 8.3: Varying the number of mixture-components for CAN/CAN’T

Score-space & classifier

Mixture- φF(O; λ) φLL(O; λ) φLL(O; λ)

components SVM SVM AUG

1 10.7 10.7 11.1

2 9.7 9.5 9.9

4 9.2 9.2 9.1

8 9.1 8.6 8.8

16 9.1 8.7 8.7

As shown in tables 8.2 and 8.3, when there are few mixture-components the generative

score-space yielded similar error rates to the Fisher score-space. However, as the num-

ber of mixture-components was increased, wrap-around became important (section 3.2.2),

and generative score-spaces started to outperform equivalent Fisher score-spaces. This is

clearly illustrated by the results in table 8.3. Here, the inclusion of the log-likelihood-ratio

and the additional derivatives in the generative score-space reduces wrap-around for large

numbers of mixture-components, allowing generative score-spaces to outperform Fisher

score-spaces. For example, for eight and sixteen mixture-components, generative score-

spaces yielded error rates of 8.6% and 8.7%, compared to error rates of 9.1% for the Fisher

score-space.

Next, augmented models were estimated using augmented model score-spaces and
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variable-margin SVM training (chapter 6). With identical score-spaces to the SVM-trained

generative score-spaces discussed previously, augmented models yielded similar, though

slightly worse, results. The slight difference in performance arises from the different train-

ing criteria: augmented models are estimated using variable-margin SVM training whereas

generative kernels utilise the standard SVM criterion. As shown in tables 8.2 and 8.3,

variable-margin training, which ensures that the weight associated with the log-likelihood

ratio is fixed, results in a small performance penalty in many cases. This is due to the

reduced number of parameters trained and the poor discrimination and high confusability

of the log-likelihood ratio for many pairs. Whereas standard SVM training can reduce the

effect of the log-likelihood ratio feature by assigning it a small weight, augmented models,

with their fixed weight of 1.0, are forced to compensate in other ways. This compromise

leads to a reduction in performance.

Further experiments were performed to evaluate the benefits of combining augmented

models with the original confusion network scores, as discussed in section 6.4. Since the

training and test sets are perfectly matched in this cross-validation framework, maximum

margin estimation of the system combination weight, β, was used. To illustrate the ben-

efits of system combination, consider the confusable pair KNOW/NO in table 8.2. CN

decoding resulted in an error rate of 16.9%; augmented model classification yielded 22.4%

error. In this case, CN decoding outperforms pairwise augmented models since it utilises

a combination of acoustic and language model information, whereas augmented models

use only the acoustic data. When words are acoustically similar, the language model el-

ement of the confusion network is important. To realise the complementary benefits of

both approaches, CN decoding and augmented model classification can be combined using

the system combination approach discussed in section 6.4. For pair KNOW/NO, above,

system combination yielded an error rate of 15.8%—an improvement of 1.1% over CN

decoding and 6.6% better than the standard augmented model performance.

8.1.2 Higher-order augmented models

In addition to first-order augmented models, second- and higher-order models can be

defined. These utilise large score-spaces that contain the log-likelihood ratio and the first-

and second-order derivatives of the base models with respect to the means, variances and

mixture-component weights. Higher-order derivatives may also be included.

Preliminary experiments were performed using augmented models with HMM base

models and second-order score-spaces. In general these showed no reduction in error rate

when compared to similar first-order models. In fact, in many cases, the score-space ele-

ments associated with second-order derivatives had little or no discriminative power, and

instead increased the confusability of the training and test data. This caused a corre-

sponding increase in classification error over both the training and test sets. For example,
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the generalisation error for CAN/CAN’T increased from 9.1% to 21.8% and training er-

ror increased from 6.1% to 6.6% when the first-order score-space (1,897 dimensional) was

augmented with second derivatives of the base model. The resulting second-order score-

space was 14,221 dimensional. Smaller second-order score-spaces performed better, but

still underperformed similarly sized first-order score-spaces.

At this stage, it is worth considering why augmented model sufficient statistics defined

using second-order derivatives of an HMM may not be discriminatory for speech data.

The problem is that the high dimensionality of the observation vectors used in speech

recognition tasks (typically 39-dimensional) often causes the Gaussian distributions that

model them to peak sharply near their means and then decay rapidly with distance. This

results in highly polarised state/mixture-component posterior probabilities that are either

approximately one or approximately zero. Derivatives of these posteriors are thus zero

throughout much of the observation-space.1 Since second-order derivatives of HMMs are a

function of these posterior derivatives (section 4.3.2 and appendix A), they are also almost

zero. With all second derivatives being approximately zero, very little discriminatory

information is extracted.

For tasks that utilise low-dimensional or discrete observations—such as the simple

example described in section 4.3—posterior probabilities (and hence their derivatives)

take a much wider spectrum of values. In these circumstances, second-order augmented

models may offer benefits when compared to standard first-order models.

8.1.3 Varying the score-space dimensionality

Although the augmented models discussed thus far have been defined using all possible

mixture-component prior, mean and variance derivatives of the base model HMM, this

is not a requirement. Instead, a subset of derivatives may be selected according to some

predefined criterion. In this section, derivatives are selected according to their Fisher

ratio.2 Figure 8.1 illustrates the correlation between increasing numbers of augmented

model sufficient statistics and decreasing classification error.

In addition to this correlation between the number of sufficient statistics and error

rates, there is also a link between the base model complexity and the augmented model

performance. For example, when augmented models are defined using 160 sufficient

statistics, a four-mixture-component base model gives an error rate of 10.0%, whereas

two-component and single-component base models yield poorer error rates of 10.6% and

1Since posteriors are effectively either one or zero, an alternative argument follows from the definition

of the second-order ‘posterior’, D(θjm
t , θkn

τ |O; λ) (4.22). If either of the single posteriors is zero, then the

joint posterior must also be zero, making the difference zero. However if both posteriors are one, the joint

posterior will also be one, resulting in a difference of zero. D(θjm
t , θkn

τ |O; λ) is thus everywhere zero.
2The Fisher ratio is a measure of the signal to noise ratio, and is calculated using the ratio tr(W −1B),

where W and B are diagonal approximations to the within-class and between-class covariances.
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Figure 8.1: Augmented model performance versus number of sufficient statistics for the pair

CAN/CAN’T

11.2% respectively. The link between base model complexity and performance arises since

complex base models not only provide better statistics that are more closely tuned to the

target data distribution, but also offer a wider selection of statistics to choose from. For

example, for the four-component base model, 160 statistics are selected from a choice of

1,896 (8% of the total), whereas, the one-component model uses 160 statistics selected

from just 234 (68% of the total). Non-discriminatory features can therefore be more easily

avoided with complex base models.

8.1.4 Kernelised augmented models

The results in section 8.1.3 show that the performance of augmented models is closely

related to the complexity of the base models and the number of augmented model sufficient

statistics: the more complex the base models, and the more sufficient statistics, the better

the augmented model performance. Unfortunately, calculation of complex base models

and statistics can be computationally expensive. Kernelised augmented models (section

4.4) offer a solution. These make use of the standard inhomogeneous polynomial and RBF

kernel functions (section 2.2.4) to significantly increase the effective number of sufficient

statistics without incurring a proportional cost. This allows models to be defined using a

small number of explicitly calculated statistics that are then kernelised to generate a much

large set of implicit statistics. Augmented models defined using these implicit statistics

are highly flexible and can be calculated without the computational cost associated with

explicitly calculated sufficient statistics. The benefits (and disadvantages) of kernelising

the sufficient statistics are illustrated in table 8.4.

In table 8.4, a four mixture-component HMM is augmented and kernelised to create
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Table 8.4: Kernelised augmented models for the pair CAN/CAN’T (% test/training error)

Score-space Linear Polynomial RBF

elements p = 2 p = 3 σ = 1

40 10.3/9.6 9.9/7.8 10.4/7.2 11.1/5.1

160 10.0/8.5 9.5/5.9 10.4/6.2 11.0/5.1

640 9.2/7.1 9.4/4.6 10.4/5.8 11.0/5.1

1,896 (no selection) 9.1/6.1 10.1/4.8 10.8/6.0 11.0/5.1

a kernelised augmented model. Four different kernel functions are used: a linear kernel

(standard augmented model), second- and third-order inhomogeneous polynomials, and

a radial basis function (RBF). For small score-spaces with either 40 or 160 derivatives,

applying the relatively simple second-order inhomogeneous polynomial kernel function

yielded reductions in both the training and test errors. Application of more complex

kernels—such as third-order polynomial or RBF kernels—was found to decrease training

error whilst allowing test error to increase, a pattern suggestive of over-training. As

table 8.4 shows, this over-training becomes increasingly severe as the number of explicitly

calculated score-space elements increases, with the 1,896 statistic kernelised augmented

model performing significantly worse than the standard model. This trend is unsurprising

since the combination of large score-spaces and complex kernels results in extremely flexible

statistical models that have many free parameters. When limited quantities of training

data are available, such as in the experiments above, parameter estimation (even MM) is

likely to lead to an over-fitting of the training data, impairing generalisation performance.

The tendency of kernelised augmented models to over-train limits their use to applica-

tions where, for some reason, it is not possible to explicitly calculate much more than 160

sufficient statistics. This may be due to a restrictions such as low power CPUs or limited

storage, or due to time constraints, such as those encountered whilst performing real-time

classification.

8.1.5 MMI and MM base models

All of the experiments in sections 8.1.1–8.1.4 were based upon augmented models with ML

estimated base models. This is not necessary and, instead, MMI or MM (section 6.2.2)

base models can be used. Note that the results in this section are preliminary, and were

performed using augmented GMMs instead of the augmented HMMs used elsewhere in

this thesis. Augmented models were defined using derivatives with respect to the mixture-

component means and variances.

Using the confusion-pair cross-validation framework discussed above, augmented GMMs

with either ML or MMI estimated base models were evaluated using a number of confusable

word pairs. For the word pair KNOW/NO, augmented GMMs with MMI-estimated base

models yielded an error rate of 26.3%, compared to 26.4% for ML-estimated base mod-



CHAPTER 8. EXPERIMENTAL RESULTS 127

els, an improvement of just 0.1%. A similar experiment for the word pair CAN/CAN’T

yielded no gains. When other word pairs were tested, similar results were obtained. Over-

all, augmented models with MMI-estimated base models were found to yield no significant

performance benefits over augmented models with standard ML-estimated base models.

A second alternative to ML-estimated base models are MM-estimated base models,

estimated using the gradient-based approach described in section 6.2.2. Augmented mod-

els with MM base models yielded mixed results. Maximum-margin estimation of single-

component GMM (Gaussian) base models was found to yield the best results, with a 0.6%

gain achieved for an MM-estimated Gaussian augmented with eight derivatives (selected

using Fisher ratios). Unfortunately, such results were found to be anomalous, with no

gains recorded for many other augmented Gaussians with MM base models. Two-, four-

and eight-mixture-component augmented GMMs performed no better, with gradient-based

MM model estimation immediately converging to a local maximum on the highly complex

error surface (see section 6.2.2). Approximate MM estimation of the base model (extend-

ing the first-order augmented model to a second-order augmented model) was also found

to yield no improvements in performance. This result is of no surprise given the previous

results in section 8.1.2 (second-order augmented models).

8.2 LVCSR rescoring

In the previous section, experiments were conducted using a cross-validation framework

and the fsh2004sub data set. Maximum-margin augmented models were shown to per-

form well at disambiguating confusable word pairs extracted from confusion networks. In

this section, a second set of experiments are discussed that show that small benefits can

potentially be obtained within a standard evaluation-based framework.

Similarly to the cross-validation experiments in section 8.1, pairwise augmented mod-

els were defined using 3-state, 4-mixture-component HMM base models and first-order

derivatives with respect to the means, variances and mixture-component priors. These

models were then estimated using examples extracted from the fsh2004sub data. Ini-

tially, twenty sets of augmented models were trained to disambiguate the twenty most

common LVCSR confusions.3 The scores from these models were combined with the con-

fusion network scores using the methods in section 6.4. Next, the eval03 development

set was used to determine the order in which the models were used to rescore the baseline

LVCSR transcription. The confusion network weight β was optimised empirically using

the development set. Finally, performance was evaluated using the eval02 and eval04

3Common confusions were located by analysing the LVCSR performance on the eval03 development

set. These confusions were then cross-referenced with the number of occurrences of the confusion in the

training set to ensure that there were sufficient training examples for robust augmented model parameter

estimation.
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test sets. For easy reference, baseline results for the three data sets are given in table 8.5.

Table 8.5: Baseline LVCSR results for the eval02, eval03 and eval04 data sets

Decoding eval02 eval03 eval04

Viterbi 32.7 30.8 29.9

Confusion network 32.1 30.1 29.2

8.2.1 Development set: eval03

In these experiments, the eval03 corpus was used as a development set. This contains

six hours of English CTS data, split into 36 conversations of Fisher data (fsh) and 36

conversations of Switchboard II phase 5 data (s25). Using the LVCSR system described

in section 8.1, along with a trigram language model, baseline Viterbi and CN decoding

transcriptions were generated. These were then scored against the correct transcriptions

and yielded word error rates of 30.8% and 30.1% respectively.

Starting with the CN decoding transcription, augmented models were used to con-

struct a rescored transcription by applying each new augmented model to the transcription

obtained after rescoring with all previous augmented models. By retaining and scoring in-

termediate transcriptions, performances of individual augmented models were calculated.

This allowed the classifiers to be sorted, best first, such that optimum performance was

achieved for any number of augmented models. The ten best augmented models were then

selected (details of the word pairs used are given in appendix D). To maximise system

performance, pairwise augmented models were combined with the confusion network pos-

terior ratios using the linear combination method discussed in section 6.4. The confusion

network weight, β, was varied over four orders of magnitude. The resulting transcriptions

were then scored, and percentage improvements plotted (figure 8.2).
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Figure 8.2: Effects of β on performance of the eval03 development set
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When β is small, the contribution from the confusion network posteriors is negligible,

resulting in a transcription that is based solely upon the augmented model scores. The

resulting performance is poor since language model information (an important aspect of

this task) is ignored. At the opposite end of the spectrum, as β becomes large, augmented

model scores are small in relation to the scaled confusion network scores. Performance

therefore tends towards the accuracy of the baseline confusion networks. For β between 0.3

and 5.0, both augmented model scores and confusion network scores contributed towards

the final classification result, yielding improvements over the baseline. Gains of up to 4.0%

over standard confusion network decoding were observed. Best performance was achieved

when β = 1.0.

Table 8.6: Augmented model rescoring of eval03 development set; β=1.0

% of rescored pairs corrected

fsh s25 Overall

Corrections 5.1% 3.1% 4.0%

Scoring 4.7% 3.1% 3.9%

# Pairs rescored 591 674 1,265

When the baseline transcription was rescored using ten augmented models, relative

gains of approximately 4% were observed. A breakdown of the results is shown in table

8.6. Although some pairwise classifiers performed well, such as CAN/CAN’T, the overall

improvements in performance are small since improvements are averaged over ten different

classifiers, each with very different performance. For example, the augmented models for

disambiguating the pair CAN/CAN’T corrected 19 confusions out of 156 (12.2%) whereas

models for the pair YEAH/YES corrected only 2 out of 213 (0.9%). When the corrections

from these and eight other classifiers were combined, improvements in the accuracy of

approximately 4.0% were observed.

It is interesting to note that the data collection protocol (Fisher versus Switchboard) [16]

has a small effect on the number of confusions corrected. There are two possible reasons

for this. The first is that augmented models were trained using only Fisher data. This

means that the Fisher component of the development set has less mismatch between the

training and test conditions than the Switchboard component, causing models to perform

better. The second reason is the disparate baseline performances on the different types

of data (CN decoding yields 33.7% WER for Switchboard and 26.2% for Fisher). The

higher Switchboard word error rate suggests that Switchboard confusion network poste-

rior scores are less reliable than Fisher data scores. Since the augmented model/confusion

network combination weight β is estimated from both types of data, it is likely that the

CN posterior contribution is over-estimated when Switchboard data is used, resulting in a

degradation of performance. This suggests that β should varied for different data sources

and collection protocols. Experiments to verify this have not been performed.
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8.2.2 Evaluation sets: eval02 and eval04

In the previous section, the eval03 development set was used to select ten augmented

models for disambiguating confusable word pairs in Fisher and Switchboard data. In

this section, pairwise augmented models are evaluated using two evaluation sets: eval02

and eval04. The eval02 corpus contains five hours of English CTS Switchboard data

in the form of 60 conversations (split equally between Switchboard I, Switchboard II,

and Switchboard Cellular data-types). The eval04 corpus contains 3 hours of English

CTS Fisher data in the form of 36 conversations. Baseline CN decoding on the ML-

estimated LVCSR system yields performances on eval02 and eval04 of 32.1% and 29.2%

respectively. The resulting CN transcriptions were used as baseline transcriptions for

augmented model rescoring experiments.
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Figure 8.3: Rescoring confusions in the eval02 and eval04 evaluation sets

In figure 8.3, results from rescoring the eval02 and eval04 evaluation sets are pre-

sented. Absolute improvement over the baseline system is shown plotted against the

number of confusions rescored. From the graph, it is clear that the performance improve-

ments for both evaluation sets is due primarily to the corrections made by the first two

word pairs, CAN/CAN’T and YEAH/YOU. Applying further augmented models yielded

no significant change in accuracy.

A second feature of these experiments is that the two evaluation sets contain different

types of data: eval02 contains Switchboard data whereas eval04 contains Fisher data.

Since pairwise augmented models are trained using only Fisher data, performance gains on

the eval04 test set were expected to be larger than on the eval02 data since the training

and testing conditions were more closely matched. This difference is clearly visible in

figure 8.3, with eval04 showing performance gains 3–4 times larger than those of eval02.
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At this stage, it is worth commenting on the small magnitude of the accuracy improve-

ments for both evaluation sets. As illustrated in figure 8.3, rescoring eval02 and eval04

using up to ten augmented models yields absolute accuracy improvements of 0.02% and

0.07% respectively. When compared with the baseline accuracies of 32.1% and 29.2%,

these improvements were found to statistically insignificant [40].4 There are two main

reasons why gains are so small. The first is that for any given confusion pair, the number

of corrections that can be made is dependent upon the difference between the word error

rates of the baseline CN decoding and the pairwise augmented models. Even for a good

pair, such as CAN/CAN’T, this limits the potential gains. For example, for a representa-

tive 100 confusions, CN decoding of CAN/CAN’T will get 22 confusions incorrect whereas

pairwise augmented models will get 9 incorrect (table 8.2). This means that only 13 pairs

(13%) can possibly be corrected. Augmented models for many other word pairs will yield

smaller improvements. This means that, on average, less than 10% of all rescored confu-

sions will result in a correction (and an associated improvement in accuracy). The second

reason for the small improvements is that the number of words being rescored is small in

comparison to the total number of words in the evaluation set. For example, when ten

augmented models are used, only 1,433 words of eval02 are rescored out of a total of

65,236 (2.2%). Assuming an optimistic 10% improvement in accuracy for 2.2% of the data

would yield a best-case performance improvement of only ∼ 0.2%—small in comparison

to the baseline error.
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Figure 8.4: Proportion of evaluation sets rescored as number of augmented models increases

From figure 8.4, it is clear that as more augmented models are trained to disambiguate

4Statistical significance of experimental results was evaluated using the NIST scoring toolkit sctk-1.2.

Tests were performed using the matched-pair sentence-segment word error rate (MAPSSWE) test and are

quoted at a confidence level of 95%.
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confusable pairs, the proportion of the evaluation sets being rescored increases. Unfor-

tunately, the graph shows that a large number (c.1,500) of pairwise augmented models

are required in order to rescore even 25% of the evaluation data. The computational cost

of training this many models would outweigh the potential gains that could be achieved.

Furthermore, when more accurate baselines are used (such as MMI-estimated systems),

the potential rescoring gains may drop significantly since there are fewer errors to cor-

rect. The effect of better baselines on rescoring performance is discussed in more detail in

section 8.3.1.

8.2.3 Generative versus conditional augmented models

In the experiments discussed thus far, maximum-margin estimated generative augmented

models were used to disambiguate pairs of confusable words. In this section, classification

performance of conditional augmented (C-Aug) models is compared against the perfor-

mance of standard augmented models. For this comparison the pair CAN/CAN’T was

used. Alongside baseline ML and MMI HMMs, augmented and conditional augmented

models were trained using score-spaces containing either 640 or 1,896 derivatives with

respect to the base model mixture-component priors, means and variances. All classifiers

were based upon three-state, four-mixture-component HMMs. Results are shown in table

8.7.

Table 8.7: Comparison of MM augmented models and CML C-Aug models for the confusion

pair CAN/CAN’T

Classifier
Training criterion Score-space Training Test

λ α components error (%) error (%)

HMM ML – – 10.4 11.0

HMM MMI – – 9.0 10.4

Aug ML MM 640 7.1 9.2

C-Aug ML CML 640 7.3 9.1

Aug ML MM 1,896 6.1 9.1

C-Aug ML CML 1,896 5.0 10.5

As shown in table 8.7, for 640-dimensional score-spaces, both augmented models and

conditional augmented models outperform the ML and MMI baseline HMMs. Both have a

similar number of errors during training and yield test errors of approximately 9.1%. When

more powerful augmented models (with 1,896 score-space components) are considered, the

situation is different. Maximum-margin estimated augmented models, with their superior

generalisation ability, reduce both the training and test errors. Conversely, although

C-Aug models trained using the conditional maximum likelihood criterion also reduce

training error, the improvement comes at a cost of over-training. Test error therefore

increases from 9.1% to 10.5% (worse than the MMI-estimated HMM baseline). This
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simple example demonstrates that although C-Aug models can perform similarly to MM

augmented models given sufficient data, care must be taken to ensure that over-training

does not occur. As expected, for high-dimensional score-spaces, the maximum-margin

training criterion provides superior generalisation performance when compared to other

training criteria such as CML.

In addition to the comparison between MM augmented models and C-Aug models, the

CAN/CAN’T confusion pair, discussed above, was also used to compare the efficiency of

different optimisation algorithms for CML training of C-Aug models. Like generative aug-

mented models, C-Aug models are convex in their augmented parameters, allowing CML

training to converge to a global solution regardless of the optimisation approach used. This

means that the choice of optimisation algorithm can be based primarily upon computa-

tional efficiency. Results from four different optimisation algorithms are shown in table

8.8.5 Where applicable, learning rates were tuned to maximise the rate of convergence.

Note that many of the experiments were terminated early due to limited computational

resources. Despite this, useful conclusions can still be drawn from the results.

Table 8.8: Comparing optimisation algorithms for CML estimation of C-Aug models

Algorithm
# Total Final Training Function evaluations

iterations objective error (%) f df

Gradient descent 5,000* 1,417.0 8.4 5,000 5,000

Stochastic gradient descent 5,000* 1,296.5 7.7 5,000 5,000

Conjugate gradient 200* 1,301.5 7.9 4,675 4,216

Scaled conjugate gradient 958 1,217.5 7.3 959 1,915

Note that (*) is used to denote that optimisation was terminated after 5000 or 200 iterations;

convergence did not occur within this time

As illustrated in table 8.8, gradient descent (GD), the simplest algorithm, converged

slowest, taking 5,000 iterations to achieve a training error of just 8.4%. Its online equiva-

lent, stochastic gradient descent (SGD), performed significantly better, reaching the final

GD objective of 1,417.0 after just 858 iterations. Optimisation continued until it was ter-

minated at 5,000 iterations where is achieved a training error of 7.7%. Both algorithms

required 5,000 evaluations of the objective function and a further 5,000 calculations of its

derivative.

Next, to increase the rate of convergence, two conjugate gradient methods were con-

sidered. The first was a standard implementation of non-linear Polak-Ribière conjugate

gradient (CG) [98,116]. As shown in table 8.8, this required far fewer iterations than SGD

to obtain similar performance. Unfortunately, the average computational cost for each

iteration of CG is much higher, with an average of 23 function and 21 derivative evalu-

5Although the optimisation algorithms used different stopping criteria (with some forcibly terminated),

the results in table 8.8 are illustrative of the general trends in computational cost.
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ations per iteration (c.f. 1 function and 1 derivative evaluation for GD and SGD). The

overall computation cost of CG is therefore similar to that of GD and SGD.6 The second

conjugate gradient algorithm evaluated was scaled conjugate gradient. This was selected

because it claimed to offer the benefits of standard CG algorithms without the expensive

line minimisation. The downside is a significantly more complex implementation. As the

table illustrates, SCG achieved the best objective function value and the lowest training

error whilst requiring fewer than half the derivative evaluations of other techniques and

less than a fifth of the function evaluations. The superior benefit to cost ratio of SCG

optimisation for C-Aug models means that all C-Aug model experiments discussed in this

thesis are trained using an SCG optimised CML or MPE objective function.

8.2.4 Summary

In this section, maximum-margin trained augmented models were used to rescore confus-

able word pairs in a large vocabulary speech recognition system. Although performance

benefits were observed for selected pairs, these were found to be insignificant in the wider

context of system performance. This was due to two main factors. The first is that the

number of corrections that can be made for any given confusion pair is small. The sec-

ond is that, within a large vocabulary speech recognition system, there are millions of

potential word pairs, each of which requires its own augmented model classifier. Since

limited training data restricts the number of augmented models that can be trained, only

a small percentage of the evaluation data can be rescored. The combination of limited

improvements per classifier, coupled with the small proportion of data rescored, means

that maximum margin augmented model rescoring is not suitable for LVCSR tasks.

Instead, rescoring experiments—similar to those discussed in this section—were per-

formed using the TIMIT phone recognition database [38, 44]. Results are discussed in

section 8.3. Unlike the LVCSR task discussed here, which has millions of potential word

pairs, the phone-labelled TIMIT database has only 1,176 possible phone pairs, allowing a

much larger proportion of the evaluation data to be rescored. Significant improvements

in performance were observed.

8.3 TIMIT

The second experimental database used in this thesis was the TIMIT phone-labelled data

set. This contains broadband recordings of 630 speakers of the eight major dialects of

6Note that it may be possible to reduce the computation cost of conjugate gradient by reducing the

accuracy of the built-in line minimisation. This will decrease the cost per iteration. Although the reduced

accuracy is likely to increase the number of iterations required, the overall cost may still fall.
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American English, each reading eight phonetically rich sentences.7 Data is split into a

training set (462 speakers; 3,696 sentences) and a testing set (168 speakers; 1,344 sen-

tences), each balanced for phonetic and dialectical coverage. The testing set is further

split into the NIST core test set and a development set. The core test set contains 24

speakers (two male and one female from each of the eight dialects) and 192 sentences,

selected such that each phone appears in at least one of the sentences. The development

set is constructed using all remaining test speakers and sentences. There is no overlap in

speakers between the training, development and core test sets.

The acoustic data was parameterised using a standard Mel-frequency cepstral coeffi-

cient (MFCC) front-end. Cepstral analysis was performed using a frame-length of 10ms

and a 25ms Hamming window; spectral analysis used a 40 channel Mel filter bank with fre-

quencies ranging from 64Hz to 8kHz. A pre-emphasis coefficient of 0.97 was used. Thirteen

MFCC features (including the zeroth) were then extracted. These were combined with

their first and second derivatives to yield a set of 39-dimensional feature-vectors that were

then used for training statistical models.

Given the coded data, the training and test data sets were prepared for use in phone

classification and phone recognition experiments. Training and test data for the phone

classification experiments was generated by extracting acoustic data for individual phones

from the coded data using the hand-labelled phone time-stamps included as part of the

TIMIT database. Phones with less than three frames of data (<30ms in length) were

excluded since HMM base models with a minimum duration of 3 frames were used.8 Al-

though this differs from the standard TIMIT classification task, the proportion of data

affected is small, with only a minimal effect on the classification performance when com-

pared against other work, for example [42]. For phone recognition experiments, whole

sentences were extracted, along with their phone transcriptions. Without fixed phone

alignments, minimum duration constraints caused no problems.

Using the TIMIT data, three different experiments were performed. The first, in sec-

tion 8.3.1, replicates the confusable pairs framework of section 6.4 in order to disambiguate

confusable phone pairs. This uses the MM-estimated generative augmented models dis-

cussed in chapter 6. The second and third experiments, in sections 8.3.2 and 8.3.3, eval-

uate CML and MPE estimated C-Aug models within the TIMIT phone classification and

recognition frameworks respectively.

7Speakers actually read ten sentences but, as is standard practice, the speaker adaptation sentences,

‘sa1’ and ‘sa2’, are excluded from both the training and test sets.
8A large number of these excluded phones were only 1 frame (10ms) long and are believed to be a

by-product of the TIMIT transcription process. This process proceeded as follows. For each sentence,

a word transcription was first generated. This was then converted into a phone transcription using a

word-to-phone dictionary. The resulting string of phones was then manually fitted to the acoustic data

irrespective of the acoustic sounds. Words with missing or partially pronounced phones may therefore

contain short phone segments that fill the gaps between the articulated phones.
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8.3.1 Rescoring confusable phone pairs

Similarly to the LVCSR confusable word-pair rescoring in section 8.2, MM-estimated aug-

mented models were trained to disambiguate confusable phone-pairs within the TIMIT

phone-classification framework. These experiments differ from the LVCSR results pre-

sented in section 8.2, with phone confusions used instead of word confusions. Since speech

recognition systems typically have far fewer phones than words, there are many fewer

confusions for the TIMIT data than for the LVCSR data discussed earlier. This makes

it possible to rescore a much larger proportion of the test data, increasing the chance of

statistically significant performance gains.

Using the TIMIT classification training set, baseline monophone HMMs with three

states and ten mixture-components were estimated using ML training. A second MMI

baseline using similar HMMs was also defined. Language models were not used. Phone

error rates for the ML baseline system were 27.9% and 28.8% for the development and

core test sets respectively; error rates for the MMI development and core test sets were

24.4% and 24.7% respectively. Next, for both baselines, and for each of the training,

development and core test sets, lattices of confusable phones were generated using Viterbi

decoding. These were used to identify the two most likely (and hence confusable) phone

labels associated with each observation sequence. As for the LVCSR confusion-pair task,

pairwise augmented models were trained to disambiguate the twenty most confusable

phone-pairs.9 Performance for the three most common phone pairs are shown in table 8.9.

Further details of the augmented models used for rescoring are given in appendix D.

Table 8.9: Confusable phone-pairs in the TIMIT classification core test set (% error)

Classifier Training criterion Phone pair (# examples)

λ α s/z (397) er/r (317) m/n (195)

HMM ML – 21.9 25.2 26.7

HMM MMI – 20.7 18.6 21.0

AUG ML MM 16.4 14.8 20.0

As illustrated by table 8.9, pairwise phone classifiers showed similar trends to the word

classifiers described in section 8.1.1. In particular, MM-estimated augmented models

outperformed MMI HMMs which, in turn, outperformed ML HMMs.

Next, MM augmented models were used to rescore the development set transcriptions,

obtained from the ML-estimated HMM baseline system. Performance improvements for

each phone-pair were recorded, allowing the phones to be sorted (best first). Using this

ordering of pairs, the TIMIT core test set was cumulatively rescored. The process was

repeated for the MMI HMM baseline. Rescoring performances for the development and

core test sets, using both the ML and MMI baselines, are plotted in figure 8.5.

9As in section 8.1, the number of phones in each half of a confusion pair were equalised to reduce bias.
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Figure 8.5: Augmented model rescoring of the TIMIT phone classification task

From the graphs it is clear that development set performance for the ML system

peaks at approximately ten classifiers before tailing away at twenty classifiers. Selecting

the ten best classifiers, and using them to rescore the core test set, allows 78 out of

the 1,487 rescored phone pairs to be corrected, a relative improvement of 5.2%. This is

comparable to the 4.0% improvement observed on the LVCSR development set. Where

phone-pair rescoring experiments differ from the word-pair experiments discussed in the

previous section, however, is the proportion of the test set rescored. Whereas ten word-

pair classifiers allowed only 1–2% of the LVCSR task to be rescored, the ten phone-pairs

used in this task allowed a little over 21% of the TIMIT core test data to be rescored,

resulting in a reduction in the error rate from 28.8% to 27.7%, an absolute improvement

of 1.1%. This is statistically significant to a 95% confidence [40].

As for the ML system, development set rescoring performance on the MMI baseline

peaked at approximately ten classifiers before falling away sharply at twenty classifiers

(figure 8.5). Gains on the MMI development set transcription were much less than those

achieved on the ML transcription (0.3% versus 1.3%). This is believed to be due to the

better performance of the baseline system (24.4% error for MMI system versus 27.9%

for ML): with fewer errors to correct, augmented model classifiers have fewer chances to

improve upon the baseline transcription, limiting the gains observed. This limitation is

especially apparent when rescoring performance on the core test set is examined. Here,

the limited performance gains and small size of the test set result in a graph in which

classification noise is clearly visible. Overall, gains of only 0.3% were observed over the

baseline MMI system despite rescoring a similar proportion of the data as the ML system.

The improvement gained from rescoring the MMI baseline was too small to be statistically

significant.

As a final contrast to the LVCSR system discussed earlier, the proportion of the devel-

opment and core test sets rescored was plotted against the number of pairwise classifiers.

This is shown in figure 8.6. From this, it is clear that relatively few pairwise classifiers are
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Figure 8.6: Proportion of development and core test sets rescored as the number of aug-

mented models is increased

required in order to rescore a significant proportion of both the development and core test

sets. For example, for all test sets, 100 phone-pair classifiers allows approximately 85% of

the confusions in the core test set to be rescored, whereas 200 pairs allows approximately

95% to be rescored. In comparison, rescoring the LVCSR eval02 and eval04 evaluation

sets using 200 word-pairs would only allow 25% and 14% of the data to be rescored, re-

spectively. With far fewer classifiers required to get good data coverage, the TIMIT data

benefits more from confusable pair rescoring than the LVCSR task discussed earlier. Other

tasks, with few classes to disambiguate, such as number recognition and command and

control are also expected to perform well within this confusable word/phone framework.

8.3.2 C-Aug classification

In all experiments discussed thus far, the acoustic code-breaking techniques in section

6.4 were used to convert multi-class speech classification problems into a series of binary

tasks, for which binary classifiers were trained. However, although this is necessary for

generative augmented models, C-Aug models, with their easy-to-calculate normalisation

terms can be applied directly to multi-class classification problems.

In this section, the application of multi-class C-Aug models to the TIMIT phone clas-

sification data described previously is discussed. Using the standard practice of building

acoustic models for 48 different phones, HMM base models were estimated using either an

ML or an MMI training criterion. These HMMs contained three emitting states and either

ten or twenty mixture-components. C-Aug models were then constructed using sufficient

statistics defined by the first-order derivatives of the base models; derivatives with respect

to the mixture-component priors, means and variances were used. Augmented parameters
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Figure 8.7: CML estimation of C-Aug model augmented parameters: (a) correlation between

the CML objective function and training accuracy (b) reduction in development and core test

set error.

were estimated using CML training (section 7.2); no language model was used.

In figure 8.7(a), results from conditional maximum likelihood (CML) estimation of a

three-state, ten-mixture-component C-Aug model (ML base model parameters) are plot-

ted. In the left graph—figure 8.7(a)—CML estimation of the augmented parameters is

shown to yield a large increase in the CML objective function, from -139,000 to -84,300.

This is matched by a corresponding reduction in training error from 25.4% to just 16.3%,

an absolute improvement of 9.1%. The objective function (left axis) and the training set

word accuracy (right axis) are highly correlated since the objective function—the posterior

probability of the training set class labels—is a differential approximation to the training

accuracy. Figure 8.7(b) illustrates the error reductions achieved on the development and

core test sets. Gains of 4–5% were observed. Despite the large difference between the final

training and test performances, over-training was not observed, even aften many training

iterations. This illustrates the generalisation performance of CML training when sufficient

training data is present. Further results on this task are presented in table 8.10.

Table 8.10: Classification error on the TIMIT core test set

Classifier
Criterion Components

λ α 10 20

HMM ML — 29.4 27.3

C-Aug ML CML 24.0 —

HMM MMI — 25.3 24.8

C-Aug MMI CML 23.4 —

As illustrated in table 8.10, multi-class C-Aug model results show a similar pattern

to the pairwise augmented model experiments discussed in sections 8.1 and 8.3.1. In par-

ticular, C-Aug models yielded statistically significant improvements over the base models

from which they were derived. For example, C-Aug models with 10-mixture-component

ML base models outperformed 10-mixture-component ML HMMs. Although this could

be argued to be a consequence of having extra parameters (C-Aug models have almost
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twice as many parameters as standard HMMs), this was found to account for only a small

proportion of the gain, with 10-mixture-component C-Aug models also outperforming 20-

mixture-component HMMs. This clearly illustrates that modelling power is dependent

upon not only the number of parameters, but also the types of dependencies modelled.

In addition to C-Aug models with ML-estimated base models, experiments using MMI-

estimated base models were performed. As shown in table 8.10, C-Aug models with MMI

estimated base models outperformed equivalent C-Aug models with ML base models. This

is believed to be due to the better performance and improved state segmentation of the

MMI base models (in comparison to ML base models), resulting in more discriminative suf-

ficient statistics. However, despite having poorer statistics than C-Aug models with MMI

base models, ML-based C-Aug models managed to outperform the 20-mixture-component

baseline MMI HMM by 0.8% (24.0% error versus 24.8%).

Although obtaining good performance compared to standard HMMs, the C-Aug mod-

els discussed in this section do not quite attain the test set performance of HCRFs [42]

on the same task (HCRFs yielded a 21.8% core test error). This is believed to be due to

two main factors: fixed state segmentation, and the lack of a language model. The first of

these, fixed state segmentation, is believed to be the most important since it affects the

quality of the C-Aug model sufficient statistics: the worse the base HMM, the more unre-

liable the latent-state alignments within that model are likely to be. Sufficient statistics

derived from the base model are therefore likely to be less discriminatory than would oth-

erwise be expected. Since CML estimation of the augmented parameters cannot alter this

state segmentation, lower than expected C-Aug performance is obtained. This sensitivity

is partially illustrated by the ML (worse) versus MMI (better) base model comparison

discussed previously. The second reason that HCRFs outperform C-Aug models is that

HCRFs use a unigram language model whereas C-Aug models contain no language model.

Experiments on ML and MMI HMMs, with and without language models, suggest that

this can yield an absolute performance improvement of between 0.5% and 1.3%. Intro-

ducing unigram language models into discriminatively trained C-Aug models is expected

to yield gains in the lower end of this range.

8.3.3 C-Aug recognition

In addition to the classification experiments discussed above, the TIMIT database was used

for evaluating C-Aug sentence model recognition performance. Phone-level recognition

was performed (the standard approach for TIMIT) to ensure that system performance

reflected the quality of the phone acoustic models, rather than the effects of external

constraints such as phone-to-word mappings. The acoustic data was first parameterised

using the TIMIT MFCC front-end discussed in section 8.3. Baseline phone HMMs (three

latent states, each with a ten mixture-component GMM output distribution) were then
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estimated using maximum likelihood estimation on the training set of 3,696 sentences.

Recognition phone error rates on the training, development and core test sets for these

models were found to be 37.9%, 41.5% and 42.9% respectively.

Using the correct transcriptions of the training sentences, a phone-level bigram lan-

guage model was then estimated. The language model scale factor was optimised using

the development set; best performance was achieved with a scale factor of 5. Recognition

phone error rates for the ML-estimated HMMs with a bigram language model were 29.4%,

32.0% and 32.9% for the training, development and core test sets respectively. These

results are summarised in table 8.11. Examining the large differences in phone error rate

between recognition with and without the language model, it is clear that language models

are an important component of HMM-based speech recognition systems.

Next, to allow efficient MMI and MPE training of HMMs, a set of training lattices were

generated using Viterbi decoding on each training sentence [138]. To ensure that the prob-

ability mass of each lattice was distributed between a number of competing hypotheses, a

weakened language model and lattice probability scaling were used. The training lattices

used in this section were generated using a unigram language model, estimated from the

correct training sentence transcriptions. This typically penalises incorrect sentences less

than more powerful language models such as bigrams, thus preventing a single sentence

from dominating the lattice. The second technique for increasing the number of competing

hypotheses was to the scale the acoustic model likelihoods by a factor 0 < κ < 1. This

scaling reduces the dynamic range of acoustic model likelihoods, increasing the impor-

tance of less likely sentences [135]. As is standard practice, κ was set to the inverse of the

language model scale, κ = 0.2.

Table 8.11: Baseline HMM recognition performance on TIMIT; A bigram language model

was used with a language model scaling factor of 5.

Training criterion
Phone error (%)

Train Dev Core

ML 29.4 32.0 32.9

MMI 25.7 30.6 31.6

MPE 23.7 29.3 30.6

Given the training lattices, MMI and MPE trained HMMs were estimated. Recognition

results for these are presented in table 8.11. As shown, the discriminative MMI and

MPE training criteria outperform standard ML training, with MPE yielding the largest

improvement in performance. Experiments showed that the ML system language model

scale factor of 5 remained optimal for both the MMI and MPE systems.
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Figure 8.8: CML C-Aug models for TIMIT phone recognition: (a) CML objective function

and training, development and core test set phone accuracies (b) close-up of the first 10

iterations.

CML C-Aug models

Given ML-estimated phone HMMs as base models, C-Aug models were constructed using

sufficient statistics defined by the first-order derivatives of the phone HMM likelihoods:

derivatives with respect to the HMM mixture-component priors, means and variances were

used. C-Aug sentence models were then estimated using the lattice-based conditional

maximum likelihood (CML) training criterion discussed in section 7.4. Phone accuracy

results are shown in figure 8.8. Sentence accuracies and error rates are not quoted in

this work since the long length of the TIMIT sentences, and the relative simplicity of the

systems considered, means that sentence accuracy was 0% for all systems.

From figures 8.8(a) and 8.8(b), it is clear that the CML objective function—the sum

of the log-posterior probabilities of the correct training sentence transcriptions—increases

monotonically with every iteration. Since these posteriors approximate the sentence ac-

curacy, improvements in the objective are expected to produce similar improvements in

the recognition accuracy. As illustrated in figure 8.8(a), between iterations 2 and 200,

there is a good correlation between the objective function and the training accuracy. A

similar correlation exists between the recognition accuracy on the training data and on
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Figure 8.9: Analysing the poor performance of CML for C-Aug recognition: (a) Correlation

between posterior probability of correct sentence and recognition accuracy for that sentence

(b) negative correlation between sentence posteriors and the increase gained through CML

training; and (c) overall effect of the first CML update on correct sentence posterior and

recognition accuracy

the development and core test sets.

However, a closer examination of the first iterations of CML training, in figure 8.8(b),

reveals that the first iteration of C-Aug model training causes a significant drop in recog-

nition accuracy on both the training and test data, with training accuracy falling from

70.8% to 49.0%. The most likely reason for this reduction in performance is the mismatch

between CML objective function (maximising the posterior probability of the correct sen-

tence transcriptions) and the phone-based scoring function. In the first iteration, with

many options for increasing the posterior probability of the correct sentences, the SCG

optimisation selects an update that gives the largest increase in posterior, regardless of

its effect on sentence accuracy. In practice, this tends to result in the scores associated

with the correct sentence decreasing whilst incorrect sentence scores decrease even further.

Overall, the correct sentence posterior increases even though the acoustic models are less

representative of the data. Unfortunately, the resulting models perform poorly on both

training and test sets.

The mismatch between the objective and scoring functions, and the effects of SCG

training, are clearly illustrated by the graphs in figure 8.9. The first plot, in figure 8.9(a),

shows that in the first iteration, phone recognition accuracy of individual training sen-
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tences is only loosely correlated with the posterior probability of the correct sentence.

This suggests that sentence posteriors are a poor estimate for the phone accuracy, and

that maximising the posteriors will have, at best, only a limited effect on phone recogni-

tion accuracy. During later iterations of training, similar plots show that the correlation

between the correct sentence posterior probability and the recognition accuracy is much

stronger, explaining the correlation between the CML objective function and recognition

accuracy for these iterations.

A second reason why increases in sentence posterior may not improve recognition

accuracy is demonstrated in figure 8.9(b). Here, the negative correlation between the log-

posterior of the correct sentences and the improvement in the posteriors suggests that much

of the objective function improvement is achieved by increasing the posterior probabilities

of the least likely correct sentences. Since these sentences are unlikely, the positive impact

on these posterior improvements on phone recognition accuracy is minimal. In practice,

accuracy was observed to deteriorate.

The final graph (c) in figure 8.9 depicts the combined effect of these two observations.

This clearly shows that changes in sentence posteriors and phone recognition accuracy

are centred on an increase in posterior of approximately 7 and a reduction in accuracy of

approximately 18%. These figures correspond almost directly to the measured change in

objective function (an increase of 25,756 for 3,696 sentences, yielding an average posterior

improvement of 7.0 per sentence) and training accuracy (23.8% reduction). The actual

reduction in accuracy of 23.8% is more than the 18% that would be expected from the

centre-of-mass since the distribution is skewed towards lower phone accuracies (higher

error rates).

At this stage, it is worth considering why CML estimation of C-Aug models suffers

from the mismatch between the objective function and the scoring function more than

MMI estimation of standard HMMs. The most likely reason why C-Aug models are more

susceptible to this problem than HMMs is that they are extremely flexible, with few con-

straints. When used for recognition, the only constraint on C-Aug sentence models is

that sentence posteriors must be properly normalised; individual phone scores may take

any value. This means that CML training of C-Aug models does not need to consider

the ‘quality’ or performance of individual phone models. In contrast, MMI estimation

of HMMs typically requires that both sentence posteriors and individual phone poste-

riors are properly normalised—the additional normalisation of phone models is achieved

through the use of constraints on the HMM parameters, such as sum-to-one constraints on

the transition probabilities and the mixture-component priors, and the requirement that

variance matrices in the state output distributions are positive-definite. MMI training

therefore maximises sentence posteriors whilst maintaining the ‘quality’ of the individual

phone models. MMI estimated HMMs can therefore be expected to be more robust to
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recognition errors (if a single phone is incorrectly recognised it is less likely to disrupt

the rest of the transcription) than CML training of C-Aug sentence models. It is also

more likely to yield models that generalise well to unseen sentences. It is believed that if

additional phone normalisation constraints were added to C-Aug sentence models, better

performance would be obtained.

MPE C-Aug models

To improve the performance of C-Aug sentence models, the mismatch between training and

scoring can be reduced by replacing the CML training criterion with the minimum phone

error (MPE) training criterion. As discussed in section 7.4.4, this directly maximises an

approximation to the sentence phone accuracy (equivalent to minimising an approximation

to the phone error rate). Since the objective function is a good approximation to the true

phone error rate, improvements in objective are expected to lead to similar improvements

in accuracy. Preliminary results from SCG optimisation of the MPE objective support

this hypothesis, and are shown in figure 8.10.10
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Figure 8.10: MPE training of C-Aug sentence models

As illustrated in the graph, the objective function and training set phone recognition

accuracy are well correlated, indicating that the MPE is a good approximation to the

scoring function. Between the zeroth and third iterations, recognition accuracy on the

development and core test sets increased from 68.1% to 68.5% and from 66.9% to 67.5%

respectively. In contrast to the CML training discussed earlier, there is no reduction in

recognition accuracy. However, comparing the 0.6% improvement on the core test set

with the 2.3% achieved for MPE training of the base HMM, it is clear that MPE training

of C-Aug sentence models is limited. This underperformance is believed to arise for two

reasons. First, the objective function converges towards a local maximum of the MPE

10Note that zeroth-iteration C-Aug sentence model accuracies differ slightly (∼ 0.2%) from the HMM

baseline results in table 8.11. This is because C-Aug model phone likelihoods are calculated using the

Forward-Backward algorithm, whereas HMM likelihoods are calculating using the Viterbi approximation.
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objective function (which, unlike the CML objective function, has many local maxima).

Second, by fixing the base model parameters, the state alignments within each phone

HMM/C-Aug model are fixed, limiting the gains that can be achieved (see section 8.3.2 for

more details). Despite these limitations, MPE estimated C-Aug sentence models yielded

statistically significant improvements in accuracy, compared to baseline ML HMMs.

Although experiments have not been performed to verify this, one approach that is

likely to alleviate some of the problems of local maxima is to change the optimisation

algorithm used for MPE estimation of C-Aug sentence models. Whilst the SCG algorithm

has proven to be a very efficient algorithm for maximising convex objective functions such

as the CML objective, the quasi-second-order nature of SCG increases the likelihood of

it reaching a local maxima for non-convex tasks such as MPE training. For such tasks,

better performance is often achieved using simpler algorithms where updates are only

loosely based upon the objective function gradients. Examples of such algorithms are

stochastic gradient ascent [83, 84] and R-Prop [87]. Both have been successfully used for

training HCRFs [42, 74] which also suffer from local-maxima problems.

8.4 Summary

In this chapter, a simple code-breaking approach was used to decompose a multi-class

speech recognition task into a series of binary classification tasks suitable for the ap-

plication and training of augmented models. Initial experiments were based upon an

eight-fold cross-validation framework and the fsh2004sub subset of the LDC Fisher data.

In many cases, maximum-margin estimated augmented models were found to outperform

baseline ML and MMI estimated HMMs. Augmented models with second-order sufficient

statistics or MMI- or MM-estimated base models yielded no significant improvements in

performance, compared with augmented models defined using the standard ML statistics.

Kernelised augmented models were found to yield performance improvements only when

the number of explicit sufficient statistics was reduced.

In addition to cross-validation experiments, augmented models were evaluated using

the eval02, eval03 and eval04 test sets. For these experiments, models were trained

using the same code-breaking approach as before, but with the whole fsh2004sub training

set. Word pairs to be rescored and confusion network posterior-ratio weights were then

selected using the eval03 development set. Classification performance was evaluated using

two test sets: eval02 and eval04. Small gains were observed on both, with approximately

4% of the rescored pairs being corrected. However, with only a small proportion of the

test sets being rescored, the overall improvement in word error rate was found to be

insignificant.

The second database discussed in this chapter was the TIMIT phone-labelled data
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set. Using a similar code-breaking approach to the LVCSR experiments, the TIMIT

classification task was first converted into a series of binary classification tasks. Maximum-

margin augmented models with ML base models were then trained. The ratio of phone

corrections to rescored phones was found to be similar to the word rescoring rates for

LVCSR. However, with far fewer phone confusions in comparison to word confusions, a

much larger proportion of the TIMIT database was rescored. An improvement in the

overall phone error rate of 1.1% was therefore observed. Augmented models with MMI

base models yielded smaller performance gains since there were fewer errors to fix. Using

the same data, C-Aug models were then evaluated. Since C-Aug models are inherently

multi-class, code-breaking was not required. C-Aug models were found to outperform

standard ML and MMI HMMs by a large margin. The improved sufficient statistics in

C-Aug models with MMI base models provided performance gains over similar C-Aug

models with ML HMM sufficient statistics.

Finally a lattice-based implementation of C-Aug model recognition was evaluated us-

ing the TIMIT phone recognition task. Both conditional maximum likelihood (CML) and

minimum phone error (MPE) training criteria were used. Although CML-estimated C-

Aug models yielded good performance on the simple classification tasks, CML-estimated

C-Aug sentence models performed badly due to a mismatch between the training crite-

rion (maximising the posterior probability of the correct sentence transcriptions) and the

scoring function (phone error rate). The MPE criterion avoided this mismatch by directly

optimising an approximation to the sentence phone accuracy. Small performance benefits

were observed. The scale of these improvements is believed to have been limited by the

tendency of the optimisation algorithm to converge to a local maximum.

Overall, this chapter has demonstrated some promising results, especially for C-Aug

model classification. Results suggest that C-Aug models may be useful for speech recog-

nition but further research is required before HMM-beating results are obtained.



9
Conclusions and Future Work

In this thesis, statistical classification of sequence data was investigated, with particu-

lar emphasis placed upon techniques that allow statistical models to represent complex

temporal dependencies between observations. The thesis contains three major contribu-

tions, split across chapters 4, 5, 6 and 7, and summarised in sections 9.1, 9.2 and 9.3

below. The first extends the theory of augmented statistical models by examining top-

ics such as dependency modelling in augmented models, higher-order augmented models,

and kernelised augmented models. A maximum-margin framework for training both aug-

mented model parameters and base model parameters was also introduced. The second

contribution, continuous rational kernels, are an extension of rational kernels and allow

sequences of continuous observations to be classified within a weighted finite-state trans-

ducer framework. In this work, continuous rational kernels were formulated both as a

general framework for classifying sequences of continuous observations, and as an efficient

method for calculating augmented model sufficient statistics. The final contribution of

this thesis are conditional augmented (C-Aug) models. These use the same additional

sufficient statistics as standard (generative) augmented models but are formulated within

a discriminative framework. This allows the normalisation issues of standard augmented

models to be resolved. Parameter estimation and inference for C-Aug models were both

discussed. A lattice-based approach for applying C-Aug models to speech recognition was

also proposed.

148
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9.1 Augmented statistical models

In chapter 2, a range of generative and discriminative approaches for statistical classifi-

cation of sequence data were introduced. These allow relationships between observation

sequences and class labels to be modelled using a number of sufficient statistics, indepen-

dence assumptions, and conditional-independence assumptions. A number of standard

statistical models were described. Unfortunately, the modelling assumptions associated

with these standard models are incorrect for many applications, potentially affecting clas-

sification accuracy. Although many different approaches have been used to relax these

modelling assumptions and allow additional dependencies to be modelled [8, 29, 106, 108],

this thesis concentrates on the systematic approach taken by augmented statistical mod-

els [117]. Given a standard (base) model, these introduce a set of additional sufficient

statistics (derived from the base model), that allow a wide range of additional temporal

and spatial dependencies to be modelled.

In this work, the theory of augmented statistical models was extended to include

aspects such as augmented model dependency modelling, higher-order augmented models,

and kernelised augmented models. In particular, by examining the effects of augmentation

on the independence and conditional-independence assumptions of the base model, it was

shown that although augmented models retain the base model independence assumptions,

conditional-independence assumptions can be ‘broken’. In particular, for latent-variable

base models, augmented model sufficient statistics break the assumption that observations

are conditionally independent given the current latent-state. This allows a wide range of

additional dependencies to be modelled.

The second contribution that this thesis makes towards the theory of augmented mod-

els is the introduction of a distance-based training algorithm for augmented models. This

directly optimises the decision boundary between pairs of augmented models, allowing

model parameters to be estimated even when the normalisation terms are intractable

(unlike ML and MMI estimation which require explicit calculation of the normalisation).

When the decision boundary between two augmented models is defined using Bayes’ de-

cision rule, it was shown that the decision boundary can be written as a linear decision

boundary in a high-dimensional score-space. Estimation of this decision boundary can

be performed using standard algorithms—such as the Perceptron algorithm or SVMs.

Estimates for the augmented parameters can then be extracted from the decision bound-

ary gradient. The intractable normalisation terms are combined to form a bias, calculated

during training. In this work, augmented parameters were estimated using a new variable-

margin SVM. Algorithms for maximum-margin estimation of the base model parameters

were also proposed.

Augmented models were evaluated using two simple speech recognition tasks. The first

used pairs of confusable words extracted from a conversational telephone speech data set.
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Augmented models (with HMM base models) trained to disambiguate these word pairs

outperformed HMMs in many cases. Unfortunately, since few word pairs were rescored,

the overall effect on system performance was insignificant. However, when augmented

models were used to rescore confusable phones extracted from the TIMIT classification

task, a much larger proportion of the data was rescored, resulting in greater performance

improvements. Overall, augmented models were found to outperform their base models in

many cases.

9.2 Continuous rational kernels

The second contribution of this thesis is a new dynamic kernel: the continuous rational

kernel (an extension of standard rational kernels [17, 18]). Rational kernels are a power-

ful form of dynamic kernel that allow high-dimensional feature-spaces to be defined for

sequences of discrete observations. Defined entirely within a weighted finite-state trans-

ducer framework, rational kernels allow a wide range of task-dependent feature-spaces

to be defined using finite-state transducers. Kernel calculations are performed using a

small number of standard and efficient transducer operations. Unfortunately, as a form of

discrete-observation dynamic kernel, rational kernels are restricted to sequences of discrete

observations. Many applications, however, require classification of sequences of continuous

observations.

This work introduces continuous rational kernels as a flexible extension of rational

kernels for sequences of continuous observations. Continuous rational kernels are defined

using a combination of discrete-latent-variable generative models and standard, discrete,

rational kernels. For any given continuous-observation sequence, the latent-variable model

is first used to calculate the latent-state sequences associated with the observations. These

state sequences are determined using either Viterbi or Forward-Backward state alignment.

When Viterbi alignment is used, a single state sequence is generated, corresponding to the

most likely path through the model; when Forward-Backward alignment is used, lattices

containing all possible state alignments for a particular observation sequence are generated.

Since these sequences and lattices of latent-variable states have discrete labels (the state),

this process allows continuous observations to be converted into a discrete representation.

Applying a rational kernel to these sequences/lattices allows distances to be calculated.

In addition to being a form of dynamic kernel, continuous rational kernels can be used

to generate the vectors of sufficient statistics used in augmented models. In particular, this

work showed that applying standard n-gram and gappy-n-gram transducers to Forward-

Backward-defined alignment lattices allows the posterior probabilities of the latent states

to be calculated. With appropriate weighting of the transducer arcs, derivatives of the

latent-variable generative (base) models can be calculated. Derivatives with respect to
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vector quantities—such as the means and variances—were calculated by introducing a

vector semiring that allows transducer arcs to be associated with vector weights instead of

the more usual scalar weights. Calculation of augmented model sufficient statistics using

the continuous rational kernel framework was shown to offer benefits over direct calculation

of sufficient statistics since statistic-dependent dynamic programming algorithms can be

replaced by a single unified framework for calculation. One advantage of this framework

is that it allows continuous rational kernels to calculate higher-order augmented model

sufficient statistics using only a small number of additional transducer definitions. No

new algorithms are required.

9.3 Conditional augmented models

The final contribution of this thesis are conditional augmented (C-Aug) models. These

use the same additional sufficient statistics as standard augmented models but are for-

mulated within a conditional-probability framework. Since C-Aug models directly model

the class label posterior probabilities, they are inherently discriminatory. Furthermore,

C-Aug models allow the intractable augmented model normalisation term (an expectation

over all observation sequences) to be replaced by an easy-to-calculate summation over the

class labels. This allows C-Aug models to be trained using standard training criteria such

as conditional maximum likelihood (CML) and minimum phone error (MPE).

In this work, C-Aug models were introduced as a discriminative model for perform-

ing multi-class classification of sequence data. Defined using the same sufficient statistics

as generative augmented models, C-Aug models allow a similar set of dependencies to be

modelled. In particular, conditional-independence assumptions of the base models are bro-

ken. A gradient-based algorithm was presented to allow both the augmented parameters,

α, and the base model parameters, λ, to be estimated using the conditional maximum

likelihood (CML) training criterion. Optimisation was performed using scaled conjugate

gradient (SCG) [83,84] maximisation. Experiments comparing C-Aug models with HMM

base models, to standard HMMs, showed benefits in many cases. When compared with

maximum-maximum augmented models, C-Aug models performed similarly in many cases.

The major advantage of C-Aug models over standard augmented models, however, is that

multi-class classification can be performed without use of binary decomposition techniques.

C-Aug models were then extended to allow classification of complete sentences, al-

lowing C-Aug models to be applied to a simple speech recognition task. Using a similar

approach to that used in HMM-based speech recognition systems, C-Aug sentence models

were defined using a small number of phone base models and sufficient statistics. The

phone models were then combined to form a single, complex, discriminative model of

sentence transcriptions given the observations. With a vast number of possible sentence



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 152

transcriptions, the C-Aug model normalisation term was approximated using a lattice

containing only the most likely sentences. This lattice was determined using a standard

HMM-based recogniser. Model parameters for the C-Aug sentence model were estimated

using either the CML criterion—maximising the posterior probabilities of the correct sen-

tence transcriptions—or the MPE criterion—minimising an estimate of the phone error.

When parameters of C-Aug models were estimated using CML estimation on the TIMIT

data set, phone accuracy dropped significantly during the first iteration of training. This

drop is believed to arise from a mismatch between the training criterion (minimising an

approximation to the sentence error) and the scoring criterion (phone error). The smaller

number of constraints in C-Aug models, compared to HMMs, make this mismatch espe-

cially significant for C-Aug models. When the MPE criterion was used, small performance

gains were observed.

9.4 Future work

Several aspects of the work presented in this thesis may benefit from further investigation,

either in terms of modifications to the approaches given, or in the form of application to

different problem domains. A number of suggestions for these future avenues of work are

given below.

• This thesis has concentrated upon methods of augmenting generative statistical

models—in particular, hidden Markov models (HMMs)—using sufficient statistics

derived from a Taylor-series expansion of the base model. In general, however, many

other forms of base model and augmentation are possible. Research into these could

allow fundamental questions such as ‘what forms of base model yield the most pow-

erful augmented models?’ and ‘what properties should a good form of augmentation

have?’ to be answered.

• As discussed in chapter 8, second-order augmented model sufficient statistics are ap-

proximately zero when high-dimensional observations (such as in speech) are used.

It would therefore be interesting to apply second- and higher-order augmented mod-

els models to low-dimensional or discrete data where this problem does not occur.

One such application is protein structure prediction [47].

• One of the fundamental problems with generative augmented models is the in-

tractable normalisation term. In chapter 6 this difficulty was avoided by expressing

the augmented model decision boundary in terms of a linear hyperplane in a high-

dimensional score-space. Although this allows augmented models to be trained,

many of the advantages of generative models are lost. However, until the normalisa-

tion issue can be resolved, C-Aug models appear to be the most attractive research
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direction.

• In chapter 7, conditional augmented (C-Aug) models were introduced as a discrimi-

native form of augmented model. When these are trained using the conditional max-

imum likelihood criterion with large quantities of training data, good generalisation

performance is achieved. However, when training data is limited, C-Aug models

(and, more generally, CRFs) have been found to be susceptible to over-training. To

avoid this research into regularisation or other robustness approaches is required.

• This work presented a preliminary framework that allows C-Aug models to applied

to the task of speech recognition. To take this framework beyond a proof-of-concept,

further research is required into the optimal conditions for C-Aug sentence model

recognition. Areas that could be examined are: additional normalisation constraints

on the C-Aug sentence models (e.g. ensuring that individual phone models are

properly normalised), how best to incorporate language model information, and

alternative convex training criteria (like CML) that more closely match the scoring

function (like MPE).

• Finally, as discussed in this work, one potential application for C-Aug models is

speech recognition. However, there is currently a mismatch between the monophone

base models discussed in this thesis and the triphone and quinphone acoustic models

used in many practical speech recognition systems. Although these acoustic models

can be augmented using the same Taylor-series expansion as the models discussed in

this thesis, care must be taken to understand the implications and practical effects

of base model state-tying on the augmented sufficient statistics that are produced.

Extensions to allow training and recognition to use word transcriptions instead of

the phone transcriptions discussed in this thesis are also required.



A
HMM Derivatives

Consider an N -emitting-state HMM, with model parameters, λ. For an observation se-

quence, O = {o1, . . . ,oT }, the HMM likelihood, p(O;λ), is given by,

p(O;λ) =
∑

θ∈Θ

T
∏

t=1

aθt−1θt
p(ot|θt;λ) (A.1)

where aθt−1θt
∈ λ are transition probabilities, p(ot|θt;λ) are state-conditional output

distributions, θ = {θ1, . . . , θT } is a sequence of latent-states, and Θ is the set of all possible

state sequences. Note that, to simplify notation in the following sections, θt = {j,m} and

θt = sj are denoted as θjm
t and θj

t respectively.

A.1 Transition probability derivatives

Given the HMM log-likelihood in equation (A.1), consider the log-likelihood derivatives

with respect to the transition probabilities, aij ,

∇aij
ln p(O;λ) =

1

p(O;λ)
∇aij

{

∑

θ∈Θ

T
∏

t=1

aθt−1θt
p(ot|θt;λ)

}

=
1

p(O;λ)

∑

θ∈Θ

T
∑

t=1

{
∏T

τ=1 aθτ−1θτ
p(oτ |θτ ;λ)

aθt−1θt

}

∇aij
(aθt−1θt

)

=
∑

θ∈Θ

T
∑

t=1

[

p(O|θ;λ)

p(O;λ)

][

∇aij
(a θt−1θt

)

aθt−1θt

]

(A.2)
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Since ∇aij
(a θt−1θt

) is zero for all state transitions apart from aij , let θ′ ∈ Θ′ to be the set

of all state sequences that contain the transition from θt−1 = i to θt = j. Re-expressing

equation (A.2) in terms of these constrained state sequences yields the derivatives,

∇aij
ln p(O;λ) =

1

aij

T
∑

t=1

[

∑

θ′∈Θ′

p(O|θ′;λ)

p(O;λ)

]

=
1

aij

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ) (A.3)

Since HMMs contain a sum-to-one constraint on the transition probabilities, Lagrange

multipliers must be introduced to enforce this. The Lagrangian is therefore given by,

L(O;λ,γ) = ln p(O;λ) +

N
∑

i=1

γi

( N
∑

j=1

aij − 1

)

(A.4)

Differentiating this Lagrangian with respect to the HMM transition probabilities, aij, and

with respect to the Lagrange multipliers, γ, yields the Lagrangian derivatives,

∇aij
L(O;λ,γ) =

(

1

aij

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

)

+ γi (A.5)

∇γi
L(O;λ,γ) =

N
∑

j=1

aij − 1 (A.6)

Equating these to zero and rearranging, allows equation (A.5) to be re-expressed as,

γi = −
1

aij

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

γi

N
∑

j=1

aij = −
T
∑

t=1

N
∑

j=1

P (θi
t−1, θ

j
t |O;λ)

γi = −
T
∑

t=1

P (θi
t−1|O;λ) (A.7)

Substituting this expression for γi into the Lagrangian function in equation (A.4) yields

the constrained HMM log-likelihood derivative,

∇aij
ln p(O;λ) =

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

aij
− P (θi

t−1|O;λ) (A.8)

A.2 Output-distribution derivatives

In this work, both first-order and second-order derivatives of the HMM log-likelihood with

respect to the output distribution parameters are used. In the next sections, derivations

of these derivatives are given. Mixture-model output distributions are assumed.
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A.2.1 First-order derivatives

Consider the derivatives of equation (A.1) with respect to the parameters, λjm, of the

output distribution associated with state/mixture-component, {j,m},

∇λjm
ln p(O;λ) =

1

p(O;λ)
∇λjm

{

∑

θ∈Θ

T
∏

t=1

aθt−1θt
p(ot|θt;λ)

}

=
1

p(O;λ)

∑

θ∈Θ

T
∑

t=1

{
∏T

τ=1 aθτ−1θτ
p(oτ |θτ ;λ)

p(ot|θt;λ)

}

∇λjm
p(ot|θt;λ)

=
∑

θ∈Θ

T
∑

t=1

[

p(O,θ;λ)

p(O;λ)

][

∇λjm
p(ot|θt;λ)

p(ot|θt;λ)

]

(A.9)

Since ∇λjm
ln p(ot|θt;λθt

) is zero for all θt 6= {j,m}, let θ′ ∈ Θ′ to be the set of all state

sequences that pass through the state/mixture-component θt = {j,m}. Re-expressing

equation (A.9) in terms of these constrained state sequences yields the derivatives,

∇λjm
ln p(O;λ) =

T
∑

t=1

[

∑

θ′∈Θ′

p(O,θ′;λ)

p(O;λ)

][

∇λjm
ln p(ot|θ

jm
t ;λ)

]

=

T
∑

t=1

P (θjm
t |O;λ)∇λjm

ln p(ot|θ
jm
t ;λ) (A.10)

A.2.2 Second-order derivatives

Consider the second-order derivatives of equation (A.1) with respect to the parameters,

λjm, of the output distribution associated with state {j,m}. Start by calculating the

first-derivative of the latent-state posterior,

∇λkn
P (θjm

t |O;λ) = ∇λkn

[

p(O, θjm
t ;λ)

p(O;λ)

]

=
1

p(O;λ)
∇λkn

p(O, θjm
t ;λ) −

p(O, θjm
t ;λ)

p(O;λ)2
∇λkn

p(O;λ)

=
1

p(O;λ)
∇λkn

p(O, θjm
t ;λ) −

p(O, θjm
t ;λ)

p(O;λ)
∇λkn

ln p(O;λ)

=

[

T
∑

τ=1

P (θjm
t , θkn

τ |O;λ)∇λkn
ln p(oτ |θ

kn
τ ;λ)

]

−

[

P (θjm
t |O;λ)

T
∑

τ=1

P (θkn
τ |O;λ)∇λkn

ln p(oτ |θ
kn
τ ;λ)

]

=

T
∑

τ=1

D(θjm
t , θkn

τ |O;λ)∇λkn
ln p(oτ |θ

kn
τ ;λ) (A.11)

where

D(θjm
t , θkn

τ |O;λ) = P (θjm
t , θkn

τ |O;λ) − P (θjm
t |O;λ)P (θkn

τ |O;λ) (A.12)
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Given this posterior derivative, second-order derivatives of the HMM log-likelihood with

respect to the output distribution parameters, λjm and λkn, can be written as,

∇λkn
∇T

λjm
ln p(O;λ) = ∇λkn

[

T
∑

t=1

P (θjm
t |O;λ)∇T

λjm
ln p(ot|θ

jm
t ;λ)

]

=

T
∑

t=1

[

(

∇λkn
P (θjm

t |O;λ)
)

∇T
λjm

ln p(ot|θ
jm
t ;λ)

]

+

T
∑

t=1

[

P (θjm
t |O;λ)∇λkn

∇T
λjm

ln p(ot|θ
jm
t ;λ)

]

=
T
∑

t=1

T
∑

τ=1

D(θjm
t , θkn

τ |O;λ)
(

∇λkn
ln p(oτ |θ

kn
τ ;λ)

)(

∇λjm
ln p(ot|θ

jm
t ;λ)

)T

+

T
∑

t=1

[

P (θjm
t |O;λ)∇λkn

∇T
λjm

ln p(ot|θ
jm
t ;λ)

]

(A.13)

A.2.3 Derivatives for GMM output distributions

When the HMM state-dependent output distributions are defined by Gaussian mixture

models (the most common scenario), derivatives of the state/mixture-component Gaus-

sians can be written as,

∇µjm
lnN (ot|µjm,Σjm) = Σ−1

jm(ot − µjm) (A.14)

∇Σjm
lnN (ot|µjm,Σjm) =

1

2

[

−Σ−1
jm + Σ−1

jm(ot − µjm)(ot − µjm)TΣ−1
jm

]

(A.15)

First-order derivatives of an HMM with GMM output distributions are therefore written,

∇aij
ln p̂(O;λ) =

T
∑

t=1

P (θi
t−1, θ

j
t |O;λ)

aij
− P (θj

t−1|O;λ)

∇cjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)

cjm
− P (θj

t |O;λ)

∇µjm
ln p̂(O;λ) =

T
∑

t=1

P (θjm
t |O;λ)Σ−1

jm(ot − µjm)

∇Σjm
ln p̂(O;λ) =

1

2

T
∑

t=1

P (θjm
t |O;λ)

[

−Σ−1
jm + Σ−1

jm(ot − µjm)(ot − µjm)TΣ−1
jm

]
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Selected second-order derivatives are,

∇µkn
∇T

µjm
ln p̂(O;λ) = −δjkδmnP (θjm

t |O;λ)Σ−1
jm

+

T
∑

t=1

T
∑

τ=1

D(θjm
t , θkn

τ |O;λ)Σ−1
kn (oτ −µkn)(ot−µjn)TΣ−1

jm

∇ckn
∇T

cjm
ln p̂(O;λ) = −

T
∑

t=1

2δjkδmnP (θjm
t |O;λ)

cjmckn

+

T
∑

t=1

T
∑

τ=1

[

D(θjm
t , θkn

τ |O;λ)

cjmckn
−
D(θj

t , θ
kn
τ |O;λ)

ckn

−
D(θjm

t , θk
τ |O;λ)

cjm
+D(θj

t , θ
k
τ |O;λ)

]

where,

D(θjm
t , θkn

τ |O;λ) = P (θjm
t , θkn

τ |O;λ) − P (θjm
t |O;λ)P (θjm

τ |O;λ)

Derivatives with respect to the variances are similar to those for the means and so are

omitted. Cross derivatives are omitted for brevity.



B
HMM Forward-Backward and Viterbi Algorithms

B.1 The Forward-Backward algorithm

The Forward-Backward algorithm [7, 100] is an efficient dynamic programming algorithm

for calculating the posterior probabilities of the latent-states. The algorithm name refers

to the two passes through the data that are required: the first starting at time 1 and

working forwards in time, and the second starting a time T and working backwards in

time.

S
ta

te

Time
1 T

A

B

t

j

Figure B.1: A pictorial representation of the Forward-Backward algorithm

First consider the state/time diagram in figure B.1. As illustrated, the posterior prob-

ability, P (θj
t |O;λ), is calculated as the sum of the weights of the paths that pass through

the point (t, j), divided by the total weight of all possible paths. This can be written as,

P (θj
t |O;λ) =

p(O, θj
t ;λ)

p(O;λ)
=
αj(t)βj(t)

p(O;λ)
(B.1)

where αj(t) and βj(t) are known as the forward and backward probabilities, respectively.
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Pictorially, the forward and backward probabilities represent the total weight of all paths

in regions A and B in figure B.1. They are defined by the expressions,

αj(t) = p(o1, . . . ,ot, θ
j
t ;λ) (B.2)

βi(t) = p(ot+1, . . . ,oT |θ
i
t;λ) (B.3)

Using the HMM assumption that states are conditionally-independent given the previous

state, both αj(t) and βi(t) can be calculated recursively using the relations,

αj(t) =

[

N−1
∑

i=2

αi(t− 1)aij

]

bj(ot) (B.4)

βi(t) =

N−1
∑

j=2

aijbj(ot+1)βj(t+ 1) (B.5)

Initial conditions for these recursions are given by,

αj(1) =

{

1 if j = 1

a1jbj(o1) otherwise
(B.6)

βi(T ) = aiN (B.7)

where aij are the HMM transition probabilities and bj(ot) is the state-conditional output

distribution for the HMM state j. The observation sequence likelihood—the normalisation

term in equation (B.1)—can be calculated using the forward probability for time T .

B.2 The Viterbi algorithm

HMM inference is usually based upon the Viterbi algorithm. This is a computationally

efficient algorithm that approximates the observation sequence likelihood using the maxi-

mum likelihood state sequence. This is calculated using a modified version of the forward

probability in equations (B.4) and (B.6). The difference between the two algorithms is

that the Viterbi algorithm replaces the summation by the maximum operation. Partial

likelihoods are therefore calculated using the recursion,

φj(t) = max
i

[

αi(t− 1)aij

]

bj(ot) (B.8)

with initial conditions,

φj(1) =

{

1 if j = 1

a1jbj(o1) otherwise
(B.9)

for all j ∈ (1, N). It is easy to extend the Viterbi algorithm to the task of continuous

speech recognition using the token passing algorithm [140].
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B.3 The Double-Forward-Backward algorithm

Second-order statistics are more complex to calculate than their first-order equivalents

since they require joint posteriors of discontiguous states to be calculated. In this work, an

efficient extension of the standard Forward-Backward algorithm is proposed for calculating

these posteriors. This algorithm is discussed in more detail below.

S
ta

te

Time
t

j

k

τ

A

B

C

1 T

Figure B.2: A pictorial representation of the Double-Forward-Backward algorithm

Consider the state/time diagram in figure B.2. The joint posterior, P (θj
t , θ

k
τ |O;λ) is

calculated as the sum of the weights of the paths (marked in grey) that pass through the

points (t, j) and (τ, k), divided by the total weight of all possible paths. This calculation

may be written as,

P (θjm
t , θkn

τ |O;λ) =
αjm(t) p(ot+1, . . . ,oτ , θ

kn
τ |θjm

t ;λ)βkn(τ)

p(O;λ)
(B.10)

where αjm(t) and βkn(τ) are the standard forward and backward probabilities discussed

in the previous section. They calculate the total weight of all paths in the regions A and

B in figure B.2. The middle term, p(ot+1, . . . ,oτ , θτ = k|θt = j;λ) corresponds to region

C and represents the total weight of all paths that start in state θjm
t and end in state θkn

τ .

With varying start and end points, computational cost of this term scales quadratically

with the number of HMM states, mixture-components and sequence length.

Putting the pieces together, calculation of P (θjm
t , θkn

τ |O;λ) proceeds according to the

algorithm in figure B.3. Computational complexity of this algorithm is quadratic in the

number of HMM states, mixture-components and sequence length. Storage requirements

for the intermediate calculations vary linearly with these factors.
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# Initialisation

Calculate and cache forward and backward probabilities, αjm(t) and βjm(t)

# Perform Double-Forward-Backward

Foreach t = 1 → T

Foreach j = 1 → N , m = 1 →M

# Propagate paths that pass through state θjm(t)

# all other paths are ignored (probabilities zeroed)

Foreach k = 1 → N , n = 1 →M

Let γkn(t) = 0

End

Let γjm(t) = αjm(t)

# Perform forward pass, starting at state θjm(t),

ending in state θkn(τ)

Foreach τ = t+ 1 → T

Foreach k = 1 → N , n = 1 →M

Calculate new forward probability, γkn(τ) (section B.1)

Let P (θjm
t , θkn

τ |O;λ) = γkn(τ)βkn(τ)/p(O;λ)
End

End

End

End

Figure B.3: Double-Forward-Backward algorithm for calculating HMM joint-posterior prob-

abilities



C
Variable-Margin Support Vector Machines

Consider the standard soft-margin primal SVM objective function,

minimisew
1
2〈w,w〉 + C

n
∑

i=1

εi (C.1)

subject to yi

(

〈w,φLL(Oi;λ)〉 + b
)

≥ 1 − εi ∀i ∈ [1, n]

and εi ≥ 0 ∀i ∈ [1, n]

with the additional constraint,

w1 = 1 (C.2)

Splitting the terms that relate to the log-likelihood ratio of the base models from the

score-space, φLL(Oi;λ), and hyperplane gradient, w, allows them to be written as,

φLL(Oi;λ) =

[

φLLR(O;λ)

φLL′(O;λ)

]

w =

[

1

w′

]

(C.3)

where φLLR(O;λ) is a one-dimensional score-space containing only the log-likelihood ra-

tio of the base models, and φLL′(O;λ) is a score-space containing all other terms from

the augmented model score-space. Substituting these into the soft-margin constraint in

equation (C.1) yields the following variable-margin constraint,

yi

(

φLLR(Oi;λ) +
〈

w′,φLL′(Oi;λ)
〉

+ b
)

≥ 1 − εi

⇒ yi

(

〈

w′,φLL′(Oi;λ)
〉

+ b
)

≥ 1 − yiφ
LLR(Oi;λ) − εi (C.4)
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where the standard SVM margin is replaced by the variable-margin, 1 − yiφ
LLR(Oi;λ).

The primal objective function for the variable-margin SVM is thus given by,

minimisew′
1
2 〈w

′,w′〉 + C

n
∑

i=1

εi (C.5)

subject to yi

(

〈w′,φLL′(Oi;λ)〉 + b
)

≥ 1 − yiφ
LLR(Oi;λ) − εi ∀i ∈ [1, n]

and εi ≥ 0 ∀i ∈ [1, n]

This is a convex function of w′ with linear constraints. Using the method of Lagrange

multipliers, the optimisation in equation (C.5) can be expressed into its dual form. First,

construct the primal Lagrangian function,

Lprimal(w′, b, ε,αsvm,βsvm) = 1
2 〈w

′,w′〉 + C

n
∑

i=1

εi (C.6)

−
n
∑

i=1

αsvmi

[

yi

(

〈w′,φLL′(O;λ)〉 + b
)

− 1 + yiφ
LLR(Oi;λ) + εi

]

−
n
∑

i=1

βsvmi εi

where αsvmi ≥ 0 and βsvmi ≥ 0 are known as the Lagrange multipliers. The corresponding

dual objective is found by differentiating L(w ′, b, ε,αsvm,βsvm) with respect to W ′, b and

ε, and equating the resulting equations to zero [22],

∂L(w′, b, ε,αsvm,βsvm)

∂w′
= w′ −

n
∑

i=1

αsvmi yiφ
LL′(O;λ) = 0 (C.7)

∂L(w′, b, ε,αsvm,βsvm)

∂εi
= C − αsvmi − βsvmi = 0 (C.8)

∂L(w′, b, ε,αsvm,βsvm)

∂b
=

n
∑

i=1

αsvmi yi = 0 (C.9)

Rearranging equations (C.7)–(C.9) and substituting them into the Lagrangian in equation

(C.6) allows the dual Lagrangian to be written as,

Ldual(αsvm) = (C.10)

n
∑

i=1

αsvmi

(

1 − yiφ
LLR(Oi;λ)

)

−
1

2

n
∑

i=1

n
∑

j=1

αsvmi αsvmj yiyjK
LL′(Oi,Oj;λ)

where

KLL′(Oi,Oj ;λ) =
〈

φLL′(Oi;λ),φLL′(Oj ;λ)
〉

(C.11)

Since the primal problem required minimisation of the primal Lagrangian with respect to

w′ and b, the dual problem requires maximisation of the dual Lagrangian with respect

to the parameters αsvm. There are two constraints associated with this maximisation.
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The first, from equation (C.9), is that
∑

i=1 α
svm
i yi = 0. The second, arising from the

constraints αsvm
i ≥ 0 and βsvmi ≥ 0, coupled with the relationship in equation (C.8), is

that 0 ≤ αsvmi ≤ C. The dual objective function and constraints for variable-margin SVM

training are thus given by,

maximiseαsvm

n
∑

i=1

αsvmi

(

1 − yiφ
LLR(Oi;λ)

)

−
1

2

n
∑

i=1

n
∑

j=1

αsvmi αsvmj yiyjK
LL′(Oi,Oj ;λ)

subject to
n
∑

i=1

αsvmi yi = 0 (C.12)

and 0 ≤ αsvmi ≤ C



D
Code-Breaking Pairs

In chapter 8, code-breaking (section 6.4) was used for a number of LVCSR and TIMIT

experiments. This appendix gives information about the individual word/phone classifiers.

D.1 LVCSR word pairs

Table D.1 provides a breakdown of the pairs used to rescore the LVCSR task in section

8.2. The order of the word pairs is identical to the order in which they were used for

rescoring. For each data set, the number of occurrences of each word pair are given.

Table D.1: LVCSR rescoring pairs for eval02, eval03 and eval04.

Pair
Pair

# occurrences of word pair

# fsh2004sub eval02 eval03 eval04

1. CAN/CAN’T 7,522 159 156 75

2. YEAH/YOU 4,670 143 159 85

3. THE/TO 4,144 127 81 75

4. THEIR/THERE 1,318 59 72 49

5. YEAH/YES 3,848 170 213 107

6. KNOW/NOW 2,424 59 72 34

7. I/THAT 1,074 41 28 20

8. IS/WAS 1,498 56 42 25

9. BUT/THAT 3,308 135 114 71

10. A/THE 17,066 484 328 227

Total words rescored 60,941 1,433 1,265 768

Total words in data set – 65,236 76,157 36,781

Fraction of data rescored – 2.2% 1.7% 2.0%
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D.2 TIMIT phone pairs

Tables D.2 and D.3 give individual results for the ten phone pairs used to rescore the ML

and MMI baselines in section 8.3.1. The order of the phones in each table is identical

to the order in which the classifiers were used for rescoring. For each of the training,

development and core test sets, the following information is given:

• number of occurrences of phone-pair in data set;

• percentage error rate for a three-state, four-mixture-component HMM base model;

• percentage error rate for an augmented model with a three-state, four-mixture-

component HMM base model and sufficient statistics defined using derivatives with

respect to the means, variances and mixture-component priors.

Note that the rescoring results in section 8.3.1 cannot be derived from these numbers since

the baseline system being rescored is a three-state, ten-mixture-component system.

Table D.2: TIMIT rescoring pairs for ML baseline.

Training set Development set Core test set

Pair Pairs HMM Aug Pairs HMM Aug Pairs HMM Aug

(#) (%) (%) (#) (%) (%) (#) (%) (%)

1. er/r 5,332 21.5 10.2 1,943 24.5 17.3 317 25.2 14.8

2. m/n 3,230 20.1 9.4 1,198 20.9 14.8 195 26.7 20.0

3. s/z 5,398 20.1 10.1 2,329 24.1 17.1 397 21.9 16.4

4. n/ng 1,634 20.1 9.2 737 26.5 22.7 123 26.0 23.6

5. dx/n 1,072 13.4 6.1 317 17.7 14.2 54 25.9 24.1

6. l/w 2,068 15.4 6.7 830 18.8 13.4 128 25.0 16.4

7. iy/y 1,220 12.1 5.6 528 16.1 14.8 84 16.7 15.5

8. b/p 1,034 18.2 12.8 335 22.7 19.4 62 17.7 19.4

9. d/t 1,118 21.3 13.0 499 29.5 29.7 83 31.3 28.9

10. eh/ih 1,032 25.9 11.9 282 36.9 33.3 44 29.6 34.1
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Table D.3: TIMIT rescoring pairs for MMI baseline.

Training set Development set Core test set

Pair Pairs HMM Aug Pairs HMM Aug Pairs HMM Aug

(#) (%) (%) (#) (%) (%) (#) (%) (%)

1. m/n 3,264 20.9 9.1 1,206 23.0 15.7 204 22.1 15.7

2. ae/eh 1,558 25.4 11.6 516 33.3 27.1 70 41.4 32.9

3. b/p 994 17.5 11.0 333 23.7 21.9 60 18.3 23.3

4. s/z 5,298 19.9 10.0 2,323 24.0 17.6 391 20.7 15.4

5. er/r 4,964 22.1 10.3 1,807 25.0 18.5 298 26.5 17.8

6. ch/jh 702 16.4 6.6 240 22.9 25.0 44 34.1 34.1

7. d/t 1,262 22.2 13.0 513 29.6 28.3 86 27.9 25.6

8. eh/ih 956 26.8 13.3 280 36.4 33.9 55 34.6 29.1

9. ch/sh 522 9.0 3.6 267 12.0 9.0 50 14.0 12.0

10. n/ng 1,684 19.0 9.0 762 24.3 21.8 125 24.0 25.6
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ings of ECML-98, 10th European Conference on Machine Learning, pages 137–142,

Chemnitz, DE, 1998. Springer Verlag, Heidelburg.

[55] T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C. Burges

and A. Smola, editor, Advances in Kernel Methods - Support Vector Learning. MIT

Press, 1999.

[56] B.H. Juang, W. Chou, and C.H. Lee. Minimum classification error rate methods for

speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3):257–

265, May 1997.

[57] Z. Kaiser, B. Horvat, and Z. Kacic. A novel loss function for the overall risk crite-

rion based discriminative training of HMM models. In International Conference on

Spoken Language Processing, Beijing, China, October 2000.

[58] Z. Kaiser, B. Horvat, and Z. Kacic. Overall risk criterion estimation of hidden

Markov model parameters. Speech Communication, 38(3–4):383–398, 2002.

[59] S.M. Katz. Estimation of probabilities from sparse data for the language-model

component of a speech recogniser. IEEE Transactions on Acoustics, Speech and

Signal Processing, 35(3):400–411, March 1987.

[60] A. Kowalczyk. Maximum margin perceptron. In A.J. Smola, P.L. Bartlett,

B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers,

pages 75–113. MIT Press, 2000.

[61] A. Krogh, M. Brown, I.S. Mian, K. Sjölander, and D. Haussler. Hidden Markov
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