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Model-Based Approaches to Robust Speech Recognition

Overview

• Speech recognition overview

• Noise robust speech recognition

– impact of noise on acoustic features
– “mismatch” functions

• Handling adverse environments

– minimum mean-square error estimates
– model-based compensation approaches
– estimating the noise model parameters

• Model-based refinements

– joint uncertainty decoding
– covariance matrix modelling
– generative kernels and SVMs
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Example Application - In-Car Navigation
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Speech Recognition Overview

Algorithm
Recognition Recognised 

Hypothesis

Models

Model

Speech

Processing
Frontend

Language

Acoustic Lexicon

Speaker

• Robust speech recognition (primarily) concerned with
Acoustic models and Front-end processing

– speech parameterised using continuous observations, MFCC [1] or PLP [2]
– hidden Markov models used in the majority of speech recognition systems [3]
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Hidden Markov Model - A Dynamic Bayesian Network

a a33 a22 44

2 3 4 51
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(a) Standard HMM phone topology

y t y t+1

t+1qqt

(b) HMM Dynamic Bayesian Network

• Notation for DBNs:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states.

• Poor model of the speech process - piecewise constant state-space.

– but is the dominant acoustic model for speech recognition.
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HMM Likelihood and Training
• HMM likelihood for sequence Y = y1, . . . , yT is

p(Y; λy) =
∑

q∈Q

P (q0)
T∏

t=1

P (qt|qt−1)p(yt|qt)

• State output distributions modelled using Gaussian Mixture Models (GMMs)

p(yt|j) =
M∑

m=1

cjmN (yt; µ(jm),Σ(jm))

• EM used to find the model parameters, mean estimated using

µ̂(m)
y =

∑T
t=1 γ

(m)
xt yt∑T

t=1 γ
(m)
yt

; γ
(m)
yt = P (qt = m|Y; λy)

– diagonal covariance matrices commonly used for memory/efficient reasons
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Noise Robust Speech Recognition

(c) Clean Speech (d) Noise Corrupted Speech

• Background noise (and channel distortion) can seriously affect the signal

– must be handled to enable ASR systems to work in e.g. in-car applications

• Need to quantify the impact that “noise” has on “clean” speech
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General Environment Model

WORD CORRUPTED SPEECH

+

+

+

+

Additive Noise
Channel

Channel 
Difference

Ambient Noise

Additive Noise
Receiver

Task
Stress
Lombard

Speaker

• The noise-corrupted speech, y(t), and the noise-free speech , x(t), related by

y(t) =
[{([

x(t)|StressLombard

]
n1(t)

+ n1(t)
)
∗ hmike(t) + n2(t)

}
∗ hchan(t)

]
+ n3(t)

– stress/Lombard not considered in this talk
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“Simplified” Acoustic Environment

• A simplified model of the effects of noise is often used

Difference
Channel +

+

Additive Noise

Corrupted Speech

Convolutional Noise

Speech

• Ignore effects of stress:

• Group noise sources

y(t) = x(t) ∗ h(t) + n(t)

• Squared magnitude of the Fourier Transform of signal

Y (f)Y ∗(f) = |H(f)X(f)|2 + |N(f)|2 + 2|N(f)||H(f)X(f)| cos(θ)

θ is the angle between the vectors N(f) and H(f)X(f).

• Average (over Mel bins), assume speech and noise independent and log() [4]

yl
t = log

(
exp

(
xl

t + hl
)

+ exp
(
nl

t

))
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Corrupted Speech Features

• Speech data is normally parameterised in the Cepstral domain, thus

ys
t = C log

(
exp(C-1xs

t + C-1hs) + exp(C-1ns
t)

)
= xs

t + hs + f(xs
t , n

s
t , h

s)

C is the DCT

– non-linear relationship between the clean speech, noise and corrupted speech

• This has assumed sufficient smoothing to remove all “cross” terms

– some sites use interaction likelihoods or phase-sensitive functions [5, 6]
– given xs

t , h
s and ns

t there is a distribution

ys
t ∼ N (xs

t + hs
t + f(xs

t , n
s
t , h

s),Φ)
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Delta and Delta-Delta Parameters
• Feature vector modified to ‘reduce’ HMM conditional independence

assumptions

– standard to add delta and delta-delta [7] parameters

yt =




ys
t

∆ys
t

∆2ys
t


 ; ∆ys

t =
∑n

i=1 wi

(
ys

t+i − ys
t−i

)
∑n

i=1 w2
i

• Two versions used to represent the impact of noise on these [8]

∆ys
t ≈

∂ys
t

∂t
OR ∆ys

t = D




ys
t−1

ys
t

ys
t+1




– the second is more accurate, but more statistics required to be stored
– need to compensate all model parameters for best performance

Cambridge University
Engineering Department

King’s College London Seminar 10



Model-Based Approaches to Robust Speech Recognition

Dealing with Adverse Environments

• Single-microphone techniques may be split into

– inherently robust speech parameterisation - no modifications to the system.
– clean speech estimation - alters the front-end processing scheme.
– acoustic model compensation so that they are representative of speech in

the new acoustic environment.

• Multiple-microphones - microphone arrays may be used

– increase SNR by reducing the beam-width of the effective microphone.
– additional/specialised hardware required

• If something is known about the possible test acoustic environment

– multi-style (multi-environment) training may be used
– “clean” model trained under a variety of conditions
– also helps general robustness

• Talk concentrates on single-microphone approaches.
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Noise Compensation Approaches

Environment
Training

Clean Acoustic

Noisy Acoustic 
Models

Noisy Speech
Features

Clean Speech
Features Models

Compensation
Feature

Compensation
Model

Environment
Recognition

• Two main approaches:

– feature compensation: “clean” the noisy features
– model compensation: “corrupt” the clean models

• Some schemes, e.g. feature uncertainty, share properties of both.
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Minimum Mean-Square Error Estimates
• Estimate the clean speech x̂t given the corrupted speech yt

– to handle non-linearity partition space using an R-component GMM, then

x̂t = E{xt|yt} =
R∑

r=1

P (r|yt)E{xt|yt, r}

• Model the joint-distribution for each component, then [9]

[
yt

xt

]∣∣∣∣ r ∼ N
([

µ
(r)
y

µ
(r)
x

]
,

[
Σ(r)

yy Σ(r)
yx

Σ(r)
xy Σ(r)

xx

])

E{xt|yt, r} = µ(r)
x + Σ(r)

xy Σ(r)-1
yy (yt − µ(r)

y ) = A(r)yt + b(r)

– joint distribution estimated using stereo data
can be estimated using model-based compensation schemes

– various forms/variants possible: SPLICE [10], POF[11]

Cambridge University
Engineering Department

King’s College London Seminar 13
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General Model Adaptation

• A standard scheme for speaker/environment adaptation is linear transforms

Various forms used [12, 13]:

– MLLR Mean: µ
(m)
y = Aµ

(m)
x + b

– MLLR Variance: Σ(m)
y = AΣ(m)

x AT

– CMLLR: yt = Axt +b (MLLR mean/variance transforms same)

• Transforms usually estimated using maximum likelihood and EM

{
Â, b̂

}
= argmax

A,b
{p(Y|A,b; λx)}

• Problems include:

– large numbers of model parameters need to be estimated (A usually full)
– for unsupervised adaptation require a hypothesis H for utterance Y.
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Effects of Additive Noise
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Model-Based Adaptation using Stereo Data

• The simplest model-based compensation scheme is to make use of stereo/noise
corrupted data

– X = {x1, . . . , xT} : clean speech samples
– Y = {y1, . . . , yT} : corrupted speech samples

• For stereo data yt is the noise corrupted version of xt

• Two choices for training systems

– train in the standard fashion on the noise corrupted data
– use single-pass retraining (SPR) [14]

µ(m)
y =

∑T
t=1 γ

(m)
xt yt∑T

t=1 γ
(m)
xt

; γ
(m)
xt = P (qt = m|X; λx)
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Single-Gaussian Approximation
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• Single-pass retraining uses complete data-set from the clean system (γ
(m)
xt )

– approximates corrupted distribution using a single Gaussian

Cambridge University
Engineering Department

King’s College London Seminar 17



Model-Based Approaches to Robust Speech Recognition

Model-Based Compensation

• SPR is “accurate” but slow

– need to have all training data available and corrupt it with noise

• Model-based compensation approximates SPR [14]

µ(m)
y = E{y|m}; Σ(m)

y = diag
(
E{yyT|m} − µ(m)

y µ(m)T
y

)

• Due to non-linearities no closed form solution - approximations required

– Monte-Carlo-style: generate “speech” and “noise” observations and combine
– Log-Add: only transform the mean
– Log-Normal: sum of two log-normal variables approximately log-normal
– Vector Taylor series: first or higher order expansions used
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Model-Based Compensation Procedure

Corrupted Speech HMM

Noise HMM

Speech State − N components Noise State − M components

− NxM components
Corrupted−Speech State

1a 2a 1b 2b 3b3a

1 2 3 a b

Clean Speech HMM

Model Combination

• Process for log-add approximation [14] is:

1. Map to log-Spectral domain

µl = C-1µs; Σl = C-1Σs(C-1)T

2. Map to linear spectral domain

µf
i = exp{µl

i + σl
ii/2}

σf
ij = µf

iµ
f
j(exp{σl

ij} − 1)

3. Combine speech and noise models

µf
y = µf

x + µf
n; Σf

y = Σf
x + Σf

n

4. Map back to Cepstral domain
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Vector Taylor Series

• Vector Taylor Series (VTS) one popular approximation [15, 16]

– Taylor series expansion about “current” parameter values
– for these expression ignore impact of convolutional distortion
– mismatch function approximated using first order series

ys
t ≈ µs

x + f(µs
x, µ

s
n) + ∇xf(x, n)|µs

x,µ
s
n
(xs

t − µs
x) + ∇nf(x, n)|µs

x,µ
s
n
(ns

t − µs
n)

where f(x, n) is the mismatch function from previous slide (ignoring hs)

• Gives simple approach to estimating noise parameters

µ(m)s
y = E{ys

t |m} ≈ µ(m)s
x + f(µ(m)s

x , µs
n)

Σ(m)s
y ≈ AΣ(m)s

x AT + (I−A)Σ(m)s
n (I−A)T; A =

∂ys

∂xs
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Noise Parameter Estimation

• In practice the noise model parameters, µn, µh,Σn, are not known

– need to be estimated from test data
– simplest approach - use VAD and start/end frames to estimate noise

• Also possible to use ML estimation [15, 17]

{
µ̂n, µ̂h, Σ̂n

}
= argmax

µn,µh,Σn

{p(Y|µn, µh,Σn; λx)}

• VTS approximation yields simple approach to find µn, µh

– first/second-order approaches to find Σn

– simple statistics for auxiliary function
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Iterative Approaches

"Observations"

Generate Noise

NoiseSpeech
"Observations""Observations"

Noise StateSpeech State

Generate Speech
"Observations"

Combine using
Mismatch Function

Re−estimation
Baum−Welch

Corrupted−Speech State

"Observations"
Corrupted−Speech

• Previous approaches use single-Gaussian
approximation

– iterative approaches relax this
– two approaches in literature

• Algonquin: ‘best’ Gaussian approximation[5]

– approximation varies according to yt

– expensive as changes each frame

• DPMC: use non-Gaussian approximation [14]

– Monte-Carlo-style with GMMs/state
– expensive model-compensation scheme
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Extensions to Model-Based Approaches

• Joint Uncertainty Decoding:

– attempts to speed up model compensation process

• Predictive Linear Transforms:

– efficiently handles changes in the feature-vector correlations

• SVM-Based Robust ASR:

– combines model-based compensation with a discriminative classifier (SVM)
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Uncertainty Decoding

t+1
(1)q

t
(1)q xt

y t+1 t+1
(2)q

q(2)
tnt

t+1x nt+1

y t

p(yt) =
∫

p(yt|xt, nt)p(xt)p(nt)
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p(
o|

x)

• All the model-based approaches are computationally expensive

– scales linearly with # components (100K+ for LVCSR systems)

• Need to model the conditional distribution p(yt|xt, nt) [18, 5, 17]

– select form to allow efficient compensation/decoding (if possible)
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Joint Uncertainty Decoding
• Rather than model p(yt|xt, nt) use [17]

p(yt|xt) =
∫

p(yt|xt, nt)p(nt)dnt

• Simplest approach is to assume yt and xt jointly Gaussian (again)

– to handle changes with acoustic-space make dependent on r
– simple to derive conditional distribution p(yt|xt, r)
– contrast to MMSE where p(xt|yt, r) modelled
– joint distribution estimated using VTS/PMC (stereo data can also be used)

• Product of Gaussians is an un-normalised Gaussian, so

p(yt|m, r) = |A(r)|N (A(r)yt + b(r); µ(m),Σ(m) + Σ(r)
b )

– r is normally determined by the component m [19]
– contrast to MMSE where GMM built in acoustic space to determine r
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JUD versus CMLLR

• For JUD compensation, PMC/VTS only required at regression class level

– A(r),b(r) and Σ(r)
b functions of noise parameters µn, µh,Σn

Model-space ProcessingFront-end Processing

HypothesisDecode
Corrupted 
Speech

Variance 
Update

Apply 
Transform

Apply 
Transform

Apply 
Transform

Variance 
Update

Variance 
Update

• Similar to CMLLR however

– JUD parameters estimated using noise models derived from data
– CMLLR directly uses data to estimate parameters
– JUD has a bias variance, found to be important for noise estimation
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Full Covariance Matrix Modelling

• Background noise affects the correlation between elements of the feature-vector

– normally diagonal covariance matrices used

– useful to model correlation changes - use full A(r),b(r) and Σ(r)
b

– computationally expensive - full covariance decode (Σ(m) + Σ(r)
b )

• Standard schemes for efficient covariance/precision matrix modelling [3]

– One example is semi-tied covariance matrices [20]

(
Σ(m) + Σ(r)

b

)-1
= A(r)T

stc Σ(m)-1
diag A(r)

stc

– Decoding efficient - |A(r)
stc|N (A(r)

stcyt; µ(m),Σ(m)
diag)

• A(r)
stc can be found using statistics from JUD

– a version of predictive linear transforms [21]
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Support Vector Machines

support vector
support vector

width

decision
boundary

margin

• SVMs are a maximum margin, binary, classifier [22]:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– may be kernelised - training/classification a function of dot-product (xi.xj).

• Can be applied to speech - use a kernel to map variable data to a fixed length.
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Generative Kernels

• Generative models, e.g. HMMs and GMMs, handle variable length data

– view as “mapping” sequence to a single dimension (log-likelihood)

φ (Y; λ) =
1
T

log (p(Y; λ))

• Extend feature-space to a high dimension:

– add derivatives with respect to the model parameters
– example is a log-likelihood ratio plus first derivative score-space [23]:

φ(Y; λ) =
1
T




log
(
p(Y; λ(1))

)− log
(
p(Y; λ(2))

)
∇λ(1) log

(
p(Y; λ(1))

)
−∇λ(2) log

(
p(Y; λ(2))

)




– Related to the Fisher kernel [24]
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SVMs for Noise Robust ASR

• Difficult to adapt a SVM classifier to a noise condition [25]

– adapt generative kernel model to the noise condition
– leave the SVM classifier the same for all conditions

Model−Based 
Compensation Kernel

Generative

HMM−Based
Recognition

SVM−Based
Recognition

Confusable
Pair SVMs

Noise Corrupted Speech

Recognition Output

Noise Independent
SVM

• How to handle large number of possible classes even for simple digit strings?
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Handling Continuous Digit Strings

ONE

ZERO
SIL

ONE

ZERO
SIL

ONE

ZERO
SIL

FOUR ONE SEVEN

• Using HMM-based hypothesis

– “force-align” - word start/end

• Foreach word start/end times

– find “best” digit + silence

• Can use multi-class SVMs

• Simple approach to combining generative and discriminative models

– related to acoustic code-breaking [26]

• Initial implementation uses a highly sub-optimal SVM combination scheme

– use HMMs to find most confusable - simply apply SVMs in order
– allowed a subset of confusions to be used
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AURORA 2 Task

• AURORA 2 small vocabulary digit string recognition task

– TIDIGITS databases used - utterances of one-seven digits
– digits zero-nine plus oh used
– clean training data 8440 utterances from 55 male and 55 female speakers

• Test Set A only considered for these experiments

– four noise conditions N1-N4 (subway, babble, car and exhibition hall)
– range of SNRS, only 00-20dB considered in this work
– only 05-20dB used for SPR experiments
– 1001 utterances used for evaluation in each test set

• Different MFCC parameterisation to standard AURORA MFCC coding

• Whole-word models, 16 emitting-states with 3 components per state.
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VTS and SPR Performance

• Two VTS configurations used:

– VTS0 initial noise model for first and last 20 frames
– VTS: noise-model estimated using hypotheses from VTS0

SNR System
(dB) — SPR VTS0 VTS

20 5.30 1.80 2.62 1.66
15 16.27 2.81 3.75 2.30
10 40.35 5.40 7.03 4.37
05 69.75 12.89 14.75 11.04
00 87.30 — 32.90 29.75

Avg 43.79 — 12.21 9.82

• VTS works well - improved with noise estimation

– VTS outperformed SPR - some level of speaker adaptation ...
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SVM Rescoring

• SVMs trained on 9 out of the 16 noise conditions (N1/05dB not used)

– only consider 05-20 dB (no 00dB SPR data)
– 20 confusable digit pairs and all insertion/deletion confusions

SNR System
(dB) — SPR +SVM

20 5.30 1.80 1.56
15 16.27 2.81 2.32
10 40.35 5.40 4.08
05 69.75 12.89 8.80

N1 — 5.44 3.54

• SVM generalises to unseen noise condition

– N1 averaged over 05-20dB
– largest gains from correctly handling large numbers of insertions
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Noise Corrupted Resource Management

• Resource Management: artifical naval resource allocation task

– ≈ 1000 word closed-vocabulary task
– 109 training speakers, about 3.8 hours of training data
– average performance over 3 test sets: Feb’89, Oct’89, Feb’91
– cross-word state-clustered tri-phones, 6-components/state - see HTK recipe

• Data artificially corrupted by adding noise

– operations rooms noise from NOISEX database added at 20dB (calculated
using NIST wavemd)

• Task less suitable for combing with SVM rescoring
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JUD and Correlation Modelling
Scheme Σy WER

— — 38.2
VTS diag 8.5
DPMC diag 7.5
DPMC full 6.9

VTS-JUD diag 9.5
DPMC-JUD full 7.9
PST — 7.8

• VTS performance well on this task

– DPMC out-performs VTS - note better dynamic parameter compensation
– DPMC-full yields gains over diagonal case

• VTS and DPMC based JUD schemes shows degradations from full schemes

– JUD far more efficient than VTS/DPMC
– predictive semi-tied transforms (PST) work well
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Conclusions

• Reviewed model-based compensation schemes

– relies on ability to represent impact of noise on the clean speech
– computationally expensive
– works well on the artificial tasks described

• Discussed simple extensions to standard approaches

– joint uncertainty decoding - handling computational cost
– predictive linear transforms - handles changes in correlation
– generative kernels - allows combination with discriminative models (SVMs)

• A number of extensions not discussed, or described in minimal detail

– Algonquin and phase-sensitive models
– adaptive training - allows schemes like CMN to be incorporated
– performance on “real” data supplied by TREL - works well!
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