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Summary

In recent years, there has been a trend towards training large vocabulary continuous speech

recognition (LVCSR) systems on a large amount of found data. Found data is recorded from

spontaneous speech without careful control of the recording acoustic conditions, for example,

conversational telephone speech. Hence, it typically has greater variability in terms of speaker

and acoustic conditions than specially collected data. Thus, in addition to the desired speech

variability required to discriminate between words, it also includes various non-speech variabil-

ities, for example, the change of speakers or acoustic environments. The standard approach to

handle this type of data is to train hidden Markov models (HMMs) on the whole data set as if all

data comes from a single acoustic condition. This is referred to as multi-style training, for exam-

ple speaker-independent training. Effectively, the non-speech variabilities are ignored. Though

good performance has been obtained with multi-style systems, these systems account for all

variabilities. Improvement may be obtained if the two types of variabilities in the found data are

modelled separately. Adaptive training has been proposed for this purpose. In contrast to multi-

style training, a set of transforms is used to represent the non-speech variabilities. A canonical

model that models the desired speech variability is trained given this set of transforms. In recog-

nition, a test domain specific transform is estimated to adapt the canonical model to decode the

test data. Various forms of transform may be used in adaptive training. Linear transforms, for

example maximum likelihood linear regression (MLLR) and constrained MLLR (CMLLR), and

interpolation weight vectors, for example cluster adaptive training (CAT) and eigenvoices are

two widely used forms. Adaptive training and adaptation using the maximum likelihood (ML)

criterion have been previously investigated. This thesis will propose two extensions in the area

of adaptive training as described below.

Discriminative training is used in most state-of-the-art LVCSR systems. Discriminative criteria

are more closely related to the recognition error rate than the ML criterion. They were first

proposed for training multi-style systems. Recently, there has been research in applying these

criteria to adaptive training. Linear transform based discriminative adaptive training has been

previously studied. This work describes a new discriminative training technique for multiple-

cluster systems, discriminative cluster adaptive training. This technique allows rapid adaptation

to be performed on discriminatively trained systems. The minimum phone error (MPE) criterion

is used as the specific discriminative criterion. To optimise the MPE criterion, a weak-sense

auxiliary function is usually used. Due to the use of a multiple-cluster model in CAT, there are

a number of differences in the weak-sense auxiliary function compared to the standard one.

In particular, there are more choices of the prior in the I-smoothing distribution, which may

significantly affect the recognition performance. In addition to the discriminative update of

the multiple-cluster canonical model, MPE training for interpolation weights is also presented.

The discriminative CAT technique can be extended to a more complex discriminative adaptive

training with structured transforms (ST), in which CMLLR transforms are combined with CAT

interpolation weights.
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The second contribution of this thesis is to provide a Bayesian framework for adaptive train-

ing and adaptive inference. This framework addresses a number of limitations of the standard

adaptive training. In particular, the issue that the canonical model can not be directly used for

recognition due to the unavailability of target domain specific transform is addressed. From a

Bayesian perspective, the two sets of parameters, the canonical model and the transform, are

regarded as random variables and marginalised out to calculate the likelihood of the data. Dur-

ing training, two prior distributions, one for the canonical model and one for the transform, are

trained. In this work, an ML estimate for the canonical model is used. This may be justified

within the Bayesian framework by controlling the model complexity to reflect the amount of

training data. In contrast, the transform prior distribution is a non-point distribution. Adaptive

inference can then be performed directly using the adaptively trained model by integrating out

over the transform prior distribution. However, as this marginalisation integral is intractable,

approximations are required. Various marginalisation approximations, lower bound based or

direct approximations, are discussed, including a new variational Bayes (VB) approach. By us-

ing an appropriate approximation approach, the issue of handling limited adaptation data is

effectively addressed. Both batch and incremental modes of Bayesian adaptive inference are

discussed in this work. These approaches are then applied to adaptively trained systems us-

ing either interpolation weights (CAT) or mean based linear transforms. The extension of the

Bayesian framework to discriminative criteria is also discussed in this work.

The above two contributions were evaluated on a conversational telephone speech (CTS)

task. For the experiments with discriminative adaptive systems, the form of discriminative adap-

tive training adopted in this work is to discriminatively update the canonical model given a

set of ML estimated transforms. Experiments to investigate discriminative adaptive training

showed that the MPE-CAT system outperformed the MPE gender-dependent system and the

MPE-ST system outperformed all the other adaptively trained MPE systems. Experiments con-

cerning Bayesian adaptive training and inference illustrated that adaptively trained systems can

obtain significant gains over non-adaptively trained systems. By using a non-point transform

distribution, the VB approximation significantly outperformed other approximation approaches

with very limited adaptation data. As more data becomes available, the performance of the VB

approach and the maximum a posteriori (MAP) approach became closer to each other. Both

methods obtained significant gains over the standard ML approaches.
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Table of Notations

General Notation:
s a scalar is denoted by a plain lowercase letter

v a column vector is denoted by a bold lowercase letter

X a matrix is denoted by a bold uppercase letter

F(·) training criterion

Q(·; ·) auxiliary function of the parameters to estimate given the current estimates

Mathematical Notation:
p(·) probability density function

p(·|·) conditional probability density

P (·) probability mass distribution

P (·|·) conditional probability mass distribution

{·}T transpose of a vector or a matrix

| · | determinant of a square matrix

{·}−1 inverse of a square matrix

diag(·) diagonal vector of a square matrix

tr(·) trace of a square matrix

KL(·||·) Kullback Leibler (KL) distance between two distributions

H(·) Entropy of a distribution

< f(x) >g(x) expectation of f(x) with respect to g(x)

Standard HMM Notation:
M parameter set of HMMs

H word (transcription or hypothesis) sequence

O observation sequence O = [o1, · · · ,oT ], ot is the observation vector at time t

ω state sequence, ω = [ω1, · · · , ωT ], ωt is the state at time t

aij discrete state transition probability from state i to j

bj(o) state output distribution given state j

θ Gaussian component sequence θ = [θ1, · · · , θT ], θt is the Gaussian comp. at time t

m index of a distinct Gaussian component

µ(m) mean vector of the mth Gaussian component

Σ(m) covariance matrix of the mth Gaussian component

γm(t) posterior probability of θt being m given observation and hypothesis sequence
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Adaptive Training Notation:
s index of a homogeneous data block associated with a distinct acoustic condition

O a set of observation sequences O = {O(1), · · · ,O(S)}, O(s) is the observation se-

quence for homogeneous data block s

H a set of hypothesis sequences H = {H(1), · · · ,H(S)}, H(s) is the hypothesis sequence

for homogeneous data block s

T a set of transforms T = {T (1), · · · , T (S)}, T (s) is the transform for acoustic cond. s

µ̂(sm) adapted mean vector of Gaussian component m for acoustic condition s

rm regression base class that Gaussian component m belongs to

A square linear transform

b bias vector

W extended linear transform, W = [A b]

ξ(m) extended mean vector of Gaussian component m, ξ(m) = [µ(m)T 1]T

ζt extended observation vector at time t, ζt = [oT
t 1]T

λ interpolation weight vector

M(m) cluster means of Gaussian component m, M(m) = [µ
(m)
1 , . . . , µ

(m)
P ]

Discriminative Adaptive Training Notation:
Γ sufficient statistics

G(·;Γ) auxiliary function expressed in terms of statistics

S(·; ·) smoothing function of the parameters to update given the current estimate

Dm component-specific smoothing constant to control convergence

µ̂
(m)
c current estimate of mean vector of Gaussian component m

Σ̂
(m)
c current estimate of covariance matrix of Gaussian component m

τ I constant to control impact of the I-smoothing distribution

µ̃(sm) prior mean vector of Gaussian component m for acoustic condition s

Σ̃(sm) prior covariance matrix of Gaussian component m for acoustic condition s

Bayesian Adaptive Training Notation:
L(·) lower bound

q(·) variational distribution

p̄(·) predictive distribution

p̃(·) pseudo-distribution

Z normalisation term

u utterance index

O1:u observation sequence from the 1st to the uth utterance

H1:u hypothesis sequence from the 1st to the uth utterance
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1

Introduction

Speech is one of the most important ways for humans to communicate with each other and

acquire information. Using machines to extend people’s ability to process speech has been a

research topic since the invention of the telephone in the late 19th century. Among speech pro-

cessing problems, automatic speech recognition (ASR), the task of converting recorded speech

waveforms automatically to text, is one of the most challenging tasks. Research on ASR pro-

gressed slowly in the early 20th century. In contrast to the development of the first speech

synthesisor in 1936 by AT&T, the first automatic speech recogniser, a simple digit recogniser,

appeared in 1952 [17]. In 1969, John Pierce of Bell Labs said that ASR will not be a reality

for several decades. However, the 1970s witnessed a significant theoretical breakthrough in

speech recognition: hidden Markov models (HMMs) [7, 61]. In the following decades, HMMs

were extensively investigated and became the most successful technique for acoustic modelling

in speech recognition. The fast development of computer hardware and algorithms of discrete

signal processing in the 1960s and 1970s also greatly stimulated interest in building ASR sys-

tems.

With the introduction and further development of the theory of HMMs and dramatically in-

creased computing power, significant progress for ASR has been achieved. Continuous speech

recognition gradually became the main research interest after simple connected and isolated

word recognition was dealt with well. From 1988, two U.S. government institutions, the Na-

tional Institute of Standards and Technology (NIST) and the Defense Advanced Research Project

Agency (DARPA), jointly organized a world-wide evaluation on continuous speech recognition

every year. This evaluation proved significant in pushing ahead the research of ASR and setting

many milestones in speech recognition1. The size of the recognition vocabulary increased from

900 words in the Resource Management task (1988-1992) to 20000 in the Wall Street Jour-

nal (WSJ) task (1993-1995, time-unlimited evaluation). A recognition system with a vocabulary

size of the order of the WSJ task is often referred to as large vocabulary continuous speech recogni-

tion (LVCSR) system. However, now the recognition vocabulary size of a state-of-the-art LVCSR

system has increased to over 65000 words. Besides the vocabulary size, the difficulty of the

1For more detailed history, refer to http://www.nist.gov/speech/history/index.htm.

1



CHAPTER 1. INTRODUCTION 2

evaluation task has also been increased in other aspects, which approximates a more realistic

and practical recognition problem. For example, the acoustic environment of the evaluation

data changed from a clean to a noisy environment. Found speech was used as the primary task

instead of dictated speech from 1996 when the broadcast news (BN) task was set up. More nat-

ural and spontaneous speech with severe signal degradation, conversational telephone speech

(CTS), has been introduced to the evaluation since 1998. Up to now, the state-of-the-art ASR

systems are built for spontaneous natural continuous large vocabulary speech. This type of task

is the target application domain of the techniques investigated in this thesis.

As the speech recognition tasks become more and more difficult, many challenging technical

problems on acoustic modelling emerge. One of the main challenges is the diverse acoustic con-

ditions of the recorded speech data. For example, different speakers exist and speech might be

recorded in different acoustic environments or with different channel conditions. Though these

acoustic conditions do not reflect what words people speak, the additional non-speech varia-

tions introduce more confusion during ASR and may significantly degrade the performance. This

problem happened when using an acoustic model to recognise the test data with mismatched

acoustic conditions from the training data. Adaptation techniques were proposed to solve this

problem by normalising features of the test data or tuning the model parameters towards the

testing domain. In recent years, building an ASR system on found training data has become

more and more popular. This type of training data, for example BN or CTS, is normally non-

homogeneous. To deal with the acoustic mismatch inside training data and build a compact

system on non-homogeneous data, adaptive training techniques are widely used. The basic idea

is to separately model the speech variabilities and the non-speech variabilities and to use adapta-

tion in both the training and recognition processes. This thesis will investigate adaptive training

techniques for LVCSR systems.

1.1 Speech Recognition System

The aim of a speech recognition system is to produce a word sequence (or possibly character

sequence for languages like Mandarin) given a speech waveform. The basic structure of an ASR

system is shown in figure 1.1.

The first stage of speech recognition is to compress the speech signals into streams of acous-

tic feature vectors, referred to as observations. The extracted observation vectors are assumed to

contain sufficient information and be compact enough for efficient recognition. This process is

known as the front-end processing or feature extraction. Given the observation sequence, gener-

ally three main sources of information are required to recognise, or infer, the most likely word

sequence: the lexicon, language model and acoustic model. The lexicon, sometimes referred to as

the dictionary, is normally used in LVCSR system to map sub-word units, from which the acous-

tic models are constructed, to the actual words present in the vocabulary and language model.

The language model represents the local syntactic and semantic information of the uttered sen-

tences. It contains information about the possibility of each word sequence. The acoustic model
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Figure 1.1 General structure of an automatic speech recognition system

maps the acoustic observations to the sub-word units. A detailed introduction to various sources

in figure 1.1 will be given in chapter 2.

Statistical approaches are the most popular recognition algorithms to hypothesise the word

sequence given the above information. Within a statistical framework, the general decision

criterion to find the most likely word sequence Ĥ for the observation sequence O = [o1, · · · ,oT ]

is the Bayesian decision rule

Ĥ = arg max
H

P (H|O) (1.1)

By applying Bayes rule and considering that the most likely word sequence is independent of

the marginal likelihood of the observations p(O), the decision rule can be re-expressed as

Ĥ = arg max
H

{

p(O|H)P (H)

p(O)

}

= arg max
H

p(O|H)P (H) (1.2)

where P (H) is the prior probability of a particular word sequence given by a language model.

p(O|H) is calculated using the acoustic model. Hidden Markov models (HMMs) are the most

popular and successful acoustic models to date. The adaptive training of systems using HMMs

on non-homogeneous data are the focus of this thesis.

1.2 Adaptation and Adaptive Training

HMMs, used as the statistical models for the speech variabilities, have achieved great success

in speech recognition. They are trained on observation sequences converted from speech wave-

forms. Ideally, the extracted features should represent only the speech variability, which is in-

herent to the acoustic realisation of the uttered words, so that HMMs independent of acoustic

figure/asrsys.eps
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conditions may be trained. However, the ideal feature extraction approach does not exist. Vari-

abilities coming from the acoustic conditions during recording, such as speaker, acoustic envi-

ronment or telephone channels, also affect the acoustic features extracted. As these variabilities

do not reflect the inherent variability of the uttered words, they are referred to as non-speech

variabilities. Therefore, HMMs trained on standard features reflect both speech variabilities and

non-speech variabilities of the acoustic conditions. It has been found that improved recognition

performance can be obtained on a particular test domain if the model used for recognition is

trained on the training data with the same acoustic conditions. Speaker dependent (SD) models

are a good illustration. SD models can reduce the average word error rate (WER) by a factor of

two or three compared to a speaker independent (SI) system when both systems use the same

amount of training data [126].

Unfortunately, in real world situations, it is often impossible to collect sufficient training

data to build HMMs system with the same acoustic conditions as the test data. Consequently,

the acoustic mismatch between the training and test data may significantly degrade the per-

formance. Adaptation techniques have been proposed to solve this problem. The basic idea is

to compensate for the mismatch between training and test conditions by modifying the model

parameters based on some adaptation data or by enhancing the corrupted features of test data.

Adaptation techniques were first used for reducing mismatch between speakers. These tech-

niques have also been applied to deal with other acoustic factors, such as environmental noise.

Though adaptation techniques have achieved great success in robust speaker adaptation, the

model that is adapted may limit the possible gains that adaptation can yield. Usually, the model

is trained on carefully collected training data, where all data come from the same source. In re-

cent years, to increase the amount of training data, there has been a trend towards using found

training data to build models. Found data refers to the data recorded from natural speech with-

out careful control of acoustic conditions. Hence, this type of data is normally non-homogeneous

in terms of acoustic conditions and typically has more non-speech variabilities than carefully col-

lected data. Though a model can be built on the whole dataset as if all data come from a single

consistent source, the resultant model will account for various redundant non-speech variabili-

ties and this may be less amenable to be adapted to a particular test domain. Adaptive training

is a powerful approach for building a compact model on non-homogeneous training data. The

basic concept is to train a set of transformations which represent all non-speech variabilities.

Then a canonical model that represents “pure” speech variabilities is trained given the set of

transformations. During recognition, adaptation is required to tune the canonical model to a

particular test domain.

Depending on the form of transformations used, adaptation and adaptive training techniques

can be split into two broad classes. Feature normalisation schemes normalise the corrupted fea-

tures of both training and test dataset. Adaptive training simply requires estimating the canon-

ical model given the normalised features. In recognition, the features of the test data are also

normalised. The transforms used in feature normalisation are global for all model parame-

ters. They are normally not dependent on the hypothesis of the test data and just dependent
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on the observations, hence are easy to implement. Commonly used normalisation approaches

include Cepstral mean normalisation (CMN), Cepstral variance normalisation (CVN) and vocal

tract length normalisation (VTLN). Model based transforms transform the model parameters, nor-

mally the mean vectors and covariance matrices of the Gaussian components. During adaptive

training, a canonical model is built given a set of transforms, in which each one represents a

particular acoustic condition. This model is then adapted by the test domain specific transforms

and used for recognition. Widely used techniques include maximum likelihood linear regression

(MLLR), cluster adaptive training (CAT) and constrained MLLR (CMLLR).

Model based transforms are more powerful than feature normalisation because different

transforms may be associated with different groups of Gaussians. The hypothesis of the test

data is normally used when estimating these transforms. Model based transforms are the focus

of this work. Traditionally, the transforms used in adaptive training and adaptation are estimated

using the ML criterion. With the ML interpretation, there is a limitation of the adaptive training

and adaptation framework that the canonical model can not be directly used in unsupervised

adaptation. As the canonical model is the only output of the training stage and represents only

speech variability, test domain specific transforms are required for recognition. The standard

approach to handle this is to use another model, such as speaker-independent model, to gener-

ate initial hypothesis and then estimate the transforms given this hypothesis. Furthermore, ML

estimate of transforms is not robust for limited adaptation data and may significantly degrade

recognition performance. This work proposes a consistent Bayesian framework for adaptive

training and adaptive inference to solve these problems [139]. Within this framework, a trans-

form prior distribution is produced during adaptive training. This framework also allows the

canonical model to be directly used in unsupervised adaptation by marginalising over the trans-

form prior distribution. As the marginalisation integral in Bayesian adaptive inference is not

tractable, approximations are required. Various Bayesian approximation approaches, including

a new variational Bayes (VB) approximation, are discussed in detail. The robustness issue is

effectively addressed by using full Bayesian approaches as shown in the experiments.

In most state-of-the-art systems, discriminative training is used to obtain the best performance

[6, 64, 93]. It takes into account the competing incorrect hypothesis during training and aims

at directly reducing the recognition error. Discriminative training has been investigated within

the linear transform based adaptive training framework [110, 60, 119]. An alternative to linear

transform based adaptive training is cluster adaptive training (CAT), in which the “transforms”

used are the interpolation weight vectors. This work will propose a new discriminative adaptive

training scheme based on CAT [140]. Due to the small number of parameters of interpolation

weights, this discriminative CAT approach can be effectively used for rapid adaptation.

1.3 Thesis Structure

This thesis is structured as follows.

Chapter 2 reviews the fundamental issues of speech recognition including feature extraction,
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HMMs training and recognition with HMMs. The standard maximum likelihood (ML) training

of HMMs is discussed after an introduction to the concept of HMMs. Discriminative training and

Bayesian training of HMMs are also reviewed. Finally, recognition issues, including language

modelling and search algorithm are discussed.

Chapter 3 describes the standard adaptation and adaptive training techniques. The ho-

mogeneity assumption and the operating modes are described first. Widely used adaptation

schemes, including maximum a posteriori (MAP) and maximum likelihood linear regression

(MLLR) are then reviewed. Regression classes and extensions of standard schemes are discussed

in the same section. The next section describes the framework of adaptive training and reviews

feature normalisation schemes. As the most powerful adaptive training techniques, model based

schemes are discussed in detail in section 3.3.2.2. These schemes include speaker adaptive train-

ing (SAT) with MLLR or constrained MLLR and cluster adaptive training (CAT). More complex

adaptive training techniques, in which structured transforms are used to model multiple acoustic

factors, are presented at the end of this chapter.

Chapter 4 addresses discriminative adaptive training techniques. The MLLR and constrained

MLLR based discriminative adaptive training are reviewed first. An introduction to a simplified

discriminative adaptive training procedure is included in the review. This chapter presents a new

discriminative cluster adaptive training technique. Update formulae for both multiple-cluster

canonical model and interpolation weights are given. Practical issues such as the selection of

I-smoothing prior and smoothing constant are also discussed in detail. Then, discriminative

adaptive training with structured transforms is discussed.

Chapter 5 describes a consistent Bayesian framework for adaptive training and adaptive

inference. The framework is first discussed with likelihood criterion. Then it is extended to dis-

criminative criteria. The next section introduces the approximation schemes that may be used

in Bayesian adaptive inference. They include a sampling approach, frame-independent assump-

tion, ML or MAP estimates and a new variational Bayesian approximation. The investigation

of an incremental mode of Bayesian adaptive inference then follows. The proposed Bayesian

adaptive inference techniques are applied to CAT and SAT with MLLR, which is detailed in sec-

tion 5.5.

Chapter 6 and 7 present experimental results for discriminative adaptive training and Bayesian

adaptive inference respectively. The development of discriminative cluster adaptive training and

comparisons between various discriminative adaptive training techniques are given in chapter 6.

Results of Bayesian adaptive inference on very limited adaptation data and incremental Bayesian

adaptive inference are included in chapter 7. The conclusions and suggestions for the direction

of future work of are summarised in the final chapter.



2

Acoustic Modelling in Speech Recognition

This chapter gives an introduction to speech recognition systems using hidden Markov models

(HMMs) as the acoustic model. Various aspects of the system depicted in figure 1.1 are described

in this chapter, including front-end processing or parameterisation of speech signals, the use

of HMMs for acoustic modelling, the selection of recognition units, the search algorithms and

the language model used in recognition. In particular, the training algorithms of HMMs are

discussed in detail. Besides standard maximum likelihood (ML) training, discriminative training

and Bayesian training of HMMs are also reviewed.

2.1 Front-end Processing of Speech Signals

The raw form of speech recorded is a continuous speech waveform. To effectively perform

speech recognition, the speech waveform is normally converted into a sequence of time-discrete

parametric vectors. These parametric vectors are assumed to give exact and compact represen-

tation of speech variabilities. These parametric vectors are often referred to as feature vectors or

observations.

There are two widely used feature extraction schemes: Mel-frequency Cepstral coefficients

(MFCC) [18] and perceptual linear prediction (PLP) [53]. Both schemes are based on Cepstral

analysis. The initial frequency analysis of the two schemes are the same. First, the speech signal

is split into discrete segments usually with 10ms shifting rate and 25ms window length. This

reflects the short-term stationary property of speech signals [95]. These discrete segments are

often referred to as frames. A feature vector will be extracted for each frame. A pre-emphasising

technique is normally used during the feature extraction, where overlapping window functions,

such as Hamming or Hanning windows are used to smooth the signals. Using a window func-

tion reduces the boundary effect in signal processing. A fast Fourier transform (FFT) is then

performed on the time-domain speech signals of each frame, generating the complex frequency

domains. Having obtained the frequency domain for each frame, different procedures are used

to obtain MFCC or PLP features. The difference lies in the frequency warping methods and the

Cepstral representation. Details are given below.

7
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• Mel-frequency Cepstral coefficients (MFCC) [18]

1. Mel-frequency warping

The frequency is warped using the Mel-frequency scale, which means the frequency

axis is scaled. As the magnitude of each FFT complex value will be used to extract

MFCC features, this process results in a scaled magnitude-frequency domain.

2. Down-sampling using triangular filter bank

A bank of triangular filters is used to down-sample the scaled magnitude-frequency

domain1. During this process, the magnitude coefficients are multiplied by corre-

sponding filter gains and the results are accumulated as the amplitude value. Hence,

each filter is associated with one amplitude value. Logarithm of the amplitude values

are then calculated.

3. Discrete Cosine transform (DCT) to get Cepstral coefficients:

A DCT is then performed on the log-amplitude domain. This aims to reduce the

spatial correlation between filter bank amplitudes. The resultant DCT coefficients

are referred to as Cepstral coefficients, also MFCC coefficients. For the systems in

this work, 12 coefficients plus a normalised log energy, or the zeroth order Cepstral

coefficient are used. These coefficients form a 13-dimensional acoustic feature vector

for each frame.

• Perceptual linear prediction (PLP) [53]

1. Bark-frequency warping

The frequency is warped using the Bark-frequency scale. As the power spectrum

value, the square of the magnitude, will be used to extract PLP features, this process

results in a scaled power spectrum.

2. Down-sampling and post-processing

The power spectrum is convolved with a number of critical band filters to get down-

sampled values. These values are then scaled by using the curve of equal-loudness

and intensity-loudness power law. The resultant down-sampled and post-processed

spectrum is output to the next step.

The above is the standard PLP feature extraction scheme. The PLP features can also

be extracted based on Mel-frequency filter bank, referred to as MF-PLP [127]. The Mel

filter bank coefficients are weighted by the equal-loudness curve and then compressed

by taking the cubic root [133]. The resultant spectrum is output to the next step. This

is the type of PLP features used in this work.

3. Linear prediction (LP) analysis

1In practice, the warping is normally done by changing the center frequency and bandwidth of the triangular

filters.
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The above spectrum is converted to an auto-correlation sequence in the time domain.

The LP coefficients are then calculated on that sequence. Normally, 12 coefficients

are computed.

4. Cepstral coefficients calculation

Given the LP coefficients, the Cepstral coefficients, i.e. the inverse FFT of the log

magnitude of the spectrum of the LP coefficients, are calculated. These coefficients

are referred to as PLP coefficients. Similar to MFCC, 12 PLP coefficients plus the

normalised log energy, referred to as C0, are normally used forming a 13-dimensional

vector.

When using hidden Markov models (HMMs) as the acoustic model, which will be introduced

in the next section, there is a fundamental assumption that the observations are conditionally

independent. This requires removal of the temporal correlation of speech signals. Dynamic

coefficients may be incorporated into the feature vector to reduce the temporal correlation [28].

These dynamic coefficients represent the correlation between static feature vectors of different

time instances. One common form is the delta coefficient , ∆ot, which is calculated as a linear

regression over a number of frames

∆ot =

∑K
k=1 k(ot+k − ot−k)

2
∑K

k=1 k2
(2.1)

where k is the regression parameter, K is the width over which the dynamic coefficients are

calculated and the actual window size is 2K + 1 accordingly. The second-order dynamic coeffi-

cients, delta-delta coefficient, ∆2ot, may also be calculated using a version of equation (2.1) in

which the static parameters are replaced by the first-order delta coefficients. The first and sec-

ond order dynamic coefficients are then appended to the standard static features, constructing

a 39-dimensional acoustic feature vector, which is used in this work.

A disadvantage of introducing dynamic coefficients is that it leads to correlation between

different dimensions of the feature vectors. Note, even for the static part, there still exists some

correlation between low and high order Cepstral coefficients [77]. The correlation may decrease

the discrimination ability of the features. To deal with this problem, linear projection schemes

are normally used. In these schemes, feature vectors in both training and recognition are nor-

malised using the same linear transforms so that the original acoustic space is projected to one or

more uncorrelated sub-spaces. Linear discriminant analysis (LDA) [27, 12] and Heteroscedastic

linear discriminant analysis (HLDA) [70] are widely used linear projection schemes. The HLDA

transform is used as the linear projection scheme for the LVCSR systems in this work.

2.2 Hidden Markov Models

The previous section introduced how to extract an observation sequence, i.e. a series of feature

vectors, from the raw speech waveforms. This section will discuss the acoustic model, which
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gives a probabilistic mapping between an observation sequence and a given word sequence.

Hidden Markov models (HMMs) are the most successful and popular statistical acoustic models

in speech recognition. Since the technique was first introduced in 1970’s, it has rapidly become

the dominant form of acoustic modelling and has been applied to all kinds of speech recogni-

tion tasks [7, 61]. This is partly because of the existence of efficient parameters training and

recognition algorithms for HMMs. This section will discuss the basic concept of HMMs.

2.2.1 HMMs as Acoustic Models

A hidden Markov model (HMM) is a statistical generative model. It is very popular and successful

in speech recognition. In HMM based speech recognition, the speech observations of a particular

acoustic unit, such as a word or a phone, are assumed to be generated by a finite state machine.

The state changes at each time unit with a certain probability. At each time instance, when a

state is entered, an observation is generated from some probability function. The use of HMMs

is dependent on a number of assumptions:

• Quasi-stationary: Speech signals may be split into short segments corresponding to the

hidden states, in which the waveform is considered to be stationary and feature vectors

can be extracted. The transitions between these states are assumed to be instantaneous.

• Conditional independence: Each observation is assumed to be generated with a certain

probability associated with a hidden state. This means the observation is only dependent

on the current state and is conditionally independent of both the previous and the follow-

ing observations, given the state.

Neither of the two assumptions is true for real speech. Much research has been carried out to

compensate the effect of the poor assumptions or to find alternative models for speech. However,

the standard HMM is still a successful acoustic modelling technique and is widely used in most

speech recognition systems.

A left-to-right HMM with three emitting states is shown in figure 2.1. This is the typical

topology of HMMs used in speech recognition, though the number of states may vary.

Let O be a sequence of observed speech feature vectors corresponding to the HMM of a

particular acoustic unit, for example a word or a phone. It is defined as O = [o1, · · · ,oT ] where

ot, 1 ≤ t ≤ T , is a D dimensional feature vector, T is the the length of the speech sequence.

These observations are assumed to be generated one by one by the 3 emitting states in figure 2.1.

The generation process starts from the first non-emitting state. At each time instance, the state

transits with a certain probability to either itself or the contiguous right state. The transition

probability is a discrete distribution denoted as aij for transition from state i to state j. When

an emitting state is entered, an observation is generated at that time instance with a probability

density bj(ot) for state j, which can be either discrete or continuous. Therefore, the observation

sequence is associated with a state sequence, denoted as ω = [ω1, · · · , ωT ]. Note that the entry
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Figure 2.1 A left-to-right HMM with three emitting states

and exit states of the HMM in figure 2.1 are non-emitting, i.e. no observations are generated

by the two states. This is for construction of composite HMMs and will be discussed later. In

practice, only the observation sequence O can be observed and the underlying state sequence

ω is hidden. This is why the model is named hidden Markov model. The observation sequence

and the hidden state sequence are sometimes put together as {O, ω} and referred to as complete

data set. To sum up, the parameter set M of an HMM includes the following parameters:

• π - Initial state distribution

Letting ωt denote the state at time t, the initial state distribution of state i is expressed as

πi = P (ω1 = i) (2.2)

Being a distribution, it must satisfy

N
∑

i=1

πi = 1 πi ≥ 0 (2.3)

where N is the total number of states. From equation (2.3), by introducing the non-

emitting entry state and having a standard left-to-right topology, the initial state distribu-

tion of the first state is always 1.

• A - State transition probability matrix

The element of state transition probability matrix A is defined as

aij = P (ωt+1 = j|ωt = i) (2.4)

As the HMMs used in speech recognition are normally constrained to be left-to-right, the

matrix is not necessarily full. Given the definition of A, the elements must satisfy

N
∑

j=1

aij = 1 aij ≥ 0 (2.5)

figure/hmm.eps
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• B - State output probability distributions

Each emitting state j is associated with one output probability distribution which generates

an observation at each time instance. The distribution is defined as

bj(ot) = p(ot|ωt = j) (2.6)

According to different types of the state output distribution, there are two kinds of HMM.

If bj(ot) is a discrete distribution, the model is called discrete HMM (DHMM). Alterna-

tively, if bj(ot) is a continuous density, the model is referred to as continuous density HMM

(CDHMM). CDHMMs are the focus in this thesis.

In considering the use of HMMs in speech recognition, there are three main issues need to

be discussed: likelihood calculation with HMMs, training HMM parameters and inference or

recognition using HMMs. These issues will be addressed in the following sections.

2.2.2 Likelihood Calculation with HMMs

Likelihood calculation is a basic issue to be addressed when using HMMs. Its aim is to calculate

the likelihood of a particular observation sequence given the hypothesis associated with it and

a set of HMMs. As shown in figure 2.1, the observation sequence O = [o1, · · · ,oT ] is generated

by the HMM moving through a state sequence ω = [ω1, · · · , ωT ]. As ω is hidden, the required

likelihood is computed as an expectation over all possible state sequences ω associated with the

hypothesis H

p(O|H,M) =
∑

ω

p(O, ω|H,M) =
∑

ω

P (ω|H,M)p(O|ω,M)

=
∑

ω

aω0ω1

∏

t

aωt−1ωtbωt(ot) (2.7)

where M = {π, A, B} is the set of model parameters including aij and the parameters of bj(ot).

The initial transition probability from a non-emitting start state ω0 to the first emitting state ω1,

aω0ω1 , is always 1.

The above only considers a single HMM. For continuous speech recognition or where sub-

word acoustic units are used, the observation sequence is associated with a model sequence.

The exact time boundaries between individual words, or sub-words units, are not known. In this

case, a series of HMMs are connected together to form the model sequence. This is an extension

to a single HMM, which is done by linking individual HMMs to form a composite HMM, as shown

in figure 2.2.

The non-emitting exit state of model A and the entry state of model B are removed and

replaced by a connecting link. The transition probability of the connecting link is the same as

the transition probability from the last emitting state to the former non-emitting exit state of

model A. The entry state of the composite HMM is the entry state of model A and the exit state



CHAPTER 2. ACOUSTIC MODELLING IN SPEECH RECOGNITION 13

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

	
	
	
	
	
	
	














���
���
���
���
���
���
���

���
���
���
���
���
���
















�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

MODEL A MODEL B

Composite Entry State Composite Exit State

Connecting Link

Figure 2.2 A composite HMM constructed from two individual HMMs

is that of model B. The set of possible state sequences is now the set of all state paths of this

composite HMM AB.

To calculate the likelihood in equation (2.7), the form of the state output distribution bj(ot)

needs to be known. In the majority of CDHMMs, a multivariate Gaussian mixture model (GMM)

is used as the density function

bj(ot) =

Mj
∑

m=1

cjmN
(

ot; µ
(jm),Σ(jm)

)

(2.8)

where Mj is the number of mixture components for state j, cjm is the weight of component m

of state j, which satisfy a sum to one constraint to ensure bj(ot) is a valid distribution. Each

individual component is a multivariate Gaussian distribution

N (o; µ,Σ) = (2π)−
D
2 |Σ|−

1
2 exp

{

−
1

2
(o − µ)T

Σ−1 (o − µ)

}

(2.9)

where D is the dimension of feature vector, µ is the mean vector, and the covariance matrix

Σ is normally assumed to be diagonal. The use of a diagonal covariance matrix may give poor

modelling of correlation between different dimensions. Hence, many complicated covariance

modelling techniques have been investigated [35, 5]. However, diagonal covariance matrices

are still widely used because of the low computational cost and their successful use in state-of-

the-art LVCSR systems. In this thesis, only diagonal covariance matrices are considered2.

2.3 Maximum Likelihood Training of HMMs

The second important issue of HMMs is the estimation of the HMM parameters. Maximum like-

lihood (ML) training is the most widely used approach of learning HMM parameters because an

2As HLDA transform is also used to de-correlate different dimensions of the raw features in this work, the diagonal

Gaussian covariance assumption is reasonable.

figure/compositehmm.eps
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efficient training algorithm can be derived in ML training. The aim is to find the model param-

eters that maximise the likelihood of the observation sequence given the correct transcriptions

and the model parameters.

M̂ML = arg max
M

p(O|H,M) = arg max
M

log p(O|H,M) (2.10)

where H is the correct transcription and M is the HMM parameter set. Due to the existence

of hidden variables in HMMs, direct optimisation of equation (2.10) with respect to M is non-

trivial. One solution for this type of optimisation is the expectation maximisation (EM) algo-

rithm [21].

2.3.1 Expectation Maximization (EM) Algorithm

The expectation maximisation (EM)algorithm is widely used for optimisation of statistical mod-

els with hidden variables [21]. The basic idea of the algorithm is to introduce a lower bound for

the log-likelihood and iteratively update the model parameters to increase the bound and con-

sequently increase the log-likelihood. For HMMs, the state is regarded as the hidden variable.

A variational distribution of the hidden state sequence, q(ω), may be introduced to construct a

lower bound. Applying Jensen’s inequality to the log-likelihood of the training data yields

log p(O|H,M) = log
∑

ω

q(ω)
p(O, ω|H,M)

q(ω)
(2.11)

≥ 〈log p(O, ω|H,M)〉q(ω) + H(q(ω)) (2.12)

where < f(x) >g(x) is the expectation of function f(x) with respect to a distribution g(x). If

g(x) = P (x) is a discrete distribution, the expectation is calculated by

< f(x) >P (x)=
∑

x

f(x)P (x) (2.13)

while for continuous density g(x) = p(x), it is defined as

< f(x) >p(x)=

∫

x

f(x)p(x) dx (2.14)

H(g(x)) is the entropy of the distribution g(x). For discrete distribution g(x) = P (x),

H (P (x)) = −
∑

x

P (x) log P (x) (2.15)

while for continuous density g(x) = p(x), the entropy is defined as

H (p(x)) = −

∫

x

p(x) log p(x) dx (2.16)

It can be shown [21] that the inequality (2.12) becomes an equality when

q(ω) = P (ω|O,H,M) (2.17)
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However, as M is the set of parameters to be optimised, it is not practical to directly calculate

P (ω|O,H,M). One solution is to use the current parameter estimate to calculate the state

posterior. This yields a lower bound of the real log-likelihood. The new estimate of the model

set can then be obtained by maximising the lower bound in equation (2.12). This is an iterative

process. At the (k + 1)th iteration, the lower bound can be expressed as

log p(O|H,Mk+1) ≥ 〈log p(O, ω|H,Mk+1)〉P (ω|O,H,M̂k) + H

(

P (ω|O,H,M̂k)
)

(2.18)

where Mk+1 is the parameter set to estimate, M̂k is the current estimate of iteration k. The new

estimate M̂k+1 is then found by maximising the first term of right-hand-side (RHS) of equation

(2.18), which is normally referred to as an auxiliary function3

QML(Mk+1;M̂k) = 〈log p(O, ω|H,Mk+1)〉P (ω|O,H,M̂k) (2.19)

By using equation (2.19) in equation (2.18) and considering equation (2.17), it is trivial to

prove that the increase of the auxiliary function with respect to Mk+1 guarantees that the log-

likelihood with the new model estimate will not decrease, i.e.

QML(M̂k+1;M̂k) ≥ QML(M̂k;M̂k) ⇒

QML(M̂k+1;M̂k) + H

(

P (ω|O,H,M̂k)
)

≥ QML(M̂k;M̂k) + H

(

P (ω|O,H,M̂k)
)

⇒

log p(O|H,M̂k+1) ≥ log p(O|H,M̂k) (2.20)

To find the optimal parameter estimate, there are two distinct steps:

• Expectation: Obtain the state posterior given the current model estimate to form the

auxiliary function in equation (2.19).

• Maximisation: Maximise the auxiliary function to find a new model estimate.

This is why the algorithm is called expectation maximisation (EM) algorithm. It should be noted

that the EM algorithm always requires an initialisation process. An existing model or a flat esti-

mate can be used to start the iterative EM algorithm [133]. One limitation of the EM algorithm

is that it is not a global optimisation approach. Due to the nature of the iterative update, it can

only find a local optimum of the model parameters on convergence. The exact update formu-

lae of model parameters depend on the form of the model used. Update formulae for HMM

parameters will be discussed in the next section.

2.3.2 Forward-Backward Algorithm and Parameters Re-estimation

For HMMs, the likelihood of the complete data set is shown in equation (2.7). Using this, the

auxiliary function in equation (2.19) can be re-arranged as

QML(Mk+1;M̂k) =
∑

t,j

γj(t) log bj(ot) +
∑

t,i,j

ξij(t) log aij (2.21)

3The auxiliary function is used for deriving update formulae of the model parameters, hence Mk+1 is the inde-

pendent variable. The current estimate, M̂k, is used to calculate the state posterior distribution. It is a condition

rather than the independent variable of the auxiliary function, hence it is separated from Mk+1 using a “;”.
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where t is the time index, γj(t) is posterior probability of the state at time t being j given the

whole training data and the model parameters of the previous iteration. It is often referred to

as the state posterior occupancy. It is a statistic that may be accumulated from the the posterior

distribution of the state sequences. Let ωt be the hidden state at time t, the state posterior

occupancy is defined as

γj(t) = P (ωt = j|O,H,M̂k)

=
∑

ω1,··· ,ωt−1,ωt+1,··· ,ωT

P (ω1, · · · , ωt−1, ωt = j, ωt+1, · · · , ωT |O,H,M̂k) (2.22)

and ξij is the state pairwise posterior occupancy, defined as

ξij = P (ωt−1 = i, ωt = j|O,H,M̂k)

=
∑

ω1,··· ,ωt−2,ωt+1,··· ,ωT

P (ω1, · · · , ωt−2, ωt−1 = i, ωt = j, ωt+1, · · · , ωT |O,H,M̂k)(2.23)

where T is the length of the observation sequence O.

The calculation of the two state posterior distributions is a key stage in HMM parameter esti-

mation. They can be efficiently computed using the forward-backward algorithm, also known as

the Baum-Welsh algorithm [8]. This algorithm is an efficient re-arrangement of equation (2.22)

and equation (2.23) by making use of two intermediate probabilities and the conditional inde-

pendence assumption of HMMs. The forward probability, αj(t), is defined as the joint likelihood

of the partial observation sequence up to t and the hidden state at that time instance

αj(t) = p(o1, · · · ,ot, ωt = j|H,M̂k) (2.24)

The forward probability can be efficiently calculated using a recursive formulae for 1 < j < N

and 1 < t ≤ T ,

αj(t) =

(

N−1
∑

i=2

αi(t − 1)aij

)

bj(ot) (2.25)

where N is the total number of the states including non-emitting and emitting states. The initial

and final conditions for the above recursion are

αj(t) =















1 j = 1 t = 1

a1jbj(ot) 1 < j < N t = 1
∑N−1

i=2 αi(T )aiN j = N t = T

(2.26)

Similarly, the backward probability, βj(t), is introduced as the likelihood of the partial observa-

tion sequence from time instance t + 1 to the end

βj(t) = p(ot+1, · · · ,oT |ωt = j,H,M̂k) (2.27)

As in the forward case, this probability can also be computed using the following recursion for

1 < i < N and 1 ≤ t < T

βj(t) =
N−1
∑

i=2

ajibi(ot+1)βi(t + 1) (2.28)
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The initial and final conditions are

βj(t) =

{

ajN 1 < j < N t = T
∑N−1

i=2 a1ibi(o1)βi(1) j = 1 t = 1
(2.29)

Note that the parameters to calculate the forward probability and the backward probability are

all from M̂k. Given the two asymmetric probabilities, the state (pairwise) posterior occupancy

can be efficiently calculated as below

γj(t) =
αj(t)βj(t)

p(O|H,M̂k)
(2.30)

ξij(t) =
αi(t − 1)aijbj(ot)βj(t)

p(O|H,M̂k)
(2.31)

As this calculation requires both forward and backward probabilities, it is called the forward-

backward algorithm. From the above recursive formulae, the likelihood of the whole observation

sequence may also be calculated using either the forward or the backward algorithm

p(O|H,M̂k) = αN (T ) = β1(1) (2.32)

Given the sufficient statistics above, the update formulae of HMM parameters can be derived

from the auxiliary function in equation (2.21). The transition probabilities between emitting

states, i.e., 1 < i, j < N can be estimated by

âij =

∑T
t=2 ξij(t)

∑T
t=1 γi(t)

(2.33)

The transition probabilities with non-emitting states, i.e. at the initial or final condition, can be

estimated by

âij =







γj(1) i = 1 1 < j < N
γi(T )

∑T
t=1 γi(t)

1 < i < N j = N
(2.34)

Most CDHMM systems use a GMM as the state output distribution as shown in equation

(2.8). In this case, the estimation formulae of the GMM parameters can not be directly derived

from the auxiliary function in equation (2.21). To solve this problem, the Gaussian compo-

nent index is regarded as a special hidden sub-state, in which the transition probability is the

component weight times the state transition probability. Considering the distinct Gaussian com-

ponent (sub-state) sequence as the hidden variable sequence, the Gaussian component posterior

occupancy can be derived as [65]

γjm(t) =

∑N−1
i=2 αi(t − 1)aijcjmbjm(ot)βj(t)

p(O|H,M̂k)
(2.35)

where jm denote the mth Gaussian component of state j, bjm(ot) is a Gaussian distribution

N (ot; µ
(jm),Σ(jm)) and cjm is the weight for the component, which is also from the current
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parameter set M̂k. Given these statistics, the re-estimation formulae for the parameters of GMM

at state j are given by

ĉjm =

∑

t γjm(t)
∑

m,t γjm(t)
(2.36)

µ̂(jm) =

∑

t γjm(t)ot
∑

t γjm(t)
(2.37)

Σ̂(jm) = diag

(

∑

t γjm(t)
(

ot − µ̂(jm)
) (

ot − µ̂(jm)
)T

∑

t γjm(t)

)

(2.38)

In equation (2.38), only the estimation of the diagonal elements of covariance matrices is given.

This is because covariance update is considered for LVCSR systems in this work. For LVCSR

systems, due to the large number of Gaussians used, the re-estimation of full covariance matrix

Σ̂(jm) requires very high cost in both computation and storage of second order statistics. It is not

practical given the limited computation resources. Therefore, normally a diagonal covariance is

used for each Gaussian component as in equation (2.38).

Because only the mean and the diagonal covariance matrix of each distinct Gaussian compo-

nent are of interest in this thesis, a new notation, θ = [θ1, · · · , θT ] is introduced to denote the

distinct hidden Gaussian component sequence in contrast to ω which denotes just the state se-

quence. θt is the combination of the state index and Gaussian component index, which denotes

a unique Gaussian component at time t. This is required for deriving the update formulae for

Gaussian component parameters. Using the component sequence, the likelihood calculation in

equation (2.7) can be re-expressed as

p(O|H,M) =
∑

θ

p(O, θ|H,M)

=
∑

θ

P (θ|H,M)
∏

t

p(ot|M, θt) (2.39)

where P (θ|H,M) is the probability of the component sequence θ and p(ot|M, θt) is a Gaussian

distribution with component index θt. A component level auxiliary function can also be obtained

with a similar form as equation (2.19)

QML(Mk+1;M̂k) = 〈log p(O, θ|H,Mk+1)〉P (θ|O,H,M̂k) (2.40)

For clarity, in the rest of this thesis, m will be used to denote the index of each distinct

Gaussian component, which is the equivalent of the index jm in the equations (2.36) to (2.38).

A notation ML is also added to the posterior occupancy, γML
m (t), to denote that it is obtained

for ML update. The iteration indices are also dropped for clarity wherever no confusion is

introduced. Thus, M refers to the new parameter to estimate and M̂ refers to the current

parameters which are used to calculate the component posterior occupancies in the auxiliary

function. By ignoring the constant terms independent of Gaussian parameters, the auxiliary

function in equation (2.40), for Gaussian parameter update can be re-written as

QML(M;M̂) = −
1

2

∑

t,m

γML
m (t)

{

log |Σ(m)| +
(

ot − µ(m)
)T

Σ(m)−1
(

ot − µ(m)
)

}

(2.41)
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where γML
m (t) can be calculated using the component level forward-backward algorithm based on

the current model parameters M̂. This auxiliary function will be frequently used in this thesis.

2.3.3 Acoustic Units and Parameters Tying

For speech recognition tasks with a small recognition vocabulary (<1K words), such as digit

recognition, HMMs are often used to model individual words. However, for speech recognition

with medium (1K-10K words) to large vocabularies (>10K words), it is not possible to obtain

sufficient training data for each individual word in the vocabulary. One widely used solution to

this problem is to use HMMs to model sub-word units, rather than the words themselves. Phone

is a widely used sub-word unit. It is the smallest acoustic element of speech. One advantage

of using phones as the sub-word unit is that there is a standard rule to map phones to words

allowing words to be easily split into a sequence of phones. Models based on phones are phone

models, which are also referred to as phones in this thesis when there is no confusion intro-

duced. The number of phones is normally significantly smaller than the number of words in

vocabulary. For example, in a state-of-the-art LVCSR system used in this work, there are only 46

distinct phones compared to typically 64K words in vocabulary. Hence it is usually possible to

obtain enough training data to get robust parameter estimates. It should be noted that by using

sub-word units, a dictionary, or lexicon, is required to map the word sequence to a sub-word

sequence. The training and recognition are then performed at the sub-word units level4. At the

end of recognition, the sub-word sequence is converted back to the word sequence.

There are two main types of phone model sets used, mono-phones which are context-independent

phones, and context-dependent phones. The mono-phone set uses each individual phone as

the sub-word unit and does not take into account the context information. Due to the co-

articulatory5 effect, the pronunciation of the current phone is highly dependent on the preceding

and following phones. Thus, for many speech recognition tasks, the use of mono-phones do not

yield good performance.

To model these variations, context dependent phones are used in most state-of-the-art speech

recognition systems. One commonly used context-dependent phone set is the tri-phone, which

takes into account the preceding and following phones of the current phone. For example,

consider the phone ah, a possible tri-phone may be w-ah+n, where w is the preceding phone

and n is the following phone, “-” denotes the preceding (left) context and “+” denotes the

following (right) context. Therefore, for an isolated word “one” with silence at the start and

end, the tri-phones are

one={sil-w+ah w-ah+n ah-n+sil}

Although it is possible to build context-dependent phones which include more context informa-

tion, for example, quin-phones [50] consider two phones on either side of the current phone, tri-

phones are still the most popular phone models and are the ones used in this thesis. Depending

4Normally, the word history is also maintained during recognition.
5For example, in vowels, consonant neighbors can have a big effect on formant trajectories near the boundary.
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on how word boundaries are considered, tri-phones may be further classified as cross-word tri-

phones and word-internal tri-phones. Cross-word tri-phones allow the tri-phones to span across

word boundaries, i.e., at the word boundary, the preceding or following phones of the current

phone can be from the adjacent words. Word-internal tri-phones have the constraints that the

tri-phone can only be spanned within the word boundaries. Hence, bi-phones have to be used to

model the start and end phones at the word boundaries. In this work, cross-word tri-phones are

considered as they yield good performance for LVCSR systems [128].

One issue with using tri-phones is that the number of possible acoustic units is significantly

increased. For example, for a mono-phone set with 46 phones, the number of possible cross-

word tri-phones is about 100,000. It is hard to collect sufficient training data to robustly

train all tri-phones. To solve this problem, parameter tying, or clustering, techniques are of-

ten used [135, 134]. The basic idea of the technique is to consider a group of parameters as

sharing the same set of values. In training, statistics of the whole group is used to estimate

the shared parameter. Tying can be performed at various levels, such as phones, states, Gaus-

sian components, or even mean vectors or covariance matrices of Gaussian components [49].

The most widely used approach is to do state level parameter tying, referred to as state clus-

tering [135]. In state clustering, an output distribution is shared among a group of states as

illustrated in figure 2.3.

sil−s+p s−p+iyiy−ch+sil

sil−s+p s−p+iyiy−ch+sil

Single component triphones

State clustered single component triphones

Figure 2.3 State clustering for single Gaussian tri-phones

To implement state tying, an appropriate scheme for determining which parameters to be tied

together is required. One kind of approaches adopted are data driven. A standard data-drive

approach is bottom-up clustering. A “distance” is calculated between each pair of tri-phones

observed in the training data. Then, tri-phones with distances under a given threshold are

clustered together. The main problem with data driven approaches is that it is not reliable for

figure/cluster.eps
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contexts where there is insufficient training data. More seriously, it can not handle the contexts

that do not appear in the training data.

The context coverage problem, both for rarely and unseen context, can be efficiently ad-

dressed by using the phonetic decision tree approach to perform state clustering [135, 134]. A

phonetic decision tree is a binary tree with a set of “yes” or “no” questions about the left and right

context of each phone. Clustering is performed in a top-down fashion. All states are grouped

as one root node at the beginning. The states are then split into “children” nodes by answering

these context questions. This split process stops when the amount of training data associated

with the current node falls below a minimum threshold. The selection of phonetic questions is

important. The questions selected at each split is the one that locally maximises the likelihood

increase. Though decision tree clustering is a local optimal binary search, it can efficiently han-

dle the problem of unseen tri-phones as all contexts are mapped to a leaf node. Hence, it is the

most popular state clustering approach and it is also adopted in this work.

2.3.4 Limitation of ML Training

Although ML training of HMM parameters has achieved great success in speech recognition, it

has two main limitations.

• Modelling Error

ML training assumes that HMM is the “correct” generative model for speech, and hence

that the parameters which maximise the likelihood of training data are likely to yield good

recognition performance on unseen test data. However, as discussed in section 2.2, the

HMM is an incorrect generative model for speech. Training HMMs with the ML criterion

may not yield the most appropriate estimate for recognition. It is then preferable to use

other training criterion to explicitly aim at reducing the recognition error rate. Discrimina-

tive criteria [86, 90] are widely investigated to achieve this goal, which will be discussed

in detail in section 2.4.

• Estimation Error

An assumption for ML training to be optimal is that there is sufficient training data given

the complexity of the model. In this condition, a minimum variance or consistent estimate

of model parameters can be obtained. However, this is not always true. In the case of

insufficient training data for a given model complexity, the ML criterion may result in an

unreliable estimate, i.e., the variance of the estimate may be large. To deal with this prob-

lem, Bayesian approaches may be used, where model parameters are treated as random

variables. A prior distribution of parameters is used to represent the prior knowledge. By

using the prior, a set of robust parameter estimates, for example maximum a posteriori

(MAP) estimate, or the posterior distribution of the parameters may then be obtained.

These can greatly reduce the estimation error of ML training due to insufficient data.
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Possible solutions to overcome the two limitations of ML training of standard HMMs are re-

viewed in the next two sections. It should be noted that these limitations also exist in adaptive

training and adaptation, which will be reviewed in chapter 3. The major concern of this work

is to address the problems within an adaptive training framework. The main contributions are

given in chapter 4 and chapter 5.

2.4 Discriminative Training of HMMs

The previous section introduced ML training where the HMM parameters are estimated by max-

imising the likelihood criterion, p(O|M,H). As discussed in section 2.3.4, parameters estimated

using the ML criterion may not yield good performance because HMMs are not the correct gen-

erative model for speech. To overcome this problem, discriminative training criteria have been

proposed as an alternative to the ML criterion. These criteria aim at increasing the discrimi-

native ability of the estimate. They have been found to outperform the ML criterion and have

been widely used in state-of-the-art speech recognition systems. This section will review some

commonly used discriminative criteria and the optimisation schemes.

2.4.1 Discriminative Training Criteria

In the previous section, the ML criterion was described. This criterion may be expressed as:

FML(M) = p(O|H,M) (2.42)

where O is the observation sequence, H is the corresponding correct transcription. In contrast

to the ML criterion, discriminative criteria take into account competing incorrect hypotheses in

training rather than only increasing the likelihood of the correct transcription. They are more

related to the recognition error rate than the ML criterion. Commonly used criteria are discussed

below.

2.4.1.1 Maximum Mutual Information (MMI)

Maximum mutual information (MMI) criterion is based on P (Href|O), the posterior probability

of the correct transcription given the observation sequence [6]. By applying an empirically set

probability scaling factor κ 6, the MMI criterion is expressed as7

FMMI(M) =
pκ(O|Href,M)P (Href)
∑

H pκ(O|H,M)P (H)
(2.43)

6It has been shown in [102] that the scaling factor κ is important for MMI training to lead to good test set

recognition performance. It aims to make the less likely hypotheses contribute to the criterion and make the criterion

more smoothly differentiable. It typically equals the inverse of the language model scale used in recognition.
7Here, only the criterion of a single utterance is discussed. For multiple utterances, the criterion is a product of

the individual ones. This is equivalent to the formula in [6] where the logarithm of the posterior distribution is used

as the MMI criterion.
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where Href is the transcription corresponding to the observations, H denotes all possible hy-

pothesis sequences of the observation sequence including both the correct transcription and the

confusing hypotheses. The denominator hypotheses are normally stored as N-Best lists [16] or

lattices [102] produced by a recogniser running on the training data. It should be noted that

word-level lattices or N-Best lists are normally converted to phone-level ones as phones are the

actual sub-word units to be trained. This process is referred to as phone marking. From the

criterion in equation (2.43), MMI naturally reduces the sentence error rate of the training data

as it is defined for the whole sentence. MMI is one of the earliest discriminative training criteria

and has been successfully used in LVCSR [92].

2.4.1.2 Minimum Phone Error (MPE)

From the Bayesian perspective, a generic criterion to describe recognition error is the Bayesian

risk, which is defined as an expected loss of an estimator as below

FMBR(M) =
∑

H

P (H|O,M)l(H,Href) (2.44)

where P (H|O,M) is the posterior distribution of a hypothesis H given the observation sequence

and the model parameters, l(H,Href) is a loss function of H given the reference or correct tran-

scription Href. The minimum Bayesian risk (MBR) criterion was first used in decoding [44]. As

the criterion is a good description of recognition error, it has also been adopted in discriminative

training [23]. An MBR estimator finds the model parameters by minimising the Bayesian risk of

the training data in equation (2.44)

M̂MBR = arg max
M

FMBR(M) (2.45)

Different forms of the loss function l(H,Href) may be used yielding different discriminative

training criteria. One commonly used MBR criterion is the minimum phone error (MPE) [92]

criterion, which has a loss function closely related to word error rate (WER) rather than sentence

error rate.

l(H,Href) = A(H,Href) (2.46)

where A(H,Href) is the phone accuracy of the hypothesis H given the reference Href. It equals

the number of reference phones minus the number of errors8. Details about the calculation of

A(H,Href) can be found in [90]. Using this loss function in equation (2.44) and again applying

a scaling factor similar to the MMI criterion, the MPE criterion is expressed by 9

FMPE(M) =
∑

H

pκ(O|H,M)P (H)
∑

H̆ pκ(O|H̆,M)P (H̆)
A(H,Href) (2.47)

8This is equivalent to the number of correct phones minus the number of insertions.
9Note that here the criterion is a maximisation criterion during training because it uses the phone accuracy rather

than phone error in the criterion.
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where O is the observation sequence of the training utterance, and H and H̆ both denote pos-

sible hypotheses of the training data. Similar to the MMI case, they are obtained from a recog-

niser and phone-marked before training. Due to the nature of A(H,Href), the MPE criterion

maximises the accuracy of phone transcriptions rather than word-level transcriptions. If the ac-

curacy function A(H,Href) is defined on a word rather than phone basis, the criterion is referred

to as minimum word error (MWE). Theoretically, MWE is a more effective criterion than MPE to

maximise the word accuracy of the training data. However, it was shown to consistently give

slightly poorer results on the test set [90].

Though both MMI and MPE criterion have been effectively used in LVCSR systems. The MPE

criterion has been shown to give better performance [90]. Therefore, in this work, MPE is used

as the specific discriminative criterion to derive estimation formulae of the parameters.

2.4.1.3 Minimum Classification Error (MCE)

Minimum classification error (MCE) criterion [64] was originally proposed for isolated word

recognition, where there are a fixed number of candidate classes (words) i = 1, · · · , M in recog-

nition. A mis-classification measure is defined for class i as

di(O) = log





1

M − 1

∑

j 6=i

pη(O|M, j)





1
η

− log p(O|M, i) (2.48)

where j is the index of the classes other than i, M is the total number of classes, η > 0 is

a constant. The misclassification measure tends to be positive if the system does not classify

the word as class i, and negative if it is classified as class i. To transform the misclassification

measure into a normalised differentiable function, a sigmoid function is used to embed di(O)

in a smooth zero-one function. The MCE criterion to be minimised is then a summation of the

normalised misclassification measure over all the correct classes.

FMCE(M) =
∑

r

1

1 + exp (−γdir(Or))
(2.49)

where r is the utterance index, Or is the rth observation sequence, ir is the index of the correct

classes of Or, and γ > 0 is also a constant. The MCE criterion is zero for each word that is

correctly recognised and one for each incorrect word. The constants η and γ are used to control

the differentiability of the criterion. The relationship between the MCE and the MMI criterion

is discussed in [102]. The MCE criterion can be extended to continuous speech recognition by

making use of N-Best lists [16] or lattices [102]. Recently, it was also used for LVCSR tasks and

showed similar performance as the MWE criterion [80]. As the MCE criterion has not shown

better performance than the MPE criterion and the optimisation scheme for LVCSR tasks is more

complicated, it is not adopted in this work.

2.4.2 Weak-Sense Auxiliary Function and Parameter Re-estimation

The previous section discussed various discriminative criteria. This section will review the op-

timisation schemes that may be used to train models based on these criteria. MPE criterion is
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used as the specific discriminative training criterion to be optimised.

The ML criterion can be optimised by the EM algorithm in which an auxiliary function is

introduced as the lower bound of the likelihood. The auxiliary function is derived by apply-

ing Jensen’s inequality to the log-likelihood. An important property is that the increase of the

auxiliary function will guarantee not to decrease the log-likelihood. An auxiliary function with

such property is sometimes referred to as a strong-sense auxiliary function [90]. However, in

MPE training, it is hard to find a strong-sense auxiliary function due to the denominator term

in the criterion. To allow the discriminative criterion to be optimised, an extended Baum-Welch

algorithm (EBW) was proposed [46, 86, 131], which extends the Baum-Eagon inequality to ra-

tional functions by using an additional smoothing term to ensure the convexity of the auxiliary

function. This allows discriminative training to be done in a similar fashion as the standard

Baum-Welch algorithm for ML training. An alternative approach, which yields similar update

formulae and is highly flexible, uses a weak-sense auxiliary function [90]. This is the approach

adopted in this work. A weak-sense auxiliary function for a criterion F(M) is a smoothing func-

tion Q(M;M̂) which has the same gradients at the current model parameters M̂, i.e.

∂Q(M;M̂)

∂M

∣

∣

∣

∣

M=M̂

=
∂F(M)

∂M

∣

∣

∣

∣

M=M̂

(2.50)

Maximising the function Q(M;M̂) with respect to M does not guarantee an increase of F(M).

However, if Q(M;M̂) reaches a local maximum at M̂, i.e., the gradient is 0 at that point, F(M)

is also guaranteed to also be at a local maximum. An appropriate weak-sense auxiliary function

of the MPE criterion in equation (2.47) can be defined as [90]

QMPE(M;M̂) = Qn(M;M̂) −Qd(M;M̂) (2.51)

where the numerator and denominator parts, Qn(M;M̂) and Qd(M;M̂) respectively, have the

same form as the standard ML auxiliary function in equation (2.41). To clarify the relationship

between different terms in the MPE weak-sense auxiliary function, the standard auxiliary func-

tion is re-expressed in terms of sufficient statistics in this work. For example, for the ML auxiliary

function in equation (2.41), it may be re-expressed as

QML(M;M̂) = G(M;ΓML) (2.52)

where

G(M;ΓML) = −
1

2

∑

m

{

γML
m log |Σ(m)| + tr

(

L
(m)
ML Σ(m)−1

)

− 2µ(m)TΣ(m)−1k
(m)
ML + µ(m)TΣ(m)−1µ(m)

}

(2.53)

where tr(·) is trace of a square matrix, and ΓML is the set of ML statistics of all Gaussian compo-

nents

ΓML =
{

γML
m ,k

(m)
ML ,L

(m)
ML

}

(2.54)
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where m is the component index and

γML
m =

∑

t

γML
m (t) (2.55)

k
(m)
ML =

∑

t

γML
m (t)ot (2.56)

L
(m)
ML =

∑

t

γML
m (t)oto

T
t (2.57)

The only difference between the numerator, denominator associated with discriminative

training and the standard auxiliary functions is that the “posterior occupancy” for Gaussian

component m at time t, γn
m(t) and γd

m(t), is not calculated based on the correct transcription as

it is in standard forward-backward algorithm. Instead, the forward-backward algorithm is first

applied within each phone arc of the lattice 10. It is then applied at word-level within the lattice

to figure out the word arc posteriors. Phone accuracy is measured for each phone arc. The arcs

with higher accuracy than the average are classified as numerator arcs, and those with lower ac-

curacy as denominator arcs. γn
m(t) is then calculated based on the numerator arcs by multiplying

together the within arc component posterior occupancy, the word posterior occupancy and the

difference between the phone arc and average accuracy. Similarly, γd
m(t) is computed based on

denominator arcs. Details about this lattice forward-backward algorithm and the calculation of

arc-based phone accuracy can be found in [90]. With the new component posterior occupancy,

the auxiliary function for the numerator can also be written as

Qn(M;M̂) = G(M;Γn) (2.58)

where G(·) is defined in equation (2.53), Γn is similar to ΓML except for using γn
m(t) instead of

γML
m (t). The denominator function is similar.

The weak-sense auxiliary function in equation (2.51) is not guaranteed to be a convex func-

tion, hence is unlikely to yield good convergence [90]. To ensure a convex weak-sense auxiliary

function and consequently improve stability in optimisation, a smoothing function, S(M; M̂),

is added to the auxiliary function in equation (2.51). This smoothing function must satisfy the

following constraint

∂S(M;M̂)

∂M

∣

∣

∣

∣

∣

M̂

= 0 (2.59)

to ensure the resulting auxiliary function is still a valid weak-sense auxiliary function. One form

of smoothing function for Gaussian parameters was first introduced in [86] for discrete HMM

and then extended to CDHMM later in [102]. It can be generally written as [102]

S(M;M̂) =
∑

m

Dm

∫

o

p(o|m,M̂) log p(o|m,M) do (2.60)

10 In common with the majority of discriminative training schemes, lattices are used to represent possible denomi-

nator paths. These lattices are phone-marked before training [93, 90].
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where p(o|m,M) is the Gaussian distribution for component m given the model parameters M,

and Dm is a component-specific smoothing constant to ensure convergence. It is shown in ap-

pendix A that the above generic smoothing function satisfies the constraint equation (2.59). The

exact form can then be derived by using the exact expression of p(o|m, M̂) in equation (2.60).

As shown in appendix A, for standard HMMs, it is expressed as

S(M;M̂) =
∑

m

−
Dm

2

{

log |Σ(m)| + tr
(

(Σ̂(m)
c + µ̂(m)

c µ̂(m)T
c )Σ(m)−1

)

− 2µ(m)TΣ(m)−1µ̂(m)
c + µ(m)TΣ(m)−1µ(m)

}

(2.61)

where Σ̂
(m)
c and µ̂

(m)
c are the covariance matrix and mean vector of Gaussian component m from

the current model set M̂. This form was used in the standard MPE training of HMM parameters

but described as a scalar version in [90].

The constant Dm is a critical value in MPE training in order to make the weak-sense auxiliary

function convex and yield a rapid and stable update. A large value of Dm will guarantee that

the MPE training does not go too aggressively to reach a stable update, but will result in a slow

update. A small value may give a fast update but could affect the convexity of the weak-sense

auxiliary function. There is no ideal approach for obtaining Dm satisfying both purposes. As

with the EBW updates, the value of Dm for weak-sense auxiliary function is set using empirically

derived heuristics. As suggested in [90], in this work Dm is determined by

Dm = max
(

2D̃m, Eγd
m

)

(2.62)

where D̃m is the smallest value required to ensure the updated covariance matrix in equation

(2.76) is positive-definite, E is a user-specified constant, normally 1 or 2 for LVCSR, and γd
m =

∑

t γd
m(t) is the total denominator posterior occupancy for component m.

The definition of the smoothing function in equation (2.61) is closely related to the standard

auxiliary function. By doing a little algebra, it can be expressed in the same form as equa-

tion (2.53),

S(M;M̂) = G(M;Γs) (2.63)

where the smoothing function statistics are

Γs =
{

Dm, Dmk(m)
s , DmL(m)

s

}

(2.64)

and

k(m)
s = µ̂(m)

c (2.65)

L(m)
s = Σ̂(m)

c + µ̂(m)
c µ̂(m)T

c (2.66)

For MPE training, model parameters tend to be over-trained for LVCSR system [90]. There-

fore, it is essential to perform some additional smoothing, referred to as “I-smoothing” to get
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robust parameter estimates [93]. To achieve this, a prior distribution over the model parameters,

p(M|Φ), is added to the MPE criterion. Then the complete MPE criterion becomes

FMPE(M) =
∑

H

pκ(O|H,M)P (H)
∑

H̆ pκ(O|H̆,M)P (H̆)
A(H,Href) + log p(M|Φ) (2.67)

Note that log p(M|Φ) may be viewed as a weak-sense auxiliary function for itself because it

naturally satisfies equation (2.50). As the summation of weak-sense auxiliary functions is also

a weak-sense auxiliary function for the summation of the corresponding criteria, a valid weak-

sense auxiliary function for the complete MPE criterion in equation (2.67) may be constructed by

directly adding log p(M|Φ) to the original weak-sense auxiliary function. Hence, the complete

weak-sense auxiliary function for equation (2.67) becomes

QMPE(M;M̂) = Qn(M;M̂) −Qd(M;M̂) + S(M;M̂) + log p(M|Φ) (2.68)

One commonly used distribution for model parameters is the Normal-Wishart distribution [20]

which was also used for maximum a posteriori (MAP) training in [42]. This prior distribution

has a similar form as the standard auxiliary function. Ignoring the constants independent of the

parameters, the logarithm of the distribution is expressed as

log p(M|Φ) = −
τ I

2

∑

m

{

log |Σ(m)| + tr
(

Σ̃(m)Σ(m)−1
)

+
(

µ(m) − µ̃(m)
)T

Σ(m)−1
(

µ(m) − µ̃(m)
)

}

(2.69)

where Φ = {τ I , µ̃(m), Σ̃(m)} is the set of hyper-parameters of the I-smoothing distribution. τ I

is the specified parameter of the Normal-Wishart distribution which controls the impact of the

prior and is normally tuned to tasks. The recognition performance was found to be insensitive

to the precise value of τ I used (within a reasonable range). µ̃(m) and Σ̃(m) are the prior hyper-

parameters of the distribution. This form of I-smoothing prior may also be re-expressed as

log p(M|Φ) = G(M;Γp) (2.70)

where G(·) is defined in equation (2.53)

Γp =
{

τ I , τ Ik(m)
p , τ IL(m)

p

}

(2.71)

and

k(m)
p = µ̃(m) (2.72)

L(m)
p = Σ̃(m) + µ̃(m)µ̃(m)T (2.73)

Though the log prior in equation (2.69), and the smoothing function in equation (2.61), have

similar forms, they are kept separate as they have different functions. The smoothing function,

S(M;M̂), is used to stabilise the optimisation and control the update rate of MPE training. It

is based on the current model parameters resulting in a similar form to the EBW re-estimation
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formulae [131, 86]. On the other hand, the prior distribution, log(p(M|Φ)), is used to avoid

over-training in a similar way to MAP training [42]. It ensures that for parameters with little

data, the estimates are robust, hence are likely to have good generalisation on unseen data.

A range of possible priors can be used. The hyper-parameters µ̃(m) and Σ̃(m) for I-smoothing

distribution was first introduced based on the ML statistics [93], i.e., µ̃(m) and Σ̃(m) are ML

estimates obtained using ΓML, which has been given in equation (2.37) and equation (2.38).

Though the standard form of I-smoothing has obtained good performance, using a modified I-

smoothing prior, such as dynamic MMI prior [101], may obtain further gains. Though in theory,

log(p(M|Φ)) with a large τ I can also lead to stable optimisation without the smoothing term

S(M;M̂), it may lead to very slow update and the updated parameters may be dominated by

the prior. Hence, in practice, the two smoothing functions equation (2.61) and (2.69) are both

needed to achieve efficient, stable and robust MPE updates.

Given the above sufficient statistics expression of each individual element of the MPE weak-

sense auxiliary function, the whole weak-sense auxiliary function in equation (2.68) may be

written as

QMPE(M;M̂) = G(M;Γn) − G(M;Γd) + G(M;Γs) + G(M;Γp) (2.74)

By differentiating the weak-sense auxiliary function in equation (2.74) with respect to the model

parameters and setting it to zero, a closed-form solution can be derived [90]

µ̂(m) =
k

(m)
MPE

γMPE
m

(2.75)

Σ̂(m) = diag

(

L
(m)
MPE

γMPE
m

− µ̂(m)µ̂(m)T

)

(2.76)

where the MPE sufficient statistics is a combination of the individual sufficient statistics

ΓMPE =
{

γMPE
m ,k

(m)
MPE ,L

(m)
MPE

}

(2.77)

and

γMPE
m = γn

m − γd
m + Dm + τ I (2.78)

k
(m)
MPE = k(m)

n − k
(m)
d + Dmk(m)

s + τ Ik(m)
p (2.79)

L
(m)
MPE = L(m)

n − L
(m)
d + DmL(m)

s + τ IL(m)
p (2.80)

The formulae have the same form as the extended Baum-Welch algorithm [86] but are derived

from a different perspective.

2.5 Bayesian Training of HMMs

Standard ML training gives a point estimate of the HMM parameters by maximising the likeli-

hood criterion over the training data. In recognition, the ML estimate of the HMM parameters is
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used to calculate the likelihood of all test data. One assumption is that there is sufficient training

data to yield a reliable point estimate of the HMM parameters. However, this assumption is not

always met. For those cases where the training data associated with a particular state or model

is limited, the point estimate will not be reliable. To deal with the uncertainty coming from

limited training data, Bayesian approaches may be used [120]. In these approaches, the model

parameters are assumed to be random variables and associated with a distribution. Hence, the

marginal likelihood of the training data is expressed as

p(O|H) =

∫

M
p(O|H,M)p(M|Φ) dM (2.81)

with

p(O|H,M) =
∑

ω

P (ω|H,M)
∏

t

bωt(ot) (2.82)

where O is the observation sequence of all training data, H is the associated transcription, M is

the HMM parameter set, p(M|Φ) is the prior distribution with hyper-parameters Φ, P (ω|H,M)

is the distribution of a particular state sequence ω given the observation, transcription and model

parameters, and bωt(ot) is the state output distribution for the state at time t, which is a GMM

as defined in equation (2.8).

Given the above Bayesian descriptions, Bayesian training of HMMs aims to update the pa-

rameter prior distribution to yield a posterior distribution based on training data which is be-

lieved to be similar to the data to be recognised. This parameter posterior distribution represents

the uncertainty of HMM parameters given the training data and the prior distribution. During

recognition, the likelihood of the test observation sequence is calculated using the posterior dis-

tribution. This recognition process is different from the standard one and will be discussed in

detail in section 2.6.3.

Normally, the form of the prior distribution is determined in advance. In the Bayesian com-

munity, a conjugate prior to the likelihood is a common choice [9]. This is because when a con-

jugate prior is used, the posterior distribution of the parameters given the observations will have

the same functional form as the prior. The estimation of the posterior distribution is equivalent

to updating the hyper-parameters of the prior distribution. Unfortunately, for HMM parameters,

a conjugate prior to the likelihood of observation sequence does not exist due to the hidden vari-

ables, states or Gaussian components, in the likelihood calculation [42]. However, a conjugate

prior of HMM parameters to the likelihood of the complete data set, i.e. the joint data set of

hidden variables and observations, may be found. For example, for the Gaussian distributions

in standard HMMs [42], a Normal-Wishart distribution is a conjugate prior of mean vectors and

covariance matrices. Given the form of the prior distribution, the hyper-parameters need to be

estimated. In most research on Bayesian training of HMMs, the hyper-parameters of the prior

distribution p(M|Φ) are often assumed to be known beforehand [42, 120]. They are usually

obtained by prior knowledge, or some ad-hoc methods, such as in MAP training [42]. In this

context, Bayesian training of HMMs updates the hyper-parameters of the prior distribution using
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the training data so that a posterior parameter distribution is obtained. However, if there is no

prior information available, the hyper-parameters of the prior distribution must be estimated

from the training data, i.e., to maximise the marginal likelihood in equation (2.81), with respect

to the hyper-parameters Φ. This is the basic idea of the empirical Bayesian approach [97, 98]. In

this case, it can be shown that the empirically estimated prior distribution must have the same

form and hyper-parameters as the posterior distribution p(M|O,H) which is estimated on the

training data given a non-informative prior. A detailed discussion will be given in section 5.1.1.

The fundamental problem in Bayesian training of HMMs is the estimation of the hyper-

parameter Φ of the parameter posterior distribution. Unfortunately, due to the existence of

hidden variables in likelihood calculation, direct estimation of the hyper-parameters is hard.

Various approximations have been investigated to solve the problem. For example, a variational

Bayesian approach has been used to calculate a variational posterior as the approximation of

the true posterior [120]. Another algorithm, the Quasi-Bayesian algorithm, has also been in-

vestigated for a similar purpose. The posterior distribution is assumed to be proportional to

the exponentiation of the standard auxiliary function [59]. Once the posterior distribution is

estimated, it is used to calculate the marginal likelihood of the test data for recognition.

The above discussions have assumed that the training data is limited, hence, a non-point

estimate posterior is required to represent the parameter uncertainties. As the quantity of train-

ing data increases, the variance of the distribution of the HMM parameters will decrease. Given

sufficient training data, the posterior distribution will tend to a Dirac delta function. In this case,

the use of a point estimate of the parameters is justified. However, it is worth noting that there

is another underlying assumption that all the training data and test data come from the same

acoustic condition. Unfortunately, this is not true when building systems on non-homogeneous

training data. In this case, simply training HMMs on the whole data set as if all data comes from

a single homogeneous block may not yield the best classifier. It is therefore preferable to use the

adaptive training technique. A detailed review will be given in chapter 3.

2.6 Recognition of Speech Using HMMs

The previous sections discussed how to train HMM parameters. This section will investigate the

use of HMMs for inference, also known as recognition or decoding. As a statistical model, the

general inference of HMMs follow the Bayesian rule. The recognised word sequence is the one

that gives the highest likelihood given the observation sequence and the HMMs

Ĥ = arg max
H

P (H|O,M) (2.83)

where H is a hypothesis word sequence, Ĥ is the recognised word sequence, and O is the ob-

servation sequence to recognise. As the marginal likelihood p(O) is irrelevant to the recognised

hypothesis, by using Bayesian rule, equation (2.83) can be rewritten as

Ĥ = arg max
H

p(O|H,M)P (H) (2.84)
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where p(O|H,M) is the likelihood of the observation sequence given HMM parameters and a

possible word sequence H, referred to as acoustic score, which is calculated using the acoustic

model M. P (H) is the prior probability of a word sequence, calculated using a language model

and the value is referred to as language score. Therefore, the overall inference evidence is a

combination of the two terms. The calculation of the inference evidence will be discussed in the

following sections.

2.6.1 Language Modelling

The prior probability of a hypothesised sequence of K words, H = {W1, · · · ,WK}, is given by

the language model. The language model is a discrete probability and can be factorised into a

product of conditional probabilities

P (H) =
K
∏

k=1

P (Wk|Wk−1, · · · ,W1) (2.85)

where Wk is the kth word of the sequence. The calculation of the probability of any word

sequence using equation (2.85) requires calculating the probability of its full history. However,

for LVCSR, the number of possible history word sequences is too large to explore due to the

vocabulary size. It is hard to get a robust estimate of each possible word sequence. One possible

solution is to restrict the length of the history required to calculate the conditional probability.

N-gram language models use such a strategy and are the most widely used statistical language

model in speech recognition. The assumption here is that it is enough to use a history of N

words to calculate the probability, i.e.,

P (Wk|Wk−1, · · · ,W1) ≈ P (Wk|Wk−1, · · · ,Wk−N+1) (2.86)

where N is the pre-determined size of word history. N is normally small, for example 3, which

is referred to as a tri-gram language model. With this approximation, it is easy to get the ML

estimate for N-gram by using the counts of word sequence with length N

P (Wk|Wk−1, · · · ,Wk−N+1) =
f(Wk,Wk−1, · · · ,Wk−N+1)

∑

W f(W,Wk−1, · · · ,Wk−N+1)
(2.87)

where f(Wk,Wk−1, · · · ,Wk−N+1) denotes the frequency counts of the N-gram word sequence

observed in the training data. Coverage of all possible N-grams with sufficient counts is required

to get a robust estimate. However, this is still not practical for LVCSR, even if N is very small.

Therefore, further smoothing approaches are used to obtain robust estimates. There are three

main categories of the smoothing schemes:

• Discounting

To handle unobserved N-grams, a certain amount of the overall probability mass is taken

from the seen N-grams and allocated to the unseen N-grams. The portion of the allo-

cated probability mass is controlled by a discounting factor. Commonly used discounting
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approaches include Good-Turing discounting [45, 66], Witten-Bell discounting [125] and

absolute discounting [84].

• Back-off

The basic idea of back-off is to make use of shorter histories which can be estimated more

robustly, rather than assigning probability mass to those unlikely N-grams in discounting

approaches. The distributions with shorter history are referred to as back-off distributions.

The probabilities of unseen N-grams are then taken from the back-off distributions with

appropriate normalisation. The back-off strategy is often applied hierarchically in practice.

For example, a 4-gram distribution may be backed-off to tri-gram, bi-gram and finally uni-

gram distributions.

• Deleted Interpolation

If an N-gram language model is not robust enough, it may be interpolated with the lan-

guage models of shorter N-grams to construct a smoothed model. For example, uni-gram,

bi-gram and tri-gram distributions may be interpolated to construct a more robust lan-

guage model. The interpolation weights are tuned on some held-out data set. A similar

interpolation strategy can also be used to combine several N-gram language models from

different sources to build corpus or topic specific language models.

With the above smoothing techniques, language model probabilities P (H) can be obtained

and used in inference. Some implementation issues will be discussed in the below section 2.6.2.2.

2.6.2 Search and Decoding

The previous section discussed calculation of language score P (H). This section will discuss how

to calculate the acoustic score p(O|H) and will review some practical issues to be considered in

recognition.

2.6.2.1 Forward-Backward Likelihood Calculation and Viterbi Decoding

In recognition, the acoustic score is calculated using the same formula as equation (2.7) in

section 2.2.2. It is re-written here as

p(O|H,M) =
∑

ω

p(O, ω|H,M) (2.88)

where ω is the hidden state sequence. As discussed in section 2.3.2, this likelihood can be

efficiently calculated using the forward-backward algorithm. However, this algorithm does not

provide the best path (state sequence). In many applications, especially continuous speech

recognition, it is desirable to find the best path. A widely used approach for LVCSR is to find

the state sequence that has the highest probability to generate the observation sequences. This

is the Viterbi algorithm [116]. Here the maximum likelihood of the observation sequence given
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one hidden state sequence is used to approximate the marginal likelihood over all possible state

sequences

p(O|H,M) ≈ max
ω

p(O, ω|H,M) (2.89)

With this approximation and the conditional independence assumption of HMM, a recursion

can be derived to calculate the maximum likelihood of the partial observation sequence, which is

referred to as the Viterbi algorithm [116]. φj(t) is introduced to denote the maximum likelihood

of the partial observation sequence from o1 to ot and being in state j at time t. It can be

recursively calculated by

φj(t) = max
i

{φi(t − 1)aij} bj(ot) (2.90)

where aij is the transition probability from state i to state j, and bj(ot) is the state output

distribution at state j. For 1 < j < N , where N is the total number of states of an HMM,

φ1(1) = 1 (2.91)

φj(1) = a1jbj(o1) (2.92)

Then, the maximum likelihood of the whole observation sequence is given by

p(O|H,M) ≈ φN (T ) = max
i

{(φi(T )aiN )} (2.93)

where T is the length of the observation sequence.

The above Viterbi algorithm is designed for isolated word recognition. For LVCSR, because

there is normally a large number of possible word sequences, it is not practical to construct one

single composite HMM for each word sequence. In this case a token passing algorithm [133]

is often used as an extension to the standard Viterbi algorithm. Each state has one or more

tokens associated with each time instance. The token contains the likelihood of the partial

path,φj(t), and a pointer to the history of the HMM sequence. At each time instance, these tokens

are updated and propagated forward for each state within the models. The most likely token

calculated at the exit state of each HMM is propagated to all connected HMMs and the history

of the HMM sequence for that token is updated. At the word boundaries, the language model

probability is added during the propagation. At the end of the whole observation sequence, the

token with the highest value of φj(t) is traced back to give the most likely sequence of HMMs.

Even with the token passing algorithm, the searching cost is still high for most LVCSR sys-

tems if all possible tokens are propagated. To further reduce the computational cost, a pruning

technique is widely used. In this scheme, the tokens with the value of φj(t) falling below a given

threshold are pruned, or removed. The most commonly used threshold is a fixed likelihood

value below the current most likely path. This value is referred to as beam width as it sets the

minimum “width” between the current most likely path and the paths to be deleted. Pruning

can also be performed at the end of words when the language model is applied. Though the

pruning technique can dramatically reduce the computational cost, it introduces search errors.
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Part of the real most likely path could be pruned at the early stage of searching if a tight beam

width is used. Therefore, the choice of beam width is a trade off between saving computational

cost and reducing search errors.

2.6.2.2 Practical Issues in Recognition

In speech recognition, there is often a significant mismatch between the dynamic range of the

language scores and the acoustic scores. The dynamic range of the acoustic likelihood can be

excessively high, which makes the effect of language model relatively small. To handle this

problem, the language scores are often scaled. The scaling factor balances the information of

the language model and acoustic model and may be experimentally set. Another issue is the

use of a word insertion penalty. Word errors in recognition are of three types: substitutions,

deletions and insertions. To minimise the total number of errors, a fixed word insertion penalty

is commonly used to balance the insertions to the deletions. The value of insertion penalty

is often fixed for a particular task. With these techniques, the recognised word sequence is

practically determined by

Ĥ = arg max
H

{log p(O|H,M) + α log P (H) + βLH} (2.94)

where α is the language model scaling factor, β is the word insertion penalty and LH is the

length in words of the word sequence H.

2.6.3 Bayesian Inference with Parameter Distribution

The Viterbi decoding algorithm described in section 2.6.2.1 is based on the conditional inde-

pendence assumption of HMMs given the point estimate of the model parameters. This section

will discuss the inference algorithm with a parameter distribution, where the conditional inde-

pendence assumption is not valid. As described in the Bayesian training section 2.5, a posterior

distribution of model parameters may be obtained from Bayesian training. With the posterior

distribution, Bayesian inference need to be used. The Bayesian inference criterion may be written

as

Ĥ = arg max
H

p(O|H)P (H) (2.95)

where O is the observation sequence of the test data, H is a possible hypothesis sequence asso-

ciated with O, p(O|H) is the marginal likelihood over all possible model parameters

p(O|H) =

∫

M
p(O|H,M)p(M|Otrn,Htrn) dM

=

∫

M

(

∑

ω

P (ω|H,M)
∏

t

bωt(ot)

)

p(M|Otrn,Htrn) dM (2.96)

where p(M|Otrn,Htrn) is the posterior distribution of the model parameters with the hyper-

parameter estimated on training data Otrn and Htrn. This inference criterion is also referred to

as Bayesian predictive classification [57].
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It is worth noting that the integral in equation (2.96) is over the whole observation sequence,

which means the model parameters are constrained to be fixed over the whole utterance. With

this model parameter constraint, and treating model parameters as random variables, the state

output distribution at each time instance is no longer conditionally independent given the cur-

rent state. Hence, the Viterbi and token passing algorithm are not applicable unless some ad-

ditional approximations are used. Instead, the marginal likelihood p(O|H) of every possible

hypothesis sequence needs to be explicitly calculated. For LVCSR, as the possible number of

hypothesis sequences is very large, it is necessary to select a small set of “reasonable” candidate

hypothesis for use in the inference process. One approach to generate this small set of possible

sequences is to run a standard recognition system and take the top N hypotheses, referred to

as N-Best list. The best hypothesis is then selected from the N-Best list by comparing the infer-

ence evidence. This process is known as N-Best rescoring [103]. In this process, the calculation

of the marginal likelihood p(O|H) is required. As the Bayesian integral in equation (2.96) is

intractable due to the coupling of model parameters and state sequence, approximations are

required to calculate the marginal likelihood p(O|H).

One approximation that can be used is to relax the constraint that the HMM parameters are

constant over all frames of the utterance. Instead, the parameters are allowed to vary from

one time instance to another time. This approximation is referred to as a frame-independent

assumption in this thesis [37, 138]. Mathematically, this approximation means the integral in

equation (2.96) can be performed at each time instance rather than over the whole observation

sequence, i.e.

p(O|H) ≈
∑

ω

P (ω|H,M)
∏

t

b̄ωt(ot) (2.97)

The distribution

b̄j(o) =

∫

M
bj(o)p(M|Otrn,Htrn) dM (2.98)

is sometimes referred to as Bayesian predictive density [62], which is the averaged state output

distribution at state j with the parameters from M. With the appropriate form of the parameter

posterior distribution, this frame-level integral is tractable and the Bayesian predictive density

has a closed-form solution. A constrained uniform distribution was used to model the uncer-

tainty of the mean vector in each Gaussian component and led to a tractable integral in [62].

Normal-Wishart distribution on Gaussian mean and covariance matrices was also used to yield

a tractable Bayesian predictive density for recognition in [120]. With the frame-independent

assumption, the predictive distribution is used instead of the original state output distribution in

inference and the conditional independence assumption of HMM does not change. Hence, the

Viterbi algorithm described in section 2.6.2.1 can still be used, which is the advantage of this

approximation11. However, with this assumption, it is hard to state how close the approximation

11A modified frame-synchronous Viterbi algorithm with the predictive density was also reported in [62]. In this

algorithm, at each time instance, the likelihoods of all previous partial hypothesis paths are re-calculated with some

further approximations.
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is to the real likelihood.

Another approach to approximate the Bayesian integral in marginal likelihood calculation

is to use a Laplacian approximation or normal approximation [108, 57]. In this approach, the

integral in equation (2.96) is approximated by

p(O|H) ≈ p(O|M̂MAP,H)p(M̂MAP|Otrn,Htrn)(2π)
D
2 |ΣMAP|

1
2 (2.99)

where D is the total number of parameters of M, M̂MAP is the estimate which maximises the

MAP criterion

M̂MAP = arg max
M

p(O|M,H)p(M|Otrn,Htrn) (2.100)

ΣMAP = (−V)−1 and V is the Hessian matrix, or second derivatives, of log (p(O|M,H)p(M|Otrn,Htrn))

evaluated at M̂MAP. From equation (2.99), the basic idea of Laplacian approximation is to make a

local Gaussian approximation of the likelihood with respect to the model parameters. The Gaus-

sian mean is the MAP estimate M̂MAP, which can be estimated using the EM algorithm [42, 21].

The Gaussian covariance matrix is related to the Hessian matrix V evaluated at M̂MAP. The most

difficult part in Laplacian approximation is the calculation of the Hessian matrix V. Although

the Hessian matrix may be approximated using a Quasi-Bayesian (QB) algorithm [59, 58], it

is computationally expensive. This is why this approximation was only reported for isolated

words recognition [57] rather than LVCSR tasks. Due to the computation issue, the scheme is

not further discussed in this thesis.

In addition to the above, a broad class of approaches are based on lower bound approximat-

ing the intractable Bayesian integral in equation (2.96). One simple and widely used scheme

of this class is to just use a point estimate, for example the MAP estimate M̂MAP or ML esti-

mate M̂ML, to approximate the parameter posterior distribution in recognition. In this case, the

recognition process is the same as the standard process.

Though the above approximations have been used in various Bayesian inference problems,

they have not been investigated in a consistent framework with Bayesian training. In this work,

such a consistent Bayesian framework is proposed and applied to adaptive training and adaptive

inference. A more detailed discussion will be given in chapter 5.

2.7 Summary

This chapter reviews the fundamental of speech recognition with hidden Markov models (HMMs).

Feature extraction approaches, specifically MFCC and PLP, are discussed first. Hidden Markov

models (HMMs), the most successful acoustic models, are then introduced. The maximum like-

lihood (ML) training of HMM parameters and the expectation maximisation (EM) algorithm are

presented in detail. The acoustic units used in practical speech recognition and the parameter

tying technique are also discussed. To overcome the limitation of ML training, discriminative

training and Bayesian training of HMM parameters are proposed. Discriminative training aims
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to find parameters directly reducing the recognition error, which addresses the incorrect mod-

elling problem of HMMs when using ML training. This chapter reviews the approach of using

weak-sense auxiliary function to optimise discriminative training criteria. Another limitation of

the ML criterion is the sufficient training data assumption. To solve this problem, Bayesian train-

ing of HMMs assumes that the parameters are random variables and use a prior distribution of

the parameters. This is to yield a robust parameter estimate or a parameter posterior distribu-

tion when the training data is limited. As the Bayesian integral is intractable, approximations

are required during training. After the discussion of HMMs training, a review of the recogni-

tion process is given. The use of N-gram language models is presented first. With an acoustic

model and a language model, the recognition process is a search problem, which is to find the

appropriate word sequence with the maximum inference evidence. An efficient and widely used

searching algorithm, Viterbi decoding, is discussed in detail. The scaling of language model

probability and the introduction of word insertion penalty is also discussed. Finally, recognition

with a parameter posterior distribution rather than a point estimate is discussed.



3

Adaptation and Adaptive Training

The training approaches described in chapter 2 use an assumption that both training data and

test data come from the same acoustic condition. However, this is not always true. The acous-

tic mismatch may significantly degrade the recognition performance compared to systems built

in matched conditions. To compensate the mismatch of acoustic conditions between test and

training data, adaptation techniques are often used. Adaptation aims to improve performance

either by normalising the features or by tailoring the model toward a particular test acoustic

condition. This is found to significantly improve the performance of speech recognition systems

on test data with diverse acoustic conditions. Recently, there has been interest in building sys-

tems on found data where various different acoustic conditions exist. To deal with this acoustic

non-homogeneity in training data, adaptive training has been proposed. The basic idea is to use

adaptation transformation in the acoustic model training. Two sets of parameters are estimated

during training: a canonical model to represent the speech variability and a set of transforms to

represent different acoustic conditions. With adaptive training techniques, compact systems can

be effectively built on non-homogeneous data and further improve the recognition performance

after adaptation. This chapter will review the framework and standard maximum likelihood

(ML) schemes for adaptation and adaptive training.

3.1 Adaptation in Speech Recognition

Although speaker-independent (SI) systems trained using the approach described in chapter 2

can achieve good performance, speaker dependent (SD) systems can obtain an average WER

that is a factor of two or three lower than speaker-independent (SI) systems if both systems use

the same amount of data [126]. This shows the importance of reducing the speaker mismatch

between training and test data. Speaker adaptation was originally motivated to compensate

for the speaker mismatch between test and training data [56]. It aims to normalise the fea-

tures or to modify HMM parameters using a small amount of test speaker-specific data so that

the resulting system has SD-like performance. It has therefore attracted much attention in the

speech community. Speaker adaptation techniques have been extended to deal with other non-

39
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speech variabilities as well. This section will review the homogeneity assumption and modes of

adaptation commonly used in speech recognition.

3.1.1 Non-speech Variabilities and Homogeneity

In addition to changes in speakers, there are a number of other acoustic conditions that alter

the acoustic signals and result in corrupted features, such as environmental noise or channel

difference. The variabilities of observations introduced by these acoustic conditions (includ-

ing speaker changes) are independent of the inherent variability of the uttered words, hence

are generally referred to as non-speech variabilities. Though specific approaches may be used

to handle the non-speech variabilities caused by environmental noise etc., speaker adaptation

techniques have also been used to deal with this problem [37]. When using speaker adaptation

schemes for generic acoustic conditions, the algorithm design and implementation is the same.

Therefore, in this thesis, unless explicitly stated, the term acoustic condition is used instead of

the term speaker when describing adaptation techniques.

One important assumption in adaptation is that the non-speech variabilities of a particular

acoustic condition have the same statistical property. This is referred to as homogeneity of the

acoustic condition. Due to the homogeneity constraint, adaptation is performed for each sepa-

rate homogeneous data block respectively. This homogeneity constraint may be formulated using

a Dynamic Bayesian Network (DBN)1. The DBN in figure 3.1 shows the statistical dependencies

in adaptation on HMMs.

ot ot+1

t t+1

t+1t

PSfrag replacements

ωω

TT

Figure 3.1 Dynamic Bayesian network for adaptation on HMMs

Here, ωt represents the hidden state at time t, ot is the observation vector, and Tt is the

transform used for adaptation. With the homogeneity assumption, the transform in figure 3.1 is

constrained to be constant over all frames within one homogeneous data block, i.e., Tt = Tt+1.

Hence, the observation at each time instance is not only dependent on the state at that time

instance, but also the adaptation transform associated with the homogeneous block. Though

1A DBN is a graph that shows statistical dependencies [19]. In DBNs, a circle represents a continuous variable,

a square represents a discrete variable, blank ones represent observable variables, and shaded ones represent unob-

servable variables. Lack of an arrow from A to B indicates that B is conditionally independent of A.

figure/DBN_adapt.eps
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standard adaptation and adaptive training approaches all adopt this block homogeneity assump-

tion, there are few publications discussing adaptation using the strict Bayesian interpretation as

in figure 3.1 in detail. For some previous discussions, refer to [38]. This work will give a more

detailed discussion of the Bayesian interpretation of the homogeneity constraint and its effects

on adaptive training and adaptive inference in chapter 5.

In practice, the test data is normally non-homogeneous. Hence, to do adaptation, it is nec-

essary to first partition the incoming audio data stream into homogeneous blocks. For many

tasks, such as broadcast news recognition, no information about homogeneous blocks is avail-

able beforehand. Therefore, automatic partitioning of the test data is normally required before

adaptation and recognition. This is generally done in two separate stages First, the audio data is

split into small homogeneous segments. This is referred to as segmentation. In this stage, noise

(including music if any) and long silence are removed and the length of the segments may also

be constrained to reflect any limitation in the recognition. The current widely used segmentation

approach is to construct several broad class models, such as speech, silence, music and speech

with music, and then to use them to classify the audio data into small segments [109, 105].

Second, the segments are clustered together into homogeneous blocks where all segments are

assumed to have the same acoustic condition. These blocks are sufficiently large for robust

adaptation. This is referred to as the clustering stage. These homogeneous blocks are then used

for adaptation. Then agglomerative clustering is normally performed using a specific distance

measure and stopping criterion, such as likelihood ratio with a penalised likelihood (Bayesian

information criterion, BIC) [105]. In this work, the task of interest is conversational telephone

speech (CTS). In CTS, the speech has been split into speaker sides, hence, there is no need to do

clustering. However, segmentation is still required to partition the speech of each side into short

utterances. As there is no music in CTS, only speech and silence models are built to classify the

audio data into small segments [109].

Once the test data is split into homogeneous data blocks, a two-step process is usually used

for recognition within the adaptation framework. First, features are normalised or HMMs are

transformed on a block basis, which is often referred to as adaptation. This means that one

distinct set of modified HMMs or normalised features is constructed for each homogeneous block.

Second, the adapted model or normalised features are used for recognition on the particular

data block. This is the standard framework, which is reviewed in this chapter. Though the two-

step adaptation/recognition framework has been widely used, it may be viewed from a general

viewpoint of adaptive inference. The integrated adaptive inference process will be discussed

within a Bayesian framework in chapter 5.

3.1.2 Modes of Adaptation

Adaptation operates in a number of modes. In terms of availability of transcribed supervision

data, it operates in either supervised or unsupervised mode. In terms of when the supervision

data becomes available, it operates in either batch or incremental mode. It is worth noting that
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the selection of adaptation mode is highly dependent on the application.

3.1.2.1 Supervised and Unsupervised Modes

The process of adaptation is to normalise features or to modify model parameters with a small

amount of test domain specific data, referred to as supervision data or adaptation data2. In

addition to the observations of the supervision data, many adaptation techniques require the

corresponding hypothesis as well. There are two modes of adaptation in terms of the availability

of the supervision data.

If both the observations and associated (word level) transcriptions of the supervision data

are known, adaptation operates in a supervised mode. In this case, the supervision data can be

regarded as a small amount of additional training data. The quality of adaptation depends on

the amount of supervision data.

If the correct transcriptions of the supervision data are not available, adaptation operates in

unsupervised mode. The solution to unsupervised adaptation is to recognise the supervision data

multiple times and use the final recognised hypothesis instead of the real correct transcriptions

to do adaptation. In this case, the quality of the adaptation is not only dependent on the amount

of data, but also dependent on the quality of the recognised hypothesis. The adapted model

parameters or normalised features are likely to be tuned to the error-full hypothesis, which may

degrade the final recognition performance. In practice, there is a special scenario where there is

no supervision data available at all. Unsupervised adaptation has to be performed using the test

data to be recognised, which is sometimes referred to as self adaptation [38]. In this scenario, the

hypothesis bias problem is even more serious as the adaptation data is the test data itself. In this

thesis, self adaptation is the main concern. Unless otherwise specified, the term “unsupervised

adaptation” in this thesis only refers to “self adaptation”.

3.1.2.2 Batch and Incremental Modes

Adaptation can also operate in either batch or incremental modes. Batch adaptation, also referred

to as static adaptation, requires all the adaptation data being available before adaptation starts.

Batch adaptation is widely used in off-line speech recognition. In some other scenarios, for

example on-line adaptation, the adaptation data does not come in one block. It is not possible

to perform adaptation after all data become available. Adaptation has to operate when only

part of the adaptation data becomes available and continue as more data is received. The

recognition results are also produced causally. This mode is referred to as incremental mode.

In incremental mode, different strategies can be used to propagate adaptation information. This

will be discussed in detail in section 5.4.

2Some simple adaptation techniques do not require supervision, for example, Cepstral mean normalisation (CMN).

Those techniques always run in the unsupervised mode as discussed in later sections.
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3.2 Adaptation Schemes

As mentioned before, adaptation can be performed either on model parameters or on features3.

The procedure of model based adaptation/recognition is to tune a well-trained acoustic model to

a particular test domain using a small amount of test domain specific data and then to recognise

the test data associated with that particular domain using the modified acoustic model. This

section will discuss standard schemes on how to adapt, or modify, HMMs toward a specific

test acoustic condition. Although feature normalisation may also be used to compensate the

acoustic mismatch, it is normally done for both training and test data. Hence, it is discussed in

the adaptive training section 3.3.2.

3.2.1 Maximum a Posteriori (MAP)

Given the adaptation data, a straightforward method to modify the acoustic model is to perform

more ML re-training iterations. However, as the amount of supervision data is often very small,

the ML criterion easily leads to over-training of the HMM parameters. To overcome this problem,

The maximum a posteriori (MAP) criterion was proposed [42]. Here, rather than optimising the

likelihood criterion, the posterior distribution of HMM parameters is maximised. The adapted

model parameters are obtained by4

MMAP = arg max
M

p(M|O,H) = arg max
M

p(O|M,H)p(M|Φ) (3.1)

where O and H are the observation sequence and associated transcription of the supervision

data from one homogeneous block, p(M|Φ) is the prior distribution over HMM parameters. The

incorporation of the prior p(M|Φ) means that HMM parameters are less likely to be overtrained

even if there is only very limited adaptation data. To obtain the model parameter estimate using

the MAP criterion, an iterative EM algorithm similar to ML training is used. It can be shown

that the MAP auxiliary function is the ML auxiliary function in equation (2.40) plus the prior

term [21, 42]. By ignoring the constant terms independent of Gaussian parameters, the MAP

auxiliary function for Gaussian components update can be written as

QMAP(M;M̂) = log p(M|Φ) −
1

2

∑

t,m

γML
m (t)

{

log |Σ(m)| +
(

ot −µ(m)
)T

Σ(m)−1
(

ot −µ(m)
)

}

(3.2)

where M̂ is the current estimate of the HMMs, and γML
m (t) is the ML posterior occupancy of

component m, calculated using the forward backward algorithm with M̂.

In mathematics, the above MAP estimate is a point estimate version of Bayesian training

of HMMs described in section 2.5. However, it is worth noting that in adaptation, a distinct

MAP estimate of HMMs is obtained for each homogeneous block respectively. This is different

3In the rest of this chapter, the term “normalisation” refers to adaptation on features, while the term “adaptation”

usually refers to model based adaptation.
4As adaptation is always performed within one homogeneous block, the index s to denote homogeneous block is

omitted in section 3.2.
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from the concept of standard Bayesian training, where all training data are regarded as a single

block. As discussed in section 2.5, the MAP criterion will yield mathematically simple forms if

the prior distribution p(M|Φ) is a conjugate prior to the likelihood of the observations. However,

for GMMs, the state output distribution normally used in HMMs, a finite dimensional conjugate

prior does not exist. An alternative approach is to assume independence between the component

weights and the parameters of individual components. Then conjugate priors to the likelihood

of the complete data set may be separately defined for component weights and parameters of

the individual Gaussians [42]5. With these conjugate priors, closed-form re-estimation formulae

for MAP estimates can be derived from the auxiliary function in equation (3.2). For a Gaussian

component m, with p(M|Φ) being a Normal-Wishart distribution in equation (2.69), the MAP

estimate of mean vector can be shown to be6

µ̂(m) =
τ µ̃(m) +

∑

t γML
m (t)ot

τ +
∑

t γML
m (t)

(3.3)

where µ̃(m) is the prior mean vector from p(M|Φ). It is normally set as the corresponding

mean vector of a robustly trained model, such as a speaker-independent model set. τ is a meta-

parameter which balances the ML estimate and the prior.

From equation (3.3), as the amount of adaptation data increases towards infinity, the es-

timate converges to the ML estimate. While for limited supervision data case, the prior mean

vectors reduce sensitivity to the supervision data and lead to robust estimates. This is a major

advantage of MAP adaptation. One limitation of MAP is that it can only update those Gaussian

components that are observed in supervision data. The other components are not altered. As the

number of Gaussian components in LVCSR system is normally very large, standard MAP adapta-

tion will require a considerable amount of supervision data to update all parameters. Hence it

is very slow.

To solve this problem, various extensions to MAP have been proposed. For example, the Re-

gression based Model Prediction (RMP) [1] finds linear regression relationships between HMM

parameters and uses the relationships to update rarely observed or unobserved parameters based

on well-adapted parameters. Structured MAP (SMAP) [104] organises all Gaussian components

into a tree structure and applies MAP adaptation using a top-down strategy from the root node

(containing all components). In addition to extensions within the MAP framework, alternative

approaches have been also proposed to get rapid adaptation of all Gaussian parameters, which

will be discussed in the next section.

3.2.2 Linear Transform Based Adaptation

Linear transform based adaptation is a widely used alternative to MAP when there is limited

adaptation data. The idea is to estimate a test-domain specific linear transform for the means

5The conjugate prior of Gaussian parameters in HMMs is a Normal-Wishart distribution [20] as defined in equa-

tion (2.69). The conjugate prior of component weights is a Dirichlet distribution [63].
6For details on MAP update formulae of other HMM parameters refer to [42].
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and/or covariance matrices of the Gaussian components. This scheme has the advantage that

the same transform can be shared between a large number of Gaussians. Although in this case,

this kind of adaptation does not guarantee to give the ML estimate of Gaussian parameters with

a large amount of supervision data, the sharing allows adaptation of all Gaussians components

with a small amount of supervision data. In standard schemes, the transforms are estimated

using the ML criterion given a set of HMMs. Hence, similar to equation (2.40), the generic

auxiliary function for updating transform T can be written as

QML(T ; T̂ ,M̂) =
〈

log p(O, θ|H,M̂, T )
〉

P (θ|O,H,M̂,T̂ )
(3.4)

where O is the observation sequence of a homogeneous data block, H is the associated transcrip-

tion, θ is the hidden component sequence, M̂ is the model that the transform is based on, T̂ is

the current estimate of the transform parameters. The exact form of auxiliary function depends

on the form of linear transform. This section will discuss some common forms including uncon-

strained maximum likelihood linear regression (MLLR), variance MLLR and constrained MLLR

(CMLLR). All Gaussian components are assumed to share one global transform in the discussion.

The use of multiple transforms and regression base class will be discussed in section 3.2.4.

3.2.2.1 Maximum Likelihood Linear Regression (MLLR)

Maximum likelihood linear regression (MLLR) uses the ML criterion to estimate a linear trans-

form to adapt Gaussian parameters of HMMs. It was originally proposed to adapt mean vec-

tors [74] and extended to variance adaptation later [41, 34]. To avoid confusion, the term

“MLLR” will only refer to mean based linear transforms in this work. In MLLR, the mean of

Gaussian component m is adapted to a particular acoustic condition by

µ̂(m) = Aµ(m) + b = Wξ(m) (3.5)

where µ̂(m) is the adapted mean of component m for the target acoustic condition, ξ(m) =

[µ(m)T 1]T is the extended mean vector, and W = [A b] is the extended linear transform. In

a linear transform, A can be either a full or a block-diagonal matrix according to the amount of

supervision data available [83]. It is worth emphasising that the transform W is associated with

a particular test acoustic condition and is distinct for each homogeneous data block.

The estimation of the transform is based on a set of pre-trained HMMs M̂ and the current

transform estimate T̂ . Ignoring the constants independent of the transform, the generic auxiliary

function in equation (3.4) for MLLR transform updates can be explicitly written as [74]

QML(T ; T̂ ,M̂) = −
1

2

∑

t,m

γML
m (t)

(

ot − Wξ(m)
)T

Σ(m)−1
(

ot − Wξ(m)
)

(3.6)

where T is now the MLLR transform W, γML
m (t) is the posterior occupancy of component m

calculated using the forward-backward algorithm with HMMs adapted by the current transform

estimate. In this work, the Gaussian covariance matrices are assumed to be diagonal. This

will greatly simplify the estimation of MLLR transforms. Differentiating the auxiliary function
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in equation (3.6), with respect to W and equating to zero yields the ML estimate. Let W =

[w1, · · · ,wD]T , where wT
d is the dth row of W, D is the dimension number, the ML estimate of

the dth row is given by

ŵd = G−1
ML,dkML,d (3.7)

where the sufficient statistics for the dth row are given by

GML,d =
∑

t,m

γML
m (t)

σ
(m)
dd

ξ(m)ξ(m)T (3.8)

kML,d =
∑

t,m

γML
m (t)ot,d

σ
(m)
dd

ξ(m) (3.9)

where ot,d is the dth element of observation vector ot, σ
(m)
dd is the dth diagonal element of Σ(m).

The MLLR transform estimation is also an iterative process. A new transform is estimated by

making use of the current transform until convergence. The final transform W is then used to

adapt the canonical model for recognition. This iterative estimation process requires initialisa-

tion. An identity transform is normally used as the initial transform. This also applies to other

linear transform based adaptation schemes.

3.2.2.2 Variance MLLR

The previous section describes the use of linear transforms to adapt mean vectors. The covari-

ance matrix of each component can also be adapted using linear transforms. This is referred to

as variance MLLR. The covariance matrix may be adapted by [41, 34]

Σ̂(m) = L(m)THL(m) (3.10)

where H is the linear transform to adapt variance matrices, L(m) is the inverse of the Choleski

factor of Σ(m)−1, i.e. L(m) = C(m)−1, where

Σ(m)−1 = C(m)C(m)T (3.11)

A closed-form solution for estimating transform H using the EM algorithm can then be derived.

For exact formulae, refer to [41].

A disadvantage of the above form of variance adaptation is the high computational cost.

From equation (3.10), the covariance matrices after adaptation will be full rank matrices which

results in increased computational load in likelihood calculation. To solve this problem, an

alternative form of variance MLLR was proposed as [34]:

Σ̂(m) = HΣ(m)HT (3.12)

where H is again the variance transform. A closed-form solution for estimating H using EM

algorithm has also been derived in [34]. This form has the advantage that the likelihood can
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be efficiently calculated. It can be shown that the log-likelihood of an observation ot given a

Gaussian component with the adapted covariance matrix is

logN (ot; µ
(m), Σ̂(m)) = log

(

N
(

H−1ot;H
−1µ(m),Σ(m)

))

− log |H| (3.13)

When the original covariance matrix Σ(m) is diagonal, with equation (3.13), the likelihood

can be calculated by appropriately modifying the mean and observations, which is much more

efficient than the calculation using a full covariance matrix. An EM algorithm has also been

derived for this type of variance MLLR in [34].

3.2.2.3 Constrained MLLR

The mean and variance MLLR transforms described in the previous two sections can be simulta-

neously applied to both mean vectors and covariance matrices [34]. As the two types of trans-

forms are estimated separately, the computation cost is high. An alternative scheme to adapt

both mean vectors and covariance matrices is to use constrained linear transforms [22, 34].

Here the linear transform applied to the covariance matrix must correspond to the transform

applied to the mean vector. This is referred to as constrained MLLR

µ̂(m) = A′µ(m) − b′ (3.14)

Σ̂(m) = A′Σ(m)A′T (3.15)

where A′ is the constrained linear transform, b′ is the bias on the mean vector, and µ(m) and

Σ(m) are the original Gaussian parameters. It can be shown that the above constrained MLLR

is equivalent to a feature transform with an additional normalisation term in likelihood calcula-

tion [34]. The log likelihood of an observation ot given an adapted Gaussian component m can

be calculated by

logN (ot; µ̂
(m), Σ̂(m)) = log

(

N
(

ôt; µ
(m),Σ(m)

))

+ log |A| (3.16)

where

ôt = A′−1ot + A′−1b′ = Aot + b = Wζt (3.17)

and ζt = [oT
t 1]T is the extended observation, |A| is the determinant of A, and W = [A b] =

[A′−1 A′−1b′] is the extended linear transform for features associated with one particular ho-

mogeneous data block. From equation (3.16), the linear transform A does not impact the form

of covariance matrices after adaptation. Hence, the likelihood calculation is efficient if the orig-

inal covariance matrix is diagonal because there is no need to calculate the likelihood with a

full covariance matrix. Furthermore, the mean vector does not need to be adapted either, which

saves more computational resources.

Since it is more efficient to implement constrained MLLR as a feature transform, it is prefer-

able to estimate the feature transform W = [A b] rather than the original transform [A′ b′].

Again, the EM algorithm is used to iteratively update W. The diagonal transform case was
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solved in [22] and the full transform case was solved in [34]. The auxiliary function for full

constrained MLLR is defined as [34]

QML(T ; T̂ ,M̂) = −
1

2

∑

t,m

γML
m (t)

{

(

Wζt − µ(m)
)T

Σ(m)−1
(

Wζt − µ(m)
)

− log(|A|2)

}

(3.18)

where the exact form of T is the feature transform W, ζt are the extended observations, γML
m (t)

is the posterior occupancy of component m at time t calculated with the current constrained

transform. Optimising the auxiliary function, equation (3.18), with respect to W leads to the

update formulae. It has been shown in [34], given sufficient statistics

GML,d =
∑

m

1

σ
(m)
dd

∑

t

γML
m (t)ζtζ

T
t (3.19)

kML,d =
∑

m

µ
(m)
d

σ
(m)
dd

∑

t

γML
m (t)ζt (3.20)

where σ
(m)
dd is the dth diagonal element of covariance matrix Σ(m), µ

(m)
d is the dth element of

µ(m). The dth row of the transform,wT
d , can be estimated by

ŵd = G−1
ML,d (αpd + kML,d) (3.21)

where pd is the extended cofactor vector [0 cd1 · · · cdD]T , D is the dimension number, cij =

cof(Aij) is the cofactor. The coefficient α satisfies a quadratic expression given the total occu-

pancy β =
∑

m,t γML
m (t)

α2pT
d G−1

ML,dpd + αpT
d G−1

ML,dkML,d − β = 0 (3.22)

From the above formulae, the update is an iterative solution over the rows since the rows

of the transform are dependent on one another via the extended cofactor vector. Once the final

transform W is obtained, it is used to transform the observations to the specific test acoustic

condition before recognition.

3.2.3 Cluster Based Adaptation

The model based adaptation in the previous section is based on a standard set of HMMs. An al-

ternative is to perform adaptation on a series of sets of HMMs, referred to as cluster based adap-

tation. One traditional cluster adaptation scheme is to build several cluster-dependent models,

for example speaker-dependent (SD) HMMs and choose an appropriate one for a particular test

acoustic condition [29]. In this approach, the adaptation, or the selection of the appropriate

model for recognition is a “hard” choice. Alternatively, some researchers used a linear combina-

tion of a set of cluster-dependent models [52, 51]. The final “adapted” model is not necessarily

one of the reference models but a new interpolated one. Hence, this choice is a “soft” choice.

The transform smoothing [32], cluster adaptation [33] and eigenvoices [69] are all based on

this soft choice of HMMs. In the cluster based adaptation technique, the “transform” to adapt
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the model is the interpolation weights or selection indicator. Rather than using standard HMMs,

cluster adaptation techniques require a set of HMM clusters. Therefore, this adaptation approach

is closely related to training multiple-cluster HMMs and will be discussed in detail in the cluster

based adaptive training section 3.4.2.

3.2.4 Regression Classes and Transform Tying

The transform based schemes described above use a global transform to adapt all Gaussian com-

ponents. This is likely to give a reliable transform estimate even if there is only a small amount

of data available. However, as more data becomes available, the adaptation performance may be

improved by increasing the number of transforms. Each transform is then specific and applied

to a certain group of Gaussian components7. These groups are commonly referred to as base

classes. This achieves a more flexible adaptation depending on the amount of data available.

Two approaches can be used to group Gaussian components into base classes: phonetic

characteristics and regression class trees [72]. The phonetic characteristics approach is a static

knowledge-based decision tree method. Gaussian components are grouped into the broad phone

classes: silence, vowels, stops, glides, nasals, fricatives, etc. Phone class specific transforms

may then be generated in adaptation and applied to these groups during recognition. The

disadvantage of this approach is that the tying of parameters is performed at the phone level

and independent of the adaptation data, which is not flexible.

Rather than specifying static classes, a dynamic scheme is often used to construct additional

transforms as more adaptation data become available. A regression class tree [72, 31] is used to

group Gaussian components so that the number of the transforms to be estimated can be dynam-

ically chosen according to the amount of available adaptation data. The regression class tree is

constructed before adaptation by automatically clustering Gaussian components which are close

in acoustic space. For example, a centroid splitting algorithm with Euclidean distance can be

used as a specific clustering scheme. The basic assumption here is that similar components

should be transformed, or adapted, in a similar way [133].

Having constructed a regression class tree, it is used in adaptation to dynamically deter-

mine the Gaussian groups on which a transform is based. Figure 3.2 illustrates the use of a

binary regression class tree with four terminal nodes. The shaded terminal nodes specify the

final Gaussian component groups, or base classes. During adaptation, the occupancy counts are

accumulated for each regression base class. If there is sufficient data for a transform to be esti-

mated for a node, the node is a solid circle, otherwise, it is dotted. The solid line also indicates

sufficient data and dotted line for insufficient data. As the figure shows, neither node 6 or 7

has sufficient data; however when pooled at node 3, there is sufficient adaptation data for a

transform to be generated. The threshold to determine the sufficiency of adaptation data should

be set in advance. The global adaptation case is equivalent to using a regression tree with just

7When constrained MLLR transforms in section 3.2.2.3 are used, the multiple transforms will be applied to features

and result in multiple feature streams, each one is associated with a certain group of Gaussian components.
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Figure 3.2 A binary regression tree with four terminal nodes

the root node. As the threshold is used, this global adaptation may result in no transforms if

there is not sufficient data for generating a global transform.

When using a regression class tree, the estimation of the transforms described in section 3.2.2

and the interpolation weights in the following section 3.4.2.2 need to be slightly modified. One

transform is estimated for each base class. Rather than accumulating the sufficient statistics over

all Gaussian components, only the Gaussian components within the base class that a particular

transform belongs to need to be accumulated over. Given the sufficient statistics accumulated

on the appropriate group of Gaussian components, the final transform re-estimation formulae

remain unchanged.

3.2.5 Extensions of Standard Schemes

The previous sections reviewed the standard adaptation schemes. Though these schemes have

achieved good performance, there are some limitations when using them in unsupervised adap-

tation. Moreover, the use of the ML criterion limits the gains that can be obtained from adap-

tation. This section will describe a number of extensions which address various limitations of

the standard techniques. The extensions introduced here are for transform and cluster based

adaptation, not for MAP adaptation of HMMs.

3.2.5.1 Confidence Score Based Adaptation

In unsupervised adaptation, the supervision transcription used to estimate transforms is recog-

nised hypothesis sequences. As indicated before, if the error rate of the hypothesis is high, it can

reduce the effectiveness the adaptation process due to incorporating incorrect statistics in trans-

form estimation. With partially incorrect statistics, it is hard to robustly estimate transforms.

Consequently, the recognition performance may be degraded.

To solve this problem, confidence score based adaptation was proposed [55, 106, 142, 2,

111]. The basic idea is to calculate a confidence score for each word of the recognised supervi-

sion hypothesis. During adaptation, only those words with a high confidence score are used to

accumulate statistics for transform estimation. Words with a confidence score below a certain

figure/regtree.eps
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threshold are ignored[122]. Word posterior probabilities from the recogniser are widely used to

calculate the confidence scores for each word in the hypothesis [123, 124].

This technique is effective when the word error rate of the hypothesis supervision is high.

Since confidence score based adaptation “eliminates” incorrect words from the hypothesis, in

an ideal case, it is similar to obtaining a correct transcription and then performing supervised

adaptation. It has been reported that confidence score based adaptation may obtain significant

improvements over standard transform based adaptation [142, 117, 2, 111]. However, due to

the elimination process, confidence score based adaptation has the disadvantage of reducing

the amount of adaptation data and consequently limiting the number of transforms that can be

estimated.

3.2.5.2 Lattice Based Adaptation

Though confidence score based adaptation can improve the recognition performance, it only

uses a single hypothesis. Further improvements may be obtained by also considering alterna-

tive hypotheses. Lattice based adaptation has been proposed for this purpose [89, 115]. The

idea is to perform adaptation by accumulating statistics against a lattice rather than a 1-Best

recognised hypothesis. As the oracle error rate of lattice is usually much lower than that of the

1-Best hypothesis, the performance degradation due to error-full hypothesis may be significantly

reduced.

In lattice based adaptation, an extended forward-backward algorithm is performed through

the recognised lattice, or alternative hypotheses [130, 131]. This lattice forward-backward algo-

rithm gives the posterior probability of each Gaussian component given all possible hypotheses

in the lattice. Using this posterior probability to accumulate statistics for updating transforms

automatically weights different hypotheses in the lattice. Hence, there is no need to discard

complete frames of data as in confidence score based adaptation. As no adaptation data is

eliminated, more transforms can be robustly generated than for confidence based adaptation.

Lattice based adaptation was first introduced for MLLR adaptation [89, 115] and later for

other adaptation techniques, such as constrained MLLR [111]. Due to its improvement in unsu-

pervised adaptation, it has been used in state-of-the-art multi-pass speech recognition systems

[25].

3.2.5.3 Extensions to Overcome ML Limitations

The transform based adaptation schemes introduced above use the ML criterion to estimate

the transform parameters. However, as indicated in section 2.3.4, the ML criterion has some

limitations, which may result in degraded performance. To address these limitations, several

extended adaptation schemes are proposed.

One limitation of the ML criterion is that it does not directly aim at reducing the word error

rate of the adaptation data. Section 2.4 discussed discriminative training, which was proposed to

address this issue. With the recent interest in discriminative training of standard HMMs, there is

also a trend to discriminatively estimate transforms during adaptation. A frame discrimination
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criterion was used in [117] to estimate linear transform parameters. Another study used the

H-criterion to estimate discriminative linear transforms [113]. The objective function was an

interpolation of ML and MMI criteria. Conditional MLLR uses a conditional maximum likeli-

hood auxiliary function [47, 48]. It is an alternative approach to derive discriminative linear

transforms. The MMI criterion [110] and the MPE criterion [119] were also investigated for

a similar purpose. Besides using discriminative criteria for linear transform based adaptation,

recently, the application to cluster based adaptation was also investigated [137, 79]. It has

been shown that discriminative adaptation can provide significant reduction in word error rate

for supervised adaptation [114, 113]. Application of discriminative adaptation in unsupervised

mode has also been investigated [47, 119]. As the correct transcription is not known, discrimi-

natively estimating the test set transformation is problematic. To maintain a consistent criterion

in transform training and in testing adaptation, a simplified discriminative adaptive training

scheme is normally used where only the canonical model parameters are discriminatively up-

dated with the ML estimated transforms fixed [78]. The model can then be used together with

ML-estimated transforms in testing adaptation. This is the approach adopted in this work. A

detailed discussion of discriminative adaptive training will be given in chapter 4.

The ML criterion has another limitation related to robust estimation of the parameters. When

estimating transforms using very little adaptation data, the ML estimate of transform may be un-

reliable. A general solution to this problem is to use a Bayesian framework in adaptation [138].

One commonly used implementation of Bayesian approach is to perform a MAP-style estima-

tion of the transform parameters. This is referred to as maximum a posteriori linear regression

(MAPLR) for linear transforms [15]. The MAP criterion was also investigated for cluster based

adaptation [33]. A general Bayesian framework for adaptive training and adaptive inference

will be given in chapter 5.

3.3 Adaptive Training on Non-homogeneous Training Data

A pre-requisite of adaptation is well trained HMMs. The traditional approach to get the model

is to train an HMM model set on specifically collected data which comes from a single source.

The model is then adapted to the test domain during recognition using the techniques in the

previous section. Recently, there has been a trend towards building systems on found, or non-

homogeneous data, which does not come from the same source, hence acoustic mismatch exists

within the training data. The basic idea of adaptive training is to use the adaptation fashion

in the training process to build compact systems on non-homogeneous data. This section will

discuss the general issues regarding adaptive training.

3.3.1 Multi-style Training and Adaptive Training

A simple approach for dealing with non-homogeneous training data is to build a system on the

whole training data set as if all data comes from a single homogeneous data block. The assump-



CHAPTER 3. ADAPTATION AND ADAPTIVE TRAINING 53

tion here is that the extracted features do not contain any unwanted non-speech variabilities.

Current front-ends for speech recognition, such as MFCCs and PLPs, can not completely remove

the unwanted variabilities. Consequently, acoustic models trained on normal features not only

represent the speech variability, but also model some acoustic condition variabilities. For this

reason, systems directly built on all non-homogeneous training data with the normal features

are referred to as multi-style trained systems [38], such as speaker-independent model. As a

general model, a multi-style system can be used in recognition without adaptation. The adapta-

tion on top of the multi-style system fine tunes it to a particular test acoustic condition. Though

good performance has been obtained with multi-style systems, the acoustic mismatch between

different parts of the training data is not well addressed. It would be preferable to use other

training schemes that are more powerful to handle the non-speech variabilities in training data.

Adaptive training is a powerful solution for building systems on non-homogeneous training

data [3]. Rather than dealing with all the data as a single block, the training data is split into

several homogeneous blocks, for example speaker side or data block with the same acoustic envi-

ronment. Thus, the training data is written as O = {O(1), . . . ,O(S)} and H = {H(1), . . . ,H(S)},

where O(s) is the observation sequence of a homogeneous block associated with a particular

acoustic condition s, H(s) is the corresponding transcription sequence. Given this split, two

distinct sets of parameters are introduced to separately model the speech and the non-speech

variabilities

1. Canonical model M

The ideal canonical model represents the desired speech variability of the whole training

data. Hence, M is independent of acoustic conditions. It is estimated given the whole data

set O and H and a set of adaptation transforms. The nature of canonical model depends

on the form of the adaptation transform. For linear transforms, the form of the canonical

model is standard HMMs. However, multiple-cluster HMMs can also be used as a special

type of canonical model for interpolation weights [39].

2. A set of transforms T = {T (1), . . . , T (S)}

A set of transforms is used to represent the unwanted non-speech variabilities. One distinct

transform T (s) represents the acoustic condition of a particular homogeneous block s and is

estimated using O(s) and H(s). The transform acts as a counterpart of the canonical model

to normalise features or adapt the canonical model to that particular acoustic condition.

It is worth emphasising that the canonical model is always estimated given the set of trans-

forms accounting for non-speech variabilities. Hence, in recognition, the canonical model can

not be directly used. It must be adapted by an appropriate transform to represent both speech

and specific non-speech variabilities of a particular test acoustic condition. Due to the modelling

of desired speech variability, the canonical model is more compact than the multi-style model.

Hence, it should be more adaptable to a new test acoustic condition than a multi-style trained

model. The sections below will review some schemes for adaptive training.
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3.3.2 Adaptive Training Schemes

In terms of the targets that transforms work on, adaptive training can be classified into two

broad classes: feature normalisation and model based transforms. This section will review the

schemes for the two classes of adaptive training.

3.3.2.1 Feature Normalisation

Features used in speech recognition systems are supposed to be sensitive to speech variabili-

ties but inherently robust to non-speech variabilities. If such an ideal set of features could be

obtained, adaptation and adaptive training would yield no performance gain. However, as indi-

cated in chapter 2.1, no such feature extraction approach actually exists, hence adaptation and

adaptive training are useful. Although features that are completely robust to acoustic condition

changes do not exist, it is possible to normalise the features so that they are less sensitive to

acoustic condition changes. This approach is referred to as feature normalisation. It is assumed

that the HMMs trained on normalised features have less mismatch if used on test data nor-

malised using the same approach. Therefore, feature normalisation is normally applied in both

training and testing [38]. It is worth emphasising that the feature normalisation is performed

for each homogeneous data block respectively rather than for the whole data set.

An advantage of using feature normalisation in adaptive training is that the re-estimation

formulae of the canonical model are almost unchanged. The only difference from standard

HMM training is that the normalised features are used instead of the original ones. This signifi-

cantly reduces the computational cost which may be very high for adaptive training with model

based transforms. According to whether the normalisation is dependent on HMMs or not, this

approach can be further classified into two categories.

1. Model Independent Feature Normalisation

The model independent schemes do not explicitly use any model and transcription information.

The normalisation transform is directly estimated from and applied to features so that general

statistic attributes of acoustic conditions can be removed. As the transform estimation does

not require any transcription/hypothesis information of the test data, it is simple and can be

effectively used in both supervised and unsupervised adaptation. However, as the transform

is global from the viewpoint of HMMs, the ability to compensate acoustic mismatch is limited.

Hence, the model independent normalisation is often used together with other adaptive training

techniques. The most commonly used schemes include:

• Cepstral Mean Normalisation (CMN) and Cepstral Variance Normalisation (CVN)

One standard normalisation transform is to sphere the data, i.e., transform the data so

that it has zero mean and unit variance at each dimension of the feature. Cepstral mean

normalisation (CMN) [4, 129] and Cepstral variance normalisation (CVN) are simple tech-

niques to achieve this goal.

The idea is to normalise the mean and variance of each dimension of the observations.
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Therefore, the CMN is performed by

ô
CMN(s)
t = o

(s)
t − ō(s) = o

(s)
t −

1

T

T
∑

i=1

o
(s)
i (3.23)

where o
(s)
t is the observation vector associated with homogeneous block s at time t, ô

CMN(s)
t

is the transformed observation vector after CMN, ō(s) is the mean value of the observa-

tion sequence O(s) = [o
(s)
1 , · · · ,o

(s)
T ], and T is the length of the observation sequence.

From the signal processing point of view, CMN is similar to the RASTA approach, where

a high-pass filter is applied to a log-spectral representation of speech, such as Cepstral

coefficients [54]. Equation (3.23) is also a high-pass filter in the Cepstral domain. This

filtering will suppress the constant spectral components, which reflect the effect of con-

volutive noise factors in the input speech signal, hence, yields features robust to slowly

varying convolutive noise.

After CMN, the mean value of the observations from 1 to T is zero. The CVN further

normalises the variance of each dimension of the observations to be 1

ô
CVN(s)
t,d = ô

CMN(s)
t,d /

√

σ
(s)
dd (3.24)

where ô
CVN(s)
t,d is the dth dimension of the normalised observation after CVN on top of CMN,

√

σ
(s)
dd is the square root of the variance of observations at the dth dimension

σ
(s)
dd =

1

T

T
∑

i=1

(

ô
CMN(s)
i,d

)2
(3.25)

The advantage of CMN and CVN is that they are simple to calculate and apply since no

transcription information is required. After normalisation of both training and test data,

the non-speech acoustic mismatch between different homogeneous data block is effectively

reduced. Hence, they are widely used in state-of-the-art speech recognition system [25].

• Gaussianisation

Though CMN and CVN results in sphered data if the distribution of each dimension of the

observations is Gaussian, the simple linear normalization scheme may not work well for

highly non-homogeneous speech data. For such data, the distribution of observations can

not be assumed to be a single Gaussian. A non-linear feature normalization scheme, Gaus-

sianisation, is then proposed to solve this problem [100]. The basic idea is to normalise

the cumulative density function (CDF) of the observations (the source CDF) to a CDF of a

standard Gaussian (the target CDF). Hence, it may be viewed as higher order version of

CMN and CVN. An illustration of Gaussianisation is given in figure 3.1.

Gaussianisation was first implemented using a complex iterative scheme based on his-

togram matching [100]. An alternative approach, which provides a more compact and

smooth representation of the distribution of the original observations [40, 76] is based on
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Table 3.1 Illustration of Gaussianisation

GMM. In this approach, each dimension of the original observations is represented by a

GMM. Let od denote the dth dimension of a D dimensional acoustic feature vector o. Then

the Gaussianised feature on the dth dimension associated with homogeneous block s is

given by

ô
(s)
d = φ−1







∫ o
(s)
d

−∞

N
(s)
d
∑

n=1

cdnsN
(

x; µ(dns), σ(dns)
)

dx






(3.26)

where ô
(s)
d is the normalised observation element, φ−1(·) denotes the Gaussian inverse CDF.

The GMM component means, variances and component weights are denoted by µ(dns),

σ(dns) and cdns respectively, where n is the component index. They are specific for each

dimension d and each homogeneous block s. Therefore, for each homogeneous block s,

a total of D single dimension N
(s)
d component GMMs need to be trained using the ML

criterion. As Gaussianisation gives a better representation of the original observations,

it has been found to yield considerable gains on highly non-homogeneous data, such as

Mandarin conversational telephone speech (CTS) [40].

Although the model-independent schemes are simple and efficient to implement, they have

some limitations. One limitation is that the adaptation data (observations only) are assumed

to be sufficient to give robust estimates of the moments. For short data blocks, the estimated

normalisation transform is sensitive to outliers of the observations, which may result in poor per-

formance. Another limitation is that the normalisation transform is independent of the model

parameters. This makes the model-independent normalisation always “global” in terms of the

effect on HMMs. This inflexibility may limit the possible gains of adaptation. Hence, model

dependent techniques are proposed to get further gains.

2. Model Dependent Feature Normalisation

This approach also calculates a feature normalisation transform dependent on acoustic con-

dition. However, the transform is estimated by making use of a model set and transcription

or hypothesis of the supervision data. Generally speaking, the normalisation transform can be

applied either on the extracted features or some intermediate steps of the feature extraction

process. The form of the transform can be either linear or non-linear. The standard techniques
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normally use the ML criterion to estimate the transforms. Widely used model dependent nor-

malisation schemes include

• Constrained Maximum Likelihood Linear Regression (CMLLR)

Constrained MLLR (CMLLR) [34] has been introduced in section 3.2.2.3. Though it is a

constrained linear transform on both the mean vector and covariance matrix of a Gaussian

component, it can be equivalently written as a feature normalisation transform as indicated

in section 3.2.2.3. As CMLLR is closely related to model based transform techniques, it is

discussed in detail in the following section 3.4.1.2.

• Vocal Tract Length Normalisation (VTLN)

One major non-speech variability that affects the performance of a speech recognition

system is the variability of the human voice among different speakers. Vocal tract length

normalisation (VTLN) [71] is a technique that can reduce the mismatch between speakers.

The basic idea is to map the actual speech signal to a normalised signal with less variability

due to different vocal tract lengths of different speakers. A warping factor α is used to per-

form the mapping. It compresses or expands the frequency domain before the features are

extracted from the speech signals. Therefore, it may be viewed as a non-linear transform

on the feature domain. It is worth noting that VTLN requires estimation of a distinct warp-

ing factor for each speaker (homogeneous block) in the training and test dataset. Hence,

it is introduced as an adaptive training technique.

The estimation of the optimal warping factor often uses a grid search scheme [94, 71]. A

sequence of discrete values of α are used as candidates. The optimal one is selected to

maximise the likelihood of the data. As VTLN is typically a non-linear feature transform,

exact calculation of the Jacobian of the warping transform, which is required in likeli-

hood calculations, is highly complex. Approximation is normally required, for example,

linear Cepstral transform was used to approximate the VTLN process [112]. As HMMs

are required to calculate the likelihood, VTLN is regarded as a model-dependent normal-

isation. However, rather than using a complex model, simple HMMs and GMMs may be

used to rapidly select the optimal warping factor [121]. VTLN is an effective technique

to normalise features and has been shown to give additive gains when combined with

other adaptation techniques, such as MLLR [94]. It has therefore been widely used in

state-of-the-art speech recognition systems [25].

3.3.2.2 Model Based Transformation

Although feature normalisation can compensate the acoustic mismatch between training data,

it is global from the viewpoint of modifying HMM parameters (except for CMLLR). Hence, it is

not flexible in terms of modifying the acoustic model and the gains it may obtain are limited.

Model based transformation is an alternative and more powerful adaptive training approach. In

this approach, the HMM parameters, normally means and possibly covariances of Gaussians, are
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adapted by a transform. This is the main focus of this thesis. It should be noted that, model

based transforms are often combined with feature normalisation to obtain the best performance.

For example, in a state-of-the-art CTS recognition system, model based transforms are estimated

on top of the features normalised by CMN, CVN and VTLN [25].

3.4 Model Based Adaptive Training Schemes

Model based adaptive training is a flexible and powerful scheme for building systems on non-

homogeneous data. Two sets of parameters, a canonical model and a set of transforms, are used

to separately model the speech variability and non-speech variability respectively. Here, the

transforms are used to adapt parameters of the canonical model to different acoustic conditions.

In contrast to feature normalisation, model based schemes are more powerful due to the flexible

modification of HMMs. This section will review ML adaptive training, which is the standard

scheme.

Given the canonical model, homogeneous blocks are assumed to be independent of each

others. The likelihood of the whole observation sequence O = {O(1), . . . ,O(S)} given both sets

of parameters is then expressed as

p(O|H,M, T ) =
S
∏

s=1

p(O(s)|H(s),M, T (s)) (3.27)

where s is the index of the acoustic condition or homogeneous data block, and T = {T (1), . . . , T (S)}

is a set of transforms, one for each homogeneous block. H = {H(1), . . . ,H(S)} is the correspond-

ing transcription sequence. Given the model parameters M and transform T (s), the observation

likelihood of each acoustic condition can be written as8

p(O(s)|H(s),M, T (s)) =
∑

θ

P (θ|H(s),M)
∏

t

p(ot|M, T (s), θt) (3.28)

where θ is the hidden component sequence, P (θ|H(s),M) is the probability of a particular com-

ponent sequence θ, and p(ot|M, T (s), θt) is the adapted Gaussian distribution at component θt

for acoustic condition s. ML adaptive training seeks to estimate the canonical model parameters

that maximise equation (3.27)

M̂ML = arg max
M

p(O|H,M, T̂ ) (3.29)

where T̂ is a set of ML transform estimates given the canonical model estimate. The transform

estimate for homogeneous block s is given by

T̂
(s)
ML = arg max

T
p(O(s)|H(s),M̂, T ) (3.30)

8As in the standard HMMs case, using the component sequence as the hidden variable sequence is convenient for

deriving formulae for updating the Gaussian component parameters. This is a natural extension to the use of the

state sequence.
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As it is hard to directly estimate M̂ML from equation (3.29) due to the hidden component se-

quence θ, the expectation maximisation (EM) algorithm is again used to iteratively learn the

parameter estimates [21]. Similar to the standard HMM case in section 2.3, an auxiliary func-

tion QML(Mk+1;M̂k, T̂ ), is introduced to find the estimate at iteration k + 1, M̂k+1, given the

transform estimate T̂ and the previous iteration’s estimate, M̂k.

QML(Mk+1;M̂k, T̂ ) =
〈

log p(O, θ|Mk+1, T̂ ,H)
〉

P (θ|O,H,M̂k,T̂ )
(3.31)

where < f(x) >q(x) denotes the expectation of function f(x) with respect to the distribution

of q(x) defined in equation (2.14), P (θ|O,H,M̂k, T̂ ) is the component sequence posterior for

the whole training data calculated using M̂k and T̂ . Equation (3.31) is a strict lower bound of

log p(O|H,M, T̂ ). Each iteration is guaranteed not to decrease the auxiliary function. Conse-

quently the likelihood p(O|H,M, T̂ ) is not decreased. Eventually, the estimate of the parameters

tends to be a local maximum. A similar auxiliary function can also be introduced to individually

obtain the transform estimate for each particular homogeneous block

QML

(

T
(s)

k+1; T̂
(s)

k ,M̂k

)

=
〈

log p(O(s), θ|M̂k, T
(s)

k+1,H
(s))
〉

P (θ|O(s),H(s),M̂k,T̂
(s)

k
)

(3.32)

where O(s) and H(s) are observation sequence and transcription of the homogeneous data block

s respectively, and T
(s)

k+1 is the transform to be estimated at iteration k + 1. As the canonical

model and transforms are dependent on each other, an interleaving procedure is often used to

refine both sets of parameters as below:

1. Initialise parameters sets M̂0 and T̂ 0, set k = 0.

2. Estimate T̂ k+1 given M̂k and T̂ k using equation (3.32)

3. Estimate M̂k+1 given M̂k and T̂ k+1 using equation (3.31)

4. k = k + 1. Goto 2 until convergence.

ML adaptive training requires sufficient training data at both the homogeneous block level and

the global level to ensure robust estimates of both sets of parameters. The canonical model

estimate is then used in adaptation/recognition. As the canonical model can not be directly

used in recognition, testset transforms are usually estimated given some supervision data. The

estimation process is similar to the training step 2. Then, the adapted model is used for final

recognition.

Depending on the form of the transforms and the canonical model, model based adaptive

training can be classified into two main categories: linear transform based schemes [3, 34] and

cluster based schemes [33, 69]. This section will review them in detail.

3.4.1 Linear Transform Based Adaptive Training

As described in section 3.2.2, linear transforms are widely used to represent non-speech vari-

abilities. A canonical model with the form of standard HMMs is adapted by those transforms
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to construct new HMMs for each homogeneous data block associated with a particular acoustic

condition. This process is illustrated in figure 3.3.

Model
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Figure 3.3 Illustration of linear transform based adaptive training

The transform update formulae in adaptive training is similar to that in adaptation, which

has been detailed in 3.2.2. In this section, the estimation of the canonical model given the set of

transforms is discussed in detail. The most popular forms of linear transforms used in adaptive

training are MLLR and CMLLR. As variance MLLR is not normally used in linear transform based

adaptive training, it is not considered here, but can be considered within a similar framework.

The linear transform based adaptive training is sometimes referred to as speaker adaptive training

(SAT)[3] because they were first introduced to handle the speaker variability. In the rest of this

thesis, “SAT” is used to denote linear transform based adaptive training only.

3.4.1.1 SAT with MLLR

In SAT with MLLR, the mean vectors of the canonical model are adapted to each homogeneous

data block using a distinct MLLR transform. As the canonical model training involves all training

data, to make the derivation clear, the MLLR adaptation formula in equation (3.5), is rewritten

here using an explicit notation that denotes the dependency on acoustic conditions and the

regression base class used

µ̂(sm) = A(srm)µ(m) + b(srm) = W(srm)ξ(m) (3.33)

where rm is the regression base class, or Gaussian group, that the Gaussian component m be-

longs to, µ̂(sm) is the adapted mean of component m to acoustic condition s, ξ(m) = [µ(m)T 1]T

is the extended mean vector, and W(sr) = [A(sr) b(sr)] is the extended linear transform asso-

ciated with acoustic condition s and regression base class r. With the ML criterion, the general

auxiliary function in equation (3.31) can be explicitly written for SAT with MLLR as below9

QML(M;M̂, T̂ ) = −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣Σ
(m)
∣

∣

∣

+
(

o
(s)
t − W(srm)ξ(m)

)T

Σ(m)−1
(

o
(s)
t − W(srm)ξ(m)

)

}

(3.34)

9Iteration index k is omitted for clarity.

figure/sat.struct.eps
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where M̂ is the current canonical model estimate, diagonal covariance is again used here, T̂

is the MLLR transform set consisting of W(sr) for acoustic condition s, o
(s)
t is the observation

vector of homogeneous block s at time t, and γML
m (t) is the posterior occupancy of component

m at time t calculated using the forward-backward algorithm based on the current canonical

model M̂ and the transform estimate T̂ . It can be shown [3] that given the sufficient statistics

G
(m)
ML =

∑

s,t

γML
m (t)A(srm)TΣ(m)−1A(srm) (3.35)

k
(m)
ML =

∑

s,t

γML
m (t)A(srm)TΣ(m)−1

(

o
(s)
t − b(srm)

)

(3.36)

the new mean is estimated by

µ̂(m) = G
(m)
ML

−1
k

(m)
ML (3.37)

It is hard to simultaneously update mean and covariance using equation (3.34). Hence, The

covariance re-estimation is performed after the mean update, and is similar to the standard

covariance update [3]:

Σ̂(m) = diag







∑

s,t γML
m (t)

(

o
(s)
t − W(srm)ξ̂(m)

)(

o
(s)
t − W(srm)ξ̂(m)

)T

∑

s,t γML
m (t)






(3.38)

where ξ̂(m) is the extended mean vector with the new estimate of the canonical model mean

µ̂(m) in equation (3.37).

The MLLR transform update is similar to section 3.2.2.1 and is not rewritten here. It is worth

emphasising that the transform update is based on each homogeneous data block rather than

the whole training dataset 10. From the update formulae in equations (3.37) and (3.38), the

re-estimation of mean vectors requires considerable memory and computational load because it

needs to store a full or block-diagonal matrix for each Gaussian component [81]. This becomes

impractical if the number of Gaussian components in the system is increased. Furthermore,

covariances can not be updated in the same pass as the mean vector. These disadvantages limit

the use of SAT with MLLR for systems with a high complexity.

3.4.1.2 SAT with Constrained MLLR

The computation issue of SAT with MLLR can be avoided by using constrained MLLR to build

SAT systems [34]. As mentioned before, although CMLLR is a model parameter transform which

uses the same transform for both mean and variance, it is equivalent to a feature transform. The

formula for transformed observations in equation (3.17) is also rewritten here with explicit

notation of acoustic condition and regression base class

ô
(srm)
t = A(srm)o

(s)
t + b(srm) = W(srm)ζ

(s)
t (3.39)

10As the transform update does not involve different acoustic conditions, the acoustic condition index s is omitted

in the previous adaptation section.
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where rm is the regression base class for the Gaussian component m, W(sr) = [A(sr) b(sr)]

is the extended constrained transform associated with acoustic condition s and regression base

class r, ζ
(s)
t = [o

(s)T
t 1]T is the extended observation, and ô

(srm)
t is the transformed observation.

The transformed observation is now dependent on Gaussian component groups. This means

one distinct transformed observation needs to be stored for each regression base class when

accumulating statistics during training.

The characteristics of being a feature transform not only saves computational resources when

calculating the likelihood, but also significantly simplifies the re-estimation formula for model

parameters. It can be shown that the auxiliary function for SAT with CMLLR is expressed by [34]

QML(M;M̂, T̂ ) = −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣
Σ(m)

∣

∣

∣
+
(

ô
(srm)
t − µ(m)

)T

Σ(m)−1
(

ô
(srm)
t − µ(m)

)

}

(3.40)

where T is now the constrained linear transform, ô
(srm)
t is the transformed observation vector

using equation (3.39), and γML
m (t) is the posterior occupancy calculated using the transformed

observations. Comparing this to the auxiliary function for standard HMMs in equation (2.41),

the main difference is that the transformed observations ô
(srm)
t is used here instead of the origi-

nal observations. The resultant update formulae of mean and covariance are thus given by

µ̂(m) =

∑

s,t γML
m (t)ô

(srm)
t

∑

s,t γML
m (t)

Σ̂(m) = diag

(

∑

s,t γML
m (t)(ô

(srm)
t − µ̂(m))(ô

(srm)
t − µ̂(m))T

∑

s,t γML
m (t)

)

The above formulae are also similar to equations (2.37) and (2.38). This means that the compu-

tational load and memory requirements of SAT with CMLLR are similar to that of the standard

HMM system and greatly reduced compared to SAT with MLLR. Again, the estimation of the

CMLLR transform is the same as in section 3.2.2.3 and is not rewritten here.

3.4.2 Cluster Based Adaptive Training

Linear transform based adaptive training described before uses standard HMMs as the canonical

model. However, the form of the canonical model may vary depending on the nature of the

transform used. An alternative transform is a set of interpolation weights to combine multiple

sets of HMMs. In this case the canonical model is a multiple-cluster model.

As shown in figure 3.4, multiple sets of HMMs, one for each cluster, are used. The adapted

model is generated by interpolating the cluster parameters to form a standard set of HMMs.

Though this approach was originally motivated for rapid speaker adaptation, it can be effec-

tively extended for adaptation with respect to other non-speech variabilities in LVCSR [39]. One

special type of the interpolation weights are 0/1 indicators, referred to as hard weights. These

result in the traditional cluster dependent model. As a generalisation, arbitrary values may be

used as the interpolation weights, referred to as soft weights. Cluster adaptive training [33]
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Figure 3.4 Illustration of cluster based adaptive training

and eigenvoices [69] belong to this type. This section will review the two types of cluster based

adaptive training, in particular cluster adaptive training.

3.4.2.1 Cluster Dependent Modelling

Traditional cluster dependent modelling may be viewed from an adaptive training point of view.

The non-homogeneous training data is split into homogeneous data blocks in terms of acoustic

clusters, such as gender or speaker. A standard set of HMMs is then trained using each cluster

data block. During recognition, a cluster selection process, such as gender detection, is per-

formed for each test homogeneous block. This may be regarded as the adaptation process. For

cluster dependent modelling, the adaptation of model parameters may be written in a generic

form. For instance, the mean vector is adapted by

µ̂(sm) =
∑

c

δ(s, c)µ(m)
c (3.41)

where µ̂(sm) is the adapted mean for the test domain s, c is the index of the cluster dependent

models, and δ(s, c) is a Kronecker delta function which has value 1 if two arguments match and

value 0 otherwise, i.e.

δ(s, c) =

{

1 s = c

0 otherwise
(3.42)

The use of Kronecker delta function can be viewed as the selection of the candidate system c

which is closest to speaker s. The adapted, or selected, model is then used to recognise the

corresponding test data. Gender dependent or speaker dependent modelling are good examples

and have been widely used [67]. The main problem with this approach is that, by taking a hard

decision, only a limited number of HMM systems representing the training acoustic conditions

can be chosen from. If the test acoustic condition does not appear in training data and is very

different from any of the training acoustic conditions, any choice is likely to give poor perfor-

mance. Namely, the hard decision has limited generalization ability and consequently limits its

use. Cluster based approaches with soft decisions are proposed to address this problem.

figure/cat.struct.eps
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3.4.2.2 Cluster Adaptive Training and Eigenvoices

Cluster adaptive training (CAT) [33], or eigenvoices [88], is a multiple-cluster HMM training

approach with soft weights. The basic idea is to build a target-domain-specific model by using a

weighted sum of multiple sets of HMMs. An interpolation weight vector, acting as the transform

in adaptive training, is computed for each distinct acoustic condition during training. Since

the weight used can take arbitrary values instead of just the 1/0 indicator, this approach is a

generalization of traditional cluster dependent modelling.

In order to simplify training, it is often assumed that different clusters have the same co-

variance matrices, transition matrices and mixture weights and that only the mean values differ

between the clusters. Therefore, in the multiple-cluster canonical model, also referred to as a

CAT model, each component m consists of a mixture weight, c(m), a covariance matrix (usually

diagonal), Σ(m), and a set of P means, one for each of the P clusters, normally arranged into a

matrix M(m),

M(m) =
[

µ
(m)
1 , . . . , µ

(m)
P

]

The complete canonical model M consists of11

M =
{

{M(1), · · · ,M(M)}, {Σ(1), · · · ,Σ(M)}
}

where M is the total number of components. The transform parameters in CAT are the inter-

polation weights λ(sr), associated with the regression base class r and each acoustic condition

s

λ(sr) =
[

λ
(sr)
1 , . . . , λ

(sr)
P

]T

(3.43)

where λ
(sr)
p is the interpolation weight for cluster p. In some systems a bias cluster is used where

λ
(sr)
P = 1 for all acoustic conditions [36]. The adapted mean for a particular acoustic condition

s, can then be written as

µ̂(sm) = M(m)λ(srm) (3.44)

where rm is the regression base class that component m belongs to. There are two kinds of CAT

models [36], which differ in the representation of the cluster means. In model based CAT, the

clusters are represented as a distinct set of mean vectors, which is the focus of this work. An

alternative is transform based CAT, where the clusters are represented by a set of cluster-specific

transforms and a single standard HMM set. This yields a more compact cluster representation.

Details of transform based CAT can be found in [36].

ML update of CAT model parameters and interpolation weights

11Gaussian component weights and transition matrices are not included as their estimation is similar to the stan-

dard estimation schemes.
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Maximum likelihood (ML) CAT training is used to find both sets of parameters maximising

the likelihood criterion. As in linear transform based adaptive training, the two updates are in-

terleaved. Again, the EM algorithm is used to iteratively estimate the parameters. The auxiliary

function of the canonical model parameters for CAT can be written as

QML(M;M̂, T̂ ) = −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣Σ
(m)
∣

∣

∣

+
(

o
(s)
t − M(m)λ(srm)

)T

Σ(m)−1
(

o
(s)
t − M(m)λ(srm)

)

}

(3.45)

where T̂ is the set of interpolation weights consisting of λ(sr), and γML
m (t) is the posterior occu-

pancy of Gaussian component m calculated given the current CAT model and weights estimate.

By differentiating equation (3.45) with respect to CAT model parameters and equating it to zero,

ML re-estimation formulae can be derived [36]. Given the sufficient statistics

γML
m =

∑

s,t

γML
m (t) (3.46)

G
(m)
ML =

∑

s,t

γML
m (t)λ(srm)λ(srm)T (3.47)

K
(m)
ML =

∑

s,t

γML
m (t)λ(srm)o

(s)T
t (3.48)

L
(m)
ML =

∑

s,t

γML
m (t)o

(s)
t o

(s)T
t (3.49)

the mean and covariance matrix can be updated by

M̂(m)T = G
(m)−1
ML K

(m)
ML (3.50)

Σ̂(m) = diag
(L

(m)
ML − M̂(m)K

(m)
ML

γML
m

)

(3.51)

The auxiliary function for the weights update is defined for each homogeneous data block

by [36]

QML(T
(s); T̂ (s),M̂) = −

1

2

∑

m,t

γML
m (t)

(

o
(s)
t − M(m)λ(srm)

)T

Σ(m)−1
(

o
(s)
t − M(m)λ(srm)

)

(3.52)

where the transform T (s) is the interpolation weight vector. From the auxiliary function, the

weight vector associated with regression class r and acoustic condition s can be estimated as

λ̂(sr) = G
(sr)−1
ML k

(sr)
ML (3.53)

where the sufficient statistics are given by

G
(sr)
ML =

∑

m∈Mr

(

∑

t

γML
m (t)

)

M(m)TΣ(m)−1M(m) (3.54)

k
(sr)
ML =

∑

m∈Mr

M(m)TΣ(m)−1

(

∑

t

γML
m (t)o

(s)
t

)

(3.55)
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where Mr is the Gaussian component group of regression base class r. Comparing the inter-

polate weight update to the linear transform update in SAT, the number of parameters to be

estimated is usually significantly smaller. This results in a lower cost of computation and mem-

ory. Hence, CAT is more suitable for rapid adaptation.

Initialisation in CAT training

When training a model using the EM algorithm, initialisation is always an important issue.

For CAT, it is possible to either initialise the interpolation weights first or to initialise the multiple-

cluster model first [36]. In both schemes, the posterior probability of each Gaussian component

at time t, γML
m (t), is required. This is typically obtained from a multi-style trained model, such as

a speaker-independent (SI) model.

For state-of-the-art systems, there are often a large number of model parameters. Directly

constructing multiple-cluster models is expensive. Thus in practice, interpolation weights are

often initialised first. From the sufficient statistics in equations (3.46) to (3.49), given a set of

initial weights and γML
m (t) obtained from a standard SI model, an initial CAT model can be con-

structed and the iterative CAT training may continue. The procedure is illustrated in Figure 3.5.

Prior

Eigenvoices

SI Model

Knowledge

Initial Multi−
cluster Model

Initial Weight
Iterative

Adaptive

Training
PSfrag replacements

λ

γML
m

(t)

Figure 3.5 Training initialisation of a CAT system

There are two schemes for the weights initialisation.

• Clustering based approach.

If some prior knowledge related to acoustic condition clustering is available, the training

data of each homogeneous block can be assigned an initial weight vector based on this

knowledge. Each element of the vector is a 0/1 value, according to which cluster it belongs

to. For example, with gender information, an initial 2-cluster weight vector, [0, 1] or [1, 0]

can be assigned to male and female speakers respectively. If there is no prior cluster

knowledge available, standard automatic clustering approaches may be used to obtain the

initial assignment of each cluster [67].

• Eigen-decomposition approach.

figure/catinit.eps
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Eigen-decomposition approach was first proposed for speaker adaptation [69] and can be

used as an initialisation scheme for the interpolation weights. Similar to speaker cluster-

ing, a number of simple speaker-dependent models may be trained first. The means of

each model are then concatenated to form a single meta-vector, i.e., one meta-vector for

each speaker. Principal component analysis (PCA) or linear discriminant analysis (LDA)

is then performed on the set of meta-vectors. Several orthogonal eigen-meta-vectors, or

eigenvoices, with the largest eigenvalues are selected as a basis set. The number of the

selected eigenvoices will give the number of clusters. Given the basis eigenvoices and the

meta-vectors for each speaker, initial weights for each speaker can be obtained using ei-

ther a projection scheme or a ML based approach [36, 68]. This approach will naturally

output a bias cluster, i.e. a cluster with a weight value of 1.0, which is the mean of all

meta-vectors. During CAT training, the weight of this bias cluster can either be fixed as

1.0 or updated similarly to the other weights [36]. An advantage here is, by using the

eigenvoices approach, an arbitrary number of clusters can be initialised without knowing

prior knowledge.

Eigenvoices systems, a multiple-cluster scheme similar to CAT, are constructed by further

updating the basis initialised by the eigen-decomposition approach [69, 68]. It is interesting

to briefly contrast the two. Both systems use a set of distinct mean vectors. The “eigenvoices”

correspond to the cluster mean matrices in the CAT model. An eigenvoices system always uses

an eigen-decomposition initialisation approach based on PCA or LDA. But CAT systems may also

use prior knowledge for initialisation. For some eigenvoices systems, the initialised basis eigen-

voices are not updated but directly used in adaptation and decoding [68], while CAT systems

always update the multiple-cluster model [36]. If eigenvoices are updated using the maximum

likelihood eigenspace (MLES) approach [88], it is equivalent to updating CAT cluster mean ma-

trices and leaving covariance matrices unchanged [36]12. Due to this close-relationship, the

discriminative and Bayesian training techniques for CAT described in later chapters can also be

used in eigenvoices systems.

Recognition using a CAT model

During recognition, the initialisation of test interpolation weights is also required. From the

sufficient statistics G(s) and k(s) in the weights update formulae in equation (3.53), to initialise

weights, the only requirement is the multiple-cluster model and γML
m (t), which may be obtained

from a multi-style trained standard model, e.g. SI model. Then further weights estimation can

be performed in a similar iterative fashion as in training. This adaptation procedure is illustrated

in Figure 3.6.

Comparing this to the training initialisation, no prior knowledge or eigenvoices approach is

12The MLES approach in [88] was used as a simple extension of the PCA approach. The update of eigenvoices and

interpolation weights were not interleaved during training. To the author’s knowledge, eigenvoices have not been

discussed in an adaptive training framework before.
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Figure 3.6 Testing adaptation initialisation of a CAT system

required in adaptation. The test weights can be initialised naturally. This makes the use of CAT

systems straightforward. It is also interesting to compare the number of parameters required

for CAT adaptation to SAT (linear transform based) adaptation. The number of interpolation

weights is normally significantly less than the number of linear transforms. For instance, for

very little adaptation data, only a global transform can be generated. Using CAT weights as the

transform, the number of parameters is only P , which is the cluster number, normally less than

10. When using a full MLLR transform as the transform, the number of parameters is D×(D+1),

where D is the number of dimensions, typically 39. It is obvious that the number of CAT weight

parameters is considerably less than the number of MLLR parameters. This characteristic makes

CAT very useful for rapid and robust adaptation. However, as fewer parameters are used to tune

the canonical model, the adaptation power of CAT is limited compared to SAT.

3.4.3 Multiple Acoustic Factors and Structured Transforms

The adaptive training described before uses only one set of transforms to represent all kinds

of non-speech variabilities. However, for highly non-homogeneous data, there may be multiple

acoustic factors affecting the speech signal. For instance, speaker variations and environmental

noise may exist at the same time. Using one set of transforms to model the whole unwanted

speech variability may not be powerful enough. More recent schemes use multiple sets of trans-

forms, denoted here as structured transforms (ST), to represent complex non-speech variabilities

within an adaptive training framework [136, 37]. When two acoustic factors exist, the DBN for

adaptive training and adaptation with ST is shown in figure 3.7.

Where ωt is the hidden state and ot is the observation vector. The structured transform

consists of two types of transforms: λ and W. From figure 3.7, λ and W are associated with

the same homogeneous block, and are used to represent distinct acoustic factors, such as envi-

ronmental noise and speaker. Therefore, the unwanted acoustic variabilities are modelled in a

structural way. This type of structural modelling is also referred to as acoustic factorisation [37].

Various structured transforms have been examined. For example, the parallel model combination

(PMC) technique was combined with spectral subtraction as a ST and obtained improvements

on a small vocabulary task [30]. CAT was combined with MLLR as a model based ST and out-

performed adaptive training with one set of transforms [37]. In this thesis, only model based ST

is considered.

figure/catrec.eps
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Figure 3.7 Dynamic Bayesian network for adaptive HMM with structured transforms

There are three main forms of model based transforms: MLLR transforms, CMLLR trans-

forms and CAT weights. Although the ST of MLLR combined with CAT may yield good perfor-

mance [37], it requires a considerably large memory during training due to the nature of the

model update [39]. It is therefore not used for adaptive training in this work. Instead, an-

other kind of ST, which combines CAT weights with CMLLR transforms [136], is investigated for

adaptive training. When using this form of ST, the canonical model is a multiple-cluster model.

However, in addition to CAT, a transform on the feature space is also applied. Then the multiple-

cluster model is trained in a transformed feature space, where the observations are transformed

using CMLLR as in equation (3.39). The auxiliary function for the canonical model update can

be expressed as [137]

QML(M;M̂, T̂ ) = −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣
Σ(m)

∣

∣

∣

+
(

ô
(srW

m )
t − M(m)λ(srλ

m)
)T

Σ(m)−1
(

ô
(srW

m )
t − M(m)λ(srλ

m)
)

}

(3.56)

where T is now the structured transform, s denotes the index of the homogeneous block, rW
m

is the CMLLR regression class which component m belongs to, rλ
m is the CAT weight regression

base class for component m, γML
m (t) is the posterior occupancy calculated using the current model

and ST estimates and ô
(srW

m )
t is the transformed observation for acoustic condition s using the

CMLLR transform associated with regression base class rW
m , which is obtained using equation

(3.39).

As the auxiliary function suggests, the estimation of the multiple-cluster canonical model is

a simple extension to the model based CAT estimation approach. Re-estimation formulae are

the same as equations (3.50) and (3.51) except that the transformed observation ô
(srW

m )
t is used

in the sufficient statistics. Transform estimation also requires little modification, where given

the interpolation weights, the adapted mean, µ̂(sm) = M(m)λ(srλ
m) is used instead of µ(m) in the

statistics in equation (3.20) to estimate the CMLLR transform. Then the interpolation weights

figure/DBN_af.eps
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are estimated using equation (3.53) with the transformed features ô
(srW

m )
t .

The overall process of adaptive training with ST is also an interleaving update process similar

to standard adaptive training except that the transform update step consists of two sub-steps for

updating CAT weights and CMLLR respectively. The procedure in this work is described as below:

1. Initialise canonical model M̂0, constrained MLLR Ŵ0 and CAT weights λ̂0, set k = 0.

2. Estimate Ŵk+1 given M̂k, Ŵk and λ̂k

3. Estimate λ̂k+1 given M̂k, Ŵk+1 and λ̂k

4. Estimate M̂k+1 given M̂k, Ŵk+1 and λ̂k+1

5. k = k + 1. Goto 2 until convergence.

The adaptation process also uses the two sub-steps of estimating constrained MLLR and CAT

interpolation weights. The final constrained MLLR is used to transform the features and the CAT

interpolation weights are used to construct the adapted model for recognition.

3.5 Summary

This section has reviewed the basic concepts and standard schemes of adaptation and adaptive

training. Adaptation is proposed to compensate for the acoustic mismatch between training

data and test data. A well trained model is modified according to some supervision data to

match each target acoustic domain. Adaptation may be run in either supervised or unsupervised

modes depending on the availability of correct transcriptions. From another point of view, it

may be run in either batch or incremental modes according to when adaptation data becomes

available. Standard adaptation schemes include MAP, MLLR and CMLLR. To overcome the in-

correct hypothesis problem in unsupervised adaptation, extended adaptation techniques based

on confidence scores or lattices may be used. Adaptation may also be used during training

to build systems on non-homogeneous data, referred to as adaptive training. Here, a set of

transforms is used to represent the unwanted acoustic variabilities. A canonical model is con-

structed which represents only the underlying speech variability. This canonical model is then

adapted to a particular test speaker or environment using the transforms. Feature normalisation

may be viewed as an adaptive training technique. Widely used approaches include CMN, CVN,

Gaussianisation and VTLN. They are all simple techniques and may be combined with com-

plex model based adaptive training techniques. There are two main categories of model based

schemes: linear transforms and cluster based adaptive training. MLLR and CMLLR are com-

monly used linear transforms to build adaptively trained systems. Cluster dependent models

can be viewed as a special case of cluster adaptive training (CAT), which uses a multiple-cluster

canonical model and uses interpolation weights to represent non-speech variabilities. For highly

non-homogeneous training data, where multiple acoustic factors affect the speech signals, struc-

tured transforms may be used to model each acoustic factor respectively. Maximum likelihood

(ML) estimation of canonical model/transform parameters is discussed in detail in this chapter.



4

Discriminative Adaptive Training

The previous chapter has described adaptive training and adaptation schemes with the max-

imum likelihood (ML) criterion. For ASR systems, standard ML training suffers from the in-

correct modelling problem of HMMs as discussed in section 2.3.4. Discriminative criteria have

been proposed to solve this problem. This chapter investigates discriminative training within the

framework of adaptive training. A simplified discriminative adaptive training strategy is adopted

in this thesis, in which only the canonical model is discriminatively updated given a set of ML

estimated transforms. This will be discussed in section 4.1. Depending on the type of trans-

form used, discriminative adaptive training can also be classified as two broad categories: linear

transform based or cluster based schemes. Linear transform based one has been previously pro-

posed. In this work, a new discriminative cluster adaptive training is discussed in detail. As the

minimum phone error (MPE) criterion has been shown to give good performance improvements

for LVCSR tasks, it is used to derive the discriminative update formulae of Gaussian mean and

covariance parameters 1.

4.1 Simplified Discriminative Adaptive Training

An ideal discriminative adaptive training paradigm is to discriminatively update both the canoni-

cal model and the transform parameters during training. In adaptation, given the discriminative

canonical model and some supervision data, a transform is discriminatively estimated for each

test homogeneous data block. The adapted discriminative model is then used in recognition. In

this paradigm, the use of discriminative criterion to estimate the transform parameters in both

training and adaptation gives good discrimination ability of the final adapted model.

However, this paradigm is impractical when the canonical model is used in unsupervised

adaptation. As indicated in section 2.4, discriminative training requires the correct transcription.

Unfortunately, in unsupervised adaptation, there is no correct transcription available. Though

it is possible to generate multiple hypothesis candidates and regard the best one as the “correct

1Refer to [90] for the MPE update of transition probability and Gaussian component weight as they are similar to

the standard discriminative estimation schemes.
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transcription”, this errorful “transcription” is not likely to give correct discrimination information

for testing transform estimation. It has been found that discriminative training is more sensitive

to the quality of the supervision than ML training. Though discriminatively trained transforms

can lead to good gain in supervised adaptation [113], the gain in unsupervised adaptation is

found to be greatly reduced [119]. Unsupervised discriminative adaptation is still an open

problem. A more detailed discussion can be found in [118].

A simple way to avoid the unsupervised discriminative adaptation problem is to use the ML

criterion to update transforms during adaptation. However, there is a criterion mismatch if the

transforms are discriminatively updated during training. To keep transform update criterion con-

sistent in both training and unsupervised testing adaptation, an alternative training paradigm is

often used [78]. This paradigm is sometimes referred to as the simplified discriminative adap-

tive training [119]. It has been found to yield about the same performance as discriminatively

training both sets of parameters. However it is simpler and more consistent when dealing with

unsupervised adaptation tasks. The basic training procedures are as follows.

1. Perform standard ML adaptive training resulting in a canonical model estimate M̂ML and a

set of ML transform estimates T̂ ML = {T̂
(1)
ML , · · · , T̂

(S)
ML }.

2. Fixing the ML transform estimates, the canonical model is discriminatively updated. After

several iterations, a discriminative canonical model, M̂MPE, is produced.

In adaptation, given the discriminatively trained model M̂MPE, ML criterion is again used to

estimate transform parameters for each homogeneous block of the test data.

As unsupervised adaptation is the focus of this work, the simplified discriminative adaptive

training strategy is adopted. Therefore, in the below sections, the discriminative update of

the canonical model is the main concern. Discriminative transform estimation is only briefly

reviewed.

4.2 Linear Transform Based Discriminative Adaptive Training

The linear transform based discriminative adaptive training has been previously investigated [60,

47]. The most commonly used linear transforms are mean transforms [74] and constrained

transforms [34]. Discriminative adaptive training with the two types of transforms are reviewed

in this section. A more detailed review can be found in [118].

4.2.1 DAT with Mean Transform

ML adaptive training with mean transform is the form of speaker adaptive training (SAT) dis-

cussed in section 3.4.1.1. This section will review discriminatively training the canonical model.

As discussed previously, due to the use of the simplified discriminative adaptive training strat-

egy, only the discriminative update of the canonical model is investigated. For the discriminative
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estimation of mean transforms, an MMI implementation was first introduced in [114] and an

MPE implementation can be found in [118].

In early research, the MMI criterion was used to update the canonical model parameters

given the mean transforms [60, 118]. This section presents the MPE update of the canonical

model parameters. Similar to ML SAT, the mean vector and the covariance matrix of the canoni-

cal model are updated separately. The mean update is discussed first, followed by the covariance

update.

The ML auxiliary function for SAT with mean transform was given in equation (3.34), which

is rewritten as below

QML(M;M̂, T̂ ) = −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣
Σ(m)

∣

∣

∣

+
(

o
(s)
t − W(srm)ξ(m)

)T

Σ(m)−1
(

o
(s)
t − W(srm)ξ(m)

)

}

(4.1)

It can also be re-expressed in terms of a set of sufficient statistics as in discriminative training of

standard HMMs. Considering only the mean update

QML(M;M̂, T̂ ) = GSAT(M;ΓML) = −
1

2

∑

m

{

µ(m)TG
(m)
ML µ(m) − 2µ(m)Tk

(m)
ML

}

(4.2)

where the sufficient statistics is

ΓML =
{

G
(m)
ML ,k

(m)
ML

}

(4.3)

are defined in equation (3.35) and equation (3.36).

To get an MPE estimate of the parameters, a weak-sense auxiliary function similar to equa-

tion (2.68) may be used. Compared to the ML SAT auxiliary function in equation (4.2), the

numerator part of the weak-sense auxiliary function uses numerator posterior occupancy γn
m(t)

instead of γML
m (t) in the sufficient statistics Γn. Similarly, the denominator part yields the statistics

Γd by using γd
m(t).

As in standard discriminative training, a smoothing function is also required and it must yield

the current model parameters, M̂, as a maximum to meet the constraint in equation (2.59).

The generic smoothing function for standard HMMs was introduced in [86] and [102]. Since

in adaptive training the adapted model is dependent on acoustic conditions, one approach is

to define a smoothing function at acoustic condition level [60]. Then, the generic form of the

smoothing function for both sets of parameters in adaptive training may be written as

S(M, T ;M̂, T̂ ) =
∑

s,m

Dmν(s)
m

∫

o

p(o|m,M̂, T̂ (s)) log p(o|m,M, T (s)) do (4.4)

where s is the index of acoustic condition, ν
(s)
m is a weight for different acoustic conditions and

will be defined in equation (4.6) later. As shown in appendix A, this smoothing function also

satisfies the constraint in equation (2.59). The exact form for mean update is then expressed as

S(M;M̂, T̂ ) = −
1

2

∑

s,m

Dmν(s)
m

(

ξ(m) − ξ̂(m)
c

)T

W(srm)TΣ(m)−1W(srm)
(

ξ(m) − ξ̂(m)
c

)

(4.5)
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where W(sr) = [A(sr) b(sr)] is the extended mean transform associated with regression base

class r and acoustic condition s, rm is the regression base class that component m belongs to, ξ =

[µT 1]T is the extended mean vector and ξ̂c is the extended mean of the current model set. Dm is

a positive smoothing constant for component m to control the impact of the smoothing function

and make the optimisation stable. This smoothing function is a valid smoothing function for all

values of ν
(s)
m . However, rather than using a constant value for all acoustic conditions, it is more

appropriate to use this value to reflect the proportions of data for the particular component of

an acoustic condition. In this work it is set as

ν(s)
m =

∑

t γn
m(t)

∑

s,t γn
m(t)

(4.6)

where the summation in the numerator only involves data associated with a particular acoustic

condition s. It is usual to re-express equation (4.5) in terms of sufficient statistics as the same

form as equation (4.2)

S(M;M̂, T̂ ) = GSAT(M;Γs) (4.7)

where

Γs =
{

DmG(m)
s , Dmk(m)

s

}

(4.8)

and

G(m)
s =

∑

s

ν(s)
m A(srm)TΣ(m)−1A(srm) (4.9)

k(m)
s = G(m)

s ξ̂(m)
c (4.10)

As only the mean update is concerned here, Dm only needs to be selected to ensure a positive

MPE occupancy count. It may be simply set as

Dm = Eγd
m (4.11)

where γd
m is the denominator occupancy for component m and E is 1 or 2 as suggested in [90].

The I-smoothing distribution used for the mean update is a Normal distribution, which is

part of the Normal-Wishart distribution in equation (2.69) in standard discriminative training.

Here it is defined at acoustic condition level as well. Ignoring constants, it is expressed as

log p(M|Φ) = −
τ I

2

∑

s,m

ν̃(s)
m

(

W(srm)ξ(m) − µ̃(sm)
)T

Σ(m)−1
(

W(srm)ξ(m) − µ̃(sm)
)

(4.12)

where τ I is the parameter to control impact of the prior, µ̃(sm) is the prior mean of the mth

component for acoustic condition s, ν̃
(s)
m is a slightly modified version of equation (4.6). Since in

standard MPE training, ML estimates are often used as the priors, the ML posterior occupancy,

γML
m (t), are therefore used here to define ν̃

(s)
m . The logarithm of the I-smoothing distribution may

be re-expressed using the sufficient statistics as

log p(M|Φ) = GSAT(M;Γp) (4.13)
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where

Γp =
{

τ IG(m)
p , τ IK(m)

p

}

(4.14)

and

G(m)
p =

∑

s

ν̃(s)
m A(srm)TΣ(m)−1A(srm) (4.15)

k(m)
p =

∑

s

ν̃(s)
m A(srm)TΣ(m)−1

(

µ̃(sm) − b(srm)
)

(4.16)

The prior mean µ̃(sm) may have various forms. One choice is to use the ML estimate as in

standard discriminative training, i.e.,

µ̃(sm) = A(srm)µ̂
(m)
ML + b(srm) (4.17)

where µ̂
(m)
ML is the ML estimate obtained using equation (3.37). In this case, it is trivial to prove

that G
(m)
p and k

(m)
p are the ML statistics given in equation (3.35) and equation (3.36), nor-

malised by the ML posterior occupancy γML
m . This is the form considered in this thesis. MMI

estimate or static model parameters may also be used as the prior, though to the author’s knowl-

edge, there is no report on using the two priors for mean transform based DAT. A more detailed

discussion about the I-smoothing prior will be given in section 4.3.2.2.

Given the above definitions of statistics, the overall weak-sense auxiliary function may be

expressed as

QMPE(M;M̂, T̂ ) = GSAT(M;Γn) − GSAT(M;Γd) + GSAT(M;Γs) + GSAT(M;Γp) (4.18)

where GSAT(·) is defined for mean update only, as in equation (4.2). It is then trivial to show that

the mean vector can be updated by

µ̂(m) = G
(m)
MPE

−1
k

(m)
MPE (4.19)

where

G
(m)
MPE = G(m)

n − G
(m)
d + DmG(m)

s + τ IG(m)
p (4.20)

k
(m)
MPE = k(m)

n − k
(m)
d + Dmk(m)

s + τ Ik(m)
p (4.21)

The covariance matrices are discriminatively estimated after the mean update. During this

estimation, each part of the weak-sense auxiliary function is re-arranged for covariance matrices

update. The ML auxiliary function in equation (4.1) may be re-expressed for covariance matrices

update as following

QML(M;M̂, T̂ ) = GSAT(M;ΓML) = −
1

2

∑

m

{

γML
m log

∣

∣

∣
Σ(m)

∣

∣

∣
+ tr

(

L
(m)
ML Σ(m)−1

)

}

(4.22)

where

ΓML =
{

γML
m ,L

(m)
ML

}

(4.23)
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and

γML
m =

∑

s,t

γML
m (t) (4.24)

L
(m)
ML =

∑

s,t

γML
m (t)

(

o
(s)
t − W(srm)ξ(m)

)(

o
(s)
t − W(srm)ξ(m)

)T

(4.25)

The numerator part can be defined similarly as the ML auxiliary function except for using the

numerator occupancy γn
m(t) instead of γML

m (t). So does the denominator part. As shown in

appendix A, the smoothing function for covariance matrices can also be derived from the general

form in equation (4.4),

S(M;M̂, T̂ ) = GSAT(M;Γs) = −
1

2

∑

m

Dm

{

log
∣

∣

∣
Σ(m)

∣

∣

∣
+ tr

(

Σ̂(m)
c Σ(m)−1

)}

(4.26)

The sufficient statistics are given by

Γs =
{

Dm, DmΣ̂(m)
c

}

(4.27)

where Σ̂
(m)
c is the covariance matrix of the mth component of the current canonical model,

Dm is the smoothing constant to control convergence, which is set using the standard way

as in equation (2.62). The I-smoothing distribution for covariances is defined similarly to the

smoothing function, which is also part of the Normal-Wishart distribution in equation (2.69)2

log p(M|Φ) = GSAT(M;Γp) = −
τ I

2

∑

m

{

log
∣

∣

∣
Σ(m)

∣

∣

∣
+ tr

(

Σ̃(m)Σ(m)−1
)}

(4.28)

where the sufficient statistics are

Γp =
{

τ I , τ IΣ̃(m)
}

(4.29)

and Σ̃(m) is the prior covariance matrix of the mth component. Again, as in standard discrimi-

native training, the ML estimate Σ̂
(m)
ML in equation (3.38) is used as the prior in this work.

Given the above statistics, the overall weak-sense auxiliary function in equation (4.18) may

be obtained. Differentiating the weak-sense auxiliary function with respect to covariances (as-

sumed to be diagonal) parameters and equating to zero, closed-form formula is given by [118]

Σ̂(m) = diag

(

L
(m)
n − L

(m)
d + DmΣ̂

(m)
c + τ IΣ̃(m)

γn
m − γd

m + Dm + τ I

)

(4.30)

As discussed in section 3.4.1.1, SAT with mean transforms demands a severe memory re-

quirement. In DAT with mean transforms, due to the additional sufficient statistics to be ac-

cumulated, this memory load problem is even more severe. For example, for a state-of-the-art

LVCSR system considered in this work which has about 6K state and 28 components per state,

the memory requirement for MPE mean update is about 1.6G (39 dimensional feature is used).

This requirement is too high to be fulfilled by our current computational resources. Therefore,

DAT with mean transform can only be used for systems of small complexity, i.e., the total number

of Gaussian components should be small enough to fit the memory limitation.

2As only covariance update is concerned, the prior mean vector is the same as the current mean vector. Hence

equation (2.69) becomes equation (4.28).
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4.2.2 DAT with Constrained Linear Transform

Constrained linear transforms are widely used as an alternative to unconstrained transforms as

discussed in section 3.4.1.2. A constrained linear transform can be viewed as a feature space

transform. The form of this transform is re-written here which is the same as equation (3.39)

ô
(srm)
t = A(srm)o

(s)
t + b(srm) = W(srm)ζ

(s)
t (4.31)

where rm is the regression base class of Gaussian component m, W(sr) = [A(sr) b(sr)] is the

extended constrained transform associated with acoustic condition s and regression base class

r, ζ
(s)
t = [o

(s)T
t 1]T is the extended observation, ô

(srm)
t is the transformed observation.

A discriminative update of constrained linear transforms was first proposed in [47], where

the MMI criterion is used. MPE criterion has also been used for updating constrained linear

transforms and achieved good performance [119]. Refer to [118] for details of discriminative

constrained linear transforms. This work concentrates on the canonical model update.

Since constrained linear transforms may be implemented as feature transforms as shown in

equation (4.31), the MPE update of the canonical model is fairly straightforward. The form of

the auxiliary function is similar to those in section 2.4.1 except that the transformed observation

ô
(srm)
t is used instead of the original observation o

(s)
t . Hence, the update formulae for means and

covariances are the same as equation (2.75) and equation (2.76). The only change introduced

is to use the adapted features ô
(srm)
t in the statistics. There is no memory load problem for the

canonical model update. Therefore, constrained transforms are widely used in discriminative

adaptive training for LVCSR systems [25, 40, 85].

4.3 Cluster Based Discriminative Adaptive Training

The previous section reviews linear transform based discriminative adaptive training schemes.

Cluster based adaptive training is an alternative scheme. In this scheme, multiple sets of HMMs

are used as the canonical model. The adapted model is constructed by interpolating the pa-

rameters of different sets. Cluster dependent modelling can be viewed as a special type of

cluster based adaptive training. Cluster adaptive training or eigenvoices, where soft interpola-

tion weights are used, is a more generic form of cluster based adaptive training. The ML training

scheme has been described in section 3.4.2. In this work, discriminative approaches to estimate

both the multiple-cluster model and interpolation weights are proposed.

4.3.1 Discriminative Cluster-Dependent Model Training

One straightforward approach to train a cluster-dependent discriminative model is to simply

split the whole training dataset into cluster-specific data blocks and train a set of HMMs for each

cluster-specific data block with the standard discriminative training technique in section 2.4.

This is a simple extension of the ML cluster-dependent model training. However, as the discrim-

inative criteria take into account all competing hypotheses rather than the correct transcription
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only, they require more data to give a good coverage of those hypotheses than ML training.

Hence, the discriminatively trained model is more likely to be overtrained especially for LVCSR

systems. As the number of parameters to be trained for cluster-dependent models is much larger

than the standard model, this overtraining problem is even more severe. It has been found

that, with the MPE criterion [91, 140], the above straightforward cluster-dependent training

gave no gain, or even degradation, compared to a discriminative cluster-independent model

trained on all data. Therefore, new techniques are required to build effective discriminative

cluster-dependent models.

A solution to overcome the overtraining problem is to use more robust parameters in the I-

smoothing distribution of the MPE criterion. The form of I-smoothing distribution has been given

in equation (2.69) in section 2.4.2. It is a Normal-Wishart distribution for Gaussian parameters,

where µ̃(m) and Σ̃(m) are the priors. In contrast to using the ML estimates µ
(m)
ML and Σ

(m)
ML as the

priors, more robust MAP estimates [42] are used in [91] to avoid overtraining. In this case, the

priors of the I-smoothing distribution are set as

µ̃(m) =
τMAPµ̃

(m)
MAP +

∑

t γML
m (t)ot

τMAP +
∑

t γML
m (t)

(4.32)

Σ̃(m) =
τMAP

(

µ̃
(m)
MAP µ̃

(m)T
MAP + Σ̃

(m)
MAP

)

+
∑

t γML
m (t)oto

T
t

τMAP +
∑

t γML
m (t)

− µ̃(m)µ̃(m)T (4.33)

where γML
m (t) is the ML posterior occupancy of component m, the MAP prior µ̃

(m)
MAP and Σ̃

(m)
MAP

are robust parameter estimate, such as the parameters of a MPE trained cluster-independent

model. τMAP is the MAP parameter which controls the impact of the MAP prior. The MAP prior

is a trade-off between the dynamic ML statistics and the static prior. Larger value of τ MAP will

lead to a more robust prior, which reduces the risk of overtraining. This MAP prior scheme was

first investigated for gender-dependent (GD) model training with MMI and MPE criteria [91].

The basic procedure is to first train a gender-independent (GI) MPE model and then perform

MPE-MAP training on the gender-specific training data by using the MPE GI model to construct

the MAP prior. It has been shown that MPE GD models trained using this scheme effectively and

consistently outperformed the MPE GI model [91, 140]. In other work [26], the MPE GI model

parameters were used directly as the I-smoothing prior instead of the MAP estimate and only

means and Gaussian component weights were updated during the MPE GD training.

µ̃(m) = µ̂
(m)
MPE−GI (4.34)

This has been found to yield slight gains over the standard MPE-MAP scheme. A more detailed

discussion about the prior used in the I-smoothing distribution is presented in the section below.

4.3.2 Discriminative Cluster Adaptive Training

Cluster adaptive training (CAT) [33], or eigenvoices [69, 88], is an extension to cluster-dependent

modelling, where arbitrary interpolation weights are used to combine multiple sets of parame-

ters. The ML based cluster adaptive training has been reviewed in section 3.4.2.2. In this thesis,
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discriminative criterion is applied to cluster adaptive training to derive a new discriminative

training technique for rapid adaptation. The specific discriminative criterion used is the MPE

criterion. In additional to the canonical model update, the update of interpolation weights is

also detailed to form a complete discriminative CAT framework.

4.3.2.1 MPE Training of Multiple-cluster Model Parameters

The canonical model for CAT is a multiple-cluster model, where each Gaussian component has

multiple mean vectors and shared covariance matrices and component weights, as discussed in

section 3.4.2.2. Given the interpolation weight vectors, the MPE training for the multiple-cluster

canonical model also requires an appropriate definition of the weak-sense auxiliary function.

The numerator and denominator parts of the weak-sense auxiliary functions for estimating

the multiple-cluster HMM parameters also have the same form as the ML CAT auxiliary function

in equation (3.45). The ML auxiliary function for the canonical model is rewritten as

QML(M;M̂, T̂ ) = −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣
Σ(m)

∣

∣

∣

+
(

o
(s)
t − M(m)λ(srm)

)T

Σ(m)−1
(

o
(s)
t − M(m)λ(srm)

)

}

(4.35)

where T is now the set of interpolation weights λ(sr) associated with acoustic condition s and

regression base class r, γML
m (t) is the standard ML posterior occupancy for Gaussian component

m. This auxiliary function can also be re-expressed in terms of sufficient statistics as

GCAT(M;ΓML) = −
1

2

∑

m

{

γML
m log |Σ(m)| + tr

(

L
(m)
ML Σ(m)−1

)

−2tr
(

K
(m)
ML Σ(m)−1M(m)

)

+ tr
(

G
(m)
ML M(m)TΣ(m)−1M(m)

)

}

(4.36)

and

ΓML =
{

γML
m ,G

(m)
ML ,K

(m)
ML ,L

(m)
ML

}

The elements of ΓML have been defined in equations (3.46) to (3.49). To obtain the numerator

and denominator parts, it is sufficient to replace the ML posterior, γML
m (t), in equations (3.46)

to (3.49) with the appropriate numerator and denominator posteriors, γn
m(t) and γd

m(t) respec-

tively. This yields numerator and denominator statistics, Γn and Γd. The numerator part can

then be written in the generic form as equation (4.36)

Qn(M;M̂) = GCAT(M;Γn) (4.37)

and similarly for the denominator part.

As in linear transform based discriminative adaptive training, the smoothing function for

multiple-cluster model can also be derived from the generic form in equation (4.4) (shown in
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appendix A)

S(M;M̂, T̂ ) = −
∑

m,s

Dmν
(s)
m

2

{

log |Σ(m)| + tr(Σ̂(m)
c Σ(m)−1)

+λ(srm)T
(

M(m) − M̂(m)
c

)T

Σ(m)−1
(

M(m) − M̂(m)
c

)

λ(srm)

}

(4.38)

where M̂
(m)
c and Σ̂

(m)
c are the current model parameters. The constant Dm is a positive smooth-

ing constant for component m to control the impact of the smoothing function and make the

optimisation stable, ν
(s)
m is the same term as defined in equation (4.6) to reflect the proportions

of data for the particular component of a acoustic condition 3. The smoothing function can also

be expressed as the general auxiliary function in terms of sufficient statistics

S(M;M̂, T̂ ) = GCAT(M;Γs) (4.39)

where

Γs =
{

Dm, DmG(m)
s , DmK(m)

s , DmL(m)
s

}

and

G(m)
s =

∑

s

ν(s)
m λ(srm)λ(srm)T (4.40)

K(m)
s = G(m)

s M̂(m)T
c (4.41)

L(m)
s = Σ̂(m)

c + M̂(m)
c G(m)

s M̂(m)T
c (4.42)

For multiple-cluster MPE training, the selection of Dm is different from the single-cluster MPE

training. This will be discussed later.

The I-smoothing distribution used for a multiple-cluster HMM is again a Normal-Wishart

distribution defined at acoustic condition level. Ignoring the constant term, the general form

of the logarithm of the I-smoothing distribution for multiple-cluster model parameters may be

written as

log p(M|Φ) = −
τ I

2

∑

s,m

ν̃(s)
m

{

log |Σ(m)| + tr(Σ̃(m)Σ(m)−1)

+
(

M(m)λ(srm) − µ̃(sm)
)T

Σ(m)−1
(

M(m)λ(srm) − µ̃(sm)
)

}

(4.43)

where τ I is the parameter which controls the impact of the prior. µ̃(sm) and Σ̃(m) are the prior

parameters for the mean and covariance matrix of the mth component for acoustic condition s.

ν̃
(s)
m is also a slightly modified version of ν

(s)
m where the ML posterior occupancy is used instead

of the numerator one. The sufficient statistics required for this I-smoothing distribution is

log p(M|Φ) = GCAT(M;Γp) (4.44)

3 When using a constant value for ν
(s)
m , the WER of MPE-CAT was about 0.1% worse compared to using equation

(4.6) (with dynamic multiple-cluster ML prior and the same configurations as the 16 component development systems

in chapter 6).
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where GCAT(·) is the general form defined in equation (4.36)

Γp =
{

τ I , τ IG(m)
p , τ IK(m)

p , τ IL(m)
p

}

and

G(m)
p =

∑

s

ν̃(s)
m λ(srm)λ(srm)T (4.45)

K(m)
p =

∑

s

ν̃(s)
m λ(srm)µ̃(sm)T (4.46)

L(m)
p = Σ̃(m) +

(

∑

s

ν̃(s)
m µ̃(sm)µ̃(sm)T

)

(4.47)

As the number of parameters for a multiple-cluster model dramatically increases, the priors in

I-smoothing distribution, µ̃(sm) and Σ̃(m), are increasingly important. The options are more than

the standard single cluster model update and will be discussed in section 4.3.2.2.

Having introduced the form of the smoothing function and I-smoothing distribution, the

weak-sense auxiliary function for MPE training may be obtained by combining all individual

elements as in equation (4.18). Here, the sufficient statistics based auxiliary function GCAT(·) in

equation (4.36) is used instead of GSAT(·). Differentiating the weak-sense auxiliary function with

respect to multiple-cluster model parameters and equating it to zero yields simple closed-form

parameter estimate formulae

M̂(m)T = G
(m)−1
MPE K

(m)
MPE (4.48)

Σ̂(m) = diag

(

L
(m)
MPE − M̂(m)K

(m)
MPE

γMPE
m

)

(4.49)

where ΓMPE = {γMPE
m ,G

(m)
MPE ,K

(m)
MPE ,L

(m)
MPE }, and

γMPE
m = γn

m − γd
m + Dm + τ I (4.50)

G
(m)
MPE = G(m)

n − G
(m)
d + DmG(m)

s + τ IG(m)
p (4.51)

K
(m)
MPE = K(m)

n − K
(m)
d + DmK(m)

s + τ IK(m)
p (4.52)

L
(m)
MPE = L(m)

n − L
(m)
d + DmL(m)

s + τ IL(m)
p (4.53)

Comparing the sufficient statistics of MPE CAT to the MPE statistics of of standard HMMs in

equations (2.78) to (2.80), MPE CAT requires more memory than the standard HMMs. Due to

the statistics in equations (4.51) and (4.52), over P times memory is required compared to the

standard k statistics in equation (2.79), where P is the number of clusters. Hence, in practice,

when building MPE CAT systems, the number of clusters has to be controlled according to the

memory limitation.

4.3.2.2 Priors in I-smoothing Distribution

One key issue in defining the I-smoothing distribution (4.43) is to choose an appropriate form of

the prior parameters µ̃(sm) and Σ̃(m) [140]. The prior forms include multiple-cluster and single-

cluster. In both cases, the prior covariance matrix is independent of the acoustic conditions.
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When using a multiple-cluster prior, a global multiple-cluster mean matrix is used as the prior

and µ̃(sm) is the adapted mean vector, hence it is acoustic condition specific. Alternatively, a

single-cluster prior may also be selected, then the prior mean vector is independent of acoustic

conditions. In additional to the above form of the prior, the selected prior, either multiple-cluster

or single-cluster, can be parameters of an existing model set (static), or model estimates in terms

of sufficient statistics on-the-fly (dynamic). Finally, the prior may be generated using different

criteria, such as ML, MMI or MPE.

There are many possible combinations of the above properties, which leads to quite a large

number of possible priors to choose. Some of the forms considered in this work are discussed

below.

1. Multiple-cluster prior

Here the prior mean vector is made to be acoustic condition specific using the interpolation

weights. Thus the following substitution is applied to equation (4.43),

µ̃(sm) = M̃(m)λ(srm) (4.54)

where M̃(m) is the prior cluster mean matrix, λ(sr) is the interpolation weight associated with

regression class r and acoustic condition s. The sufficient statistics in equation (4.45) to equation

(4.47) become

G(m)
p =

∑

s

ν̃(s)
m λ(srm)λ(srm)T (4.55)

K(m)
p =

(

∑

s

ν̃(s)
m λ(srm)λ(srm)T

)

M̃(m)T = G(m)
p M̃(m)T (4.56)

L(m)
p = Σ̃(m) + M̃(m)G(m)

p M̃(m) (4.57)

Any appropriate CAT model may be used as the prior parameters M̃(m) and Σ̃(m). One form

is to use the ML estimates for M̃(m) and Σ̃(m) as dynamic priors. Substituting the ML estimates

for M̃(m) and Σ̃(m), equations (4.55) to (4.57) become

G(m)
p =

1

γML
m

G
(m)
ML =

1

γML
m

∑

s,t

γML
m (t)λ(srm)λ(srm)T (4.58)

K(m)
p =

1

γML
m

K
(m)
ML =

1

γML
m

∑

s,t

γML
m (t)λ(srm)o

(s)T
t (4.59)

L(m)
p =

1

γML
m

L
(m)
ML =

1

γML
m

∑

s,t

γML
m (t)o

(s)
t o

(s)T
t (4.60)

Comparing the above statistics with the ML statistics in equations (3.47) to (3.49), they are all

normalised by γML
m to yield “unit” counts, as the “occupancy” of the I-smoothing part is repre-

sented by τ I . This is a natural extension to standard I-smoothing in MPE training, in which the

ML estimates are also used as priors of the I-smoothing distribution [90].
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Considering the MPE sufficient statistics in equations (4.50) to (4.53), when τ I → ∞, suf-

ficient statistics of I-smoothing distribution Γp will dominate ΓMPE. In this case, if a multiple-

cluster prior is used, it can be shown that the MPE estimates of model parameters will back off

to the multiple-cluster prior. Furthermore, if multiple-cluster ML dynamic prior is used, the MPE

estimates will back off to the ML CAT estimates in equation (3.50) and equation (3.51).

In addition to the ML estimates, multiple-cluster MAP estimates may also be used as dy-

namic multiple-cluster priors. In this case, the ML statistics from equations (4.58) to (4.60) are

replaced by the MAP statistics. It is shown in appendix B, that the sufficient statistics for a valid

multiple-cluster MAP estimate are

ΓMAP =
{

γMAP
m ,G

(m)
MAP ,K

(m)
MAP ,L

(m)
MAP

}

and

γMAP
m = γML

m + τMAP (4.61)

G
(m)
MAP = G

(m)
ML + τMAP

∑

s

ν̃(s)
m λ(srm)λ(srm)T (4.62)

K
(m)
MAP = K

(m)
ML + τMAP

(

∑

s

ν̃(s)
m λ(srm)

)

µ̃
(m)T
MAP (4.63)

L
(m)
MAP = L

(m)
ML + τMAP

(

µ̃
(m)
MAP µ̃

(m)T
MAP + Σ̃

(m)
MAP

)

(4.64)

where τ MAP is the tunable parameter for the new Normal-Wishart distribution for MAP estimate,

γML
m , G

(m)
ML , K

(m)
ML and L

(m)
ML are the ML statistics, µ̃

(m)
MAP and Σ̃

(m)
MAP are parameters from a robust

single-cluster model. It is obvious that this multiple-cluster MAP prior is a trade-off between the

multiple-cluster ML prior and the static single-cluster prior 4. If τMAP → 0, the MAP statistics

will lead to multiple-cluster ML statistics. If τ MAP → ∞, the MAP statistics will back off to a

standard single-cluster prior, which will be discussed below. This MAP prior may be regarded as

an extension to the standard MPE-MAP prior for gender-dependent model in [91].

2. Single-cluster prior

When using a single-cluster prior, it is possible to use a standard single-cluster HMM as the

prior. The following substitution is applied to equation (4.43)

µ̃(sm) = µ̃(m) (4.65)

The sufficient statistics for I-smoothing distribution in equations (4.45) to (4.47) become

G(m)
p =

∑

s

ν̃(s)
m λ(srm)λ(srm)T (4.66)

K(m)
p =

(

∑

s

ν̃(s)
m λ(srm)

)

µ̃(m)T (4.67)

L(m)
p = µ̃(m)µ̃(m)T + Σ̃(m) (4.68)

4Note that in the MAP prior case, ν̃
(s)
m need to be re-defined using the MAP occupancy.
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Similarly to the multiple-cluster priors, either static or dynamic single-cluster priors can be

used. When using static priors, parameters from an appropriate standard HMM are selected.

The topology of the prior HMM should be the same as the model to update, otherwise, there

is no unique component mapping and it is hard to choose prior parameters for a particular

component. However, even with the same topology, certain risk still remains. The initialisation

for the prior HMM may be different from the intialisation for the current model to update.

Hence, for a particular state, the order of the components in the prior HMM is not guaranteed

to be the same as the current model. In this case, there is a risk of selecting a wrong prior

component due to order difference. However, if the prior HMM has the same “seed model”, or

starting model, with the current model to update, e.g., the prior MPE-SI model and the current

MPE-CAT model are both generated from the same ML-SI model, it is a reasonable assumption

that the component order issue would not affect the training much.

When using dynamic priors, as the statistics are accumulated at component level on-the-

fly, the component order is not an issue. ML statistics can be accumulated as in the standard

formulae. However, to accumulate single-cluster MPE statistics, the “current single-cluster mean

vector” is required for the smoothing function in equation (2.61), which does not exist because

the current model is a multiple-cluster model. One solution for this is to first read in an MPE-SI

model as the “current single-cluster model” for the first iteration allowing the single-cluster MPE

statistics to be obtained. Then a new standard HMM estimated from the MPE statistics can be

output as a “current single-cluster model” for the second iteration and so on. Therefore, for each

iteration, two model sets are trained, one is the multiple-cluster model to update, the other is a

“current single-cluster model” for accumulating standard MPE statistics in the next iteration.

Considering the whole MPE sufficient statistics in equation (4.50) to equation (4.53), though

the sufficient statistics of I-smoothing distribution Γp will dominate the whole statistics when

τ I → ∞, the MPE estimates can not back off to the single-cluster prior µ̃(m) and Σ̃(m) due to the

interpolation weights λ. This is different from the multiple-cluster prior case.

4.3.2.3 Selection of Smoothing Constant

As discussed in section 2.4.2, the smoothing constant Dm is a critical value in MPE training to

get a rapid and stable update. It is suggested to be set as the maximum of either twice of the

smallest value required to ensure the updated covariance matrix is positive-definite, denoted as

D̃m, or E times the component denominator occupancy γd
m, where E is typically 1 or 2 [90]. To

find D̃m, the equation Σ(m) = 0 must be solved from equation (4.49), i.e.

L
(m)
MPE = K

(m)T
MPE G

(m)−1
MPE K

(m)
MPE (4.69)

As the covariance matrix is assumed to be diagonal, the equation can be re-written for each

dimension with respect to the smoothing constant D̃m as

(k1 + D̃mk2)
T (G1 + D̃mG2)

−1(k1 + D̃mk2) = l1 + D̃ml2 (4.70)

Where k1 and k2 are P × 1 vectors, G1 and G2 are P × P matrices, l1 and l2 are scalars, P is

the number of clusters, which are all constants given appropriate accumulated statistics.
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For a single-cluster system, the equation for each dimension is a quadratic equation and can

be easily solved as in MPE training of standard HMMs [90]. However, for a multiple-cluster

model, equation (4.70) is a high order polynomial equation. As the inversion of a matrix can be

represented as its adjoint matrix divided by the determinant, it can be easily seen that the order

of G1 + D̃mG2 with respect to D̃m is P . Hence, the order of the polynomial equation (4.70)

is P + 1. As there is no closed-form solution for general polynomial equations with an order

greater than 4, equation (4.70) has no closed-form solutions for P > 3.

For some special cases, such as P = 2 or P = 3, cubic or quartic polynomial equation, a

closed-form solution of the above function can be derived and then the largest real root can be

found directly. For larger number of clusters, numerical approaches may be used to find the

largest real root. Alternatively, as an approximated estimate, Eγd
m may be used directly as Dm

together with appropriate variance floors to ensure positive definite of covariance matrices 5.

4.3.2.4 MPE Training of Interpolation Weights

The previous sections have discussed various issues of MPE training of multiple-cluster HMMs.

This section will give details of the MPE training of interpolation weights. The MPE training

scheme in this section was first proposed in [137]. After that another implementation using the

MMI criterion was also introduced in [79] within the equivalent eigenvoices framework.

The ML auxiliary function for weights update are the same form as equation (4.35) except

that the parameters to be updated is the interpolation weights rather than the canonical model

parameters. Therefore, the sufficient statistics form of the ML auxiliary function can be written

as

QML(T
(s); T̂ (s),M̂) = GCAT(T

(s);ΓML) = −
1

2

∑

r

{

λ(sr)TG
(sr)
ML λ(sr) − 2λ(sr)Tk

(sr)
ML

}

(4.71)

where T (s) is now the interpolation weight vector λ(sr), which is associated with regression base

class r and acoustic condition s, the sufficient statistics is

ΓML =
{

G
(sr)
ML ,k

(sr)
ML

}

defined in equations (3.54) and (3.55). The sufficient statistics based numerator and denomi-

nator parts of the weak-sense auxiliary function have the same form as equation (4.71) except

for using the numerator occupancy γn
m(t) or the denominator occupancy γd

m(t) instead of the ML

occupancy γML
m (t) in ΓML.

The smoothing function for weights update may also be derived from the general form in

equation (4.4), as shown in appendix A

S(T (s); T̂ (s),M̂) = −
∑

m

Dm

2

{

λ(srm)TM(m)TΣ(m)−1M(m)λ(srm)

−2λ(srm)TM(m)TΣ(m)−1M(m)λ̂(srm)
c

}

(4.72)

5 The approximate selection has been shown in experiments to give only marginal difference from the strict

selection. In this work, strict selection of Dm is used for 2-cluster systems. For more clusters, the approximate

selection is used.
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where Dm is the constant to ensure stable optimisation. It can be set as Eγd
m as an approximation

since no covariance update is involved. For acoustic condition s, λ̂
(srm)
c is the current estimate of

the interpolation weight vector for regression base class rm that component m belongs to. The

smoothing function may also be expressed in the form of sufficient statistics in equation (4.71)

S(T (s); T̂ (s),M̂) = GCAT(T
(s);Γs) (4.73)

where

Γs =
{

G(sr)
s ,k(sr)

s

}

(4.74)

and

G(sr)
s =

∑

m∈Mr

DmM(m)TΣ(m)−1M(m) (4.75)

k(sr)
s =

(

∑

m∈Mr

DmM(m)TΣ(m)−1M(m)

)

λ̂(sr)
c (4.76)

where Mr is the Gaussian component group of regression base class r.

The Normal distribution around mean vector is used here as the I-smoothing distribution for

weights update. Ignoring constant terms, the log distribution can be written as

log p(T (s)|φ) = −
τ I

2

∑

m

(

M(m)λ(srm) − µ̃(sm)
)T

Σ(m)−1
(

M(m)λ(srm) − µ̃(sm)
)

(4.77)

where φ = {τ I , µ̃(sm)} are the hyper-parameters of the I-smoothing distribution, τ I is the param-

eter to control the impact of the I-smoothing distribution and can be empirically set, µ̃(sm) is the

prior for the I-smoothing distribution and can have various forms as discussed in section 4.3.2.2.

The sufficient statistics for the I-smoothing distribution are

Γp =
{

G(sr)
p ,k(sr)

p

}

(4.78)

where

G(sr)
p = τ I

∑

m∈Mr

M(m)TΣ(m)−1M(m) (4.79)

k(sr)
p = τ I

∑

m∈Mr

M(m)TΣ(m)−1µ̃(sm) (4.80)

Given the above definition of the elements of the weak-sense auxiliary function and relevant

statistics, the interpolation weight vector of regression class r for acoustic condition s can be

estimated by

λ̂(sr) = G
(sr)−1
MPE k

(sr)
MPE (4.81)

where

G
(sr)
MPE = G(sr)

n − G
(sr)
d + G(sr)

s + G(sr)
p (4.82)

k
(sr)
MPE = k(sr)

n − k
(sr)
d + k(sr)

s + k(sr)
p (4.83)
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4.4 Discriminative Adaptive Training with Structured Transforms

Standard discriminative adaptive training often uses a single set of transforms to represent non-

speech variabilities, such as CMLLR in SAT. However, for highly non-homogeneous data, there

are commonly multiple acoustic factors affecting the speech signal. This motivates the use of

structured transforms (ST) [136, 37]. ST based adaptive training can also be extended to a dis-

criminative paradigm. Due to computation and memory load, as in ML case, only one particular

form of ST is investigated within discriminative adaptive training framework in this work. CAT

interpolation weights [36] and CMLLR transforms [34] are combined together to form the struc-

tured transform used for both adaptive training and testing adaptation. Hence, the canonical

model is a multiple-cluster model. The ML auxiliary function for ST based adaptive training has

been given in equation (3.56).

As CMLLR can be implemented as a feature transform, discriminatively training the multiple-

cluster model parameters is a straight-forward extension of the model update in discriminative

CAT. The only modification to MPE training is that the model is estimated in the transformed

feature space, where the transformed feature vectors ô
(srWm )
t are used instead of standard feature

vectors o
(s)
t , where s denotes the index of the homogeneous block, rW

m is the CMLLR regression

class which component m belongs to. Since a simplified MPE adaptive training scheme is used

here, discriminative estimation of transformation parameters are not required. The simplified

training procedure has been described in section 4.1.

4.5 Summary

This chapter has described different forms of discriminative adaptive training using the min-

imum phone error (MPE) training criterion. First the procedure of discriminative adaptive

training is discussed. A simplified training procedure is motivated to keep consistent trans-

form update criterion in both training and unsupervised adaptation. In this procedure, only

the canonical model is updated with the discriminative criterion given a set of ML estimated

transforms. Then, in testing adaptation, the ML criterion is used to estimate transforms. As this

procedure is adopted in the work, the MPE update of the canonical model is the focus in this

chapter.

Three forms of MPE adaptive training of the canonical model are described. The first is the

MPE adaptive training with mean transforms. It requires redefinition of the weak-sense auxil-

iary function. An appropriate smoothing function and an I-smoothing distribution can be defined

at acoustic condition level. Using the weak-sense auxiliary function, closed-form re-estimation

formulae for means and covariances can be derived. In this case, they have to be updated sep-

arately rather than simultaneously. MPE adaptive training with constrained transforms is the

second form. It is a straightforward extension of the standard discriminative training because

the constrained transform can be implemented as a feature transform. The only modification

is to use the transformed observations instead of the original observations to accumulate suffi-
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cient statistics. The third is a new form of MPE adaptive training, discriminative cluster adaptive

training (CAT). By using an appropriately defined smoothing function and I-smoothing distri-

bution, closed-form update formulae of both multiple-cluster canonical model and interpolation

weights can be obtained. Due to the increase of the number of model parameters, discriminative

training for multiple-cluster models is more prone to overtraining. Hence, the selection of the

prior in I-smoothing distribution is crucial. The prior in I-smoothing distribution may have a

variety of forms. It can be either multiple-cluster or single-cluster, either dynamic or static. The

setting of the smoothing constant is also discussed. Discriminative CAT can be easily extended

to discriminative adaptive training with structured transforms (ST), where the ST is constrained

MLLR combined with CAT weights. In this case, the canonical model is still a multiple-cluster

model. However, it is trained using the observations transformed by the constrained MLLR.



5

Bayesian Adaptive Training and Adaptive Inference

Chapter 3 presented an ML framework for adaptive training. Chapter 4 discussed adaptive

training using discriminative criteria. Both chapters consider deterministic point estimates of

parameters during adaptive training and use the standard two-step adaptation/recognition in

inference. In contrast to the standard adaptive training and adaptation framework investigated

in the previous chapters, this chapter will present a consistent Bayesian framework for both

adaptive training and adaptive inference. Particularly, an integrated Bayesian adaptive inference

process is described in detail. This framework allows the canonical model to be directly used in

inference. The Bayesian framework is discussed for both likelihood and discriminative criteria.

As the Bayesian marginalisation integral over the transform distribution is intractable, approx-

imations are required. By using an appropriate Bayesian approximation approach, the issue of

handling limited adaptation data is effectively addressed. This chapter describes approximations

to Bayesian adaptive inference in both batch and incremental modes. Various marginalisation

approximations, including a new variational Bayes (VB) approximation, are discussed. The ap-

plication of these approaches to adaptively trained systems, such as SAT with MLLR or CAT, are

then given.

5.1 A Bayesian Framework for Adaptive Training and Inference

Adaptive training has become a popular technique to build systems on non-homogeneous train-

ing data [38]. A two-step adaptation/recognition process is usually used in inference on adap-

tively trained systems. Adaptive training and adaptation are normally described in a ML frame-

work as discussed in chapter 3. This section will view adaptive training and inference from a

Bayesian perspective.

Adaptive training and adaptive inference may be viewed as modifying the dynamic Bayesian

network (DBN) associated with the acoustic condition. Figure 5.1 shows the comparison be-

tween an HMM and an adaptive HMM, where the transform is applied.

Here, θt represents the hidden Gaussian component at time t1, ot is the observation vector,

1Here Gaussian component θ is used instead of state ω to denote the hidden variable, which is slightly different

89
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Figure 5.1 Dynamic Bayesian network comparison between HMM and adaptive HMM

and Tt is the transform representing non-speech variabilities, which is used to normalise fea-

tures or modify HMM parameters for a particular acoustic condition. Figure 5.1(a) shows the

DBN for an HMM. The observations are conditionally independent given the hidden variables.

In contrast, figure 5.1(b) shows the DBN for an adaptive HMM, where an additional level of

dependency is employed. The observations are additionally dependent on the transforms. As

discussed in section 3.1.1, within a homogeneous data block, the transform is constrained to be

unchanged.

The DBNs given in figure 5.1 can be used in various ways for training and inference. Standard

speaker-independent (SI) training and decoding is an example of using the HMM DBN in both

stages. It is also possible to use the HMM DBN in training and the adaptive HMM DBN in

inference. This corresponds to the idea of performing adaptation on multi-style trained models.

If the adaptive HMM DBN is used in training, a canonical model representing the desired speech

variability is estimated given a set of transforms. In this case, it is not possible to use the HMM

DBN for inference due to the lack of test domain specific transforms. The adaptive HMM DBN

is required during inference to adapt the canonical model to the test domain. The effect of

different ways of using the DBNs for training and inference will be shown in chapter 7.

5.1.1 Bayesian Adaptive Training

ML adaptive training has been reviewed in section 3.4. This section investigates Bayesian adap-

tive training, where the adaptive HMM DBN in figure 5.1(b) is employed. In adaptive training,

the training data is split into homogeneous data blocks, O = {O(1), . . . ,O(S)}, where O(s) is the

observation sequence of a homogeneous block associated with a particular acoustic condition s.

From the Bayesian perspective, two sets of parameters, the canonical model and transforms, are

treated as random variables. The marginal likelihood of the training data can be expressed as

p(O|H) =

∫

M
p(O|H,M)p(M|Φ) dM (5.1)

from figure 3.1. This aims to relate the DBN to the likelihood calculation formulae in this chapter. The change does

not affect the discussion of the general framework.

figure/DBN_stdhmm.eps
figure/DBN_adapt.eps
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where p(M|Φ) is the prior distribution for the canonical model parameters, Φ denotes the hyper-

parameters of the model parameter prior2 When using the adaptive HMM DBN in figure 5.1(b),

the transform transition can be viewed as a first-order Markov process. As the transform is

assumed to be the same within each homogeneous block, the transition probability of the Markov

process is

p(Tt+1|Tt) = δ(Tt+1 − Tt) (5.2)

where δ(Tt+1 − Tt) is a Dirac delta function defined as

δ(T − T̂ ) =

{

∞ T = T̂

0 otherwise
(5.3)

and
∫

T
δ(T − T̂ ) dT = 1 (5.4)

This means the transform is constant over all frames within each homogeneous block respec-

tively. Considering that different homogeneous blocks are conditionally independent to each

other, the homogeneity constraint results in

p(O|H,M) =
S
∏

s=1

∫

T
p(O(s)|H(s),M, T )p(T |φ) dT (5.5)

where H = {H(1), . . . ,H(S)} is the set of transcriptions, p(T |φ) is the prior distributions for

the transform parameters 3, φ denotes the hyper-parameters. The likelihood of the observation

sequence of each acoustic condition given the parameters is expressed by

p(O(s)|H(s),M, T ) =
∑

θ

P (θ|H(s),M)
∏

t

p(ot|M, T , θt) (5.6)

where P (θ|H(s),M) is the probability of a particular component sequence θ, p(ot|M, T , θt) is

the Gaussian distribution for component θt, and θt is the Gaussian component at time t.

Within the Bayesian framework, the aim of adaptive training is to update the prior distribu-

tions of the two sets of parameters to posterior distributions given the training data. Usually no

prior information (except that the form of the prior is normally assumed to be known before-

hand) is available before training, hence the estimation of the posterior distributions is equiv-

alent to the empirical Bayesian estimation of the prior distributions. In this case, the aim of

Bayesian adaptive training is to obtain the prior distributions of the two sets of parameters from

the training data. The form of the prior distributions and the estimation of the hyper-parameters

are two main issues to be considered.

2As the prior parameters are normally assumed to be independent of hypothesis, a generic prior p(M|Φ) may be

used instead of the strict expression p(M|H, Φ).
3Although the distribution of the transform parameters is dependent on the model set, for clarity of notation, this

dependence has also been dropped. Hence the transform prior is expressed as p(T |φ).
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To obtain tractable mathematical update formulae, conjugate priors to the likelihood of com-

plete data set are the preferable forms for the two prior distributions. When using a conjugate

prior, the posterior distribution will have the same functional form as the prior and lead to

simple mathematical formulae. When mean based transforms such as linear transform [74] or

interpolation weights [36] are used, a Gaussian distribution over the transform parameters is a

conjugate prior to the complete data set. In some cases, a single-component prior may not be

able to account for the parameters variations. For example in the case of cluster adaptive train-

ing (CAT) initialised with gender information, the distribution of the interpolation weights may

be highly bimodal, each mode representing one gender [36]. For these instances it makes sense

to use a mixture model as the prior distribution for the transform parameters, or interpolation

weights. For example, an N -component GMM may be used

p(T |φ) =
N
∑

n=1

cnN (T ; µ
(n)
T ,Σ

(n)
T ) (5.7)

where cn is the component weight. Unfortunately, this kind of mixture model is no longer a con-

jugate prior to the likelihood of the complete data set. Using a mixture prior distribution further

complicates the training and inference. The effect will be discussed in detail in section 5.3.

Once the form of the prior distributions is determined, it is possible to estimate the hyper-

parameters of the two priors using an empirical Bayes approach [97, 98]. The marginal likeli-

hood in equation (5.1) is to be maximised with respect to the hyper-parameters of the priors4.

Directly optimising the marginal likelihood in equation (5.1), is highly complex. One solution

to this problem is to use a lower bound in order to make the optimisation feasible in a similar

fashion to the EM algorithm. Initially the hyper-parameters estimation of the canonical model is

considered. Introducing a variational distribution q(M) of the canonical model parameters and

applying Jensen’s inequality yields a lower bound of the marginal likelihood as below

log p(O|H) ≥

〈

log
p(O|H,M)p(M|Φ)

q(M)

〉

q(M)

= 〈log p(O|H,M)〉q(M) − KL (q(M)||p(M|Φ)) (5.8)

where < f(x) >g(x) is the expectation of f(x) with respect to g(x) and KL(·||·) is the Kullback

Leibler (KL) distance of the two distributions. The KL distance between two continuous distribu-

tions is defined as

KL (p1(x)||p2(x)) =

∫

x

p1(x) log
p1(x)

p2(x)
dx =

〈

log
p1(x)

p2(x)

〉

p1(x)

(5.9)

and for two discrete distributions as

KL (P1(x)||P2(x)) =
∑

x

P1(x) log
P1(x)

P2(x)
=

〈

log
P1(x)

P2(x)

〉

P1(x)

(5.10)

The KL distance is always positive unless the two distributions are the same, in which case the

distance is zero.

4Hyper-parameters estimated using this approach are also referred to as an ML-II estimate [10, 96].
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From the properties of Jensen’s inequality, the inequality in equation (5.8) becomes an equal-

ity when

q(M) = p(M|O,H) (5.11)

Maximising the lower bound in equation (5.8) with respect to the prior hyper-parameters Φ is

equivalent to minimising the KL distance between the prior distribution p(M|Φ) and q(M). The

optimal value for q(M) is obtained from equation (5.11). Thus the empirical Bayesian estimate

of the canonical model prior is just the posterior distribution

p(M|Φ) = q(M) = p(M|O,H) (5.12)

Though the prior distribution can be estimated using the above equation, the posterior distri-

bution p(M|O,H) must be estimated. This requires maximising the first term in RHS of equa-

tion (5.8). This is equivalent to optimise log p(O|H) with respect to the posterior distribution

p(M|O,H) given an uninformative prior. Again, the optimisation is complicated. However, with

sufficient training data, an efficient optimisation scheme may be obtained, as discussed below.

The optimisation of the hyper-parameters of the transform prior is more complex than the

canonical model prior due to the separate transforms being considered for different homoge-

neous block. As the homogeneous data blocks are assumed to be conditionally independent,

one distinct transform posterior distribution p(T |O(s),H(s),M) is associated with each particu-

lar acoustic condition s. Applying Jensen’s inequality to equation (5.5) yields

log p(O|H,M) ≥
S
∑

s=1

〈

log
p(O(s)|H(s),M, T )p(T |φ)

q(s)(T )

〉

q(s)(T )

=
S
∑

s=1

〈

log p(O(s)|H(s),M, T )
〉

q(s)(T )
−

S
∑

s=1

KL

(

q(s)(T )||p(T |φ)
)

(5.13)

where an equality is achieved when

q(s)(T ) = p(T |O(s),H(s),M) (5.14)

It is worth noting that equation (5.13) is derived given a particular canonical model set. Hence,

the estimation of transform posterior distributions should also consider the integral over p(M|Φ).

This makes the optimisation even more complicated. As the transform prior distribution p(T |φ)

is independent of acoustic conditions while the multiple variational transform posterior distri-

butions q(s)(T ) are dependent on each homogeneous block respectively, the KL distance in the

inequality (5.13) can not be simply minimised to yield a result similar to equation (5.12) as in

the canonical model case. In contrast to the Bayesian training of standard HMMs, where no

transform prior distribution is used, this is a new issue of Bayesian adaptive training. This issue

may be solved given sufficient training data as discussed below.

In practice, when building speech recognition systems, it is possible to control the complexity

of the system being trained so that each Gaussian component and transform have “sufficient”
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data as discussed in chapter 2 and chapter 3. For example minimum occupancies may be used

during the construction of the decision trees for robust canonical model estimates. Transforms

may be shared among groups of Gaussian components and homogeneous blocks may be clus-

tered together. With these approaches, it is reasonable to assume that the variances of the pa-

rameter distribution is sufficiently small so that the posterior distributions over the parameters

can be approximated by a Dirac delta function. Thus

p(M|O,H) ≈ δ(M−M̂) (5.15)

p(T |O(s),H(s)) ≈ δ(T − T̂ (s)) (5.16)

where M̂ and T̂ (s) are point estimates of the canonical model and transform for homogeneous

block s respectively. Using equation (5.15) in equation (5.12) yields a canonical model prior

which is also a Dirac delta function

p(M|Φ) ≈ δ(M−M̂) (5.17)

Using equation (5.17) in equation (5.8) and considering equation (5.12), it is trivial to show

that the point estimate in equation (5.17) is an ML estimate

M̂ML = arg max
M

p(O|H,M, T̂ ) (5.18)

As shown in appendix C, by using equation (5.16) in equation (5.13), the hyper-parameters

of the transform prior distribution can be estimated by

φ̂ = arg max
φ

S
∑

s=1

log p(T̂ (s)|φ) (5.19)

where the transform estimate for each acoustic condition s, T̂ (s), is also an ML estimate

T̂
(s)
ML = arg max

T
p(O(s)|H(s),M̂, T ) (5.20)

From equation (5.19), the hyper-parameters of the transform prior distribution are the ML

estimate obtained from the transform “samples” of each homogeneous block. Hence, given

sufficient training data, the output of Bayesian adaptive training includes a Dirac delta function

of the canonical model with the ML estimate as the hyper-parameters and a non-point transform

prior distribution. Therefore, interpreting adaptive training from the Bayesian perspective not

only justifies the use of the ML estimate of the canonical model, but also motivates a non-

point transform prior distribution. It is worth emphasising that the transform prior distribution

is dependent on the canonical model estimate. It can only be used as a counterpart for that

particular canonical model set.

5.1.2 Bayesian Adaptive Inference

In the previous section, adaptive training has been formulated within a Bayesian framework.

Two prior distributions are estimated and used for inference on test data. The inference on
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adaptively trained systems requires the use of the adaptive HMM DBN in figure 5.1(b), referred

to as Bayesian adaptive inference. Owing to the homogeneity constraint, the inference must be

performed for each homogeneous block respectively. The aim of Bayesian adaptive inference is

to find the optimal hypothesis sequence Ĥ by making use of the marginal likelihood of observa-

tion sequence

Ĥ = arg max
H

P (H)p(O|H) (5.21)

where Ĥ is the inferred hypothesis, O is the test observation sequence of a particular homo-

geneous block, the index of the homogeneous block is omitted for clarity. p(O|H) and P (H)

are acoustic scores and language scores of each hypothesis respectively. P (H) is the probability

of the hypothesis sequence H, which is normally obtained from an N-gram language model.

Similar to Bayesian inference with HMM distribution in section 2.6.3, the key problem here is

to calculate p(O|H), the marginal likelihood of the observation sequence given every possible

hypothesis. As adaptive HMM DBN is used, this marginalisation is consistent with the marginal-

isation in equations (5.1) and (5.5) during training except that it is done for one homogeneous

block here. From equation (5.15), a point estimate of the canonical model will be used for

inference because marginalisation over a Dirac delta function will result in a likelihood given

the hyper-parameters of that Dirac delta function. Then, a transform distribution is required to

calculate the marginal likelihood given the point estimate of the canonical model5

p(O|H) =

∫

T
p(O|H, T )p(T ) dT (5.22)

where O is the observation sequence for a particular testing homogeneous data block, H is one

possible hypothesis for O. Depending on the nature of the task being addressed,there are also

two modes of adaptive inference as discussed in section 3.1.2

• Supervised mode

If both observations and transcriptions for some supervision data are available, a transform

posterior distribution, given the supervision, can be estimated using

p(T |Osupv,Hsupv) =
p(Osupv|T ,Hsupv)p(T |φ)

p(Osupv|Hsupv)
(5.23)

where Osupv and Hsupv are the observations and hypothesis of the supervision data, which

comes from the same source as the data to be recognised and p(T |φ) is the prior transform

distribution. This transform posterior distribution is then used as p(T ) to calculate the

marginal likelihood of the test data in equation (5.22). Due to the use of the transform

posterior distribution, this form of Bayesian adaptive inference is sometimes referred to as

posterior adaptation [38]. Direct calculation of the transform posterior distribution is hard.

Approximations, such as variational Bayes, may be used [9]. As the amount of adaptation

5Though the likelihood calculation is performed given the point estimate of the canonical model M̂, the notation

M̂ is omitted for clarity.
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data increases, the posterior distribution may be approximated by Dirac delta function. In

this case, the marginal likelihood is the likelihood given the hyper-parameters of the Dirac

delta function, which is a point estimate. In this work, supervised mode will not be further

discussed as there is no supervision data available for the tasks considered.

• Unsupervised mode

In this mode, there is no supervision data available for the target domain. It is then neces-

sary to rely on the prior information gathered about the transform from the training data.

Hence, the marginal likelihood of the test data will be calculated using transform prior

distribution p(T |φ) in equation (5.22). This is the form of Bayesian adaptive inference

considered in this work.

Bayesian adaptive inference described above is a strict implementation of adaptive HMM

DBN in inference. It is interesting to compare this to the standard two-step adaptation/recognition

approach. In standard supervised adaptation approach, a point estimate of the transforms is first

obtained given some supervision data to adapt the canonical model. The adapted model is then

used to recognise the test data. This is equivalent to the supervised mode of Bayesian adaptive

inference given sufficient supervision data. When there is no supervision data available, it is not

possible to directly decode using the canonical model with the standard adaptation/recognition

process. A commonly used hack approach is to generate initial hypothesis using a multi-style

trained model. Then, a process similar to supervised adaptation/recognition is applied. In con-

trast, Bayesian adaptive inference gives a strict framework for using canonical model in unsuper-

vised mode. Due to the nature of adaptive HMMs, it is not possible to construct a standard set

of “adapted” HMMs6. Therefore, there is no separation between “adaptation” and “recognition”

steps. The whole process of Bayesian adaptive inference is to calculate the inference evidence

for each possible hypothesis and select the one with the best evidence. Calculation of marginal

likelihood for each possible hypothesis is the key problem, which is done by integrating out the

transform prior distribution.

In recognition with standard HMMs, Viterbi algorithm [116] is usually used to calculate the

likelihood of observation sequence as discussed in section 2.6.2.1. This relies on the condi-

tional independence assumption of HMMs. As the assumption is not valid for adaptive HMM

due to the additional dependency on transforms, Viterbi algorithm is not suitable for Bayesian

adaptive inference. Instead, N-Best rescoring [103] is used in this work to reflect the nature of

adaptive HMM. Though the N-Best rescoring may limit the performance gain, and loss, due to

the limited number of candidate hypothesis sequences, given sufficient hypothesis candidates,

this rescoring process is likely to produce the “best” hypothesis. In N-Best rescoring, marginal

likelihood given every possible hypothesis, p(O|H) needs to be calculated. Due to the coupling

of transform parameters and hidden state/component sequence, the Bayesian integral in equa-

tion (5.22) is again intractable. The calculation of the marginal likelihood p(O|H) then requires

6Unless the prior transform distribution is a Dirac delta function. However, as indicated in section 5.1, prior

transform distribution is not a Dirac delta function for non-homogeneous data.
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approximations. Various approximation approaches will be discussed in detail in section 5.3.

5.2 Discriminative Bayesian Adaptive Training and Inference

Section 5.1 described Bayesian adaptive training where the likelihood is used as the training cri-

terion. This Bayesian framework can be extended to other criteria. In particular, discriminative

criteria, such as MMI, are of interest. The general form of equations (5.1) and (5.5) using a

general training criterion F(·) may be expressed as

F(O,H) =

∫

M
F(O,H;M)p(M|Φ) dM (5.24)

F(O,H;M) =
S
∏

s=1

∫

T
F(O(s),H(s);M, T )p(T |φ) dT (5.25)

where s is the index of homogeneous block, p(M|Φ) and p(T |φ) are the prior distributions of

the canonical model and transforms respectively. These prior distributions are associated with

a particular training criterion. F(O(s),H(s);M, T ) is the general training criterion given the

parameter sets M and T , F(O,H) is the marginalised criterion.

Equations (5.24) and (5.25) give a general Bayesian adaptive training framework for any

training criterion. If the likelihood criterion is used, i.e.

F(O(s),H(s);M, T ) = p(O(s)|H(s),M, T ) (5.26)

the general form becomes the Bayesian adaptive training framework discussed in section 5.1.

State-of-the-art speech recognition systems use discriminative training criteria to obtain the

best performance. Discriminative training has previously been studied within the adaptive train-

ing framework with various forms of transforms [60, 119, 140] as discussed in chapter 4. In

these works, both sets of parameters are assumed to be deterministic. In this section, discrim-

inative adaptive training and inference are discussed within a Bayesian framework by using a

discriminative criterion as the general criterion in equations (5.24) and (5.25). The maximum

mutual information (MMI) criterion [60] is used as an example for the discussion in this section.

It can be expressed as the posterior distribution of the correct transcription and may be written

as

F(O,H) = P (H|O) =

∫

M
P (H|O,M)p(M|Φ) dM (5.27)

and from the conditional independence of different homogeneous blocks,

P (H|O,M) =
S
∏

s=1

∫

T
P (H(s)|O(s),M, T )p(T |φ) dT (5.28)

Using Bayes rule, the posterior of the transcription given both sets of parameters can be written

as7

P (H(s)|O(s),M, T ) =
p(O(s)|H(s),M, T )P (H(s))

∑

H̆(s) p(O(s)|H̆(s),M, T )P (H̆(s))
(5.29)

7The likelihood scaling factor in [102] is ignored here as it does not affect the discussion in this section.
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where H̆(s) is drawn from the set of all possible hypotheses for homogeneous block s.

In many situations, there is no information about the hyper-parameters of prior distributions

in advance. Hence, they also need to be empirically estimated from the training data. When

using a discriminative criterion, the prior distributions p(M|Φ) and p(T |φ) are estimated so that

the discriminative criterion, rather than the likelihood criterion, is optimised. As in likelihood

based Bayesian adaptive training, the forms the prior distributions need to be determined before

training. To the author’s knowledge, there is little discussion about the appropriate conjugate

prior distributions for generative models trained with discriminative criteria. This is an impor-

tant issue remained for further investigation as mentioned in chapter 8. However, independent

of the form of the prior, the same general estimation process of the hyper-parameters may be

used. Applying Jensen’s inequality to equations (5.27) and (5.28) yields inequalities similar to

inequalities (5.8) and (5.13)

log P (H|O) ≥ 〈log P (H|O,M)〉q(M) − KL (q(M)||p(M|Φ)) (5.30)

log P (H|O,M) ≥
S
∑

s=1

〈

log P (H(s)|O(s),M, T )
〉

q(s)(T )
−

S
∑

s=1

KL

(

q(s)(T )||p(T |φ)
)

(5.31)

The above become equalities when

q(M) = p(M|O,H) (5.32)

q(s)(T ) = p(T |O(s),H(s),M) (5.33)

Using similar proof for likelihood based Bayesian adaptive training in appendix C, it can be

shown that maximising equation (5.30) yields

p(M|Φ) = p(M|O,H) (5.34)

and p(T |φ) is estimated using the transform posterior distributions p(T |O(s),H(s),M)8.

With appropriate model complexity control and sufficient training data, the posterior distri-

butions of both sets of parameters can also be approximated using Dirac delta functions in the

same fashion as ML adaptive training. The hyper-parameters of these Dirac delta functions are

point estimates of the canonical model and the transforms for each homogeneous block respec-

tively. However, these point estimates are discriminative estimates rather than the ML estimates

as in section 5.1.1. They can be estimated using the standard discriminative training approach

as discussed in chapter 4. For example, using MMI criterion [60]

M̂MMI = arg max
M

P (H|O,M, T̂ ) (5.35)

Though the transform posterior distribution associated with each homogeneous block can

be approximated as a Dirac delta function given sufficient training data, the transform prior

distribution is a non-point distribution due to the multiple posterior distributions associated

8The estimation of the discriminative posterior distribution estimation was also rarely investigated due to the lack

of an appropriate conjugate prior to the discriminative criterion.
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with different homogeneous blocks. The estimation formula of the hyper-parameters is similar

to likelihood based training case in equation (5.19)9. However, there is a fundamental difference

during training. The point estimates of the transform posterior distributions are discriminatively

estimated, rather than ML estimated. These can be estimated using the standard discriminative

training approaches, for example, using MMI criterion [60]

T̂
(s)
MMI = arg max

T
P (H(s)|O(s),M̂, T ) (5.36)

Using the above approximate discriminative Bayesian adaptive training will yield a Dirac

delta prior distribution of the canonical model parameters and a non-point prior distribution of

the transform parameters. As both prior distributions are obtained by maximising a discrim-

inative criterion, they should also be used to calculate “discriminative” evidence in inference.

Thus, the inference criterion for discriminative adaptive systems on a homogeneous block can

be written as

Ĥ = arg max
H

P (H|O) (5.37)

where O is the observation sequence of the test data, H is one possible hypothesis sequence,

P (H|O) is the inference evidence which can be written as

P (H|O) =

∫

T
p(H|O,M̂MMI, T )p(T |φ) dT =

∫

T

p(O|H,M̂MMI, T )P (H)
∑

H̆ p(O|H̆,M̂MMI, T )P (H̆)
p(T |φ) dT (5.38)

where M̂MMI is the MMI estimate of the canonical model10, H̆ are all possible hypotheses in-

cluding the current hypothesis H, p(T |φ) is the prior distribution of discriminative transform

parameters. Thus, the distinct discriminative evidence for each possible hypothesis, P (H|O),

is calculated by integrating out over the discriminative transform prior distribution. The hy-

pothesis with the best discriminative evidence is selected as the recognition output. This is a

similar N-Best rescoring process to likelihood based Bayesian adaptive inference except for the

calculation of inference evidence.

It is interesting to compare the discriminative evidence in equation (5.37) to the likelihood

based evidence in equation (5.21). In likelihood based evidence in equation (5.21), only the

acoustic part, i.e., the likelihood p(O|H, T ,M), is marginalised because the canonical model pa-

rameters and transform prior are estimated by maximising the marginal likelihood criterion dur-

ing training. The language model and confusion hypotheses are not included in the marginalisa-

tion integral. In contrast, the discriminative inference criterion in equation (5.37) is a marginal-

isation of the conditional likelihood P (H|O). It is consistent with the MMI training criterion.

As both training and inference use the consistent discriminative criterion, it is believed to have

more discriminative power than the marginal likelihood criterion. Hence, it may give better

recognition performance.

9The proof is similar to appendix C except that the posterior P (H|O) is used as the criterion instead of the

likelihood criterion p(O|H).
10This is the result of integrating out over a Dirac delta canonical model prior distribution.
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One advantage of using a discriminative Bayesian adaptive training and inference framework

is that adaptive inference can be effectively performed in unsupervised mode given the two prior

distributions11. As there is no separate “adaptation” stage, there is no requirement of a correct

transcription in unsupervised mode. The whole process is to calculate the discriminative evi-

dence for each hypothesis given all possible hypotheses and then infer on those evidence values.

However, as mentioned before, there is little discussion about the form and hyper-parameters

estimation of discriminative prior distributions. Though the problem is interesting for further

investigation as indicated chapter 8, it is not the focus of this work. The complete framework of

discriminative Bayesian adaptive training and adaptive inference will not be further discussed.

An alternative strategy to complete discriminative adaptive training has been discussed in

section 4.1. This is referred to as simplified discriminative adaptive training [119]. Here only

the canonical model is updated using a discriminative criterion with the ML estimated trans-

forms fixed during discriminative training. In adaptation/recognition, the ML criterion is used

to estimate test set transforms for the discriminative canonical model. This strategy can also

be extended to discriminative Bayesian adaptive training and adaptive inference. The canonical

model prior distribution (a Dirac delta distribution) is obtained using discriminative criterion,

whereas, the transform prior distribution (a non-point distribution) is obtained using likelihood

criterion. As the likelihood criterion is used to estimate transforms, a conjugate prior distribu-

tion to the likelihood of the complete data set may be effectively estimated on the ML estimates

of transforms. This transform prior distribution can then be consistently used for likelihood

based Bayesian adaptive inference. This is the training and inference process adopted in this

work. The minimum phone error (MPE) criterion [93], rather than the maximum mutual in-

formation (MMI) criterion [60] will be used as the discriminative criterion for training, which

has been detailed in chapter 4. A slight difference in procedure from section 4.1 is that an

additional step is required to estimate the transform prior distribution. Given the discrimina-

tively estimated model M̂MPE, ML criterion is again used to generate a new set of transform

estimates {T̂
(1)
ML , · · · , T̂

(S)
ML }. The hyper-parameters of the transform prior distribution p(T |φ) are

then estimated by using equation (5.19) with these ML transform estimates.

It is worth emphasising that during inference the marginal likelihood is calculated given the

discriminative canonical model rather than an ML model. The use of a discriminative canonical

model may significantly improve the recognition performance [118]. However, as the estima-

tion of the transform prior distribution is based on ML transform estimates and the transform

prior is applied in a non-discriminative way during inference, the discriminative ability of the

discriminative adaptive system may be limited. This effect will be discussed in chapter 7.

11As discussed in section 4.1, within the standard adaptation/recognition framework, even if the initial hypothesis

may be generated, unsupervised discriminative adaptation is still a problem because the recognised initial hypothesis

can not be effectively used as the correct transcription for discriminative transform estimation. Hence, the feasibility

of doing unsupervised mode discriminative inference within this Bayesian framework is even more interesting than

likelihood based Bayesian adaptive inference and needs to be further investigated.
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5.3 Approximate Inference Schemes

The marginal likelihood required for Bayesian adaptive inference, is an integral over a transform

distribution, which is shown in equation (5.22). It is re-written here12

p(O|H) =

∫

T
p(O|H, T )p(T ) dT (5.39)

where O is the observation sequence for a particular testing homogeneous data block, H is

one possible hypothesis for O and p(T ) is a transform distribution. As unsupervised mode is

the focus of this work, in the rest of this work, p(T ) refers to the transform prior distribution

p(T |φ)13. This integral is generally intractable, hence approximations are required. In this

section, two main categories of approximation approaches are described. One approach is to

iteratively tighten a lower bound on the integral, referred to as lower bound approximation.

The second is to directly approximate the integral, referred to as direct approximation. The

application of those general approximation approaches to specific types of transforms will be

discussed in section 5.5.

5.3.1 Lower Bound Approximations

As described in Bayesian adaptive training, a lower bound may be constructed to approximate

the marginal likelihood in equation (5.39). Introducing a joint distribution, q(θ, T ), over the

component sequence, θ, and transform parameters, T , and applying Jensen’s inequality yields a

lower bound as below

log p(O|H) ≥ L(O|H) =

〈

log
p(O, θ|T ,H)p(T )

q(θ, T )

〉

q(θ,T )

(5.40)

where L(O|H) denotes the lower bound to log p(O|H). The above becomes an equality when

q(θ, T ) = p(θ, T |O,H) = P (θ|O,H, T )p(T |O,H) (5.41)

Using equation (5.41) is impractical because the calculation of the transform posterior p(T |O,H)

requires the marginal likelihood p(O|H), so approximations are used. Two tractable forms of

variational distributions are used instead of P (θ|O,H, T ) and p(T |O,H). To obtain good ap-

proximation, the lower bound needs to be made as tight as possible. Hence, an iterative learning

process is then used to update the two variational distributions so that the lower bound is guar-

anteed not to decrease at each iteration. The tightness of the bound is then dependent on the

form of the variational distributions and the number of iterations. Therefore, the tightness of

the lower bound can be efficiently controlled, which is an advantage of the lower bound approx-

imation.

12The canonical model M̂ and the index of homogeneous block are also omitted for clarity
13 Given a transform posterior distribution, all approximation approaches in this section can also apply.
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5.3.1.1 Lower Bound Based Inference

When using the lower bound approximation in Bayesian inference, it is assumed that the rank

ordering of the inference evidence P (H)p(O|H) in equation (5.21) is similar to the ordering of

the lower bound based evidence, i.e.

L(O|H1) + log P (H1) > L(O|H2) + log P (H2)

⇒ log p(O|H1) + log P (H1) > log p(O|H2) + log P (H2) (5.42)

There is no guarantee that this is the case. However, as the lower bound approximation becomes

tighter to the real marginal likelihood, the rank ordering of the evidence should also become

more similar. Thus, it is important to make the lower bound approximation as tight as possible.

In addition to the form of the variational distributions and the number of iterations, the tightness

is also dependent on the hypothesis to which the lower bound is optimised. In order to get a

tight lower bound, it is necessary to optimise the lower bound with respect to every possible

hypothesis respectively. During this process, multiple iterations are used to optimise a distinct

variational transform distribution for H. The specifically optimised transform distribution is then

used to calculate L(O|H) for inference.

This general approach of estimating a separate transform distribution for each candidate

hypothesis is similar to N-Best supervision based adaptation [82]. In [82] an ML estimate of a

bias vector was obtained, and used to calculate the likelihood for each of the N-Best candidates.

No theoretical justification for the approach was proposed. In contrast, the work here motivates

it from a viewpoint of tightening the lower bound during adaptive inference. It is interesting to

compare the N-Best supervision to the standard 1-Best supervision adaptation approaches such

as iterative MLLR [132]. In iterative MLLR, a transform is estimated using the 1-Best hypothesis

of the test data as supervision. This transform is then used to calculate inference evidence for

all possible hypothesis and the process repeated if necessary. Maximising the lower bound with

respect to a single hypothesis (the 1-Best hypothesis) may lead to a tight lower bound for that

particular hypothesis. However, for the other competing hypotheses, the lower bounds are not

as tight as they could be. They could have been made greater by optimising with respect to

each individual hypothesis. Using 1-Best supervision may significantly affect the performance

especially for complex transforms or short sentences as shown in the experimental results in

section 7.2.2.2. This hypothesis-bias problem was also discussed in [38] but from a standard

unsupervised adaptation perspective.

5.3.1.2 Point Estimates

In the same fashion as ML adaptive training, a Dirac delta function may be used as the transform

posterior resulting in a point version of equation (5.41)

q(θ, T ) = P (θ|O,H, T )δ(T − T̂ ) (5.43)
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where T̂ is a point estimate of the transform for the target domain. The lower bound expression

in equation (5.40) may then be re-expressed as

log p(O|H) ≥ LMAP(T̂ ) = log p(O|H, T̂ ) + log p(T̂ ) + H

(

δ(T − T̂ )
)

(5.44)

where LMAP(T̂ ) is a brief notation to the lower bound of the log-likelihood given the MAP es-

timate of transform LMAP(O|H, T̂ ) and H(·) is the entropy function defined in equation (2.16).

For all point estimates of T̂ , the entropy of the Dirac delta function remains −∞ [24]. As

H

(

δ(T − T̂ )
)

is a negative constant with infinite value, it can be ignored without affecting the

rank ordering of the lower bound. The rank ordering of LMAP(T̂ ) can be derived from

KMAP(T̂ ) = log p(O|H, T̂ ) + log p(T̂ ) (5.45)

Equation (5.45) is a maximum a posteriori (MAP) based point estimate. However, KMAP(T̂ ) is

no longer a lower bound for log p(O|H). Using equation (5.45) for inference, an assumption

is made that the inference evidence calculated with KMAP(T̂ ) will yield similar rank ordering as

the inference evidence calculated with the real marginal likelihood. This assumption tends to be

true for sufficient test data, where the point estimate is a reasonable approximation.

As discussed before, it is important to make the lower bound as close to the marginal likeli-

hood as possible to get a good rank ordering approximation. Due to the negative infinity entropy

term, the lower bound in the point estimate case, LMAP(T̂ ), is a very loose bound. However, it

should still be tightened to make the rank ordering approximation better. Tightening the lower

bound LMAP(T̂ ) is equivalent to tightening KMAP(T̂ ) in terms of rank ordering. The EM algorithm

may be used to optimise KMAP(T̂ ). The auxiliary function for equation (5.45) is the standard

MAP auxiliary function [21, 15]

QMAP(Tk+1; T̂k) = 〈log p(O, θ|Tk+1,H)〉
P (θ|O,H,T̂k) + log p(Tk+1) (5.46)

where P (θ|O,H, T̂k) is the component sequence posterior calculated based on T̂k. The transform

estimate is iteratively updated until the estimate reaches a local maximum. This estimate will

be a MAP estimate.

The transform prior p(T ) in equation (5.46) has been assumed to be a conjugate prior dis-

tribution to the likelihood of the complete data set. For example, a single Gaussian distribution

may be used as the conjugate prior distribution for mean transforms. If a multiple-component

prior, for example a GMM prior as defined in equation (5.7), is used, it is no longer a conjugate

prior to the likelihood of the complete data set. However, Jensen’s inequality may be applied to

the mixture prior to yield a lower bound approximation. At iteration k + 1

log p(Tk+1) = log
∑

n

cnp(Tk+1|n)

≥

〈

log cnp(Tk+1|n)

qk(n)

〉

qk(n)

(5.47)



CHAPTER 5. BAYESIAN ADAPTIVE TRAINING AND ADAPTIVE INFERENCE 104

where p(Tk+1|n) is the nth conjugate distribution component of the prior, cn is the component

weight, qk(n) is the variational component weight, which is introduced to allow the EM algo-

rithm to be used. It is calculated using the transform parameters of the kth iteration.

qk(n) = P (n|T̂k) =
cnp(T̂k|n)

∑

n cnp(T̂k|n)
(5.48)

Using this iterative form with a multiple-component prior introduces a further lower bound in

additional to the lower bound to marginal likelihood. Hence, it will increase the difference

between the lower bound and the actual likelihood. However, it simplifies the use of multiple-

component prior. Substituting this into the transform estimation auxiliary function yields (ig-

noring constants)

QMAP(Tk+1; T̂k) = 〈log p(O, θ|Tk+1,H)〉
P (θ|O,H,T̂k) + 〈log p(Tk+1|n)〉

P (n|T̂k) (5.49)

Optimising the above auxiliary function, a locally optimal MAP estimate of transforms can be

obtained. This estimate can then be used in equation (5.45) to calculate KMAP(T̂ ) for inference.

It is worth noting that, within the N-Best supervision framework, the MAP estimate is distinct for

each possible hypothesis. Therefore, when calculating KMAP(T̂ ), the prior term p(T̂ ) is different

for each hypothesis. This gives an optimal lower bound for each individual hypothesis. It is

interesting to compare this to the standard MAP inference [15]. In the standard approach, the

transform parameters are estimated using the 1-Best hypothesis. The same set of transform

parameters is then used to calculate the lower bound value, hence, the prior term p(T̂ ) does

not affect the inference at all. Though the particular set of transform parameters may give an

optimal lower bound for the 1-Best hypothesis, it gives a looser bound for the other hypotheses

compared to N-Best supervision. Hence, the inference performance may be affected. The effect

on error rate of this is discussed in section 7.2.2.2. The MAP estimate will tend to the standard

ML estimate, if a non-informative prior is used or the data is sufficient. In this case, the prior term

in equation (5.45) disappears and the observation sequence likelihood given the ML estimate

can be directly used for inference.

5.3.1.3 Variational Bayes

Though the point estimate schemes allow the “true” marginal likelihood to be calculated given

sufficient data14, they are not robust for limited data. It is preferable to marginalise over a dis-

tribution to achieve more robust inference. In order to make the marginal likelihood calculation

tractable, a variational Bayesian (VB) approximation may be used [9]. In the VB approximation,

the component sequence posterior distribution q(θ|O,H) and the transform posterior distribu-

tion q(T |O,H) are assumed to be conditionally independent. Thus

q(θ, T ) = q(θ|O,H)q(T |O,H) (5.50)

14Given sufficient data, equation (5.41) is equivalent to the point estimate assumption in equation (5.43). In that

case, the rank ordering of the optimal lower bound value is the same as that of the marginal likelihood.
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For simplicity of notation the two posteriors will be denoted as q(θ) and q(T ) in later derivations.

This assumption is necessary to obtain a tractable mathematical form. The lower bound in

equation (5.40) may be re-written as an auxiliary function. At the kth iteration, it may be

expressed as15

log p(O|H) ≥ LVB (qk(T )) = QVB (qk+1(θ), qk(T ))

= 〈log p(O, θ|T ,H)〉qk+1(θ)qk(T ) + H (qk+1(θ)) − KL(qk(T )||p(T )) (5.51)

where H(·) is the entropy and KL(·||·) is the KL distance. LVB (q(T )) is the brief notation for the

lower bound of the log-likelihood given the VB transform posterior distribution LVB (O|H, q(T )),

qk(θ) and qk(T ) are the variational component sequence and transform posterior distributions

at the kth iteration respectively. The aim is to obtain forms of q(θ) and q(T ) that maximise this

auxiliary function, thus making the lower bound as tight as possible. The “optimal” variational

transform distribution will then be used to calculate the lower bound for inference.

Taking the functional derivatives of the auxiliary function in equation (5.51) with respect to

the two distributions, q(θ) and q(T ), respectively, an EM-like algorithm can be obtained, referred

to as variational Bayesian EM (VBEM) [9]. VBEM is guaranteed not to loosen the bound at each

iteration. The process is described below:

1. Initialise: q0(T ) = p(T ), k = 1.

2. VB Expectation (VBE):

The optimal variational posterior component sequence distribution is shown to be [9]

qk(θ) =
1

ZΘ(O,H)
exp

(

〈log p(O, θ|T ,H)〉qk−1(T )

)

(5.52)

where ZΘ(O,H) is the normalisation term to make qk(θ) a valid distribution, Θ denotes

the set of all possible component sequences, and qk(T ) is the variational transform dis-

tribution of the kth iteration. As log p(O, θ|T ,H) can be factorised at frame-level, the

expectation with respect to qk(T ) can be computed at frame-level in the logarithm do-

main.

〈log p(O, θ|T ,H)〉qk−1(T ) = 〈log P (θ)〉qk−1(T ) +
∑

t

〈log p(ot|T , θt)〉qk−1(T ) (5.53)

This allows qk(θ) to be viewed as a component sequence posterior distribution of a model

set with a modified Gaussian component16

p̃(ot|θt) = exp
(

< log p(ot|T , θt) >qk−1(T )

)

(5.54)

15In VB, the notation of auxiliary function QVB(·, ·) is slightly different from the auxiliary function for point estimate

Q(·; ·). The VB auxiliary function is used for deriving calculation formulae for both component sequence q(θ) and

variational transform distribution q(T ). Hence, both variational distributions are regarded as independent variables.

In contrast, the point estimate auxiliary function is only used for deriving update formula of model or transform

parameters given the posterior component sequence calculated based on the current parameter estimates.
16As the transform T is assumed to only work on Gaussian parameters, the other parameters such as transition

probability will not change at all.
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p̃(o|θ) is referred to as a pseudo-distribution because it is not necessarily correctly nor-

malised to be a valid distribution. Similar to the standard likelihood calculation in equation

(5.6), ZΘ(O,H) can then be simply calculated using the forward algorithm with p̃(o|θ),

ZΘ(O,H) =
∑

θ

P (θ|H,M)
∏

t

p̃(ot|θt) (5.55)

This normalisation term ensures that qk(θ) is always a valid distribution.

3. VB Maximisation (VBM):

Given the variational component sequence posterior qk(θ), the optimal qk(T ) can be found

as

qk(T ) =
1

ZT (O,H)
p(T ) exp

(

〈log p(O, θ|T ,H)〉qk(θ)

)

(5.56)

where ZT (O,H) is also a normalisation term to make qk(T ) a valid distribution. With an

appropriate form of prior, normally a conjugate prior, q(T ) has the same form as the prior.

Hence, the optimisation of q(T ) requires updating the hyper-parameters of the prior p(T ).

The exact form is dependent on the transform form and will be discussed in section 5.5.

4. k = k + 1. Goto (2) unless converged.

Having obtained the transform variational distribution q(T ), the value of the lower bound

in equation (5.40) is required for inference. By calculating q(θ) based on q(T ) with equation

(5.52) and using the resulting q(θ) in equation (5.51), the lower bound can be re-expressed as

log p(O|H) ≥ LVB (q(T )) = logZΘ(O,H) − KL (q(T )||p(T )) (5.57)

where the normalisation term ZΘ(O,H) is calculated using equation (5.55) and KL(·||·) is the

KL distance defined in equation (5.9). Due to the use of non-point distributions, the negative

infinity entropy term is avoided. Hence, this bound is tighter than the bound obtained with point

estimates. This should lead to more robust inference for limited test data case.

Similar to the MAP approach in section 5.3.1.2, if the transform prior distribution p(T ) is

a mixture model, the VB lower bound can not be directly optimised. A variational component

weight qk(n) has to be introduced and the Jensen’s inequality re-applied. The logarithm of the

marginal likelihood is then approximated by

log p(O|H) = log
∑

n

cn

∫

T
p(O|H, T )p(T |n) dT

≥

〈

log
cn

qk(n)

∫

T
p(O|H, T )p(T |n) dT

〉

qk(n)

≥
〈

QVB

(

qk+1(θ), qk(T |n)
)

〉

qk(n)
− KL (qk(n)||cn) (5.58)
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where KL(·||·) is the discrete KL distance defined in equation (5.10). Note that, the total varia-

tional distributions include one variational component sequence distribution, N transform dis-

tributions and N transform component weights.17 VBEM algorithm can then be applied to

optimise equation (5.58) given qk(n). As shown in appendix D.1, in the VBE step, qk(θ) can still

be obtained using equation (5.52) except that the pseudo-distribution p̃(ot|θt) is now based on

a mixture variational transform distribution rather than a single component prior,

q(T ) =
∑

n

q(n)q(T |n) (5.59)

In the VBM step, the update formulae for each transform distribution component q(T |n) is

similar to equation (5.56) except that the nth prior component p(T |n) is used instead of p(T ).

An additional issue introduced by using mixture priors is the estimation of variational com-

ponent weights q(n). To simplify estimating q(n), the components of the transform prior are

assumed to be independent of each other. With this assumption, the hidden component se-

quence θ may change from one prior component to another. Then a distinct q(θ|n) is introduced

for each prior component. The number of variational component sequence distributions changes

from 1 to N , where N is the number of prior components. It is shown in appendix D.1 that the

component weight can be updated by

qk(n) =
cn exp (LVB (qk(T |n)))

∑

n cn exp (LVB (qk(T |n)))
(5.60)

where LVB (qk(T |n)) is calculated using equation (5.57). With a mixture prior, the overall lower

bound, equation (5.58), can be re-expressed as an extended form of equation (5.57)

LVB (q(T )) = logZΘ(O,H) −
∑

n

q(n)KL (q(T |n)||p(T |n)) − KL (q(n)||cn) (5.61)

where ZΘ(O,H) is the normalisation term calculated based on the complete variational trans-

form distribution in equation (5.59).

The above derivations assume that a global transform is used for all Gaussian components.

It can be extended to a multiple base class case, where a separate (independent) transform is

associated with a group of Gaussians. In that case, let T = {T1, · · · , TNR
}, where Tr is the

transform associated with base class r, R is the set of regression base classes, NR is the total

number of base classes. Then the prior can be regarded as a product of the individual transforms

distributions

p(T ) =
∏

r∈R

p(Tr) (5.62)

Variational transform distributions q(Tr) are used for each regression base class r. The resulting

VBEM algorithm is similar to the global case except that the sufficient statistics for each varia-

tional transform distribution are accumulated on the corresponding group of Gaussians. In the

17N is the total number of components of p(T ).
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mixture prior case, as shown in appendix D.2, the variational component weight can be updated

by

qk(nr) =
cnr exp (LVB (qk(T |nr)))

∑

nr
cnr exp (LVB (qk(T |nr)))

(5.63)

where k is the iteration index, nr is the nth prior component associated with base class r, cnr

denotes the prior component weight, qk(nr) is the corresponding variational weight. Equa-

tion (5.63) is a multiple regression base class version of equation (5.60). The lower bound

LVB (qk(T |nr))) is calculated based on qk(T |nr), which is defined as

qk(T |nr) = qk(Tr|nr)
∏

i∈R−r

qk(Ti) (5.64)

where R−r denotes the regression base class set without r, qk(Ti) is the complete mixture varia-

tional transform distribution for the ith regression base class at iteration k.

5.3.2 Direct Approximations

There are a number of other approaches, which do not require an iterative process to tighten the

lower bound, that can be used to approximate the intractable likelihood integral. This kind of

approximation is referred to as direct marginalisation approximations. One advantage of these

approaches is that no iterative process is required during Bayesian adaptive inference. However,

it is hard to know how close the direct approximation is to the real likelihood. It may be greater

or less than the real likelihood.

5.3.2.1 Sampling Approach

Sampling approaches are a standard method for directly approximating intractable probabilistic

integrals. The basic idea is to draw samples from the distribution and use the average integral

function value to approximate the real probabilistic expectation [99]. Thus

p(O|H) ≈
1

N

N
∑

n=1

p(O|H, T̂n) (5.65)

where N is the total number of samples and T̂n is the nth sample drawn from p(T ). In the limit

as N → ∞ this will tend to the true integral [99].

There is a fundamental issue associated with this form of approximation. As the number

of transform parameters increases the number of samples required to obtain good estimates

dramatically increases. As a separate inference evidence calculation is required for each sample

to find the final best hypothesis, it is hard to efficiently control the computational cost for large

systems. This approach is only applicable to systems with small number of transform parameters

such as CAT.
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5.3.2.2 Frame-Independent Assumption

Rather than approximating the integral, an alternative approach is used to modify the dynamic

Bayesian network (DBN) associated with the Bayesian adaptive inference process. The approach

is to allow the transform change at each time instance. Figure 5.2 shows the comparison of the

DBN for strict adaptive inference and the DBN for the approximated adaptive inference. Here,

θt is the Gaussian component at time t.

ot ot+1

t t+1

t+1t

PSfrag replacements

θθ

TT

(a) Strict Inference

ot ot+1

t t+1

t+1t

PSfrag replacements

θθ

TT

(b) FI Assumption

Figure 5.2 Dynamic Bayesian network comparison between strict inference and frame-independent assump-

tion

As shown in figure 5.2(a), in strict Bayesian inference, both component and transform pa-

rameters transition process are first-order Markov processes. With the homogeneity constraint

on data blocks, the transform transition probability can be expressed as a Dirac delta function

as in equation (5.2). This means that the transform parameters are constrained to be constant

over all frames within one homogeneous block. Mathematically this yields the integral in equa-

tion (5.39).

If the constraint that the transform is the same for all observations is relaxed, the DBN in fig-

ure 5.2(b) will be obtained. This allows the transform to vary from time instance to time instance

and will be referred to as the frame-independent (FI) assumption. As discussed in section 2.6.3,

this assumption has been implicitly used in the Bayesian prediction approaches for HMM pa-

rameters [62, 120], where the resultant distribution is called Bayesian predictive distribution. It

has been also investigated for inference with standard two-step adaptation/recognition process

[37, 14, 107]. Using this approximation in equation (5.6) yields

p(O|H) ≈
∑

θ

P (θ|H,M)
∏

t

p̄(ot|M, θt) (5.66)

where

p̄(ot|M, θt) =

∫

T
p(ot|M, T , θt)p(T ) dT (5.67)

is the predictive distribution at component θt. With the form of p(T ) being a conjugate prior to

the likelihood of observation, this frame-level integral is tractable. For example, in MLLR where

mean based linear transforms are used, a single Gaussian distribution or GMM may be used as

figure/DBN_adapt.eps
figure/DBN_fi.eps
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p(T ) to obtain a tractable predictive distribution [37, 14]. More details of application of FI will

be discussed in section 5.5.

This FI assumption breaks the DBN of adaptive HMM and is more similar to the multi-style

training approach, such as the speaker independent (SI) model, where the acoustic condition can

usually change from frame to frame (the standard HMM assumption) [38]. Therefore, unless the

posterior distributions of each homogeneous block are used, the results with FI approximation

will be similar to the SI performance. One advantage of this FI assumption is that the observation

is conditionally independent given the hidden state and transform distribution. This makes

it possible to use the standard Viterbi decoding with the predictive distribution in equation

(5.67). As Viterbi decoding is not generally applicable within the Bayesian adaptive inference

framework, the use of FI in Viterbi decoding will not be further discussed.

5.4 Incremental Bayesian Adaptive Inference

The Bayesian adaptive inference discussed in section 5.3 is described in a batch adaptation

mode, where all the test data are assumed to be available for decoding in a single block. How-

ever, in some applications, test data only becomes available gradually. For these applications,

incremental adaptive inference is often used. Here information from the previous utterances is

propagated in adaptation to decode the current utterance. This section will discuss incremental

unsupervised adaptation within a Bayesian framework [141]. Here, only lower bound approxi-

mations are concerned18. Variational Bayes is discussed first. Then the point estimate version is

then described.

For incremental adaptive inference, a homogeneous data block comprises multiple utter-

ances. O = O1:U = {O1, · · · ,OU} denotes the observation sequence from 1st to the U th ut-

terance. Similarly, the hypothesis for the U utterances, H, consists of a set of hypotheses for

utterances within it, H1:U = {H1, . . . ,HU}. Adaptation information is propagated to the U th

utterance from the previous U − 1 utterances. The key question here is what information to

propagate between utterances and how to use the propagated information. Various levels of

information propagation are discussed below using the VB approximation as the example for

lower bound based inference:

1. No information:

No information is propagated between utterances. When the U th utterance comes, the

lower bound for all utterances needs to be optimised. This is similar to repeated applica-

tion of batch mode inference with increased number of utterances. This involves rescoring

all U utterances, yielding a new hypothesis sequence for all utterances, Ĥ1:U . The U th

utterance may change the “best” hypothesis for the preceding utterances. This approach

18If direct approximations, for example, the FI assumption, are used, the incremental adaptive inference means

incrementally update of the transform prior distribution. As the prior update or posterior estimation is not concerned

in this work, direct approximations will not be discussed in this section.
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breaks the causal aspects of incremental adaptive inference and is highly computationally

expensive.

2. Inferred hypothesis sequence:

If the causal constraint is enforced, then the best hypothesis sequence for the previous

U − 1 utterances is fixed as Ĥ1:U−1. The optimisation of the lower bound is then only

based on each hypothesis for the U th utterance respectively. The variational posteriors in

equation (5.50) can then be written as

q(θ|O,H) = q(θ|O, Ĥ1:U−1,HU ) (5.68)

q(T |O,H) = q(T |O, Ĥ1:U−1,HU ) (5.69)

In this configuration, there is a choice of the initial transform distribution to use. The trans-

form prior, p(T ), can be used to initialise the VBEM process. Alternatively, the distribution

from the previous U − 1 utterances may be used. Thus

q0(T |O, Ĥ1:U−1,HU ) = qK(T |O1:U−1, Ĥ1:U−1) (5.70)

where K is the number of VBEM iterations used19. The VBEM algorithm remains un-

changed except that O1:U−1 only needs to be re-aligned against Ĥ1:U−1, rather than all

possibilities. Hence, the inference only involves possible hypotheses for the U th utterance.

3. Posterior component sequence distribution and inferred hypotheses:

Propagating the hypotheses still requires the posterior component sequence distribution

for all U utterances to be computed. This posterior may also be fixed and propagated to

the next utterance. Thus equation (5.68) becomes

q(θ|O,H) = q(θU |OU ,HU )
U−1
∏

u=1

qK(θu|Ou, Ĥu) (5.71)

The previous U − 1 utterances do not need to be re-aligned. Only q(θU |OU ,HU ) needs to

be computed, i.e., only the sufficient statistics of the U th utterance need to be accumulated.

This is the most efficient form and will be used in this work. It is interesting to compare

the information strategy described above to the standard incremental adaptation [73].

In standard incremental adaptation, an ML transform is re-estimated for each utterance

using the accumulated statistics from the previous and the current utterances. In this

estimation, the state/component alignment of the previous utterances are often assumed

to be unchanged. The updated transform is then used to decode the next utterance. As ML

estimate is a form of lower bound approximation, standard incremental adaptation can be

viewed as a special case of the incremental Bayesian adaptive inference.

Using the information propagation strategy 3, an efficient, modified version of the VBEM

algorithm described can be derived as shown in appendix E

19Note that the prior distribution, p(T ), is still used in the update of variational transform distribution.
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1. Initialisation:

Set k = 1. The initial transform distribution is given by equation (5.70). For the first

utterance, set q0(T ) = p(T ).

2. VBE step:

Only the U th component sequence posterior needs to be computed

qk(θU |OU ,HU ) =
1

ZΘ(OU ,HU )
exp

(

〈log p(OU , θU |T ,HU )〉
qk−1(T |O,Ĥ1:U−1,HU )

)

(5.72)

where k denotes the iteration index, ZΘ(OU ,HU ) can be calculated using equation (5.55)

based on the pseudo-distribution with qk−1(T |O, Ĥ1:U−1,HU ).

3. VBM step:

The single component transform distribution can be updated as below

log qk(T |O, Ĥ1:U−1,HU ) =
U−1
∑

u=1

〈

log p(Ou, θu|T , Ĥu)
〉

qK(θu|Ou,Ĥu)

+ 〈log p(OU , θU |T ,HU )〉qk(θU |OU ,HU ) + log p(T ) −ZT (O, Ĥ1:U−1,HU ) (5.73)

From equation (5.73), the total sufficient statistics is a summation of those of the current

utterance and the previous U − 1 utterances, which are propagated and do not need to be

re-calculated. This recursive formulae significantly reduces the computation cost.

If a multiple component prior is used, the transform distribution update formulae in equa-

tion (5.73) can be used to update the hyper-parameters of individual component of the

variational transform distribution. Theoretically, the variational component weights can

still be updated using equation (5.60). However, the use of multiple component prior

significantly complicates the incremental adaptation, hence is not considered in this work.

4. k = k + 1. Goto 2 until k = K.

Having obtained the optimal transform distribution, the value of the VB lower bound in

equation (5.57) is required for inference. In this calculation, the normalisation term can also be

calculated recursively

ZΘ(O, Ĥ1:U−1,HU ) = ZΘ(OU ,HU )
U−1
∏

u=1

ZΘ(Ou, Ĥu) (5.74)

Note, a normalisation term is calculated for each possible hypothesis HU . The inferred hypoth-

esis for the U th utterance, ĤU , is obtained by using the inference criterion in equation (5.21).

Then the (U + 1)th utterance is processed and this is repeated until all the utterances are pro-

cessed.

With the point estimate approximations, a similar incremental EM algorithm and inference

process can be derived. The main difference is that the transform estimate, rather than the

transform distribution, is propagated. The EM algorithm for incremental MAP adaptation is

described as below:
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1. Initialisation: set k = 1 and

T̂0(O, Ĥ1:U−1,HU ) = T̂K(O1:U−1, Ĥ1:U−1) (5.75)

where T̂K(O1:U ,H1:U ) denotes the transform estimated based the utterances O1:U and the

hypothesis sequence H1:U at iteration K. For the first utterance, the expectation of the

prior may be used, T̂0(O1,H1) = E[p(T )]. If an uninformative prior is used, i.e. the ML

estimate is to be obtained, an identity matrix may be used for initialisation.

2. Expectation step:

As the previous U − 1 component sequence posteriors, PK(θu|Ou, Ĥu), u ∈ {1, · · · , U −

1}, are propagated, only the U th component posterior distribution, Pk(θU |OU ,HU ) needs

to be figured out. This calculation is based on the transform estimate of the previous

iteration, T̂k−1(O, Ĥ1:U−1,HU ). The sufficient statistics to update the transform can then

be accumulated.

3. Maximisation step:

With similar derivation to VB, the transform distribution at the U th utterance can be up-

dated using the following auxiliary function

QMAP(Tk+1; T̂k) =
U−1
∑

u=1

∑

t,θu

γ̂θu
(t) log p(ou(t)|θu, Tk+1, Ĥu)

+
∑

t,θU

γθU
(t) log p(oU (t)|θU , Tk+1,HU ) + log p(Tk+1) (5.76)

where Tk is the brief notation for Tk(O, Ĥ1:U−1,HU ), γ̂θu
, u ∈ {1, · · · , U−1} is the posterior

occupancy calculated from the propagated component sequence distribution PK(θu|Ou, Ĥu),

γθU
is the posterior occupancy calculated on the U th utterance. The optimal transform of

the current iteration is found by

T̂k+1(O, Ĥ1:U−1,HU ) = arg max
Tk+1

QMAP(Tk+1; T̂k) (5.77)

4. k = k + 1. Goto 2 step until k = K.

Having obtained the optimal transform estimate T̂K(O, Ĥ1:U−1,HU ), the MAP lower bound

in equation (5.45) can be calculated. Then, the best hypothesis ĤU can be inferred and propa-

gated to the next utterance.

5.5 Applications to Model Based Transformations

The previous sections introduces the general form of various Bayesian inference approximation

schemes. In this section, these schemes are applied to specific types of model based trans-

forms [138]. As described in chapter 3, there are three main types of widely used model
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based transforms: mean based Maximum likelihood linear regression (MLLR) [74], interpola-

tion weight vectors in cluster adaptive training (CAT) [36] or eigenvoices [69] and constrained

MLLR (CMLLR) [34]. These are discussed in the following sections.

5.5.1 Interpolation Weights in Cluster Adaptive Training

Cluster adaptive training (CAT) has been discussed in detail in section 3.4.2.2 and section 4.3.2.

This section gives the exact forms of Bayesian approximations applied to CAT [138] (see ap-

pendix F for derivations). In CAT, the adapted mean vector is an interpolation of mean clusters,

which is re-rewritten as below20

µ̂(m) =

P
∑

p=1

λpµ
(m)
p = M(m)λ (5.78)

where µ̂(m) is the adapted mean vector of Gaussian component m, M(m) = [µ
(m)
1 , · · · , µ

(m)
P ]

is the cluster mean vectors for component m, P is the number of clusters, and λ is a P × 1

interpolation weight vector. For the interpolation weight vector, a Gaussian distribution may be

used as the conjugate prior. Hence, GMM may be used as an enhanced form of prior. As the

number of parameters is small, typically only 2 or 3, it is possible to use the sampling approach

discussed in section 5.3.2.1

For the frame independent assumption it is necessary to obtain the predictive distribution in

equation (5.67). For both the interpolation weights here and the linear transform in the next

section, if the original distribution is Gaussian and the transform prior distribution is GMMs, then

the resultant predictive distribution will also be a GMM. For a particular Gaussian component

m, the predictive distribution is

p̄(o|m) =

∫

T
p(o|T , m)p(T ) dT =

N
∑

n=1

cnN (o; µ̄(mn), Σ̄(mn)) (5.79)

where the prior distribution p(T ) is a GMM given in equation (5.7). In the CAT case, the GMM

is expressed as

p(T ) = p(λ) =
N
∑

n=1

cnN (λ; µ
(n)
λ ,Σ

(n)
λ ) (5.80)

where µ
(n)
λ and Σ

(n)
λ are hyper-parameters of the nth prior component and cn is the weight of

the prior component n. Hence, given the predictive distribution for each Gaussian component,

the resultant state output distribution has M ×N components, where M and N are component

numbers for the original distribution and the prior respectively. For CAT, the parameters of this

20Note that only the global interpolation weight vector is discussed in this section. The formulae for multiple

base classes case are similar except for accumulating statistics over the particular base class when estimating the

interpolation weight vectors. The index of acoustic condition s is dropped for clarity.
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distribution can be shown as (see appendix F)

µ̄(mn) = M(m)µ
(n)
λ (5.81)

Σ̄(mn) = M(m)Σ
(n)
λ M(m)T + Σ(m) (5.82)

It is interesting to note that even if the prior and original Gaussian distribution both have diag-

onal covariance matrices, the resultant predictive distribution has a full covariance matrix.

The ML estimate for CAT interpolation weights have been well investigated in [36]. Hence,

for lower bound based approximations, only MAP estimate and VB approximation are discussed

here. Though the MAP estimate for the single component prior case has already been derived

for CAT [33], the multiple component case has not been considered. Optimising the auxiliary

function in equation (5.49), the MAP estimate of λ can be shown as

λ̂ =

(

N
∑

n=1

q(n)Σ
(n)−1
λ + GML

)−1( N
∑

n=1

q(n)Σ
(n)−1
λ µ

(n)
λ + kML

)

(5.83)

where q(n) is obtained using equation (5.48) given the current weights estimate, GML and kML

are the standard ML CAT sufficient statistics in equation (3.54) and equation (3.55)21, which

is obtained given the canonical model and the current weights estimate. Having obtained the

MAP estimate of the interpolation weight vector for each hypothesis, the value of KMAP(T̂ ) in

equation (5.45) can be calculated for inference.

When using VB as the approximation, it is necessary to find the pseudo-distribution, p̃(o|m),

given in equation (5.54). As shown in appendix F, for CAT, the pseudo-distribution for compo-

nent m is

log p̃(o|m) =
N
∑

n=1

q(n)
(

logN (o;M(m)µ̃
(n)
λ ,Σ(m)) −

1

2
tr(Σ̃

(n)
λ M(m)TΣ(m)−1M(m))

)

(5.84)

where q(n) is the variational posterior weight for component n calculated using equation (5.60).

For single Gaussian prior, q(n) is always 1. µ̃
(n)
λ and Σ̃

(n)
λ are the hyper-parameters of the below

variational transform distribution, which is also a GMM

q(λ) =
N
∑

n=1

q(n)N (λ; µ̃
(n)
λ , Σ̃

(n)
λ ) (5.85)

The hyper-parameters of the variational distribution q(λ) can be estimated using VBEM as

Σ̃
(n)
λ =

(

Σ
(n)−1
λ + GML

)−1
(5.86)

µ̃
(n)
λ = Σ̃

(n)
λ

(

Σ
(n)−1
λ µ

(n)
λ + kML

)

(5.87)

where µ
(n)
λ and Σ

(n)
λ are the hyper-parameters of the transform prior distribution, GML and

kML are again the ML sufficient statistics given in equation (3.54) and equation (3.55), except

that γML
m (t) is now calculated based on the pseudo-distribution given in equation (5.84). After

K iterations, the final variational distribution qK(λ) is used to calculate the lower bound in

equation (5.61) for inference.

21Note that λ here is a global weight.
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5.5.2 Mean MLLR in Speaker Adaptive Training

Mean based linear transforms were originally introduced within a ML framework, referred to

as maximum likelihood linear regression (MLLR) [74]. It has been reviewed in detail in sec-

tion 3.2.2.1. The adapted mean vector can be written as22

µ̂(m) = Aµ(m) + b = Wξ(m) (5.88)

where ξ(m) = [µ(m)T 1]T is the extended mean vector, W = [A b] is the extended linear

transform. Similar to the interpolation weight vector, which is also a linear “transform” on

mean vectors, a Gaussian distribution may be used as the conjugate prior [37, 14]. As discussed

in section 5.1.1, a GMM is also used as an extension. In this case, to be consistent with the

diagonal covariance matrix used for HMM systems [37], each row of the transform is assumed

to be independent given the prior component. Thus

p(T ) = p(W) =

N
∑

n=1

cn

D
∏

d=1

N (wd; µ
(n)
wd

,Σ
(n)
wd

) (5.89)

where D is the size of the feature vector, wT
d is the dth row of W.

As indicated in section 5.3.2.1, MLLR transforms have too many parameters to robustly use

the sampling approximation. Hence, only frame-independent assumption is used as a direct

approximation. The resultant predictive distribution for Gaussian component m has a similar

form as equation (5.79), where the parameters have been derived in [37] and [14] for the case

of single Gaussian prior. These parameters are reproduced here at element level in a consistent

form as equation (5.81) and equation (5.82)

µ̄
(mn)
d = w

(n)T
d ξ(m)

σ̄
(mn)
dd = σ

(m)
dd + ξ(m)TΣ

(n)
wd

ξ(m)

where µ̄
(mn)
d and σ̄

(mn)
dd are parameters of the predictive distribution, d ∈ {1, · · · , D} is the

element index, Σ(m) is assumed to be a diagonal covariance matrix, of which σ
(m)
dd is the dth

diagonal element. In contrast to CAT, due to the row-independent assumption in prior, the

resultant covariance matrix predictive distribution is also diagonal.

MAP Linear Regression (MAPLR) with single Gaussian prior was presented in [13]. The mul-

tiple component prior MAP estimate is a straightforward extension, yielding forms similar to that

for CAT in equation (5.83). Given the ML sufficient statistics GML,d and kML,d in equation (3.8)

and equation (3.9), the dth row of MAPLR transform W is updated by

ŵd =

(

∑

n

q(n)Σ
(n)−1
wd

+ GML,d

)−1(
∑

n

q(n)Σ
(n)−1
wd

µ
(n)
wd

+ kML,d

)

(5.90)

where q(n) is again calculated using equation (5.48) given the current transform estimate.

22As in the discussion of interpolation weight vector, only global MLLR transform is discussed in this section.
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For the VB approximation, the pseudo-distribution is first required. Again it can be shown

that this is an unnormalised distribution, where component m has the form

log p̃(o|m) =
N
∑

n=1

q(n)
(

logN (o;W̃
(n)
µ ξ(m),Σ(m)) −

1

2

D
∑

d=1

ξ(m)T Σ̃
(n)
wd

ξ(m)

σ
(m)
dd

)

(5.91)

where W̃
(n)
µ = [µ̃

(n)
w1 , · · · , µ̃

(n)
wD

]T is the mean transform of the nth component of the varia-

tional posterior transform distribution. Given the pseudo-distribution, the hyper-parameters

of the complete variational transform posterior, q(W), can be updated. This is similar to equa-

tion (5.85), but modified to reflect the independence assumption between rows of the transform

shown in equation (5.89). The nth component’s mean and covariance for row d can be estimated

by

Σ̃
(n)
wd

=
(

Σ
(n)−1
wd

+ GML,d

)−1

µ̃
(n)
wd

= Σ̃
(n)
wd

(

Σ
(n)−1
wd

µ
(n)
wd

+ kML,d

)

(5.92)

where µ
(n)
wd

and Σ
(n)
wd

are the parameters of the nth prior component, GML,d and kML,d are the ML

sufficient statistics in equation (3.8) and equation (3.9) except that the component posterior,

γML
m (t), is based on the pseudo-distribution given in equation (5.91). The variational component

weights q(n) can also be updated using equation (5.60). After K iterations, the final distribution

qK(W) is used to calculate the VB lower bound in equation (5.61) for inference.

5.5.3 Constrained MLLR in Speaker Adaptive Training

The mean based linear transform only adapts the mean vectors. An alternative is to use con-

strained linear transforms [34], which has been discussed in detail in section 3.2.2.3. Here, the

same transform is applied to both mean vector and covariance matrix.

µ̂(m) = A′µ(m) − b′ (5.93)

Σ̂(m) = A′Σ(m)A′T (5.94)

where A′ is the constrained linear transform, b′ is the bias on the mean vector, and µ(m) and

Σ(m) are the original Gaussian parameters. This constrained transform can be effectively im-

plemented as a feature space transform. The transformed Gaussian distribution is expressed

as

N (o; µ̂(m), Σ̂(m)) = |A|N (Ao + b; µ(m),Σ(m)) (5.95)

where µ(m) and Σ(m) are original Gaussian parameters, A = A′−1 and b = A′−1b′.

The above equation shows that the computational cost of likelihood calculation almost re-

mains unchanged after adaptation. However, due to the determinant term |A| in equation (5.95),

it is hard to find a conjugate prior for constrained linear transform. To the author’s knowledge,

this is still an open problem. Therefore, in this work, Bayesian adaptive inference with con-

strained linear transforms is not considered further.
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5.6 Summary

This chapter has presented a consistent Bayesian framework for adaptive training and adap-

tive inference by treating the parameters of the canonical model and the transforms as random

variables. As the complexity can be controlled during training to reflect the amount of data,

the standard point estimate adaptive training schemes, either with likelihood criterion or dis-

criminative criteria, can be justified. In addition, a transform prior distribution is motivated

from this Bayesian framework as well. It is then possible to do unsupervised adaptive inference

using the adaptively trained systems with the transform prior distribution. This adaptive infer-

ence is a Bayesian generalisation of the standard two-step adaptation/recognition process. The

key issue here is to calculate the marginal likelihood (or posterior of hypothesis in the case of

discriminative adaptive inference) over the transform distribution.

As the marginalisation over the transform distribution is intractable for HMM based systems,

approximations are required. Two forms of approximations are examined in this chapter. Lower

bound approximations, both point estimates (MAP or ML) and variational Bayesian approach

are investigated. In addition, direct approximations, sampling and the frame-independent pre-

dictive distribution, are also discussed. These approximations are investigated in both batch and

incremental modes. The Bayesian approximation approaches are then applied to two specific

transforms: interpolation weights in CAT and mean based linear transforms in SAT.



6

Experiments on Discriminative Adaptive Training

In this chapter, experiments concerning discriminative adaptive training, in particular, discrim-

inative cluster adaptive training, are presented. All experiments were conducted on a LVCSR

conversational telephone speech (CTS) task. The experimental setups, including the training

and the test datasets, building of the acoustic models and recognition setup are introduced in

section 6.1. Section 6.2 discusses various issues in discriminative cluster adaptive training in-

cluding the effect of the I-smoothing prior and initialisation approach. Section 6.3 gives the

comparisons between different discriminative adaptive training approaches.

6.1 Experimental Setup

The performance of various discriminative adaptive training schemes was evaluated on a large

vocabulary speech recognition system, conversational telephone speech (CTS) task. Each con-

versation of CTS speech corpora is recorded with two distinct sides, one from each end of the

telephone circuit. Each side is recorded and stored as a standard telephone coded signal with

8 KHz sampling rate, 8-bit µ-law encoding. The training dataset consists of 3 corpora recorded

with slightly different acoustic conditions and collection framework. These are the LDC Call-

home English (che), Switchboard (Swbd) and Switchboard-Cellular (SwCell) datasets. In total,

they consist of 5446 speakers (2747 female, 2699 male) about 296 hours of data. Two held out

test sets are used to evaluate recognition performance. A smaller test set of half of the 2001

development data for CTS (dev01 test data) is about 3 hours, called the dev01sub test data. The

data is from the Swbd corpus and consists of 59 speakers (30 female, 29 male), 2663 utterances,

30K words. The second, larger test dataset is the eval03 dataset, about 6 hours. It comes from

two different corpora (Swbd and Fisher), consisting of 144 speakers (77 female, 67 male), 7074

utterances, 76K words. All systems used a 12-dimensional MF-PLP front-end [127] with the C0

energy and its first, second and third derivatives with Cepstral mean and variance normalisa-

tion. An HLDA transform was applied to reduce the feature dimension to 39. VTLN was also

used. The use of the linear projection scheme, i.e. HLDA, and simple feature normalisation

schemes, mean and variance normalisation and VTLN, decreased the possible gains that could

119
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be obtained using adaptive training, especially for constrained MLLR. However it gave a more

realistic baseline. Single pass Viterbi decoding was used to recognise the test data sets using

the adapted acoustic models and a tri-gram language model. The tri-gram language model was

trained on 1044M words. It was built by interpolating various components, each was trained on

different text data sources. The dictionary used was a multiple pronunciation dictionary with a

vocabulary size of 58K words.

Two kinds of system were built. A simple system was used for initial development. The

second is a more complex system similar to the systems used for NIST RT03 evaluation at

CUED [25]. Both systems were built using the same state-clustered decision trees with 6189

distinct states. 16 component-per-state systems with 4 ML training iterations and 4 MPE training

iterations were used for rapid development. 28 component-per-state systems with 4 ML train-

ing iterations and 8 MPE training iterations were built for generating results of more complex

systems. I-smoothing using a dynamic ML prior was used to build all baseline MPE systems. As

unsupervised adaptation was conducted, a simplified discriminative adaptive training procedure

was used for all MPE adaptive training, where only the canonical model was discriminatively up-

dated given the ML estimated transforms.

Speaker-independent (SI) 1, and gender-dependent (GD) MPE systems were built using stan-

dard MPE training [90]. Due to insufficient training data, the GD MPE system often gave poor

performance. To obtain good performance from a GD system trained with the MPE criterion,

the MPE-MAP technique was used, which takes into account the static prior information in I-

smoothing [91]. Here, rather than using a MAP prior as in [91], the static MPE-SI models were

directly used as the I-smoothing prior as this has been shown to give slightly better performance

[26]. These systems are referred to as GD MPE-MAP systems. The GD MPE-MAP systems origi-

nated from the MPE-SI models and used 2 further MPE-MAP training iterations with only mean

and Gaussian component weights updated. Therefore, it actually used more MPE training it-

erations, which should be a little more powerful than the other MPE systems. In this work,

gender labels were assumed to be known for both standard GD MPE and GD MPE-MAP systems

in decoding 2.

Several adaptive MPE systems were constructed using the simplified MPE adaptive training

procedure. They include MPE-SAT (CMLLR), MPE-SAT (MLLR), MPE-CAT and MPE-ST which

used CAT weights and CMLLR transforms as the structured transforms (ST). The systems using

the ST of CAT weights combined with MLLR transforms were not built due to memory limitation

given the complexity of the systems and our current experimental condition. During adap-

tive training and testing adaptation, global interpolation weights were estimated for CAT and

separate speech and silence transforms were used for MLLR and CMLLR. Initial supervision hy-

1The speaker-independent system in this thesis is also gender-independent.
2Automatic gender detection may be done by aligning the hypothesised supervision with the GD models and then

determining gender labels for each speaker using the average log-likelihood values. The gender detection error rates

were shown by additional experiments to be 5.1% for dev01sub and 4.2% for eval03. Experiments showed that

automatic gender detection had insignificant effects on the performance of GD systems.



CHAPTER 6. EXPERIMENTS ON DISCRIMINATIVE ADAPTIVE TRAINING 121

potheses for estimating test transforms were generated using the ML-SI and the MPE-SI models

respectively.

In the following experiments, wherever the term “significant” is used, a pair-wise significance

test was done using NIST provided scoring toolkit sctk-1.2. The significance difference was re-

ported using the Matched-Pair Sentence-Segment Word Error (MAPSSWE) test at a significance

level of 5%, or 95% confidence [43].

6.2 Discriminative Cluster Adaptive Training

This section presents the development experiments of discriminative cluster adaptive training

(CAT). All systems in this section are 16 Gaussian component per state systems with 4 ML and

4 MPE training iterations. The effects of the I-smoothing prior and initialisation approach were

investigated in detail. With these investigations, configuration of MPE CAT is determined for

further comparison with the other discriminative adaptive training techniques.

6.2.1 Baseline Performance

Table 6.1 shows the performance of various ML and MPE baseline 16 component systems for

MPE-CAT development. They include ML and MPE systems of SI and GD training. A GD MPE-

MAP system was also constructed, which gave the state-of-the-art GD MPE performance. Finally,

the ML performance of a 2-cluster gender-initialised CAT system is given as the ML baseline for

the MPE-CAT system to be developed.

System
dev01sub eval03

ML MPE ML MPE

SI 33.4 30.4 32.6 29.2

GD 32.7 30.3 32.2 29.3

GD (MPE-MAP) — 29.6 — 28.7

CAT 32.6 — 31.9 —

Table 6.1 16-component ML and MPE SI and GD performance and ML performance for the 2-cluster CAT

system initialised with gender information. SI and GD MPE training used a standard dynamic ML prior and

GD (MPE-MAP) used the MPE-SI model as the static MPE prior.

From table 6.1, as expected the performance gain from MPE training is large, around 3% ab-

solute for both test sets on SI and GD systems. This shows why the study of using discriminative

criterion is important. Direct MPE-GD training did not get much gain compared to MPE-SI and

was even worse on eval03. However, with the static MPE prior, the GD MPE-MAP system got

the expected gain. This is consistent with the gains that were obtained on the broadcast news

task [91]. For this reason, in the following experiments, only the GD (MPE-MAP) number is

quoted as the MPE performance of a GD system.
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The gender-initialised ML-CAT system was significantly better than the ML-SI baseline for

both test sets according to the significance test. It was slightly, not significantly, better than the

ML-GD system in dev01sub, while significantly better in the larger test set eval03. This shows

that with the same number of clusters, the soft choice of clusters (CAT) outperformed the hard

choice (GD) for ML systems.

6.2.2 Effect of I-smoothing Priors

I-smoothing is essential for obtaining good test set performance using MPE training [90]. The

standard form of I-smoothing for training HMMs is to use a dynamic, single-cluster ML prior.

As discussed in section 4.3.2, the selection of the prior parameters is of additional interest for

MPE-CAT systems as the number of model parameters to be estimated is greater than that of

the equivalent standard HMM systems. Thus the form of prior used may have a greater in-

fluence than for the standard HMM systems. A range of priors may be used, as described in

section 4.3.2.2. A single-cluster static MPE prior may be obtained from the standard MPE-SI

model. Alternatively a dynamic MPE prior can be obtained from the single-cluster MPE statistics

generated during training. Furthermore, a multiple-cluster dynamic ML prior can be obtained

from the multiple-cluster ML statistics during training. These three forms of prior, along with

using a standard dynamic single-cluster ML prior were investigated first. It is worth noting that

all CAT systems in this section were initialised using the gender information yielding 2-cluster

systems.

Prior Test sets

Form Type Criterion dev01sub eval03

multiple dynamic ML 29.7 28.9

single
dynamic

ML 29.7 29.1

MPE 29.3 28.4

static MPE 29.3 28.5

Table 6.2 16-component 2-cluster MPE-CAT systems with different forms of I-smoothing prior. The MPE-CAT

systems were initialised using gender information.

Table 6.2 shows the 16 component development system performance of the MPE-CAT sys-

tems using different I-smoothing priors. It can be observed that the form of the prior greatly af-

fects the error rate. For example the performance on dev01sub varied from 29.3% upto 29.7%,

which was statistically significant. It should be noted that all these values are better than the

performance of the ML-CAT baseline and the MPE-SI systems shown in table 6.1. The worst per-

formance was obtained with the standard dynamic ML prior. The best performance was obtained

using either the static or the dynamic single-cluster MPE priors. The performance of the MPE-

CAT system using either of the MPE priors shown in table 6.2 was significantly better than both

the ML-CAT system and the MPE-SI system. They were also better than the GD MPE-MAP system
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in table 6.1. This shows that using a robust discriminative prior can benefit discriminative CAT

training 3.

There was little difference in performance between the dynamic and the static MPE single-

cluster prior systems. However, since a dynamic MPE prior requires additional accumulates [137]

(unless a bias cluster is used), thus all the following MPE experiments of CAT and ST used the

single-cluster static MPE prior.

As indicated in section 4.3.2.2 and appendix B, a multiple-cluster MAP estimates may also be

used as the I-smoothing prior. The MAP prior is a trade-off between the multiple-cluster dynamic

ML prior and the single-cluster static MPE-SI prior. The MAP parameter τ MAP is the coefficient to

balance the two. A MAP prior with τ MAP = 0 is equivalent to a multiple-cluster dynamic ML prior.

On the other end, a MAP prior with τ MAP = ∞ is actually a single-cluster static MPE-SI prior.

τMAP dev01sub eval03

0 29.7 28.9

25 29.7 28.8

50 29.6 28.8

100000 29.4 28.6

∞ 29.3 28.5

Table 6.3 16-component 2-cluster MPE-CAT systems with MAP priors. A MAP prior is a trade-off between the

multiple-cluster dynamic ML prior and the single-cluster static MPE-SI prior, τ MAP is the coefficient to balance

the two. The MPE-CAT systems were initialised using gender information.

Table 6.3 shows the MPE-CAT systems with the MAP prior with different τ MAP values. It

can be observed that there is a trend of improving performance from ML-based prior to MPE-

based prior4. The static single-cluster MPE prior (τ MAP = ∞) was significantly better than the

dynamic multiple-cluster ML prior (τ MAP = 0). This again motivates the use of static MPE prior

for discriminative CAT in the following experiments.

6.2.3 Effect of Initialisation Approaches

A second interesting aspect for CAT systems is the number of clusters and how they are ini-

tialised. Various forms of intialisation have been discussed in section 3.4.2.2. Three forms of

cluster initialisation were investigated here. The first two were cluster based schemes, where

the interpolation weights were initialised using either gender information, or the corpus infor-

mation. The gender initialised CAT system has 2 clusters while the corpus initialised system

has 3 clusters, corresponding to che, Swbd and SwCell in training data respectively. The third

3Though dynamic MMI prior has also been used as a discriminative prior for MPE training of standard

HMMs [101], it was not investigated here for MPE-CAT systems. The choice of investigating MPE priors is to keep

consistent with the GD MPE-MAP baseline where the MPE-SI model was used as the I-smoothing prior.
4This observation is also consistent with the observation for GD MPE-MAP, which is the motivation of using static

MPE prior for GD MPE-MAP [26].
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form of initialisation used an eigen-decomposition approach, as described in section 3.4.2.2.

For the eigen-decomposition initialised systems, the bias cluster interpolation weight was either

constrained to stay at one, called a bias cluster system or allowed to vary after initialisation,

called a no bias cluster system. Again the 16 component development system was used in this

experiment.

Initialisation Bias #Clst
dev01sub eval03

ML MPE ML MPE

gender

no

2 32.6 29.3 31.9 28.5

corpus 3 32.3 29.2 31.7 28.3

eigen 3 32.3 29.0 31.5 28.2

eigen yes

2 32.8 29.3 32.0 28.5

3 32.3 29.0 31.6 28.3

4 32.3 29.0 31.5 28.3

Table 6.4 16-component MPE-CAT systems with different initialisation approaches and number of clusters.

The MPE-SI model, a single-cluster static MPE prior, was used in I-smoothing of MPE-CAT.

Table 6.4 shows the performance with different numbers of clusters and initialisation. Ini-

tially examining the form of the initialisation with no bias, the use of a 3-cluster eigen-decomposition

system was significantly better than the 2-cluster gender initialised systems for both ML and

MPE training. However, there was no significant difference between the eigen-decomposition

initialised system and the corpus initialised system. For the eigen-decomposition scheme, vari-

ous systems using a bias were also constructed. For these systems the use of 3 or 4 clusters was

better than the 2-cluster system. However there was no significant difference in performance

between any of the 3 or 4 cluster systems.

It is interesting to contrast the forms of systems used here, where there are relatively few

clusters, with the large number of clusters used in many eigenvoices systems. Many eigenvoices

systems [68] use large number of clusters, but with relatively simple acoustic models, for ex-

ample single Gaussian component per state models. These simple models are not appropriate

for LVCSR. More complex systems have been built using maximum likelihood eigenspace [87].

However, on the same task, and starting from a better baseline, greater gains were obtained

using a simple 2-cluster CAT system [39]5. One reason for this is that CAT updates all the model

parameters in an adaptive training framework, whereas only the eigenvoices are updated in

maximum likelihood eigenspace training [87]. The results from table 6.4 indicate that on this

task, training all the canonical model parameters, the performance has approximately saturated

at about 4 clusters. This effect has also been observed for eigenvoices in [11] where a large

5Few strict comparisons exist on large vocabulary systems. One close comparison is on the WSJ task where a

20 cluster eigenvoices system was built [87], and a 2 cluster CAT system [39] on the SI-284 training data. Despite

starting from a better baseline, the CAT system showed a greater relative reduction in WER over the GI system than

the equivalent eigenvoices system.
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number of eigenvoices did not help performance and in some cases degraded the performance.

The use of a relatively small number of clusters is advantageous when using MPE training. MPE,

in common with other discriminative training criteria, is more likely to lead to overtraining than

the ML criterion. Thus the generalisation with large numbers of clusters would be expected to

be poor.

Though the 3-cluster no-bias eigen-decomposition approach gave similar results as the cor-

pus initialisation in table 6.4, it is interesting to further investigate the breakdown of the eval03

results. As described in the experimental setup, the eval03 includes some Fisher data, which

comes from a source not included in the training data. Performance gain on different parts of

the test data may indicate the difference of the two initialisation schemes.

System Initialization Swbd Fisher Overall

SI — 33.6 24.5 29.2

CAT
corpus info. 32.6 23.6 28.3

eigenvoices 32.4 23.7 28.2

Table 6.5 Breakdown WER on eval03 of 16-component MPE-SI and 3-cluster non-bias MPE-CAT systems.

The MPE-SI model, a single-cluster static MPE prior, was used in I-smoothing of MPE-CAT.

Table 6.5 shows the breakdown between Swbd and Fisher on eval03 of MPE-SI and the two

MPE-CAT systems 6. Both MPE-CAT systems obtained significant gains on both corpus compared

to the MPE-SI system. For eigen-decomposition initialisation, the gain on Swbd corpus (1.2%)

is much larger than the gain on Fisher corpus (0.8%). However, for corpus initialisation, the

gain on Swbd corpus (1.0%) is similar to the gain on Fisher (0.9%). This is expected as the

eigen-decomposition approach is a data-driven approach, which makes better description of

the training data. Hence, it is likely to obtain gains on the test data which is similar to the

training data. In contrast, the corpus initialisation used some prior knowledge and deliberately

discriminated different corpus at the beginning. The final CAT system was not specifically tuned

to the training corpus as much as the eigen-decomposition initialisation. Hence, the gains on

different corpus may be more evenly distributed. This also implies that even with the same

number of clusters, the initialisation approach does have impact on the recognition performance.

6.3 Comparison of Discriminative Adaptive Training Techniques

In the previous section, various configurations of discriminative cluster adaptive training were

investigated. This section will compare the performance of discriminative adaptive training tech-

niques on both the development (16 component per state )and the more complex (28 component

per state) systems. The simplified discriminative adaptive training procedure was adopted for

all adaptively trained MPE systems. To be consistent with the form of MPE training used to train

6
dev01sub has the same corpus with training data, thus no need to show breakdown numbers.
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the MPE-SI systems, the dynamic ML prior was also used as the I-smoothing prior for training

MPE-SAT with MLLR and MPE-SAT with CMLLR, where the canonical models are also standard

HMMs. As GD MPE-MAP is the baseline for cluster adaptation, the MPE-CAT systems in this sec-

tion used an I-smoothing prior based on the static MPE-SI model. As a multiple-cluster system,

the MPE-ST systems, where the structured transforms are CAT and CMLLR, adopted static MPE-

SI model as the I-smoothing prior, too. Due to memory limitation, it is only possible to build

a 2-cluster MPE-CAT system for the 28-component configuration. Hence, the 2 cluster gender

initialisation scheme was used here, though systems with more clusters may be expected to yield

greater gains. The comparison on 16-component systems is given first. The next section presents

the results of 28-component systems.

6.3.1 16-Component Development Systems Performance

This section gives the performance of 16-component development systems, which are regarded

as baselines for the investigation on various discriminative adaptive training techniques. Ini-

tially, rapid adaptation schemes, CAT and GD models, were investigated. The CAT systems were

initialised with gender information. The ML results for GD were generated using the standard

ML GD models, while the MPE results for GD were generated using the GD MPE-MAP models

to give state-of-the-art GD MPE performance. Due to the small amount of parameters to be

estimated during adaptation 7, both CAT and GD adaptation can be rapidly done. However,

for the same reason, the adaptation gain may be limited. The comparison of rapid adaptation

techniques is shown in table 6.6. From table 6.6, all MPE systems significantly outperformed

System #Clst
dev01sub eval03

ML MPE ML MPE

SI 1 33.4 30.4 32.6 29.2

GD (MPE-MAP) 2 32.7 29.6 32.2 28.7

CAT 2 32.6 29.3 31.9 28.5

Table 6.6 ML and MPE performance for 16-component SI, GD, and CAT systems. ML-GD models were trained

on gender-specific training data. GD (MPE-MAP) was built on top of MPE-SI model and used a single-cluster

static MPE prior in I-smoothing. The CAT systems were initialised using gender information and used the

same single-cluster static MPE prior in I-smoothing.

the corresponding ML systems. The gains of the GD MPE-MAP and MPE-CAT systems were both

over 3% absolute over the ML GD and ML-CAT systems. This is similar to the gain obtained for

the MPE-SI model. This shows that discriminative training can be effectively applied to multiple-

cluster models. It can also be observed that both GD and CAT systems significantly outperformed

the ML and the MPE SI baselines on both test sets. Due to the use of soft weights, CAT systems,

7For GD adaptation, gender label is the parameters to estimate. In this work, all test gender labels were assumed

to be known. This gives an upper bound of the GD adaptation performance.
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either ML or MPE, were better than the GD systems. However, the gains of the MPE-CAT system

compared to the GD MPE-MAP system were not significant. This is due to the limited number of

clusters of the MPE-CAT system.

System
Adaptation dev01sub eval03

Training Test ML MPE ML MPE

SI —
MLLR

31.1 28.5 30.2 27.0

SAT MLLR 30.4 27.4 29.3 26.4

SI —
CMLLR

31.5 28.3 30.4 27.1

SAT CMLLR 31.0 27.8 30.0 26.8

CAT CAT ST(M) 30.5 27.4 29.5 26.4

CAT CAT
ST

30.8 28.0 29.7 26.5

ST ST 30.6 27.5 29.6 26.1

Table 6.7 ML and MPE performance of adaptation using complex schemes on 16-component SI, SAT, CAT

and ST systems. MPE-SI, MLLR and CMLLR based MPE-SAT systems both used the standard dynamic ML

prior in I-smoothing. ST(M) transform was CAT weights combined with MLLR transforms. ST transforms

were CAT weights combined with CMLLR transforms. MPE-CAT and MPE-ST systems used the single-cluster

static MPE prior in I-smoothing. They were both initialised using gender information, hence have 2 clusters.

To obtain more gains of adaptation, more complex adaptation schemes may be used, where

the number of adaptation parameters is considerably larger than the rapid adaptation schemes.

Table 6.7 shows the results of adaptation using more complex schemes. Both CAT and ST sys-

tems were 2 clusters and initialised using gender information. The form of ST used here for

adaptive training was CAT weights combined with CMLLR transforms. To implement ST adapta-

tion for the CAT models, first the interpolation weights for the CAT models were estimated and

then CMLLR transforms were further estimated on top of the adapted CAT models. Another pos-

sible form of ST is CAT weights combined with MLLR transforms. As indicated in section 3.4.3,

using this form of ST in adaptive training require a large amount of memory. Especially for

discriminative training, the situation is even worse due to the additional denominator statistics

required. Hence, the MLLR based ST system was not implemented given our current experi-

mental condition. However, in testing adaptation, as the estimation of MLLR transform does

not require large memory, it is possible to estimate MLLR transform on top of the adapted CAT

models. This process is similar to the CMLLR based ST adaptation on top of the CAT models and

is referred to as ST(M) in table 6.7.

Comparing the performance of the SI system with MLLR or CMLLR adaptation in table 6.7

to the performance of unadapted SI systems in table 6.6, significant gains were obtained by

using complex adaptation schemes. The performance of adaptively trained systems were signif-

icantly better than that of multi-style, SI, trained systems using the same form of adaptation.

For example, the MPE-SAT system with MLLR obtained 1.1% absolute gain on dev01sub over

the MPE-SI system after MLLR adaptation; the MPE-SAT system with CMLLR got 0.5% gain on
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dev01sub over the MPE-SI system after CMLLR adaptation. These gains show the advantage of

adaptive training compared to multi-style training. However, there is a large difference between

the gains of the CMLLR based SAT system and the MLLR based SAT system. It can be observed,

the gains of the CMLLR based SAT system over the SI system are always much smaller (only

about half) than that of the MLLR based SAT systems. This is due to the use of various feature

normalisation techniques, such as CMN, CVN and VTLN, and linear projection schemes such as

HLDA. As CMLLR is a feature transform, its adaptation power will be limited if the features have

been previously normalised or projected to a feature space with reduced acoustic mismatch. In

contrast, as a mean transform, MLLR is relatively independent to those feature normalisations

and the adaptation power is more additive.

For a similar reason, when comparing the absolute performance of the two adaptively trained

systems, the MLLR based SAT system is significantly better than those of the CMLLR based SAT

system on both test sets. This difference is believed to mainly come from the nature of the trans-

forms used rather than the adaptively trained canonical models. To investigate this, appropriate

MLLR adaptation 8 was performed on the CMLLR based MPE-SAT system, which yielded a WER

of 26.2%. In contrast, performing appropriate CMLLR adaptation on the MLLR based MPE-SAT

model yielded 26.1%. The difference is not significant showing that both canonical models have

similar adaptabilities.

The last three lines give the results of using complex adaptation schemes on multiple-cluster

models. Compared to the rapid CAT adaptation in table 6.6, the CAT system with ST and ST(M)

adaptation obtained significant gains on both test sets. The performance of ST(M) on top of the

CAT system outperformed the corresponding performance of ST. This is again due to the feature

normalisations and projections, which limit the power of CMLLR. As the most complex transform

representing non-speech variabilities, both ML and MPE ST systems yielded the lowest WER on

both test sets among comparable CMLLR or CAT systems.

6.3.2 28-Component Systems Performance

The previous section presents comparisons of different discriminative adaptive training tech-

niques using 16-component development systems. In this section, more complex 28-component

systems were built to compare these techniques. MLLR based SAT systems were not built for

this configuration due to memory limitation as discussed in section 4.2.1. Hence, in this section,

CMLLR based systems are the focus.

Table 6.8 shows the performance using rapid adaptation techniques. Comparing the base-

line MPE-SI numbers to the development system numbers in table 6.6, significant gains, 1.5%

absolute gain on dev01sub and 0.9% on eval03 were obtained by using the more complex 28-

component systems. Similar gains due to increased complexity can be observed for the other

8The “appropriate MLLR adaptation” here means CMLLR transforms need to be first estimated to adapt the CMLLR

canonical model. MLLR transforms are then estimated on top of the adapted model. Similar process applies to

“appropriate CMLLR adaptation” except for applying MLLR first and then CMLLR.
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System #Clst
dev01sub eval03

ML MPE ML MPE

SI 1 32.2 28.9 31.5 28.3

GD (MPE-MAP) 2 32.2 28.7 31.2 28.0

CAT 2 31.9 28.7 31.2 27.8

Table 6.8 ML and MPE performance for 28-component SI, GD, and CAT systems. ML-GD models were trained

on gender-specific training data. GD (MPE-MAP) was built on top of MPE-SI model and used a single-cluster

static MPE prior in I-smoothing. The CAT systems were initialised using gender information and used the

same single-cluster static MPE prior in I-smoothing.

28-component systems. The GD MPE-MAP and the MPE-CAT systems still outperformed MPE-

SI in this setup. For example, the MPE-CAT system got 0.5% gain on eval03 over the MPE-SI

system. However, this gain is smaller compared to the gains of the 16-component development

system (0.7%) in table 6.6. This is due to the increased model complexity. Though no gain on

dev01sub, the MPE-CAT system still showed gains over the GD MPE-MAP system on the larger

test set eval03.

System
Adaptation

dev01sub eval03
Training Test

SI —
CMLLR

27.1 26.1

SAT CMLLR 26.8 25.9

CAT CAT
ST

27.1 25.7

ST ST 26.6 25.5

Table 6.9 MPE performance of using complex adaptation schemes on 28-component SI, CAT and ST systems.

MPE-SI used the standard dynamic ML prior in I-smoothing. ST transforms were CAT weights combined with

CMLLR transforms. MPE-CAT and MPE-ST systems used the single-cluster static MPE prior in I-smoothing.

They were both initialised using gender information, hence have 2 clusters.

Table 6.9 shows the performance of using complex adaptation schemes on the 28-component

MPE systems. Compared to the performance of the MPE-SI and the MPE-CAT systems in ta-

ble 6.8, complex adaptation schemes show significant gains over unadapted models or simple

rapid adaptation schemes. This is consistent with the observation in the development experi-

ments shown in table 6.7. There was no consistent gain found between CMLLR based SAT and

CAT after ST adaptation. When the gains of ST over other systems were compared to the gains

of the development system, they were also found reduced due to increased model complexity.

For example, on eval03 dataset, ST obtained 0.2% over CAT and 0.4% over SAT, while from

table 6.7, ST got 0.4% over CAT and 0.7% over SAT. However the use of the ST for both training

and testing still showed significant gains over all the other systems.
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6.4 Summary

This chapter has described experiments concerning discriminative adaptive training techniques.

A new technique, discriminative cluster adaptive training based on MPE criterion, was investi-

gated first. MPE training requires a I-smoothing distribution for updating multiple-cluster model

parameters. The form of I-smoothing prior was shown to be important in discriminative CAT. A

static MPE prior was finally used as the configuration for all the other MPE-CAT experiments.

With the static MPE prior, a 2-cluster MPE-CAT system initialised by gender information was sig-

nificantly better than the MPE-SI system and also outperformed the GD MPE-MAP system. The

effect of the number of clusters and initialisation approach was also discussed. With more clus-

ters, the CAT systems gave improved performance. Given the complexity of the systems used,

3 clusters led to saturated performance. A data-driven approach, eigen-decomposition initiali-

sation, was shown to give better description on the training data than the corpus initialisation

with the same number of clusters.

The second part of this chapter compared the performance of different discriminative adap-

tive training techniques. In all experiments, adaptively trained systems outperformed multi-style

trained systems, which showed the advantage of adaptive training. In the experiments of rapid

adaptation schemes with 16-component development systems, the GD MPE-MAP system and

the 2-cluster MPE-CAT system both significantly outperformed the MPE-SI baseline. The MPE-

CAT system was always better than the GD MPE-MAP system. Using more complex adaptation

schemes gave further significant gains over the simple rapid adaptation schemes. The CMLLR

based MPE-SAT system got smaller gain than the MLLR based MPE-SAT system due to various

feature normalisation and projection techniques used in this experimental configuration. As the

most powerful adaptively trained systems, the ST systems always yielded the lowest WER among

comparable adaptively trained systems. In the final experiments with 28-component systems,

due to the increased model complexity, most gains were reduced. However, similar trends were

found as the development systems. the MPE-CAT systems outperformed the GD MPE-MAP sys-

tems and the ST systems still yielded the best performance among all comparable adaptively

trained systems.



7

Experiments on Bayesian Adaptive Inference

This chapter presents the experiments concerning Bayesian adaptive training and adaptive in-

ference using both ML and MPE adaptively trained systems. All experiments were conducted

on the conversational telephone speech (CTS) task with a similar setup to the previous chapter.

However, in contrast to the previous section, for all experiments, N-Best list rescoring was used

as the inference scheme instead of Viterbi decoding due to the nature of Bayesian adaptive infer-

ence. Both cluster adaptive training (CAT) and speaker adaptive training (SAT) with MLLR were

investigated in this chapter. Section 7.1 discusses the form of the transform prior distribution

and the use of N-Best list rescoring. Experiments on utterance level Bayesian adaptive inference

are described in section 7.2. The effect of the tightness of lower bounds and the effect of us-

ing multiple component prior are also discussed in the section. Then, section 7.3 investigates

incremental Bayesian adaptive inference. Conclusions are given in the final section.

7.1 Experimental Setup

The performance of various Bayesian adaptive inference approximations were evaluated on the

same conversational telephone speech task as chapter 6. The training data and front-end used

are the same as those introduced in section 6.1. The test set used in this chapter is the eval03

data set, consisting of 144 speakers, about 6 hours. A standard decision-tree state-clustered

tri-phones with an average of 16 Gaussian components per state was constructed as the starting

point for the adaptive training. This is the baseline speaker-independent (SI) model. 4 iterations

of standard MPE training [93] were then used to produce the baseline MPE-SI model.

Two forms of ML and MPE adaptively trained systems were built. The first were 2-cluster CAT

systems, initialised using gender information. A global transform (interpolation weight vector)

was used for the CAT systems. For the ML-CAT system, a 2-component GMM transform prior

distribution was estimated from the training transforms. Given the ML weights, an MPE-CAT

system was built using the simplified discriminative adaptive training procedure as discussed in

section 5.2. The I-smoothing prior used here was again the static MPE-SI prior in accordance

with the setup in the previous chapter. The second form was SAT systems constructed using

131
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MLLR. For the ML-SAT system, a single Gaussian and a 2-component GMM transform prior

distributions were both estimated from the training data. The single Gaussian prior was used

for most experiments in this chapter. Separate speech and silence transforms were used, the

priors for which were independently estimated. Given the ML linear transforms, a simplified

discriminative adaptively trained systems, MPE-SAT1, was also built. As the canonical model for

MPE-SAT is a standard HMM model set, the ML sufficient statistics was used as the I-smoothing

prior to keep consistent with the standard MPE training technique [93]. Having trained the

MPE-CAT and the MPE-SAT systems, transforms for each training speaker can again be estimated

using the ML criterion based on the MPE models. The resultant ML transforms were then used

to estimate prior distributions for the simplified discriminative adaptive models as described in

section 5.2. With similar approaches, transform prior distributions for non-adaptively trained

systems, ML-SI or MPE-SI, can also be obtained. Bayesian adaptive inference techniques can

then be applied to the non-adaptively trained systems.

As the canonical model is trained given the transforms representing non-speech variabilities,

it is not suitable to be directly used in inference. To illustrate this, standard Viterbi decoding

results were generated for ML-SI and ML-SAT systems without any adaptation2. The ML-SI un-

adapted performance was 32.6%, while the ML-SAT unadapted performance was 33.8%. Thus,

without adaptation, the ML-SAT system was significantly3 worse than the ML-SI system by over

1.0%. This shows that the adaptively trained system can not work well without taking into ac-

count the non-speech variabilities of the test domain. Therefore, adaptive inference is required

for adaptively trained systems.

As discussed in section 5.1.2, the Viterbi algorithm is not appropriate for Bayesian adaptive

inference. Hence, N-Best rescoring was used for inference in the experiments. In this rescor-

ing process, the likelihood calculation was implemented using the forward-backward algorithm

because this is consistent with the formulae derived in chapter 5. Two 150-Best lists were gener-

ated for ML and MPE systems respectively with the corresponding SI models. A 300-Best list was

also generated for ML systems to check the performance of 150-Best list rescoring. The Viterbi

decoding, 150-Best list and 300-Best list rescoring results for the ML-SI system are shown in

table 7.1.

As the Viterbi algorithm calculates the likelihood of an observation sequence in a different

way from the forward-backward algorithm, there is significant difference between the results of

Viterbi decoding and N-Best list rescoring in table 7.1. The difference between the two N-Best

lists is small. This shows that the hypothesis sequences included in the 150-Best list may be

sufficient for the ML-SI system. Performing a spot-check on the best VB configuration for the

ML-SAT system in section 7.3 with a 300-Best list further illustrated that this was not a major

1 Without introducing confusions, the term “MPE-SAT” and “ML-SAT” in this chapter refer to the systems built

with unconstrained mean MLLR transforms.
2Note that for the ML-SAT system, no adaptation is equivalent to applying an identity transform.
3As in the previous chapter, wherever the term “significant” is used, a pair-wise significance test was done us-

ing NIST provided scoring tool sctk-1.2, which uses a MAPSSWE approach to conduct significance tests with the

significance level of 5% [43].
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Likelihood Cal.
N-Best List

150 300

Viterbi 32.6

Forward-Backward 32.8 32.8

Table 7.1 Viterbi decoding and N-Best list rescoring performance of the 16-component ML-SI system on

eval03

problem. All results shown in the rest of this chapter are based on the two 150-Best lists unless

explicitly noted.

7.2 Utterance Level Bayesian Adaptive Inference

To illustrate the effects of the Bayesian approaches on adaptive inference, the homogeneous

blocks considered in this section were based on a single utterance, not as in the standard case on

a side (speaker) basis4. For the eval03 test set the average utterance length was 3.13 seconds,

compared to the average side length of 153.75 seconds. This dramatically limits the available

data for estimating transforms. Results of Bayesian adaptive inference on CAT and SAT systems

are shown in the below sections respectively.

7.2.1 Experiments Using CAT

Table 7.2 shows the 150-Best list rescoring results of different Bayesian approximation tech-

niques on both ML-CAT and MPE-CAT systems.

System
Bayesian Train

Approx. ML MPE

SI — 32.8 29.2

CAT

Sampling 32.2 28.5

FI 32.5 28.8

ML 32.2 28.6

MAP 32.2 28.6

VB 32.1 28.6

Table 7.2 ML and MPE 150-Best list rescoring performance on eval03 of utterance level Bayesian adaptive

inference on 2-cluster CAT systems initialised with gender information . The weight prior distribution was a

2-component GMM. 1 transform distribution update iteration was used for the lower bound approximations.

4The experiments in chapter 6 were all based on speaker basis. Hence, they are not comparable to the results in

this section.
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The performance of the baseline SI systems are shown in the first row. For CAT, the simple

sampling approximation to the Bayesian integral could be used. Here, 200 samples were drawn

from the two GMM CAT prior distributions and used to rescore the ML and MPE 150-Best lists

respectively. The sampling approach gave about 0.7% absolute better than the SI systems, for

both ML and MPE. This may be viewed as a bound on the performance from the Bayesian

approximation perspective. Though the FI assumption results in full-covariance matrices for CAT

as discussed in section 5.5.1, the FI performance improved WER by only about 0.4% absolute

over the SI systems in both ML and MPE training. It was worse than the other approximation

schemes. This illustrates the effect of not constraining the transform to be constant for each

homogeneous block.

The last three sets of results were obtained using different forms of lower bound approxima-

tions. These lower bound approximations were based on an iterative learning process to tighten

the lower bound before inference. Thus initialisation and number of iterations must be consid-

ered. Depending on the approximation used, different initialisations of the transform variational

distribution were used. The ML approach used the component posterior occupancies generated

by the SI models for initialisation, consistent with the standard CAT adaptation [36]. The MAP

approach used the mean of the prior transform distribution. The prior distribution was used in

the zeroth iteration of VB approximation. Due to the limited amount of the available data, only a

single iteration was used in the iterative learning process to estimate the transform distribution

used for final inference.

Examining the ML-CAT results, the performance of the ML approximation on the first it-

eration was about 0.6% absolute better than the ML-SI model. Though the MAP and the VB

approximations were slightly better than the ML approximation, they were all about the same

as that of the sampling approach. This is expected as the number of parameters for CAT is

very small, the transform variational posterior distribution can be effectively approximated by a

Dirac delta function. Therefore, the use of a point estimate is reasonable. For the MPE trained

systems, the relative gains of different approximation approaches were similar to those of the

ML-CAT systems. Pair-wise comparison on each row shows that the MPE-CAT systems always

significantly outperformed the ML-CAT systems by over 3.5%, illustrating the power of discrim-

inative training. The gain of MPE-CAT system compared to MPE-SI system was only slightly

worse than the ML gain. This is because the number of the transform parameters for CAT is

limited, hence, the effect of using ML-based transform prior distribution on a discriminatively

trained model is small.

An important comparison in table 7.2 is to compare the SI performance (32.8% for ML and

29.2% for MPE) to the performance of Bayesian adaptive inference using VB approximation on

top of the CAT model (32.1% for ML and 28.6% for MPE). As compared in figure 5.1, the SI

performance is the result of using HMM assumption, the DBN in figure 5.1(a), in both training

and inference, whereas Bayesian adaptive inference on top of adaptively trained model uses

adaptive HMM assumption, the DBN in figure 5.1(b), in both training and inference. Therefore,

the above comparison gives the best possible gains that can be obtained when using a consistent
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adaptive HMM framework in both training and inference. As expected, the gains are signifi-

cant (0.7% for both ML and MPE), showing the advantage of using consistent adaptive HMM

assumption compared to the standard HMM assumption.

7.2.2 Experiments Using SAT with MLLR

The CAT systems have few transform parameters, hence, there is no significant difference be-

tween different Bayesian approximations. To reveal the difference between the approximation

schemes, the SAT systems which have far more transform parameters are investigated in detail

in the following sections.

7.2.2.1 Performance of SAT Systems

Table 7.3 shows the performance of Bayesian adaptive inference with a single Gaussian trans-

form prior distribution on SI and SAT systems. The initialisation schemes for lower bound ap-

proximations were similar to the CAT systems except that an identity matrix was used for ML

initialisation. Again, transform distributions used for inference were updated only for a single

iteration.

Bayesian ML Train MPE Train

Approx SI SAT SI SAT

— 32.8 — 29.2 —

FI — 32.9 — 29.7

ML 35.5 35.2 32.4 32.3

MAP 32.2 31.8 29.0 28.8

VB 31.8 31.5 28.8 28.6

Table 7.3 ML and MPE 150-Best list rescoring performance on eval03 of utterance level Bayesian adaptive

inference on SI and MLLR based SAT systems with a single Gaussian transform prior distribution. 1 transform

distribution update iteration was used for lower bound approximations.

Initially, the performance of the direct, FI, approximation in table 7.3 is investigated. The FI

performance on the ML-SAT system was slightly worse than the ML-SI system, while for MPE-

SAT was about 0.5% worse than the MPE-SI. The degradation of the performance on the ML-SAT

system is mainly because of the FI assumption and the transform prior distribution used. First,

the transform prior distribution for SAT is not a full covariance Gaussian. As the number of

parameters for linear transforms (over 1500) is much more than that of the CAT interpolation

weights (only 2), a single Gaussian prior may not be complex enough to model the variability

of linear transforms. Hence, unless a GMM prior distribution is used, the FI approximation on

the ML-SAT system is slightly worse than the ML-SI system5. Second, the estimation of the

5Experiments have shown that complex GMM prior distributions have more gains on non-HLDA systems than

HLDA systems. While for HLDA system, due to the normalisation effect of HLDA, GMM prior distribution only got
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hyper-parameters of the SAT prior is not as robust as CAT due to the dramatically increased

parameters. However, the performance degradation for the MPE-SAT system may have another

cause. As discussed in section 5.2, the transform prior distribution for the MPE-SAT system was

obtained based on the ML transform estimates and applied to calculate the likelihood rather than

the discriminative evidence. Thus though the canonical model parameters are discriminatively

trained, the discriminative power is reduced by applying an ML based transform prior in a non-

discriminative way. This problem may be solved if a real discriminative prior distribution is

estimated and appropriately used in discriminative Bayesian inference, but it is not addressed in

this work.

The last three rows of table 7.3 show the performance of the lower bound approximations.

In contrast to the ML-CAT system, the ML approximation performance of ML-SAT system was

about 2.4% absolute worse than that of the ML-SI baseline (32.8%). This is expected as the

MLLR transform parameters were estimated using an average of only 300 frames. This problem

was reduced by using MAP estimation. It gave a 1% absolute gain over the ML-SI baseline,

showing the importance of using prior information when estimating MLLR transforms with little

data. The final approximation considered was the VB approximation. This should yield more

robust estimates as a distribution over the transform parameters is used rather than a point

estimate. It was 0.3% absolute better than the MAP approach, which was statistically significant

using the pair-wise significance test. It shows that the robustness issue is more important for SAT

than CAT due to the large number of parameters. Hence, different approximation approaches

showed different effects here.

As a comparison to the adaptively trained system, Bayesian adaptive inference on non-

adaptively trained systems was also investigated, where the prior distribution was estimated

based on the non-adaptively trained models. This was a mixture use of the two DBNs in fig-

ure 5.1. HMM assumption was employed for training whereas adaptive HMM assumption was

used for Bayesian adaptive inference. As training on non-homogeneous data with the HMM DBN

is actually multi-style training, the resultant system is not compact and contains both speech and

non-speech variabilities. Hence, the adaptability of the multi-style models may be smaller than

adaptively trained systems. From table 7.3, the ML-SAT system always significantly outper-

formed the ML-SI baseline system by about 0.3% for all approximation schemes. This shows the

importance of using adaptive HMM DBN in training. Again, comparing using adaptive HMM

assumption to using HMM assumption in both training and inference, significant gain of 1.3%

(SAT+VB compared to SI baseline) can be observed.

For MPE trained systems, the MAP approximation again significantly outperformed the ML

approximation and the VB approximation got the best performance for the MPE-SAT system.

Though the MPE-SAT systems got about 3% absolute gain over the ML-SAT systems for all ap-

proximation approaches, the gains over the baseline MPE-SI system (29.2%) was greatly reduced

compared to the gains of ML-SAT over ML-SI. For example, the VB gain for the MPE-SAT sys-

tem over the MPE-SI baseline is only about 0.6%, which is significantly smaller than the gain

slight gains over single Gaussian prior as shown in section 7.2.2.3.
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of 1.3% for the ML-SAT systems. The gains of non-adaptively trained MPE systems were also

reduced compared to the ML gains. This again shows the effect of using ML based transform

prior distributions in a non-discriminative way.

7.2.2.2 Effect of Tightness of Lower Bound

As discussed in section 5.3.1, the approximation quality is dependent on the tightness of the

lower bound. This section will investigate this effect.

As all the lower bound approximations use an iterative tightening process, the number of

iteration will affect the tightness of the lower bounds. With more iterations, the lower bounds

are expected to be tighter. The lower bound approximations in table 7.2 and 7.3 all used a single

iteration to update transform distributions. Table 7.4 gives the performance with a different

number of update iterations for the ML-SAT system using the VB approximation.

# Iteration for q(T ) ML Train (SAT)

0 34.1

1 31.5

2 31.6

Table 7.4 150-Best list rescoring performance on eval03 of utterance level VB adaptive inference on the

MLLR based ML-SAT system with different number of iterations. The transform prior distribution was a

single Gaussian.

In the zeroth iteration, the prior distribution is used to calculate the VB lower bound. As

the distribution was not updated using the test data, it yielded a very loose lower bound. Con-

sequently, the VB performance on ML-SAT was significantly worse than the SI baseline perfor-

mance (32.8%) by 1.3%. This illustrates the sort of degradation that can result when the bound

is too loose. After one iteration, the performance was significantly improved by 2.6%. The im-

portance of tightening the lower bound was proved. One further iteration gave slight degrada-

tion, showing that the tightening process had converged. Therefore, in the rest of experiments,

only 1 iteration was used for lower bound based Bayesian adaptive inference.

The above experiments on lower bound approximations were all based on the N-Best supervi-

sion, where one transform distribution was generated for each possible hypothesis. As discussed

in section 5.3.1.1, using the 1-Best hypothesis as supervision to learn the transform distributions

may bias to the particular hypothesis. This transform distribution may give a looser lower bound

approximation for the other hypotheses and consequently degrade the performance. Here, an

experiment was done to contrast the standard 1-Best supervision to N-Best supervision. MAP

and VB approaches were examined using 1-Best hypothesis as supervision. One transform dis-

tribution was estimated per utterance for all possible hypotheses. The results are shown in

table 7.5. Only 1 iteration was used for the transform distribution update.

Comparing the 1-Best supervision results to the N-Best supervision performance, the VB and

the MAP approximations both degraded significantly. Though the estimated transform distribu-
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Bayesian Supervision

Approx. N-Best 1-Best

MAP 31.8 32.0

VB 31.5 32.0

Table 7.5 150-Best list rescoring performance on eval03 of utterance level Bayesian adaptive inference on

the MLLR based ML-SAT system with 1-Best or N-Best supervision (N=150). The transform prior distribution

was a single Gaussian. 1 transform distribution update iteration was used for lower bound approximations.

tion may lead to a tight lower bound for the 1-Best hypothesis, for all the other hypotheses, the

particular transform distribution is unlikely to give as tight lower bound as using the the N-Best

supervision. The above results illustrates the impact of this on WER. It is also interesting to

note that the degradation for the VB approximation (0.5%) was larger than MAP (0.2%). This

is because the VB approximation is more likely to be tuned to the supervision than the MAP

approximation due to the use of non-point distributions. Then, the estimated transform distri-

bution was biased to the 1-Best hypothesis more heavily and led to more mismatch to the other

hypotheses, consequently more degradation. This shows that VB may be more sensitive to the

supervision used.

7.2.2.3 Effect of Multiple Component Transform Prior Distribution

The above SAT experiments all used a single Gaussian as the form of the transform prior dis-

tribution. It is also interesting to investigate whether a multiple component prior can benefit

Bayesian adaptive inference. A 2-component GMM prior distribution for SAT transform was es-

timated and then used with the various approximations. Table 7.6 gives the performance of the

ML-SAT system with different Bayesian approximation approaches with a GMM transform prior

distribution.

Bayesian # Prior Component

Approx. 1 2

FI 32.9 32.7

MAP 31.8 31.7

VB 31.5 31.5

Table 7.6 150-Best list rescoring performance on eval03 of utterance level Bayesian adaptive inference on the

MLLR based ML-SAT system with different Gaussian transform prior distributions. 1 transform distribution

update iteration was used for lower bound approximations.

For the FI assumption, the use of the GMM prior distribution obtained a slight gain of 0.2%.

The performance is still similar to the SI performance (32.8%). This is expected because the FI

assumption is similar to the assumption of standard HMMs as discussed in section 5.3.2.2. For

MAP approximation, the gain reduced to 0.1%. While for VB approximation, there was no gain
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by using the GMM prior distribution. These very slight improvements imply that for this task, a

single Gaussian distribution is good enough.

7.3 Incremental Bayesian Adaptive Inference

In the previous section, the adaptive inference was performed in a batch mode with each ho-

mogeneous block assumed to be based on one utterance. This section will investigate Bayesian

adaptive inference in incremental mode with the side-based homogeneous block. The incremen-

tal inference procedure has been described in section 5.4. For eval03, on average, each side has

about 49 utterances, which has considerably larger amount of data than the previous section. In

this section, only the lower bound approximations were examined. During adaptive inference,

a single iteration 6 was used for estimating the variational transform distribution. It is worth

emphasising that the adaptive inference in this section was still run in an unsupervised mode,

hence, the adaptation data was also the data to be recognised.
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Figure 7.1 150-Best list rescoring cumulative WER (%) on eval03 of incremental Bayesian adaptive infer-

ence of different number of utterances on the MLLR based ML-SAT system. 30 utterances are shown here. The

transform prior distribution was a single Gaussian.

In incremental adaptive inference, it is interesting to investigate the change of the perfor-

mance as the number of utterances varies. Thus, cumulative WERs of the first 30 utterances of

the ML-SAT system are shown in figure 7.1 to compare the performance of different Bayesian ap-

proximations. The SI line in figure 7.1 is for the unadapted ML-SI baseline. The overall average

6Using the notations in section 5.4, this means the final iteration index is K = 2.

figure/eval03.wer_ml_utt1-30.eps
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performance of this system is shown in table 7.3. As expected, for a limited number of utter-

ances, the ordering of performance is similar to that shown for the ML-SAT system in table 7.3.

The VB approximation had the best performance. As the number of utterances increased the

difference between the VB and the MAP approximations became far smaller7. Given sufficient

adaptation data, the point transform estimates are reasonable approximations to the transform

posterior distribution. Hence the two are expected to be close to each other. The ML approx-

imation was significantly worse than all the others at the beginning because of the insufficient

adaptation data. The ML performance was gradually improved as more data came and outper-

formed the unadapted SI system after 20 utterances. However, due to the poor performance

at the beginning, the cumulative WER was still significantly worse than MAP and VB after 30

utterances.

The cumulative WERs of the first 30 utterances of the MPE-SAT system are also plotted in

figure 7.2. At the first utterance, the WER of VB and MAP was the same. This is due to the order-

ing of the utterances because in section 7.2.2 the VB approximation has shown to outperform

the MAP approximation when averaging errors over all utterances. The general trend similar

to figure 7.1 appeared after the first utterance. The VB approximation again outperformed the

MAP approximation when adaptation data was limited. With more adaptation data, the two ap-

proaches became closer and the performance of the ML approximation was greatly improved. It

is also interesting to compare the gap between SI and VB of the two figures. The gap in figure 7.1

is obviously larger than the gap in figure 7.2. This means for ML systems, the gain of ML-SAT

compared to ML-SI was always larger than the gains of corresponding MPE systems during the

whole incremental adaptive inference process. This is also due to the use of ML based transform

prior on the MPE-SAT system.

Table 7.7 shows the overall average performance on the complete test set. As a baseline for

incremental Bayesian adaptive inference, the ML-SI model was adapted during inference using

the standard robust ML adaption technique. Here, a threshold was used during the ML adaptive

inference to determine the minimum posterior occupancy to estimate a robust ML transform,

referred to as the ML+thresh in table 7.7 8.

As expected, the incremental adaptive inference of ML+thresh showed significant gains over

both the ML-SI and the MPE-SI systems in table 7.3, around 1.4%. The performance of ML

approximation with the ML-SAT system was about 1% absolute better than the unadapted ML-SI

7The WER curves in figure 7.1 are not monotonically decreasing due to the order of the utterances. As shown in

table 7.3, the average performance of all utterances for VB approximation was 31.5%. However, the average WER

for the first utterances of all speakers was below 29% as shown in figure 7.1. This means that, the first utterances of

all speakers, on average, happened to be “easier” to recognise than some later utterances. When the more “difficult”

utterances came, the absolute WER of those utterances may increase and lead to the fluctuations in figure 7.1. From

the cumulative WER curve of the unadapted SI system, the intrinsic difficulty of the utterances can be observed.

Similar phenomenon can be observed in figure 7.2.
8In contrast to the standard robust ML adaptation technique, Bayesian adaptive inference approaches did not use

any threshold because prior information is considered in the Bayesian adaptive inference. ML approach in second

row of table 7.7 was viewed as a Bayesian approximation approach, hence, no threshold was set, either.
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Figure 7.2 ML and MPE 150-Best list rescoring cumulative WER (%) on eval03 of incremental Bayesian

adaptive inference of different number of utterances on the MLLR based MPE-SAT system. 30 utterances are

shown here. The transform prior distribution was a single Gaussian.

Bayesian ML Train MPE Train

Approx SI SAT SI SAT

ML+thresh 31.2 — 27.8 —

ML 32.2 31.8 28.9 28.7

MAP 30.9 30.4 27.7 27.5

VB 30.9 30.3 27.7 27.4

Table 7.7 150-Best list rescoring performance on eval03 of incremental Bayesian adaptive inference on SI

and MLLR based SAT systems using lower bound approximations. The transform prior distribution was a

single Gaussian. 1 transform distribution update iteration was used for lower bound approximations.

figure/eval03.wer_mpe_utt1-30.eps
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performance (32.8%). This is the effect of data accumulation in incremental adaptive inference,

which eventually resulted in a robust transform estimate. However, this result was still 0.6%

worse than the ML+thresh approach, which shows the ML approximation without threshold is

not robust enough. Using the prior information, MAP and VB both significantly outperformed

the ML approximation and the standard ML+thresh approach and gave about the same gain.

Comparing the performance of the ML-SAT system to the ML-SI system shows that the adaptively

trained system consistently and significantly outperformed the non-adaptively trained system by

over 0.4% for all approximations. For MPE training, there were similar trends as the ML case.

However, the gains of adaptively trained system were all reduced. For example, comparing the

VB adaptive inference on the MPE-SAT system to the baseline ML+thresh performance on the

MPE-SI system, the gain was 0.4%. In contrast, the comparable gain of the ML-SAT system was

0.9%. This gain reduction is also because a ML based transform prior distribution was used in

adaptive inference in a non-discriminative way.

The above experiments were based on N-Best rescoring on a 150-Best hypothesis list. To

check whether the 150-Best list included sufficient candidates or not, the best ML configuration

of adaptive inference, the incremental VB adaptive inference on ML-SAT (30.3%), was tested on

a 300-Best list. With twice the number of hypotheses, the performance was also 30.3%. The

improvement was very slight, only 23 word errors from the 76K words in total. This shows that

the majority of correct hypotheses have been included in the 150-Best list.

The adaptive inference experiments in this section were run in an incremental mode at

speaker basis within the N-Best rescoring (N-Best supervision) inference framework. It is in-

teresting to contrast these results to the discriminative adaptive training results in chapter 6.

Though adaptation also performed at speaker basis, the results in chapter 6 were generated us-

ing Viterbi algorithm with model adaptation run in a batch mode with 1-Best supervision. Hence,

they are not strictly comparable to the results in table 7.7. However, due to the use of sufficient

adaptation data (speaker basis), the results in chapter 6 were expected to be robust though

ML approximation was used. Comparing the eval03 performance of adaptively trained system

(MLLR-SAT) in table 6.7 to the performance of the unadapted SI system in table 6.6, similar

conclusions can be drawn as the above discussions on robust adaptive inference schemes (such

as VB) in table 7.7. These conclusions include: adaptively trained systems significantly outper-

formed multi-style systems; discriminative systems significantly outperformed ML systems; the

gains of adaptive training for MPE systems were smaller than the gains for ML systems. As no

prior transform distribution was used in chapter 6, the reduction of the gains for MPE systems

was mainly due to the way of the test transform estimation.

7.4 Summary

This chapter gives experimental results using Bayesian adaptive inference on adaptively trained

systems. Initial experiments examined the performance of adaptively trained systems with very

limited adaptation data. The homogeneous block was a single utterance in these experiments.
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For a 2-cluster CAT system, sampling approach was used to generate a bound of the adaptive

inference performance. Compared to the performance of sampling approach, other approxima-

tions gave similar performance. This is because the number of transform parameters required

for CAT is very small. MLLR based SAT systems were then examined. With considerably larger

number of transform parameters and limited adaptation data, the FI assumption and the ML

approximation showed degraded performance. In contrast, VB significantly outperformed all

the other approximation approaches in the utterance level adaptive inference. The robustness of

Bayesian adaptive inference was effectively illustrated. The tightness of lower bound was also

investigated. The number of update iterations was shown to be a good control on the tightness

of the lower bound, and hence affect the adaptive inference performance. Optimising the lower

bound for every possible hypothesis was also demonstrated to give a tighter lower bound and

better performance (N-Best supervision) than using only 1-Best supervision to update the trans-

form distribution. In addition to utterance level adaptive inference in batch mode, incremental

Bayesian adaptive inference at side level was investigated. At the first few utterances, as the

most robust approximation approach, VB outperformed all the other schemes as in utterance

level adaptive inference. As more adaptation data became available, the performance of VB

and MAP became closer. This is expected as after a few utterances, the variational transform

posterior distribution can be effectively approximated using a Dirac delta function with the MAP

estimate as the hyper-parameters.

The Bayesian adaptive inference was performed on both adaptively trained and non-adaptively

trained systems. The results showed that by using consistent adaptive HMM assumption in both

training and inference, significant gains were obtained compared to using the standard HMM

assumption in both stages. Even when the adaptive HMM assumption is used in inference for

both adaptively trained systems and non-adaptive systems, adaptively trained systems got con-

sistent gains over systems without adaptive training. In addition to the ML trained systems,

MPE trained systems were also examined. Those MPE systems significantly outperformed the

ML trained systems. Comparing adaptively trained MPE systems to non-adaptively trained MPE

systems, similar gains were obtained as in the ML case. However, the MPE gains were smaller

(about half) than the ML gains of adaptive training. This is due to the application of an ML

based transform prior in a non-discriminative way distribution in Bayesian adaptive inference.



8

Conclusion and Future Work

Adaptive training is a powerful approach to build systems on non-homogeneous training data.

The concept and the standard ML framework of adaptation and adaptive training have been

reviewed in chapter 3. The main contributions of this work have been described in chapter 4

and chapter 5. The first contribution, described in chapter 4, is to use a discriminative criterion

in adaptive training to increase the discrimination ability of the parameter estimates. A novel

discriminative cluster adaptive training (CAT) technique which allows rapid adaptation to be

performed on discriminatively trained models is proposed. This contribution will be summarised

in section 8.1. The second contribution, described in chapter 5, provides a consistent Bayesian

framework for adaptive training and adaptive inference. This framework allows the adaptively

trained systems to be directly used in inference and addresses the robustness issue when there

is only limited adaptation data. This will be summarised in section 8.2. Possible future research

directions are discussed section 8.3.

8.1 Discriminative Cluster Adaptive Training

Adaptive training is normally described using the ML criterion. It yields two sets of parameter

estimates: a canonical model and a set of transforms. However, discriminative training has

been used to achieve good performance for most state-of-the-art systems. Linear transform

based discriminative adaptive training has been previously investigated. An alternative form of

adaptive training suitable for rapid adaptation on discriminative systems, discriminative cluster

adaptive training (CAT), is investigated in detail in chapter 4 with the minimum phone error

(MPE) criterion. This technique allows rapid adaptation to be performed on discriminatively

trained systems.

As the canonical model in CAT is a multiple-cluster model, there are a number of changes to

be made in optimising the weak-sense auxiliary function of the MPE criterion. Modified versions

of the I-smoothing distribution and the smoothing function are derived in chapter 4. As the

multiple-cluster model has a larger amount of parameters than the standard model, the choice

of the prior in I-smoothing distribution is more important. Various types of priors, multiple or

144
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single cluster, dynamic or static, are discussed. The selection of the smoothing constant also be-

comes complicated for the multiple-cluster model. Except for two or three cluster models, there

is no closed-form solution to work out the smoothing constant. However, the performance is not

sensitive to the exact value of the smoothing constant, provided that a sensible approximation

is used. An MPE update of interpolation weight vectors is also derived in this work to form a

complete discriminative cluster adaptive training framework. The form of discriminative cluster

adaptive training is applicable to other multiple-cluster systems, such as eigenvoices. It is also

used to build a more complex multiple-cluster adaptively trained system with structured trans-

forms, which combine both interpolation weights and constrained linear transforms to model

highly non-homogeneous training data.

Due to the lack of a correct transcription, it is not possible to discriminatively update trans-

forms during unsupervised adaptation. Therefore, to keep a consistent transform update cri-

terion for both training and adaptation, a simplified discriminative adaptive training strategy

is used in the experiments of this work. In this strategy, only the canonical model is discrim-

inatively updated given the ML estimated transforms. In recognition, the ML criterion is used

to estimate the test domain specific transforms given the discriminative canonical model. Ex-

periments performed on a state-of-the-art conversational telephone speech task are reported in

chapter 6. Discriminative cluster adaptive training not only yielded significant gains over the

ML-CAT systems, but also consistently outperformed the non-adaptive MPE systems (MPE-SI)

and state-of-the-art cluster-dependent MPE systems (GD MPE-MAP). Using the more complex

structured transforms showed significant gains over both non-adaptively trained and the other

comparable adaptively trained MPE systems.

8.2 Bayesian Adaptive Training and Adaptive Inference

Standard ML adaptive training assumes that both canonical model and transform parameters

are deterministic; a two-step adaptation/recognition process is performed after training. In this

framework, the canonical model can not be directly used in unsupervised adaptation due to the

unavailability of the test domain specific transforms. To address the problem, this work presents

a consistent Bayesian framework for both adaptive training and adaptive inference in chapter 5.

In this framework, an adaptive HMM assumption is used for both training and inference, where

the two sets of parameters, the canonical model and the transform, are assumed to be random

variables and marginalised out to calculate the likelihood of training data. Prior distributions of

both sets of parameters can be estimated by using empirical Bayes in training. By controlling

the model complexity to reflect the amount of training data, the use of the ML estimate of the

canonical model can be justified within this framework. In contrast, the transform prior distri-

bution is a non-point distribution. The transform prior distribution is then used in unsupervised

mode Bayesian adaptive inference. In contrast to the standard two-step adaptation/recognition

process, the Bayesian framework motivates an integrated adaptive inference process. The key

problem in this process is to calculate the marginal likelihood of the observation sequence given
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every possible hypothesis by integrating out the transform prior distribution. This motivates the

use of N-Best list rescoring as the inference approach in this work. The Bayesian framework can

also be extended to discriminative criteria. In this work, the complete discriminative Bayesian

adaptive training and adaptive inference is briefly discussed but not implemented. Instead, the

simplified discriminative adaptive training strategy described in chapter 4 is used. Hence, dur-

ing inference, the likelihood based Bayesian approximations are applicable to the discriminative

canonical model.

As Bayesian marginalisation over the transform distribution is intractable, approximations

are required. Lower bound approximations, point estimates and a new variational Bayesian

(VB) approximation, are investigated. In addition to this, direct approximations, sampling and

the frame-independent assumption, are also discussed. In the situation where there is only lim-

ited adaptation data, the standard adaptation framework has a limitation that the ML estimate

of transform is unreliable. This limitation is effectively addressed by using an appropriate ap-

proximation approach within the Bayesian framework. The Bayesian adaptive inference is first

discussed in batch mode and then extended to incremental mode in this work. With lower

bound approximations, an efficient recursive adaptive inference algorithm is developed. The

general approximation approaches are applied to two specific mean based transforms, interpo-

lation weights and mean based linear transforms.

Experiments on adaptively trained system with both ML and MPE criteria were performed

on the same conversational telephone speech task as in chapter 6. The results in chapter 7

show that using the adaptive HMM assumption in both training and inference can obtain sig-

nificant gains compared to using the standard HMM assumption in both stages. Regarding the

different approximation approaches, they yielded similar performance for CAT systems due to

the small amount of transform parameters. In contrast, for speaker adaptive training (SAT)

systems with mean transforms, various approximation schemes showed great differences in per-

formance. With very limited adaptation data, the VB approach significantly outperformed all

the other approximation approaches on average. Hence, the robustness of Bayesian adaptive

inference was effectively illustrated. As more data became available in incremental adaptive

inference, the performance of the VB and the maximum a posteriori (MAP) approaches became

closer to each other. This is because after a few utterances, a Dirac delta function, with the

MAP point estimate being the hyper-parameters, becomes a reasonable approximation to the

variational transform posterior distribution. However, the various gains for the MPE trained sys-

tems were smaller than those of the ML trained systems. The reason is believed to be that the

transform prior distribution was obtained from ML estimated transforms and was applied in a

non-discriminative way during adaptive inference.

8.3 Future work

The research on adaptive training and adaptation for large vocabulary continuous speech recog-

nition (LVCSR) systems may be further carried out in a number of directions:
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• More clusters for discriminative CAT: 2-cluster gender initialised CAT systems were used

in the 28 component experiments in this work. More clusters are expected to yield im-

proved results as in the development experiments in chapter 6. The large memory require-

ment and the risk of overtraining due to the increased number of parameters need to be

addressed. One possible direction is to try transform based CAT [36] rather than the model

based CAT in this work.

• Structured transforms: CAT interpolation weights combined with constrained MLLR (CM-

LLR) or MLLR have been used as the structured transform (ST) in this work. There are

other possible combinations to be investigated within the adaptive training framework.

For example, model-based joint uncertainty compensation, which may be viewed as a lin-

ear transform of the features with a bias on the model covariances, may be combined with

constrained MLLR in compensating for noise [75]. The power of ST based systems may

also be illustrated by applying them in applications where data is more non-homogeneous

than the conversational telephone speech task considered in this work. To train a mean-

ingful ST based system, more accurate information about the acoustic conditions of the

training data is required.

• Conjugate prior for CMLLR transforms: As indicated in section 5.5.3, the constrained

linear transform has not been implemented within the Bayesian adaptive training and

adaptive inference framework due to the lack of a conjugate prior. Future research may be

carried out to investigate this problem.

• Efficient Bayesian approximations for Viterbi decoding: Due to the nature of Bayesian

adaptive inference, N-Best list rescoring is used as the inference approach in this work.

Though it strictly ties in with the proposed Bayesian framework, it is not practical for state-

of-the-art LVCSR systems due to the high computational load. As indicated in section 5.1.2,

traditional Viterbi decoding can not be directly used within the Bayesian framework. Thus,

it is interesting to investigate further approximations that may allow Viterbi-like recursive

formulae to be derived for the various Bayesian approximation approaches proposed in this

work. Such formulae may significantly reduce the computational load and allow Bayesian

adaptive inference to be used for state-of-the-art LVCSR systems.

• Complete discriminative Bayesian adaptive training and adaptive inference: In this

work, the gain of discriminative adaptive training is limited due to the ML based transform

prior distribution and the way of using it in adaptive inference. To implement complete

Bayesian discriminative adaptive training, the form of an appropriate conjugate prior dis-

tribution to discriminative criteria needs to be investigated. In addition, Bayesian approx-

imations, such as variational Bayes, for discriminative criteria also need to be studied in

the future.
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Smoothing Functions in Discriminative Training

The generic form of smoothing function for Gaussian parameters was introduced in [86, 102],

which can be written as

S(M;M̂) =
∑

m

Dm

∫

o

p(o|m,M̂) log p(o|m,M) do (A.1)

where Dm is a component-specific constant to control convergence, p(o|m,M) is the Gaussian

distribution for component m given the model parameters M, M̂ is the current model parameter

set. Recall the KL distance between p(o|m, M̂) and p(o|m,M)

KL

(

p(o|m,M̂)||p(o|m,M)
)

=

∫

o

p(o|m,M̂) log
p(o|m,M̂)

p(o|m,M)
do (A.2)

The KL distance is non-negative, which means, for any M,

∫

o

p(o|m,M̂) log p(o|m,M̂) do ≥

∫

o

p(o|m,M̂) log p(o|m,M) do (A.3)

Inequation (A.3) shows that the maximum of equation (A.1) is at the current model parameters

M̂. As S(M;M̂) is usually a smooth or differentiable function with respect to M, at the point

of M̂, the gradient of the smoothing function in equation (A.1) should be zero, i.e., it satisfies

the constraint equation (2.59) as below

∂S(M;M̂)

∂M

∣

∣

∣

∣

∣

M̂

= 0 (A.4)

In adaptive training, though there are two sets of parameters, the canonical model and the

transforms, the generic form of smoothing function is similar to equation (A.1). Here, it is

defined at acoustic condition level as below [60]

S(M, T ;M̂, T̂ ) =
∑

s,m

ν(s)
m Dm

∫

o

p(o|m,M̂, T̂ (s)) log p(o|m,M, T (s)) do (A.5)

where s denotes index of acoustic condition, M̂ is the current canonical model and T̂ =

{T̂ (1), · · · , T̂ (s)} is the set of current transforms, ν
(s)
m is the parameter introduced in this work
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to control reflect the proportions of data for the particular component of an acoustic condition,

defined as equation (4.6). It should be noted that the update of the canonical model and the set

of transforms interleaves in adaptive training. This means when estimating the canonical model

parameters M, T = T̂ and vice versa. With similar derivation using the KL distance, it is trivial

to show that each term of an individual Gaussian component satisfies the constraint of gradient

being zero at the current sets of parameters. As ν
(s)
m is just a multiplier, for any value, the whole

smoothing function, equation (A.5) will satisfy

∂S(M, T ;M̂, T̂ )

∂M

∣

∣

∣

∣

∣

M̂,T̂

= 0
∂S(M, T ;M̂, T̂ )

∂T

∣

∣

∣

∣

∣

M̂,T̂

= 0 (A.6)

Given the generic smoothing function in equation (A.1) and equation (A.5), the exact form

for updating a particular set of parameters may be obtained as below.

1. Smoothing function for standard Gaussian parameters

In the standard HMMs, the Gaussian distribution for component m is

p(o|m,M) = N (o; µ(m),Σ(m)) (A.7)

Using the Gaussian distribution in equation (A.1) yields

S(M;M̂) =
∑

m

Dm

∫

o

N (o; µ̂(m)
c , Σ̂(m)

c ) logN (o; µ(m),Σ(m)) do

= K −
∑

m

Dm

2

∫

o

N (o; µ̂(m)
c , Σ̂(m)

c )

{

log |Σ(m)| +
(

o − µ(m)
)T

Σ(m)−1
(

o − µ(m)
)

}

do

= K −
∑

m

Dm

2

{

log |Σ(m)| + tr
(

(Σ̂(m)
c + µ̂(m)

c µ̂(m)T
c )Σ(m)−1

)

− 2µ(m)TΣ(m)−1µ̂(m)
c + µ(m)TΣ(m)−1µ(m)

}

(A.8)

where K is a constant independent of the parameters µ(m) and Σ(m), µ̂
(m)
c and Σ̂

(m)
c are the

current Gaussian parameters. Ignoring the constant K leads to the standard smoothing function

in equation (2.61).

2. Smoothing function for Gaussian parameters in adaptive training with mean transforms

In adaptive training with mean transforms, the Gaussian distribution for component m asso-

ciated with acoustic condition s is expressed as

p(o|m,M) = N (o; µ̂(sm),Σ(m)) (A.9)

where

µ̂(sm) = A(srm)µ(m) + b(srm) = W(srm)ξ(m) (A.10)



APPENDIX A. SMOOTHING FUNCTIONS IN DISCRIMINATIVE TRAINING 150

where rm is the regression base class, or Gaussian group, that the Gaussian component m be-

longs to, µ̂(sm) is the adapted mean of component m to acoustic condition s, ξ(m) = [µ(m)T 1]T

is the extended mean vector, and W(sr) = [A(sr) b(sr)] is the extended linear transform asso-

ciated with acoustic condition s and regression base class r. Using the Gaussian distribution in

equation (A.5) and considering only the mean update yields

S(M;M̂, T̂ ) =
∑

s,m

Dmν(s)
m

∫

o

N (o;W(srm)ξ̂(m)
c ,Σ(m)) logN (o;W(srm)ξ(m),Σ(m)) do

= K −
1

2

∑

s,m

Dmν(s)
m

∫

o

N (o;W(srm)ξ̂(m)
c ,Σ(m)) ×

(

o − W(srm)ξ(m)
)T

Σ(m)−1
(

o − W(srm)ξ(m)
)

do

= K −
1

2

∑

s,m

Dmν(s)
m

(

ξ(m) − ξ̂(m)
c

)T

W(srm)TΣ(m)−1 ×

W(srm)
(

ξ(m) − ξ̂(m)
c

)

(A.11)

Ignoring the constant K, the smoothing function in equation (4.5) in section 4.2.1 is obtained.

As indicated in section 4.2.1, the covariance update is separate from the mean update. There-

fore, when updating covariance, ξ(m) = ξ̂
(m)
c . The smoothing function for covariance update is

then expressed as1

S(M;M̂, T̂ ) = K −
1

2

∑

s,m

Dmν(s)
m

∫

o

N (o;W(srm)ξ(m),Σ(m)
c )

{

log |Σ(m)| +

(

o − W(srm)ξ(m)
)T

Σ(m)−1
(

o − W(srm)ξ(m)
)

}

do

= K −
1

2

∑

s,m

Dmν(s)
m

{

log |Σ(m)| + tr
(

Σ̂(m)
c Σ(m)−1

)}

= K −
1

2

∑

m

Dm

{

log |Σ(m)| + tr
(

Σ̂(m)
c Σ(m)−1

)}

(A.12)

where Σ̂
(m)
c is the current covariance parameter. Ignoring the constant K, the smoothing func-

tion for covariance update, equation (4.26), is obtained.

3. Smoothing function for cluster adaptive training

In cluster adaptive training, the Gaussian distribution is also expressed as equation (A.9).

Here the adapted mean µ̂(sm) is an interpolation between different clusters

µ̂(sm) = M(m)λ(srm) (A.13)

where M is the cluster mean matrix, λ is the interpolation vector. Using this Gaussian distri-

bution in equation (A.5) and considering the update of the multiple-cluster model parameters

1Note that covariance is independent of acoustic conditions.
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yields

S(M;M̂, T̂ ) =
∑

s,m

ν(s)
m Dm

∫

o

N (o;M(m)λ(srm),Σ(m)
c ) logN (o; M̂(m)

c λ(srm),Σ(m)) do

= K −
∑

m,s

Dmν
(s)
m

2

∫

o

N (o; M̂(m)
c λ(srm),Σ(m)

c )

{

log |Σ(m)| +

(

o − M(m)λ(srm)
)T

Σ(m)−1
(

o − M(m)λ(srm)
)

}

do

= K −
∑

m,s

Dmν
(s)
m

2

{

log |Σ(m)| + tr(Σ̂(m)
c Σ(m)−1)

+λ(srm)T
(

M(m) − M̂(m)
c

)T

Σ(m)−1
(

M(m) − M̂(m)
c

)

λ(srm)

}

(A.14)

where M̂
(m)
c and Σ

(m)
c are current multiple-cluster model parameters. Ignoring the constant K

yields the form of the smoothing function in section 4.3.2.1, i.e., equation (4.38).

As the interpolation weight vector is estimated for each acoustic condition, there is no need

to use the term ν
(s)
m . Then, the generic smoothing function in equation (A.5) can be rewritten

for updating weights for a particular acoustic condition s

S(T (s);M̂, T̂ (s)) =
∑

m

Dm

∫

o

N (o;M(m)λ̂(srm)
c ,Σ(m)) logN (o;M(m)λ(srm),Σ(m)) do

= K −
∑

m

Dm

2

∫

o

N (o;M(m)λ̂(srm)
c ,Σ(m)) ×

(

o − M(m)λ(srm)
)T

Σ(m)−1
(

o − M(m)λ(srm)
)

do

= K −
∑

m

Dm

2

{

λ(srm)TM(m)TΣ(m)−1M(m)λ(srm)

−2λ(srm)TM(m)TΣ(m)−1M(m)λ̂(srm)
c

}

(A.15)

where λ̂
(srm)
c is the current weight vector. Ignoring the constant K yields the equation (4.72) in

section 4.3.2.4.



B

Maximum a Posteriori (MAP) Estimate of Multiple-Cluster

Model Parameters

To obtain a multiple-cluster MAP estimate, a prior parameter distribution is required. One possi-

ble form is again the Normal-Wishart distribution in equation (4.43). However, here parameters

from a single-cluster model are used as the prior 1. Ignoring constant terms

log p(M|ΦMAP) = −
τMAP

2

∑

s,m

ν̃(s)
m

{

log |Σ(m)| + tr(Σ̃
(m)
MAPΣ

(m)−1)

+
(

M(m)λ(srm) − µ̃
(m)
MAP

)T

Σ(m)−1
(

M(m)λ(srm) − µ̃
(m)
MAP

)

}

(B.1)

where ν̃
(s)
m is similar to equation (4.6), but it is defined by ML occupancy. ΦMAP = {τMAP, µ̃

(m)
MAP , Σ̃

(m)
MAP }

is the hyper-parameters of the MAP prior distribution log p(M|ΦMAP). τMAP is to control the im-

pact of the robust model parameters, µ̃
(m)
MAP and Σ̃

(m)
MAP are the single-cluster prior parameters.

Note that the MAP distribution in equation (B.1) is a separate distribution from the I-smoothing

distribution, though the form is similar.

With the above MAP prior distribution, a new auxiliary function may be derived by adding

the additional prior distribution term to the ML auxiliary function

QMAP(M;M̂, T̂ ) = log p(M|ΦMAP) −
1

2

∑

s,m,t

γML
m (t)

{

log
∣

∣

∣
Σ(m)

∣

∣

∣

+
(

o
(s)
t − M(m)λ(srm)

)T

Σ(m)−1
(

o
(s)
t − M(m)λ(srm)

)

}

(B.2)

where T̂ is now the set of interpolation weights consisting of λ(sr), γML
m (t) is the posterior oc-

cupancy of Gaussian component m calculated given the current CAT model and the weights

estimate. By differentiating the above auxiliary function with respect to the mean and covari-

ance and setting it to zero, the MAP estimate can be obtained by

M̂(m)T = G
(m)−1
MAP K

(m)
MAP (B.3)

Σ̂(m) = diag
(L

(m)
MAP − M̂(m)K

(m)
MAP

γMAP
m

)

(B.4)

1The choice is consistent with [42], where a robust set of single-cluster model parameters is obtained by using

some ad-hoc approach such as speaker-independent training.
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where the sufficient statistics are

γMAP
m = γML

m + τMAP (B.5)

G
(m)
MAP = G

(m)
ML + τMAP

∑

s

ν̃(s)
m λ(srm)λ(srm)T (B.6)

K
(m)
MAP = K

(m)
ML + τMAP

(

∑

s

ν̃(s)
m λ(srm)

)

µ̃
(m)T
MAP (B.7)

L
(m)
MAP = L

(m)
ML + τMAP

(

µ̃
(m)
MAP µ̃

(m)T
MAP + Σ̃

(m)
MAP

)

(B.8)

where γML
m , G

(m)
ML , K

(m)
ML and L

(m)
ML are ML the statistics in equations (3.46) to (3.49).

The above describes how to get the MAP estimate of the multiple-cluster model. The MAP

estimate can then be used as the prior in I-smoothing distribution. Substituting the multiple-

cluster MAP prior for multiple-cluster ML prior, the statistics for the I-smoothing distribution,

equations (4.58) to (4.60), become 2

G(m)
p =

1

γMAP
m

G
(m)
MAP (B.9)

K(m)
p =

1

γMAP
m

K
(m)
MAP (B.10)

L(m)
p =

1

γMAP
m

L
(m)
MAP (B.11)

In this case, There are two tunable parameters controlling prior occupancy: τ I for the whole

I-smoothing distribution and τ MAP for the MAP estimate.

2Note that in the MAP prior case, ν̃
(s)
m in the I-smoothing distribution in equation (4.43), need to be re-defined

using the MAP occupancy.



C

Estimation of Hyper-Parameters of Prior Distributions in

Adaptive Training

As discussed in section 5.1.1, using empirical Bayesian approach, the hyper-parameters of the

canonical model prior distribution is obtained by maximising

p(O|H) =

∫

M
p(O|H,M)p(M|Φ) dM (C.1)

Introducing a variational distribution and applying Jensen’s inequality yields a lower bound of

equation (C.1)

log p(O|H) ≥

〈

log
p(O|H,M)p(M|Φ)

q(M)

〉

q(M)

(C.2)

where < f(x) >g(x) is the expectation of f(x) with respect to g(x), defined as equation (2.14).

The above becomes equality when

q(M) = p(M|O,H) (C.3)

With sufficient training data and appropriate model complexity control, the canonical model

posterior distribution can be effectively approximated by a Dirac delta function

q(M) = δ(M−M̂) (C.4)

where M̂ is a point estimate of canonical model. Equation (C.2) can then be re-expressed as

log p(O|H) ≥ log p(O|H,M̂) − KL

(

δ(M−M̂)||p(M|Φ)
)

(C.5)

where the KL distance is defined in equation (5.9). As the KL distance between a Dirac delta

function and any other distribution is ∞, the optimal p(M|Φ) must be identical to the delta

function

p(M|Φ) = δ(M−M̂) (C.6)

Given equation (C.6), the transform prior is estimated based on a point estimate of the

canonical model. Again, the hyper-parameters of the transform prior distribution is obtained by
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maximising the marginal likelihood

p(O|H) =

∫

M
p(O|H,M)δ(M−M̂) dM = p(O|H,M̂)

=
S
∏

s=1

∫

T
p(O(s)|H(s),M̂, T )p(T |φ) dT (C.7)

where φ is the hyper-parameters of the transform prior distribution. Note that transform is

constrained to be constant for each homogeneous block, which is the fundamental assumption

of adaptive HMM. Introducing one variational transform distribution for each homogeneous

block and applying Jensen’s inequality yields

log p(O|H) ≥
S
∑

s=1

〈

log
p(O(s)|H(s),M̂, T )p(T |φ)

q(s)(T )

〉

q(s)(T )

(C.8)

With sufficient training data and appropriate complexity control, each variational transform

distribution can also be approximated as a Dirac delta function with a distinct point estimate

q(s)(T ) = δ(T − T̂ (s)) (C.9)

Hence, inequality (C.8) can be re-expressed as

log p(O|H) ≥
S
∑

s=1

(

log p(O(s)|H(s),M̂, T̂ (s)) + log p(T̂ (s)|φ) + H

(

δ(T − T̂ (s))
))

(C.10)

where H(·) is the entropy defined in equation (2.16). The entropy of a Dirac delta function is

−∞, hence equation (C.10) is a loose bound of log p(O|H). Due to the multiple homogeneous

blocks, there is no prior transform distribution that can compensate for the infinity entropy.

However, as the entropy term is a constant, the rank ordering of log p(O|H) is only dependent

on the second term in equation (C.10) in terms of prior hyper-parameter update. Hence, the

optimal hyper-parameters of transform prior, φ̂, can be found by

φ̂ = max
φ

S
∑

s=1

log p(T̂ (s)|φ) (C.11)

The above formulae imply that the hyper-parameters are actually ML estimates of the “parameter

samples”. Hence. this hyper-parameter estimate is also known as a “ML-II” prior in empirical

Bayesian approach [10, 96].



D

Derivations in Variational Bayes

D.1 Derivations of Using Multiple Component Prior in VB

This section gives the derivation of using a multiple-component, or mixture prior distribution in

variational Bayes approach. The multiple-component prior is re-produced here

p(T ) =
∑

n

cnp(T |n) (D.1)

where p(T |n) is a prior component, which is valid conjugate distribution, for example, a single

Gaussian distribution for MLLR or CAT and cn is the weight of the nth component. Then the

marginal likelihood is given by

p(O|H) =
∑

n

cn

∫

T
p(O|H, T )p(T |n) dT

=
∑

n

cn

∫

T

∑

θ

p(O, θ|H, T )p(T |n) dT (D.2)

where θ is the hidden component sequence. Similar to the VB approach for single component

prior, introducing variational distributions q(n) and applying Jensen’s inequality yields a lower

bound

log p(O|H) ≥
∑

n

q(n)

(

log
cn

q(n)
+ log

∫

T
p(O|H, T )p(T |n) dT

)

= 〈log p(O|H, n)〉q(n) − KL(q(n)||cn) (D.3)

where KL(·||·) is the discrete KL distance defined in equation (5.10). One VB lower bound can

also be introduced for each log p(O|H, n)

log p(O|H, n) = log

∫

T
p(O|H, T )p(T |n) dT

≥

〈

log
p(O, θ|H, n)p(T |n)

q(θ, T )

〉

q(θ,T )

(D.4)

Again, the variational transform distribution q(T |O,H, n) is assumed to be conditionally inde-

pendent of the hidden component distribution q(θ|O,H). The VB approximation for the nth
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prior component is expressed as

q(θ, T ) = q(θ|O,H)q(T |O,H, n) (D.5)

It is worth noting that according to equation (D.2), all components of the transform prior distri-

bution are associated with one common hidden component sequence θ. It is not allowed to swap

between components. Hence, in the VB approximation for each component, the variational hid-

den component sequence distribution q(θ|O,H) is independent to n, which is a consistent result

from equation (D.2). With equation (D.5), let q(θ) and q(T |n) be brief notations for q(θ|O,H)

and q(T |O,H, n), the lower bound in equation (D.4) can be re-expressed as an auxiliary function

similar to equation (5.51)

log p(O|H, n) ≥ QVB (qk+1(θ), qk(T |n))

= 〈log p(O, θ|T ,H, n)〉qk+1(θ)qk(T |n) + H (qk+1(θ)) − KL(qk(T |n)||p(T |n)) (D.6)

where k is the iteration index. Assuming that the variational weight of the kth iteration qk(n)

has been obtained, the overall VB lower bound with mixture prior can be expressed as

log p(O|H) ≥ QVB (qk+1(θ), qk(T )) = LVB (qk(T ))

=
〈

QVB

(

qk+1(θ), qk(T |n)
)

〉

qk(n)
− KL (qk(n)||cn) (D.7)

where k is the iteration number, q(T ) denotes the complete variational distribution for the mix-

ture prior p(T ), which is also a mixture model

q(T ) =
∑

n

q(n)q(T |n) (D.8)

Differentiating the overall auxiliary function equation (D.7) with respect to qk(T |n) and qk+1(θ)

and setting it to zero leads to a VBEM algorithm similar to the single component prior case.

• VBE step:

log qk(θ) =
∑

n

qk−1(n) 〈log p(O, θ|T )〉qk−1(T |n) − logZΘ(O,H)

= 〈log p(O, θ|T )〉qk−1(T ) − logZΘ(O,H) (D.9)

This is equivalent to equation (5.52) except that the complete mixture variational distri-

bution qk−1(T ) is used to calculate the pseudo-distribution p̃(ot|θt).

• VBM step:

log qk(T |n) = log p(T |n) + 〈log p(O, θ|T )〉qk(θ) − logZ
(n)
T (D.10)

This is similar to equation (5.56) except that the corresponding prior component p(T |n) is

used instead of p(T ).
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An additional issue introduced by using a mixture prior is the estimation of variational com-

ponent weights qk(n). Directly optimising equation (D.7) with respect to qk(n) leads to an up-

date formula requiring the calculation of the component-level lower bound QVB (qk+1(θ), qk(T |n)).

Though in the single component case, the lower bound can be efficiently calculated using equa-

tion (5.57), there is no efficient formulae for the component-level lower bound when a mixture

prior distribution is used because the hidden component sequence is shared among all compo-

nents. To simplify the calculation, in the update of qk(n), different components of the transform

prior are assumed to be independent of each other. Hence the hidden component sequence θ

may alter from one prior component to another, a distinct q(θ|n) is associated with each prior

component. Then equation (D.5) changes to

q(θ, T ) = q(θ|O,H, n)q(T |O,H, n) (D.11)

The number of variational component sequence distributions increases from 1 to N , where N is

the number of prior components. Accordingly, an independent auxiliary function QVB (qk+1(θ|n), qk(T |n))

can be introduced for each log p(O|H, n). Equation (D.7) becomes

log p(O|H) ≥
〈

QVB

(

qk+1(θ|n), qk(T |n)
)

〉

qk(n)
− KL (qk(n)||cn) (D.12)

The definition of QVB (qk+1(θ|n), qk(T |n)) is similar to equation (D.6) except that a distinct

qk+1(θ|n) is used instead of the shared qk+1(θ). With the above approximation, the lower bound

for each component can be efficiently calculated as in the single component case

QVB (qk+1(θ|n), qk(T |n)) = LVB (qk(T |n)) = logZ
(n)
Θ

(O,H) − KL (qk(T |n)||p(T |n)) (D.13)

where the normalisation term for each prior component is calculated using forward-backward

algorithm for the particular component n

Z
(n)
Θ

(O,H) =
∑

θ

P (θ|H,M, n)
∏

t

p̃(ot|θt, n) (D.14)

where p̃(ot|θt, n) is the pseudo-distribution calculated based on qk(T |n). Differentiating equa-

tion (D.12) with respect to qk(n) and setting it to zero leads to the update formula of variational

weights

qk(n) =
cn exp (LVB (qk(T |n)))

∑

n cn exp (LVB (qk(T |n)))
(D.15)

So far the estimation of the complete variational distribution q(T ) is discussed. Having

obtained it after the iterative learning, the value of the overall lower bound is required for

inference. As indicated before, equation (D.7) is the overall lower bound. Here, an efficient

formula to calculate this lower bound can be derived by using equation (D.9) in equation (D.7)

LVB (qk(T )) = QVB

(

qk+1(θ), qk(T )
)

= logZΘ(O,H) −
∑

n

qk(n)KL (qk(T |n)||p(T |n)) − KL (qk(n)||cn) (D.16)
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where ZΘ(O,H) is the overall normalisation term. The calculation formula is similar to equation

(D.14) except that the pseudo-distribution is now based on the complete variational transform

distribution in equation (D.8). It is worth noting that this normalisation term is different from

the normalisation term in equation (D.14). The two normalisation terms have to be calculated

separately.

D.2 Derivations for Multiple Regression Base Classes

When multiple regression base class is used, multiple adaptation transforms are used. Each

one is shared among a group of Gaussians and assumed to be independent to the others. Let

T = {T1, · · · , TNR
}, where Tr is the transform associated with base class r, R is the set of

regression base classes, NR is the total number of base classes. The overall transform prior

distribution can be regarded as a product of the individual transform prior distributions

p(T ) =
∏

r∈R

p(Tr) (D.17)

Accordingly, an independent variational transform distributions q(Tr) are introduced for each

regression base class r, forming an overall variational transform distribution as

q(T ) =
∏

r∈R

q(Tr) (D.18)

a. Single component prior

For single component prior p(Tr), the introduced variational distribution q(Tr) is also a single

component distribution. Then the joint variational distribution in equation (5.50) is expressed

as

q(θ, T ) = q(θ|O,H)
∏

r∈R

q(Tr|O,H) (D.19)

The corresponding auxiliary function in equation (5.51) still applies and is reproduced here

QVB (qk+1(θ), qk(T )) = 〈log p(O, θ|T ,H)〉qk+1(θ)qk(T ) + H (qk+1(θ)) − KL(qk(T )||p(T )) (D.20)

where k is the iteration index. The difference is that p(T ) and q(T ) are both products of individ-

ual distributions associated with the regression base classes. A VBEM algorithm similar to the

global case can be derived. There are only slight modifications to be made as below

1. The pseudo-distribution p̃(ot|θt) is now calculated by

p̃(ot|θt) = exp
(

< log p(ot|T , θt) >qk−1(Tr(θt)
)

)

(D.21)

where r(θt) is the base class that the component θt belongs to.
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2. The KL distance KL(q(T )||p(T )) is calculated by

KL(q(T )||p(T )) =

∫

T1,··· ,TNR

(

∏

r

q(Tr) log

∏

r q(Tr)
∏

r p(Tr)

)

dT1 · · · dTNR

=
∑

r∈R

∫

Tr

q(Tr) log
q(Tr)

p(Tr)
dTr

=
∑

r∈R

KL(q(Tr)||p(Tr)) (D.22)

This derivation is trivial by considering the independence of the base class transforms.

3. When updating the variational distribution q(Tr), only the statistics associated with the

Gaussian components in base class r is accumulated. This is also a natural extension.

b. Multiple component prior

If a multiple component prior is used, p(T ) and q(T ) are both mixture distributions. The

prior is expressed as

p(T ) =
∏

r∈R

(

∑

nr

cnrp(Tr|nr)

)

(D.23)

where nr is the nth component of the transform distribution associated with base class r, cnr

is the component weight. For clarity of notations, ω = [n1, · · · , nNR
] is introduced as an index

vector, NR is the number of regression base classes. The prior distribution may then be re-

expressed as

p(T ) =
∑

ω

P (ω)p(T |ω) (D.24)

where P (ω) =
∏

r cnr and p(T |ω) =
∏

r p(Tr|nr). Similarly, the variational distribution is

q(T ) =
∏

r∈R

(

∑

nr

q(nr)q(Tr|nr)

)

(D.25)

=
∑

ω

q(ω)q(T |ω) (D.26)

where q(ω) =
∏

r q(nr) and q(T |ω) =
∏

r q(Tr|nr). Similar to section D.1, a lower bound is

obtained by introducing a variational distribution

log p(O|H) =
∑

ω

P (ω)p(O|H, ω)

≥ 〈log p(O|H, ω)〉q(ω) − KL(q(ω)||P (ω))

= 〈log p(O|H, ω)〉q(ω) −
∑

r

KL(q(nr)||cnr) (D.27)

Further lower bounds are introduced for each particular “component-base class” sequence ω

log p(O|H, ω) = log

∫

T
p(O|H, ω, T )p(T |ω) dT

≥

〈

log
p(O, θ|H, T , ω)p(T |ω)

q(θ, T )

〉

q(θ,T )

(D.28)
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The VB approximation is then given by

q(θ, T ) = q(θ|O,H)q(T |O,H, ω) (D.29)

This is similar to equation (D.5) and also yields the auxiliary function (with similar brief nota-

tions as before)

log p(O|H, ω) ≥ QVB (qk+1(θ), qk(T |ω))

= 〈log p(O, θ|H, T , ω)〉qk+1(θ)qk(T |ω) + H (qk+1(θ)) − KL(qk(T |ω)||p(T |ω)) (D.30)

Given the variational weights q(ω), similar VBEM algorithm can be derived as in section D.1.

Equation (D.9) and equation (D.10) can again apply except that nr is used instead of the com-

ponent index n.

However, with multiple regression base classes, the update of component weights nr is much

more complicated than the global case. As discussed before, using one common hidden com-

ponent sequence makes the update of variational weight hard. Here, the base class and prior

components are all assumed to be independent to each other. Hence, one distinct hidden com-

ponent sequence is associated with a particular “component-base class” pair nr. Similar to equa-

tion (D.11), to calculate the variational weights, the variational distribution in equation (D.29)

is approximated by

q(θ, T ) = q(θ|O,H, nr)q(T |O,H, ω) (D.31)

Again, we used q(θ|nr) to denote q(θ|O,H, nr) and q(T |ω) to denote q(T |O,H, ω). The lower

bound in equation (D.27) is then further approximated by

log p(O|H) ≥ 〈QVB (qk+1(θ|nr), qk(T |ω))〉q(ω) −
∑

r

KL(q(nr)||cnr) (D.32)

= 〈QVB (qk+1(θ|nr), qk(T |nr))〉qk(nr) −
∑

r

KL(qk(nr)||cnr) (D.33)

where k is the iteration index, qk(T |nr) is the modified variational distribution associated with

the particular component n of base class r

qk(T |nr) = qk(Tr|nr)
∏

i∈R−r

qk(Ti) (D.34)

where R−r denotes the regression base class set without r, qk(Ti) is the complete mixture vari-

ational transform distribution for the ith regression base class at iteration k. Derivation from

equation (D.32) to equation (D.33) is actually a re-arrangement based on equation (D.30). Note

that transforms associated with R−r are all associated with the same q(θ|nr), which should be

considered in the re-arrangement.

Given the form of the modified variational distribution in equation (D.34), the lower bound

give each “component-base class” pair nr can be re-expressed as

LVB (qk(T |nr)) = QVB (qk+1(θ|nr), qk(T |nr))

= logZ
(nr)
Θ

(O,H) − KL (qk(Tr|nr)||p(Tr|nr))

−
∑

i∈R−r

∑

ni

qk(ni)KL (qk(Ti|ni)||p(Ti|ni)) (D.35)
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where the calculation of Z
(nr)
Θ

(O,H) is similar to equation (D.14) except that the pseudo-

distribution is calculated based on the modified variational distribution equation (D.34). Given equa-

tion (D.35), differentiating equation (D.33) with respect to qk(nr) and setting it to zero leads to

the update formula of component weights as below

qk(nr) =
cnr exp (LVB (qk(T |nr)))

∑

nr
cnr exp (LVB (qk(T |nr)))

(D.36)



E

Derivations in Incremental Bayesian Adaptive Inference

The procedure of incremental variational Bayesian adaptive inference has been discussed in sec-

tion 5.4. Here, the incremental recursions are derived for the general VB bound. In unsupervised

mode, the marginal likelihood may be approximated by a lower bound

log p(O|H) ≥

〈

log
p(O, θ|T ,H)p(T )

q(θ, T )

〉

q(θ,T )

(E.1)

where the homogeneous data block is assumed to be split into U utterances, O = O1:U =

{O1, · · · ,OU}. Information is propagated to the U th utterance from the previous U − 1 utter-

ances. The hypothesis for the data available consists of a set of hypotheses for utterances within

it, H = H1:U = {H1, . . . ,HU}. Assuming that U − 1 utterances have been processed, with the

information propagation strategy described in section 5.4, the VB approximation is given by

q(θ, T ) = q(θ|O,H)q(T |O,H)

= q(θU |OU ,HU )
U−1
∏

u=1

qK(θu|Ou, Ĥu)q(T |O, Ĥ1:U−1,HU ) (E.2)

where K is the total iteration number, Ĥ1:U is the inferred hypothesis sequence from the 1st

to the U th utterance. Considering that each utterance is independent to another and that the

previously recognised hypothesis are propagated, i.e., H = {Ĥ1, . . . , ĤU−1,HU}, the VB lower

bound in equation (E.1) can be re-arranged as an auxiliary function

log p(O|H) ≥ QVB (qk+1(θ), qk(T ))

= 〈log p(O, θ|T ,H)〉qk+1(θ)qk(T ) + H (qk+1(θ)) − KL(qk(T )||p(T ))

=
U−1
∑

u=1

(

〈

log p(Ou, θu|T , Ĥu)
〉

qK(θu)qk(T )
+ H (qK(θu))

)

− KL(qk(T )||p(T ))

+ 〈log p(OU , θU |T ,HU )〉qk+1(θU )qk(T ) + H (qk+1(θU )) (E.3)

where k is the iteration index and K is the total iteration number, q(θu), 1 ≤ u ≤ U − 1 is

the brief notation for q(θu|Ou, Ĥu), which are propagated from previous utterances. q(θU ) is
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brief notation for q(θU |OU ,HU ) and q(T ) is for q(T |O, Ĥ1:U−1,HU ), they are the distributions

to optimise. Differentiating equation (E.3) with respect to the two free distributions and setting

it to zero leads to the exact update formulae in the incremental VBEM algorithm:

log qk(θU ) = 〈log p(OU , θU |T ,HU )〉qk−1(T ) − logZΘ(OU ,HU ) (E.4)

log qk(T ) ∝
U−1
∑

u=1

〈

log p(Ou, θu|T , Ĥu)
〉

qK(θu)

+ 〈log p(OU , θU |T ,HU )〉qk(θU ) + log p(T ) (E.5)

They are equivalent to equation (5.72) and equation (5.73) in section 5.4. As each sentence is

assumed to be independent to another, the normalisation term ZΘ(OU ,HU ) is also independent

to others. Considering that the overall component variational distribution is a product of indi-

vidual variational component distributions as shown in equation (E.2), the overall normalisation

term is also a product of each individual normalisation term

ZΘ(O, Ĥ1:U−1,HU ) = ZΘ(OU ,HU )
U−1
∏

u=1

ZΘ(Ou, Ĥu) (E.6)

The derivation for point estimate approximation is similar except that the point version of

variational distributions is used in equation (E.2).



F

Application of Bayesian Approximations to Mean Based

Transforms

Interpolation weights in CAT and linear transforms in MLLR are both mean based linear trans-

forms. The derivations of the two are quite similar. Hence, in this section, we only give the

derivations for CAT. The MLLR formulae can be easily analogised.

F.1 Derivations in Frame-Independent (FI) Assumption

For a mixture prior p(T ) =
∑N

n=1 cnp(T |n), the predictive distribution in FI is generally ex-

pressed as

p̄(o|m) =

∫

T
p(o|T , m)p(T ) dT =

∑

n

cnp̄(o|m, n) (F.1)

where p(o|T , m) is a Gaussian distribution in HMM, p̄(o|m, n) is an individual component of the

predictive distribution

p̄(o|m, n) =

∫

T
p(o|T , m)p(T |n) (F.2)

In the case of CAT, equation (F.2) can be written as

p̄(o|m, n) =

∫

λ

N (o;M(m)λ,Σ(m))N (λ; µ
(n)
λ ,Σ

(n)
λ ) dλ (F.3)

In the rest derivations, the index m and n are omitted for clarity.

As λ is applied only to cluster means, by some re-arrangement, N (o;M(m)λ,Σ(m))N (λ; µ
(n)
λ ,Σ

(n)
λ )

is a Gaussian distribution for the joint variable (o, λ) 1. Then, the marginal distribution p̄(o|m, n)

is also a Gaussian distribution. The problem here is to derive the parameters of the resultant

Gaussian, i.e.

p̄(o) = N (o; µ̄, Σ̄) =

∫

λ

N (o;Mλ,Σ)N (λ; µλ,Σλ) dλ (F.4)

1They all have quadratic forms in the exponential part and can be merged together.
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According to the definition of mean and covariance, we have

µ̄ =

∫

o

o

∫

λ

N (o;Mλ,Σ)N (λ; µλ,Σλ) dλ do (F.5)

Σ̄ =

∫

o

(o − µ̄)(o − µ̄)T

∫

λ

N (o;Mλ,Σ)N (λ; µλ,Σλ) dλ do (F.6)

By swapping the order of the integral and doing the integration over o first, it is easy to obtain

the parameters as

µ̄ = Mµλ (F.7)

Σ̄ = MΣλM
T + Σ (F.8)

The above are equivalent to equation (5.81) and equation (5.82) when considering the index

for prior component and HMM Gaussian component. Similar derivation applies to MLLR and

has been mentioned in [37]. In [14], similar formulae were also obtained but using a much

more complicated derivation.

F.2 Derivations in Variational Bayes (VB)

In VB, the form of the pseudo-distribution p̃(o|m) and the update formulae for variational trans-

form distribution q(λ) need to be worked out. Given the complete variational distribution

q(λ) =
N
∑

n=1

q(n)N (λ; µ̃
(n)
λ , Σ̃

(n)
λ ) (F.9)

the log-likelihood of the pseudo-distribution has shown to be

log p̃(o|m) =
∑

n

q(n)

∫

λ

log p(o|m)N (λ; µ̃
(n)
λ , Σ̃

(n)
λ ) dλ (F.10)

where p(o|m) is a Gaussian component of HMM, hence

log p(o|m) = −
1

2

(

D log 2π + log |Σ(m)| + (o − M(m)λ)TΣ(m)−1(o − M(m)λ)
)

(F.11)

where D is the observation dimension size. As equation (F.11) is a quadratic form of λ, it is easy

to do the integral in equation (F.10). The result is

log p̃(o|m) =
∑

n

q(n)
(

logN (o;M(m)µ̃
(n)
λ ,Σ(m)) −

1

2
tr(Σ̃

(n)
λ M(m)TΣ(m)−1M(m))

)

(F.12)

Given the pseudo-distribution p̃(o|m) calculated using the current q(λ), sufficient statistics

can be accumulated to update q(λ). Here, we only demonstrate the single component case. It

can be generalised to multiple component case as described in appendix D.1. From the VBEM

algorithm, the general form of qk(λ) is

log qk(λ) = log p(λ) + 〈log p(O, θ|λ,H)〉qk(θ) − logZ ′
λ(O,H)

= log p(λ) +
∑

m

∑

t

γm(t) logN (ot;M
(m)λ,Σ(m)) − logZ ′′

λ(O,H) (F.13)



APPENDIX F. APPLICATION OF BAYESIAN APPROXIMATIONS TO MEAN BASED

TRANSFORMS 167

where m is distinct component index, γm(t) is the posterior occupancy calculated using forward-

backward algorithm based on the pseudo-distribution. logZ ′
λ(O,H) and logZ ′′

λ(O,H) are nor-

malisation terms to subsume constants. Considering that p(λ) is a Gaussian distribution and

using it in equation (F.13) yields

log qk(λ) ∝ −
1

2

(

λT Σ̃λλ − 2Σ̃−1
λ µ̃λ

)

(F.14)

From the above formula, with an appropriate normalisation term, qk(λ) is a Gaussian distribu-

tion. The parameters are updated by2

Σ̃λ =
(

Σ−1
λ + GML

)−1

µ̃λ = Σ̃λ

(

Σ−1
λ µλ + kML

)

where the ML sufficient statistics are

GML =
∑

m

∑

t

γm(t)M(m)TΣ(m)−1M(m)

kML =
∑

m

M(m)TΣ(m)−1

(

∑

t

γm(t)ot

)

2This can be proved by re-arranging equation (F.13) in terms of sufficient statistics.
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