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Abstract—Combining generative and discriminative models
offers a flexible sequence classification framework. This paper de-
scribes a structured support vector machines (SSVM) approach
in this framework suitable for medium to large vocabulary
speech recognition. One important aspect of SSVMs is the
form of the joint feature space. In this work features based on
context-dependent generative models are used. These features
require a segmentation to be specified, a Viterbi-like scheme
for obtaining the “optimal” segmentation is described. Large
margin log linear models with a zero mean Gaussian prior of
discriminative parameters is shown to be an example of this
model. However, depending on the nature of the feature space,
a non-zero prior may be more appropriate. An extended SSVM
training algorithm is proposed to allow a general Gaussian prior
to be incorporated into the large margin criterion. To speed
up the training process, a 1-slack algorithm, caching competing
hypotheses and parallelization strategies are also described. The
performance of SSVMs is evaluated on small and medium to
large speech recognition tasks: AURORA 2 and 4.

I. I NTRODUCTION

Continuous speech recognition (CSR) systems are typically
trained using a large (compared to many machine learning
tasks) amount of training data, millions of words of language
model training data and millions of frames of acoustic model
training data [2]. In addition, CSR is astructuredclassifica-
tion problem [3], [4] in which class labels (sentences) have
meaningful internal structure (e.g., words). Thus, although the
number of possible class labels in this problem is unlimited,
the labels are related, they all consist of a common set of basic
structures, e.g., words and phones.

Most CSR systems use structured generative models, in the
form of hidden Markov models (HMMs), as the acoustic mod-
els. HMMs for individual sub-sentence units can be simply
combined together to form a model for a class label. Likeli-
hoods from these HMMs are combined with the prior, usually
an n-gram language model, to yield the sentence posterior
based on Bayes’ rule [5]. This enables posteriors of all possible
sentences to be obtained. Although discriminative training [6]–
[10] of HMMs has been shown to yield performance gains,
the underlying acoustic models are still generative, with the
standard HMM conditional independence assumptions, and the
form of posteriors are found by Bayes’ rule. This has led
to interest in discriminative models, e.g., flat direct models
(FDM) [11], segmental conditional random fields (SCRF) [12],
conditional augmented models (CAug) [13] and log linear
model (LLM) [14], [15], where the sentence posterior given
the observation is modelleddirectly.

For discriminative models three important decisions need
to be made: the form of the features to use; the appropriate
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training criterion; and how to handle the structure in contin-
uous speech. A number of features have been investigated at
the frame, model and word level [12], [14]. Features based on
generative models are an attractive option as they allow state-
of-the-art speaker adaptation and noise robustness approaches
for generative models to be used [16]. Discriminative models
are often trained using the conditional maximum likelihood
(CML) [12], [13] criterion. However for high-dimensional
features, there may be issues with generalisation. Additionally
the training criterion is not linked with the evaluation criterion.
To address this there has been interest in large margin [14],
[17], [18] and minimum Bayes’ risk [19] criteria for discrimi-
native models. Depending on whether the structure in sentence
level labels is explicitly modelled discriminative modelswill
be divided intounstructured, and structured approaches in
this work. Several commonly used unstructured and structured
models are summarized in Table I.

TABLE I
SUMMARY OF UNSTRUCTURED AND STRUCTURED MODELS. M3N IS

SHORT FORMAX -MARGIN MARKOV NETWORK [18], WHICH IS AN

INSTANTIATION OF STRUCTUREDSVM FOR THE CASE WHERE THE
STRUCTURE IS CAPTURED BY AMARKOV NETWORK [20].

Training Unstructured Models → Structured Models

ML Naive Bayesian Network→ HMM [5]

Logistic Regression [21]→ CRF [22]
CML (MMI)

Flat Direct Model [11]→ SCRF [23] or CAug [13]

M3N [18] or
Large Margin (Multi-Class) SVM [24]→

Structured SVM [20]

Unstructured models, e.g. logistic regression model and
support vector machines (SVMs), assume class labels are inde-
pendent and have no structure. When applying these models
to complete utterance in CSR, the space of possible classes
becomes very large, e.g., a 6-digit length utterance yields106

classes. One solution to deal with this, similar to acoustic
code-breaking [25], is to segment the continuous speech into
words/sub-words observation sequences. For each segment,
multi-class SVMs or logistic regression can be applied in the
some fashion as an isolated classification tasks [14], [16],
[21]. However, this approach has two problems. First, the
classification is based on one, fixed, segmentation. Second,
each segment is treated independently. Another solution isto
incorporate the structure into the model. For logistic regres-
sions, this structured extension leads to CRFs. For SVMs, this
yields SSVMs [20].

This paper proposes a structured SVMs (SSVM) framework
for medium to large vocabulary CSR. The features are derived
from generative kernels, which provides an elegant way of
combining generative and discriminative models. These gener-
ative model-level features usually depend on the segmentation
of the observations [12], [14]. This segmentation is itselfa
function of the model. A Viterbi-like algorithm is described
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to obtain theoptimal segmentationusing the current discrimi-
native model parameters. This paper also describes an efficient
large margin training scheme based on lattices. Standard
SSVMs are shown to be related to large margin log linear
model with a zero mean Gaussian prior of the discriminative
parameter. However, depending on the property of the feature
space, a non-zero mean may be more appropriate. An approach
to incorporate a more general Gaussian prior into SSVM
training is detailed. An important feature is that this prior is
used in a form that allows the cutting plane algorithm to be
directly applied. Using an appropriate prior can reduce the
convergence time in large scale application. Furthermore,in
order to reduce the number of constraints during parameter
optimisation on larger tasks,1-slack cutting plane algorithm
is used rather than the standardn-slack algorithm. To speed
up the training process, caching and parallelization strategies
are also proposed. Experimental results are presented on small
and medium to large vocabulary CSR tasks: AURORA 2 and
4.

II. STRUCTURED SUPPORTVECTORMACHINES

DenoteO = {o1, . . . ,oT } as an observation sequence and
w = {w1, . . . , w|w|} as the corresponding label sequence.
In SSVMs for CSR, the goal is to learn a weight vectorα.
A linear discriminant functionαTφ(O,w) is then used to
measure how well a label sequencew matches an observation
sequenceO, such that

wα = arg max
w

{
αTφ(O,w)

}
(1)

is the recognized label sequence for a givenO. Here α
is the discriminative parameter vector,φ(O,w) is a joint
feature vector characterizing the statistical dependencies of
the (O,w) pair. Unlike multi-class SVMs where a weight
vectorαw is used for each classw to compute a score [24],
SSVMs use ajoint feature-space and a single weight vector,
α. To apply SSVMs to LVCSR three important decisions
need to be made: the form of the joint featuresφ(O,w) to
use; efficient decoding algorithm based on the joint features;
and the appropriate training criterion and efficient learning
algorithm.

A. Joint Feature Space

This section describes the features that are used by SSVMs
for medium and large CSR tasks. For general continuous
speech recognition, given an observation sequenceO, the
number of possible classes, i.e., hypothesized sentencesw

can be very large. To handle this problem, the labels are
decomposed into shared structure units, phonetic units. Thus,
an additional level of hidden variableθ that represent this
segmentation is introduced. In previous small vocabulary
systems [14], [26], the observations were segmented at the
word level, however medium to large vocabulary tasks data
must be segmented at a sub-word level, such as phones
to yield complete vocabulary coverage. Given an alignment
θ that splits the observation sequence into|w| segments
O = {O1|θ, . . . ,Oi|θ, . . . ,O|w||θ}, with corresponding labels
w = {w1, . . . , wi, . . . , w|w|}, whereOi|θ is the i-th segment

associated to context-dependent phone labelwi. The resulting
joint feature space can be defined as

α =








α(v1)

...
α(vM)

αlm








,φ(O,w;θ) ,









|w|∑

i=1

δ(wi − v1)ψ(Oi|θ)
...

|w|∑

i=1

δ(wi − vM)ψ(Oi|θ)

log P (w)









(2)
Here {vk}Mk=1 denotes for example all possible triphones in
the dictionary,δ(wi − vk) is the Kronecker delta function,
andψ(Oi|θ) is the feature vector extracted for segmentOi|θ.
P (w) is the standardn-gram language model probability.
Although more general language model features can be ap-
pended, they are not considered in this work. Fig. 1 shows
an example of using equation (2) to construct a joint feature
space for data pair(O,w) given a segmentationθ. Note that
the position ofψ(Oi|θ) in the joint feature space depends on
its labelwi. +… …+ “ a � b + c ”… … … ………… … …O … … ……0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7“ a ' b + c ” “ a ' b + c ”“ x ' y + z ”O “ x 2 y + z ”…W : : : 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7… l ( )P… l o g ( )P w
Fig. 1. Constructing thejoint feature space from feature space.

To map each variable-length segmentOi|θ to a fixed dimen-
sional vectorψ(Oi|θ), a feature spaces related to sequence
kernels [27] can be used. Of particular interest in this work
are those sequence kernels based on generative models. As
well as yielding a mapping to a fixed vector size, these
generative kernels allow standard speaker and noise adaptation
approaches developed for CSR to be used to derive robust
features [16]. There are a number of possible generative
kernel-induced feature spacesψλ(Oi|θ) that can be used to
form thejoint feature spaceφ(O,w;θ). The simplest example
is the log-likelihood feature space

ψλ(O) =





log pλ(O|v1)
...

log pλ(O|vM)



 (3)

where λ denotes the generative model parameters, and
pλ(O|vk) is the likelihood for generative modelvk. This
feature space concatenates the log-likelihoods from all models,
including the correct model and competing ones, to yield
additional information from the observations. More general
feature-spaces, such as derivative ones [28], can relax the
conditional independence assumption.

Using the above joint feature-spaces the dot-product of the
φ(O,w;θ) and structured SVM parameterα can be evaluated
by accumulating every segment score [14]

αTφ(O,w;θ) =
|w|∑

i=1

α(wi)
T

ψλ(Oi|θ) + αlm log P (w), (4)

whereαT = [α(v1)T, . . .α(vk)T . . . ,α(vM)T, αlm] and wi ∈
{vk}Mk=1. One elegant property of this joint feature space is
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that it allows the standard HMM baseline to be obtained by
simply setting the value ofα associated with the correct model
to be one and zero for all competing models (see (3)), i.e., the
sparse vectorsα(v1) = [1 0 . . . 0]T, · · · , α(vM) = [0 0 . . . 1]T

andαlm is the language model scaling factor.
When medium to large vocabulary CSR are considered there

is an issue with directly using this feature space with context
dependent phones. The set of all possible models{vk}Mk=1

yields a very largejoint feature space. Although in theory this
could be used, the number of discriminative model parameters
becomes large. Two approaches were proposed in [29] to
address this problem, and are adopted in this work. One is
to reduce the dimension of the feature spaceψ(·) by selecting
a small set of “suitable” models. For example, instead of using
the full feature space, thematched-contextfeature space of a
segmentO with the labela−b+c can be used here as

ψλ(O) =








log pλ(O|a−a+c)
...

log pλ(O|a−y+c)
log pλ(O|a−z+c)








M1

. (5)

This reduces the dimensionality of the feature spaceψλ(·)
from the number of context-dependent phonesM to the
number of monophonesM1. The second approach is to reduce
the dimension by tying the discriminative model parameterα

using a phonetic decision tree [29]. For example, ifvi andvj

belong to the same leaf node in a decision tree, thenα(vi) and
α(vj) are tied. Thus the dimensionality of joint feature space
reduced toM2×M1+1, whereM2 is the number of leaf nodes
in decision tree. This is illustrated in Fig. 2. In this work,M1

andM2 are both set to 47, the number of monophones.c o n t e x ta d a + a a d a + ca d b + c +a d a + b a d + c* M 1a d a + c a d b + ca d z + c… +…a d z + c ……z d z + z… ……z d z + y Mz z + z l o g P4 0 . 54 0 . 5 0 . 6 0 . 7“ a � b + c ”
+ + ++ … +… … …+t i e d… …l ( )P… 1 2 1M M

+

l o g ( )P w( )P w 1 1M M
+

Fig. 2. Selecting matched context and discriminative parameter tying.

B. Inference with optimal segmentation

The joint feature space described above is based on a spe-
cific segmentation,θ. In SCRF [12], CAug [13] and LLM [14]
based systems, the segmentations,θλ, are typically generated
using standard generative model HMMs. These segmentations
are fixed for both decoding and training. For inference this
yields

wα = arg max
w
αTφ(O,w;θλ), (6)

whereθλ = arg max
θ

P (θ|w)pλ(O|θ,w). (7)

Equation (7) can be solved when HMMs are used using the
Viterbi algorithm. Althoughθλ is the optimal segmentation
for the generativemodel, it may not be the best segmentation

to characterize the dependencies on(O,w) pair for thedis-
criminativemodel. There is thus a potential mismatch between
(6) and (7).

The segmentation variableθ should be optimised based on
the discriminative models. For general feature-spaces it is not
possible to define efficient algorithms to achieve this. However
for the log-likelihood feature-spaces (3) it is possible. The
decoding formula (6) now becomes

{
wα,θα

}
= argmax

w,θ

{
αTφ(O,w;θ)

}
. (8)

Given the joint feature-space (2) a Viterbi-style algorithm to
solve equation (8) can be found. Based on equation (4) it is
possible to express the maximisation in equation (8) as
{
wα,θα

}
= (9)

argmax
w






max

θ

|w|
∑

i=1

M∑

k=1

α
(wi)
k log pλ(Oi|θ|vk) + αlm log P (w)







For the form of feature-space in (3) this expression is related to
factorial HMM inference [30]. The search process (9) can be
split into two distinct terms. First given a segment the score for
each model, the log-likelihood and the score for the language
model need to be computed. This is the standard forward-
backward algorithm for HMMs. The second is obtaining the
optimal segmentation which requires a modified two-stage
Viterbi search. This process is illustrated in Fig. 3. TheM

phone HMMs are shown in parallel withsynchronisation
points shown in black which are determined by the segment
boundaries.

Fig. 3. Decoding procedure illustration. The black circlesindicate the
synchronisation points where theM HMM log likelihoods and language
model score are merged.

This search process is similar to a semi-Markov search
process [31]. The best score (and alignment history) for a label
sequencew ending withw′ at time tst is stored asρ(w′)

tst
,

ρ
(w′)
tst

= max
w,θ

αTφ(O1:tst ,w;θ). (10)

Given this timetst (the start time of current decoding seg-
ment), the forward score up-to timet for each modelvk, is
computed at the end state of that model,log pλ(Otst:t|vk).
The best score for a label sequence ending withw at time t

can then be expressed as

ρ
(w)
t = max

tst,w′

{

ρ
(w′)
tst

+ s(tts,w′)→(t,w)

}

, (11)

where s(tts,w′)→(t,w) =
M∑

k=1

α
(w)
k log pλ(Otst:t|vk) +

αlm log P (w|w′) is the score for segment(tts, w′) : (t, w)

which can be computed using the forward-backward algorithm
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andtst ∈ [0, t− 1]. By running the above Viterbi-style search
from time1 to T the optimal sentence and segmentation can be
obtained by tracing back the model and time index maximising
ρ
(w|w|)

T .
The complexity of the above process isO(MT 2). Pruning

options are available, e.g., limitingw′ in (11) to the topN

models with highest scores and constraint the look-back time
tst to lastT frames. Additionally, more efficient approxima-
tions, e.g., Gibbs sampling and variational methods [30], could
be used to reduce the computation load. However these are not
investigated in this work.

C. Large Margin Training

The previous section has shown that givenα the optimal
alignmentθα can be inferred. However, during training both
α andθ are unknown and depend on one another. The optimal
alignment may vary withα; and adjusting the alignments will
affect the optimal value ofα. In this section, the joint training
of the structured SVM and the optimal alignment is described
with a large margin criterion.

The training data consists of pairs
{
O

(r),w
(r)
ref

}R

r=1
, where

O
(r) is therth observation sequence andw

(r)
ref

is its reference
label sequence. In a similar fashion to the latent SVM [32] and
structured SVM [20], [33], the parameters and hidden variables
can be jointly trained by solving the following optimisation
problem:

min
α,ξ

1

2
||α||2 +

C

R

R∑

r=1

ξr (16)

s.t. For every utterancer = 1, . . . , R,

For all competing hypothesis̃w(r) 6= w
(r)
ref

:

max
θ(r)

{

αTφ(O(r),w
(r)
ref

;θ(r))
}

−max
θ̃(r)

{

αTφ(O(r), w̃(r); θ̃(r))
}

≥ L(w
(r)
ref

, w̃(r))− ξr,

Algorithm 1 : Structured SVM learning algorithm for CSR.

0. Initial: α = [1, 0, 0 . . .] andθ(r) = θ
(r)
λ ;

1. Fixing α, optimise the reference segmentationθ(r)

for each training pair(O(r),w
(r)
ref

) using the Viterbi-style
algorithm in Section II-B:

θ(r)
α = arg max

θ(r)

{

αTφ(O(r),w
(r)
ref

;θ(r))
}

, ∀ r (12)

2. Fixing θ(r)
α , optimise α by minimizingthe following

convex upper bound ((17)≤ (13)), using the cutting
plane algorithm in Algorithm 2:

1

2
||α||22 +

C

R

R∑

r=1

[

linear
︷ ︸︸ ︷

−αTφ(O(r),w
(r)
ref

;θ(r)
α ) (13)

+ max
w 6=w

(r)
ref

,θ

{

L(w
(r)
ref

,w) +αTφ(O(r),w;θ)
}]

+

3. go back to Step 1 until converge;
return α ;

O p t i m i s e r e f e r e n c e s e g m e n t a t i o n1 C o n c a v eC o n v e x O p t i m i s a t i o n+L i n e a r C o n v e x2
Fig. 4. The illustration of Step 1 and 2 in Algorithm 1 for joint learning the
parametersα of structured SVM and optimal segmentationθα for CSR.

whereξr ≥ 0 are the slack variables andL(w
(r)
ref

, w̃(r)) is the
loss function between the referencew(r)

ref
and its competing

hypothesisw̃(r). The constraints in equation (16) can be
explained as follows. For every training pair(O(r),w

(r)
ref

),
the best score of the reference pair should be greater than all
competing pairs(O(r), w̃(r)) by a margin determined by the
loss. However the number of possible competing hypotheses
w̃

(r) is huge. Therefore, the challenge is to solve an optimisa-
tion problem with a large number of constraints, although the
number of active constraints that affect the solution is limited.

Substituting the slack variableξr from the constraints into
the objective function, equation (16) can be reformulated as
the minimisationof

1

2
||α||22+

C

R

R∑

r=1

[

concave
︷ ︸︸ ︷

−max
θ(r)

(

αTφ(O(r),w
(r)
ref

;θ(r))
)

(17)

+ max
w 6=w

(r)
ref

,θ

{

L(w
(r)
ref

,w) +αTφ(O(r),w;θ)
}

︸ ︷︷ ︸

convex

]

+

where[ ]+ is the hinge-loss function. Because of themax(·),
the objective function is non-differentiable and non-smooth.
However, the maximum of a set of linear functions is convex.
Therefore, the objective function in equation (17) comprises

Algorithm 2 : 1-slack Cutting plane algorithm [20] for Eq. (13)

Input: {(O(r),w
(r)
ref

;θ
(r)
α )}Rr=1 , C and precisionε;

Initial empty constraint set:W ← ∅;
repeat

/* solving the 1-slack QP using current constraint set */

(α, ξ)← arg min
α,ξ≥0

1

2
||α||22 +

C

R
ξ (14)

S.T.∀ W : αT

R∑

r=1

∆φ(r) +
R∑

r=1

L(w
(r)
ref

, w̃
(r)
α ) ≤ ξ

where∆φ(r) = φ(O(r), w̃
(r)
α ; θ̃

(r)
α )− φ(O(r),w

(r)
ref

; θ
(r)
α )

for r = 1..R do /* generating best competing hypothesis: */

w̃
(r)
α , θ̃

(r)
α ← arg max

w,θ

{

L(w,w
(r)
ref

) + αTφ(O(r),w; θ)
}

(15)

end
W ← W ∪ {w̃

(r)
α , θ̃

(r)
α }

R
r=1; /* put it in constraint set */

until /* no constraint can be found that is violated by more thanε */

αT
R∑

r=1

∆φ(r) +
R∑

r=1

L(w
(r)
ref

, w̃
(r)
α ) ≤ ξ + ε ;

return α
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concave and convex parts. To solve this non-convex opti-
misation problem with respective toα in equation (17), an
algorithm based on the concave-convex procedure [32], [34]
is proposed in Algorithm 1. It works similar to the iterative
process of EM. First, the optimal reference segmentation
θ

(r)
α for the current parameterα are found in Step 1. This

corresponds to finding the linear upper bound of the concave
term of equation (25) as shown in Fig. 4. Second, with the
current reference segmentationθ(r)

α , the optimal value ofα
based on (13) is found. These two steps can then be repeated.

The objective function in equation (13) of Algorithm 1
is convex inα, however, solving this problem is not trivial
because the criterion is non-differentiable. Existing algorithms
for this problem fall into two groups. The first group of algo-
rithms use generalized gradient-based approaches: subgradient
methods [35] and exponentiated gradient methods [36]. The
second group uses the cutting plane algorithm which does not
take a single gradient step, but always takes an optimal stepin
the current constraint set [20], [37]. In this work, the1-slack
cutting plane algorithm summarized in Algorithm 2 is used
to solve this convex optimization problem. Here the quadratic
programming optimisation (14) only has 1-slack variable (see
section IV-A for details). The algorithm iteratively constructs a
working setW of constraints. In each iteration, it computes the
solution over the current setW (14), finds the most violated
constraint (15) (̃w(r)

α , θ̃
(r)
α are the best competing hypothesis

and its optimal segmentation), and adds it to the working set.
This 1-slack algorithm stops when no constraint can be found
that is violated by more than the desired precisionε.

D. Relationship with Log Linear Models

Just as SVMs can be interpreted as large margin logistic
regressions [38], the SSVM can be viewed as large margin log
linear models. To see this, the posterior of log linear model
for hypothesized labelsw givenO can be written as,

P (w|O;θα,α) =
exp

(
αTφ(O,w;θα)

)

∑

w′

exp (αTφ(O,w′;θ′α))
, (18)

whereθα is the best segmentation that maximises posterior
probabilityP (w|O;θ,α), i.e.,θα = arg max

θ

αTφ(O,w;θ).

Decoding with this log linear models can be simply expressed
as

wα = arg max
w

P (w|O;θα,α)

= arg max
w

{

max
θ

αTφ(O,w;θ)
}

This yields both the optimal word sequence and alignment and
is equivalent to structured SVM inference in equation (8).

In order to robustly train a model which has good general-
ization in a high-dimensional space with limited data, large
margin based approaches can be applied [17], [39]. If theM a r g i nc o m p e t i n g r e f e r e n c eL o g P o s t e r i o r o f L L MM a r g i n
Fig. 5. The margin of log linear models is defined in log posterior domain
betweenwref and the best competing hypothesisw.

margin for the log linear models is defined as the log-posterior
ratio of the referencew(r)

ref
and best competing hypothesisw,

as illustrated in Fig. 5, large margin training for log linear
model can be expressed asminimising

FLLM(α,λ) =
1

R
·
∑R

r=1
(19)

[

max
w 6=w

(r)
ref

{

L(w
(r)
ref

,w)− log

(

P (w
(r)
ref
|O(r);θα,α)

P (w|O(r);θα,α)

)}]

+

whereL(w
(r)
ref

,w) is a loss function introduced to control the
size of the margin and[ · ]+ is the hinge-loss function. There
are two sets of parameters for LLMs, discriminative parame-
tersα and generative model parametersλ to extract features.
One general extension of this criterion is to incorporate priors
P (α), P (λ) and thenminimising

F(α,λ) = FLLM(α,λ)− log (P (α))− log (P (λ)) . (20)

In this work the generative model parameters,λ, are assumed
to have been trained and fixed. (19) can then be expressed as

F(α) = − log(P (α)) +
1

R

R∑

r=1

[

− log P (w
(r)
ref
|O(r);θα,α)

+ max
w 6=w

(r)
ref

{

L(w,w
(r)
ref

) + log P (w|O(r);θα,α)
}]

+

(21)

The priorP (α) is assumed to be Gaussian with a zero mean
and scaled identity covariance matrixCI, thus log P (α) =
logN (0, CI) ∝ − 1

2C
αTα. Substituting equation (18) into

(21) with this prior assumption andcanceling outthe normal-
ization terms in (18), yields the objective function (17). This
suggests that the structured SVM used in this work can also
be viewed as a large margin trained log linear model with an
optimal segmentation.

Equation (21) is non-differentiable because of themax{·}
function. Thus gradient-based algorithm cannot be directly
applied. One suitable algorithm to train the large margin LLM
is described in Section II-C. It is also possible to apply a soft-
max approximation to this objective function, for example the
large margin [9] and boosted MMI [40] training for HMMs.
This yields a differentiable objective function. However this
approximation minimises an upper bound of equations (21)
rather than the criterion itself

F(α) ≤ − log(P (α)) +
1

R

R∑

r=1

[

− log P (w
(r)
ref
|O(r);θα,α)

+ log
{∑

w

exp
(

L(w,w
(r)
ref

)
)

P (w|O(r);θα,α)
}]

+

(22)

Thus equation (22) allows gradient-based approach to be
applied, but it is not the “real” maximum margin in (21).

The log linear model described above only uses the “most
likely” segmentation. Alternatively, “all possible” segmenta-
tions could be considered. This turns the equation (18) to the
SCRF, or CAug model [41],

P (w|O;α) =

∑

θ

exp
(
αTφ(O,w;θ)

)

∑

w′

∑

θ′

exp (αTφ(O,w′;θ′))
. (23)
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Substituting (23) into the large margin criteria (21) will lead
to a more complex concave-convex object, which can also be
solved using the proposed Algorithms 1 and 2. This form of
model is not investigated in this work.

III. F ORM OF PRIOR

The previous section has shown that when training stan-
dard SSVMs, an implicit assumption is made that the prior
distribution of α is Gaussian, with zero mean and identity
covariance matrix. However, for the feature space defined in
equation (3), the prior mean,µ, should be non-zero. One
appropriate form of prior mean is the one that yields the HMM
baseline performance where

arg max
w,θ

µTφ(O,w;θ) = arg max
w

log
(

p(O|w;λ)
1

αlm P (w)
)

1

The value ofµ should thus be one for the correct class, zero
otherwise, for example classv1, µ(v1) = [1, 0, . . . , 0]T. This
motivates the need for a more general large margin training
scheme that incorporate a general Gaussian priorP (α) =
N (α;µ,Σ) into SSVM training. Thus, the SSVMs training
in equation (17) can be generalized tominimise

1

2
(α−µ)T

Σ
−1(α − µ) +

C

R

R∑

r=1

[

−max
θ(r)

α
T
φ(O(r)

,w
(r)
ref

; θ(r))

+ max
w 6=wref,θ

{

L(w
(r)
ref

,w) + αT
φ(O(r)

, w; θ)
} ]

+
(24)

This new expression is still concave-convex as long as
the matrix Σ

−1 is positive definite. Note the matrixΣ−1

can always be decomposed and merged into the feature space
by using transformed features̄φ(O,w;θ) = Σ

1
2φ(O,w;θ).

In this work, the log-likelihood features are assumed to be
consistently scaled, so thatΣ = CI is a reasonable ap-
proximation. In order to utilize the training framework based
on equation (17), it is necessary to transform the parameters
ᾱ = (α− µ). Reformulate equation (24) in the form of (17)

1

2
||ᾱ||22+

C

R

R∑

r=1

[

−max
θ(r)

{

(ᾱ + µ)T
φ(O(r)

,w
(r)
ref

; θ(r))
}

(25)

+ max
w 6=w

(r)
ref

,θ

{

L(w
(r)
ref

,w) + (ᾱ + µ)T
φ(O(r)

, w; θ)
}
]

+

Minimising equation (25) can be solved using Algorithm 3
and a modified version of Algorithm 1. Similar to Algorithm
1, once the optimal reference alignmentθ(r)

α is given, then
equation (25) can be expressed as (29) which is exactly the
same form of (13) with a new score-augmented loss function,

L̄(w
(r)
ref

,w) = µT∆φ(r)

︸ ︷︷ ︸

score loss

+ L(w
(r)
ref

,w)
︸ ︷︷ ︸

transcription loss

(26)

µT∆φ(r) can be viewed as an acoustic and language score
loss, where∆φ(r) = φ(O(r),w;θ) − φ(O(r),w

(r)
ref

;θ
(r)
α ).

Inference with SSVMs based on̄α can be written as

{wα,θα} = arg max
w,θ

(

(ᾱ+ µ)
T
φ(O,w;θ)

)

. (27)

1Raising a fractional power 1
αlm

on HMM likelihoods known as acoustic
deweighting [6].

Algorithm 3 : Structured SVM training with Gaussian prior

0. Initial: ᾱ = [0, 0, 0 . . .], µ = [1, 0, 0 . . .] ;

1. Fixing ᾱ, optimise the reference alignmentθ(r)
α , ∀ r,

θ
(r)
α = arg max

θ(r)

{

(ᾱ + µ)T
φ(O(r)

,w
(r)
ref

; θ(r))
}

, (28)

2. Fixing θ(r)
α , optimise ᾱ by minimizing:

1

2
||ᾱ||22+

C

R

R∑

r=1

[

− ᾱT
φ(O(r)

,w
(r)
ref

; θ(r)
α ) (29)

+ max
w 6=w

(r)
ref

,θ

{

L̄(w
(r)
ref

,w) + ᾱT
φ(O(r)

, w; θ)
} ]

+

whereL̄(w
(r)
ref

,w) = µT∆φ(r) + L(w
(r)
ref

,w).
ᾱ in problem (29) can be learned using Algorithm 2.

3. go back to Step 1, until convergereturn α = ᾱ+ µ;

One interesting property of (25) is that even ifᾱ is not well
trained, e.g., in the early training interation, with a proper µ
the algorithm will still generate sensible competing hypothesis
and segmentation using equation (27). This is particularly
helpful in reducing the convergence time in medium to large
vocabulary CSR (see Section VI-B for more details).

IV. I MPLEMENTATION ISSUES

An efficient implementation of the training algorithm is
important for medium and large vocabulary speech recognition
systems. In Section III, a prior was introduced that helped
reduce the number of training iterations. In this section several
design options are described that have a substantial influence
on computational efficiency. To reduce the memory cost,1-
slack optimisation is used as an alternative ton-slack optimisa-
tion. To reduce the training and decoding time, a lattice-based
efficient search is proposed.

A. 1-slack optimisation

There are two forms of cutting plane algorithms [20],n-
slack and 1-slack algorithms. The algorithm used in this work,
and described in Algorithm 2, is the 1-slack version. An
advantage of the1-slack algorithm is that the number of
constraints and support vectors generated is much smaller than
for then-slack case [20]. In theory, then-slack algorithm can
add R constraints at every iteration, whereR is the size of
training set. Conversely, the 1-slack algorithm adds at most a
single constraint,̄αT

∑R

r=1 ∆φ(r)+
∑R

r=1 L̄(w
(r)
ref

, w̃
(r)
α ) ≤ ξ,

per iteration (as shown in Algorithm 2). For example, in AU-
RORA 4 experiments, 1-slack algorithms produced less than
300 active constraints, whereasn-slack algorithms produced
more than50, 000 constraints after 20 iterations (still far from
the converge). This makesn-slack algorithms impractical for
large vocabulary CSR, since each constraint includes a2210
dimensional joint feature vector. 20 iterations ofn-slack opti-
misation required more around 18G of memory for AURORA
4. This rapidly becomes impractical using the current computer
infrastructure. Thus for AURORA 4 experiments, only the
result of 1-slack algorithm (with proper prior) is shown in
Section VI-B.
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Fig. 6. Learning curves of SSVMs. Dashed curve: training with HMM
segmentationθλ . Vertical dashdotted lines: optimising reference segmentation
θ
(r)
α (12). Solid curve: training with optimal competing segmentation θ̃

(r)
α

(15).

Caching Another interesting property about1-slack algorithm
(Algorithm 2) is that constraints depend on

∑R

r=1 ∆φ(r)

instead of individualφ(O(r), w̃
(r)
α ; θ̃

(r)
α ). Thus, the competing

hypotheses̃w(r)
α can be involved in the set of active constraints

many times. To avoid the computational cost of repeatedly
searching for (the same)̃w(r)

α in the large space (or lattice),
the10 most recently usedφ(O(r), w̃

(r)
α ; θ̃

(r)
α ) for each training

sample are cached. Therefore the search process for the best
competing hypothesis (15) becomes

for r = 1, . . . , R do
w̃

(r)
α ← search equation (15) in the caches

end for
if
∑R

r=1 ∆φ(r) remainsthen
w̃

(r)
α ← search equation (15) in decoding space,∀r

end if

The aim of the caching strategy is to reduce the number of
calls to search in the decoding space (or lattice).
Pruning For both then-slack and 1-slack algorithms, con-
straints added to the working set in early iterations often be-
come inactive later. These constraints can be removed without
affecting the final solution. This is practically useful since it
leads to a relatively smaller QP problem to be solved in later
iterations. In this work constraints that have not been active
for 50 iterations are pruned to reduce the memory cost.
ConvergenceAccording to Theorem2 in [34], iterating step
1 and step 2 of Algorithm 1 is guaranteed to monotonically
decrease the objective function (17) and will converge to
a minimum or saddle point. For the AURORA 2 task, the
criterion value for this algorithm against iteration is shown in
Fig. 6. Every point in Fig. 6 is a minimum solution of the QP
problem (14) in Algorithm 2 under a set of constraints. The
criterion is increased because the cutting plane algorithmkeeps
adding more constraints to the QP [20] to get closer to the
“real” minimum. However whenθ(r)

α is updated the objective
function drops because the linear part of (13) decreases2.
The gap between the solid curve and dashed curve indicates
the differences from optimising the segmentation,θ in (13),
compared to the one obtained from the generative model,θλ

in (7).

2The object drops also because the set of previous constraints discarded.
Although in theory the previous constraints could be kept, for implementation
simplicity this was not performed.
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Fig. 7. The diagram of training and decoding for SSVMs.

B. Efficient search

Theoretically, the large margin training criterion discussed
in the previous section can be directly applied to train the
model parameter. In practice, to make the algorithms appli-
cable to larger vocabulary systems additional speed improve-
ments are required. There are two search sub-problems that
must be solved efficiently (see Fig. 7): the best reference
segmentation equation (12) in Algorithm 1 (or (28) in Al-
gorithm 3); and the best competing hypothesis/segmentation,
equation (15) in Algorithm 2. By using the approximate MPE
loss [19] it is possible to approximate the lossL(w

(r)
ref

,w)
at the segment level and incorporate it into (11). These two
search problems can thus be solved using the Viterbi-style
inference algorithm described in the Section II-B.
Lattices constrained search. In small vocabulary speech
recognition task, it is feasible to search all possible segmen-
tations and competing hypothesis in the two search problems.
However, it is not practical for larger tasks because of the large
search space of all possiblew andθ. Similar to discriminative
training in [19], numerator and denominator latticesL

num and
L
den are generated to restrict the search space. Then a lattice-

based search algorithm is used to find the best competing
path (hypothesis) among the lattices. The MPE approximate
loss [19] is computed at the arc level. Fig. 8 shows a lattice
search wheren is a node in theLden, n′ is one of its previous
nodes, andρn is the best path score at noden. Thus, the
best competing path (hypothesis) in equation (15) can then be
found using the following arc-level recursion

ρn = max
n′∈Lden

{ρn′ + sn′→n} (30)

wheresn′→n is the segmental score for the arc betweenn′ and
n. This lattice based arc-level Viterbi search is a degenerated
version of (11). Similarly, equation (12) can also be efficiently
searched in the numerator latticeL

num.L t t i b d b k d tL t t i b d f d t i L a t t i c e � b a s e d b a c k w a r d t r a c eT …L a t t i c e � b a s e d f o r w a r d p r o p a g a t i o n+ a r c…a r c T T r a c i n gt h e m a xt h e m a xm a x+
Fig. 8. Inference based on the lattices using arc-level forward-backward
algorithm.
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Parallelization. For large scale applications, the computa-
tional load during training is dominated by finding the best
competing hypothesis/segmentation. For then-slack algo-
rithm, in order to run in parallel on many machines, the
sequential update mode of the standard cutting plane algorithm
needs to be modified to a batch-mode update. Note that for the
n-slack algorithm, this parallelization will decrease the perfor-
mance slightly [26]3. However the1-slack algorithm used in
this work can be easily parallelized without any degradation in
performance. Paralleling the loop for equation (15) will lead
to a substantial speed-up in the training process.

V. A DAPTATION

In speech recognition, the acoustic conditions during train-
ing and testing are seldom matched (due to inter-speaker
variability, intra-speaker variability, background noise and
channel distortions). For HMMs, a range of model adaptation
researches have been devoted to handling this problem, suchas
maximum likelihood linear regression (MLLR) [42] and Vec-
tor Taylor Series (VTS) [43]. When applying these concepts to
SSVMs there are two options. First, the discriminative model
parameters,αT = [α(v1)

T

, . . . ,α(vM)T], can be adapted.
However with very limited data in the target domain, in these
experiments a single utterance, this is very difficult.

Alternatively, the HMM parametersλ associated with the
joint feature space can be adapted [16]. In this work VTS is
used to handle background noise. Considering only the static
elements of the acoustic models, the compensated mean vector
and covariance matrix of componentm of the generative
modelλ are given by

µ(m) =C log
(

exp(C-1(µ(m)
x

+ µh) + exp(C-1µn)
)

Σ
(m) =J

(m)
Σ

(m)
x

J
(m)T + (I− J

(m))Σn(I− J
(m))T

whereµ(m)
x andΣ

(m)
x are the “clean” speech component mean

vector and covariance matrix, andµn, Σn and µh are the
additive and convolutional noise parameters respectively. C

is the DCT matrix andJ(m) is Jacobian matrix consisting of
partial derivatives of noise-corrupted speech with respect to
clean speech [43].exp() and log() are element-wise exponen-
tial and logarithm respectively. The noise model parameters are
estimated using maximum likelihood estimation [44]. Thus in
the target condition the parameters of proposed SSVMs can
be assumed to be speaker and noise-independent, whereas the
HMM parameters and joint feature spaces are speaker and
noise-dependent.

VI. EXPERIMENTS

This section describes the evaluation of the proposed SSVM
algorithms described in previous sections. To illustrate that
the proposed SSVMs can be adapted to the mismatched
acoustic condition, the noise-corrupted corpus AURORA 2
and 4 were used. The AURORA 2 corpus is used to contrast
between the performance of1-slack andn-slack algorithms,
and demonstrate the gains from optimising the segmentation

3Because in the sequential moden-slack algorithm,α can be updated after
every training sample. This allows the algorithm to potentially find better
competingw for the subsequence samples, but it can not be parallelized.

TABLE II
AURORA 2 RESULTS(WER %)OF VTS BASED HMM, M ULTI -CLASS

SVMS (MSVM) [14], LOG LINEAR MODEL (LLM) [29], AND SSVMS
USINGn-SLACK ALGORITHMS.

Model Param. Criteria Set A Set B Set C Avg.
HMM-VTS 46, 732 ML 9.8 9.1 9.5 9.5

MSVM +144 LM 8.3 8.1 8.6 8.3
LLM +144 CML 8.1 7.7 8.3 8.1

SSVM +144 LM (n-slack) 7.8 7.3 8.0 7.6

TABLE III
AURORA 2 RESULTS(WER %)OF VTS BASED HMM, MSVM, LLM

AND SSVM (n-SLACK) IN DIFFERENT SNRS CONDITIONS.

SNR Set A Avg. of Set A, B and C
(dB) HMM MSVM LLM SSVM HMM MSVM LLM SSVM

20 1.7 1.5 1.4 1.3 1.6 1.4 1.4 1.2
15 2.4 2.0 1.9 1.8 2.4 2.0 2.0 1.8
10 4.4 3.6 3.5 3.3 4.3 3.6 3.6 3.4
05 11.2 9.2 8.9 8.7 10.7 9.1 8.8 8.5
00 29.6 25.1 24.9 23.9 28.5 25.4 24.5 23.5

Avg 9.8 8.3 8.1 7.8 9.5 8.3 8.1 7.6

and modeling the prior. The AURORA 4 experiments are used
to illustrate the performance of the proposed SSVM framework
for medium vocabulary speech recognition. The 5K Wall Street
Journal (WSJ0) data, the clean part of AURORA 4, were used
to evaluate the performance of SSVMs excluding the noise
affects.

A. AURORA 2

AURORA 2 is a small vocabulary continuous digit recogni-
tion task. The vocabulary size,M , is only 12 (one to nine, plus
zero, oh and silence). The utterances are one to seven digits
long based on the TIDIGITS database with noise artificially
added. The 8440 clean mixed-gender training utterances were
used to train the acoustic generative models (HMMs). 39
dimensional observations consisting of 12 MFCCs appended
with the zeroth cepstrum, delta and delta-delta coefficients
were used. The generative models, HMMs, were 16 emitting
states whole word digit models, with 3 mixtures per state.
All three test sets, A, B and C, were used. For sets A
and B, there were a total of 8 noise conditions (4 in each)
at 5 different SNRs, 0dB to 20dB. For test set C noise
convolutional distortion was also added. Set A was used as the
development set for tuning parameters for all systems, suchas
the penalty factorC in SSVMs. The parameters of SSVMs
were trained using the same subset of the multi-condition
training data as [16]: three of the four subsets (N2-N4) and
three of five SNRs (10dB, 15dB, 20dB).4

To evaluate the benefit of the proposed SSVMs framework,
a range of configuration were compared. The baseline genera-
tive system was HMM based with VTS compensation. These
compensated HMMs were also used to derive: the noise robust
joint feature space; the word-level segmentation for the multi-
class SVMs; and the lattices for the structured SVM training
and inference. For all configurations the joint feature space
was based on appended-all likelihood features (3). For this
task no language model was used. The performances of VTS-
compensated HMM, the log-linear models proposed in [29],

4This allows the generalisation of the SVMs, LLMs and SSVMs tounseen
noise conditions to be evaluated on test set A as well as the test sets B and
C, as no data from noise condition N1 and SNRs 5dB and 0dB were used.
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TABLE IV
AURORA 2 RESULTS(WER %) OF SSVMS TRAINED USINGn-SLACK

ALGORITHM WITHOUT /WITH OPTIMISING θ AND 1-SLACK ALGORITHMS

WITHOUT/WITH GAUSSIAN PRIOR(ALG. 3+2). SVIS SHORT FOR
SUPPORT VECTORS.

Training Algorithm θ # SV Set A Set B Set C Avg.
n-slack [14] θλ 629 7.8 7.3 8.0 7.6
n-slack [26] θα 642 7.6 7.1 7.8 7.4
1-slack (Alg. 1+2) θα 29 7.6 7.3 7.9 7.5
1-slack-µ (Alg. 3+2) θα 30 7.5 7.1 7.9 7.4

multi-class SVMs [14] and SSVMs with different training
algorithms and criteria are shown in Table II and IV. The
log-linear model (LLM) was trained withL2 regularization.
For reference, the detailed results on different SNR of Set A
are also shown in Table III.

Examining the results in Table II shows that the structured
SVM achieved the best results among all the systems. The
multi-class SVM is an unstructured model where the observa-
tion sequence is first segmented into words based on HMMs
and individual “segmented” words classified independently.
The difference in performance between the structured SVM
and multi-class SVM systems shows the impact of fixing the
segmentation rather than including structures in the model. The
overall gain from using SSVMs over the VTS-compensated
HMM system was over20%.5 Note that the number of
parameters in HMM and proposed SSVM system are in the
same range—more than45, 000 for HMM and 144 more for
SSVM. Thus, the improvement obtained were not just the
result of increasing parameters.

Examining the results in Table IV, the first two lines show
that optimising the segmentation yields small, but consistent,
gains, in performance over using the HMM-based alignment
θλ, about3% relative reduction on average. The results also
show the benefit of using the1-slack algorithm as the WER
are almost the same withn-slack algorithm but with far fewer
support vectors (29 compared with629) and less memory cost
(83M compared with 922M). Small gains are also observed
when training SSVMs with general Gaussian prior using1-
slack algorithm (last two lines in the table). The mean of
Gaussian prior is set as theα learned using1-slack algorithm
(the second last line in the table).

B. AURORA 4

AURORA 4 is a medium vocabulary task based on the Wall
Street Journal (WSJ) data. Four configurations of canonical
HMMs were considered. The first repeats the previous setup
where the HMMs were trained using clean data (SI-84 WSJ0
part, 14 hours) and used with VTS compensation. In the
second more advanced systems VTS-adaptive training (VAT)
was used to obtain the canonical HMM [45]. In the third MPE
and VAT training was used to obtain the canonical HMM
[46]. In the final experiment clean trained HMMs without
VTS are applied to demonstrate the performance of SSVMs
excluding the noise affect. For all setups the HMMs were state-
clustered triphones (3140 states) with 16 components/mixture.
Four iterations of VTS compensation were performed for the

5The proposed SSVM based on the “uncompensated” HMMs is also
evaluated. The performance37.8 on set A. Comparing with “uncompensated”
HMMs baseline43.8, a consistent improvement is achieved.

TABLE V
AURORA 4 RESULTS BASED ONVTS-COMPENSATEDHMM S. FOR

SSVM,µ MEANS LARGE MARGIN TRAINING α WITH GAUSSIAN PRIOR
(ALG. 3+2). ALL POSSIBLE HYPOTHESISw AND SEGMENTATIONSθ ARE

RESTRICTED BY LATTICES GENERATED BYHMM-VTS.

Model Param. Criterion Test Set WER (%) Avg
A B C D

HMM-VTS 3.98M ML 7.1 15.3 12.2 23.1 17.8

LLM +2210 CML 7.2 14.7 11.1 22.8 17.4
MPE 7.3 14.7 11.2 22.7 17.4

SSVM +2210 LM (1-slack-µ) 7.4 14.2 11.3 21.9 16.8

TABLE VI
AURORA 4 RESULTS BASED ONVTS ADAPTIVELY TRAINED HMM S.

ALL POSSIBLE HYPOTHESISw AND SEGMENTATIONSθ ARE RESTRICTED

BY LATTICES GENERATED BY HMM-VAT.

Model Criterion
Test Set WER (%)

AvgA B C D
HMM-VAT ML 8.6 13.8 12.0 20.1 16.0

LLM
CML 7.8 13.6 11.3 20.2 15.8
MPE 7.7 13.5 11.2 20.0 15.7

SSVM LM (1-slack-µ) 7.5 13.3 11.1 19.6 15.4

training and test data. To compare with the log linear model
proposed in [29], the joint feature space of the SSVMs follows
the same setup as in [29],47 × 47 dimensions. In the first
three configurations, both the log linear models and SSVMs
are trained on the multi-style data. Evaluation was performed
using the standard 5000- word WSJ0 bigram model on four
noise-corrupted test sets based on NIST Nov’92 WSJ0 test set.
Test set A is clean, set B has 6 types of noise added, set C has
the channel distortion introduced (desk-mounted secondary
microphones recorded) and set D has both additive noise and
channel distortion. The average SNR in noise-corrupted data
is 10 dB. Set B is used as the development set for tuning
parameters of all systems.

The first configuration used clean trained HMMs with
VTS compensation. Table V shows the AURORA4 results of
SSVMs trained with a general Gaussian prior (Algorithm 3).
The mean of the prior was set as the parameters of CML
trained log-linear model. The log linear models [29] and
SSVMs based on the same2210 (47 × 47 + 1) dimensional
joint features. Compared to the CML trained LLM, SSVMs
yielded a3.4% relative reduction in WER. For this task, the
n-slack algorithm cannot be applied due to memory issues
(more than 18G required) described in Section IV-A. The1-
slack algorithm without a proper prior is also impractical as the
number of iterations becomes very large for this size of feature
space (over 1000 iterations were run without convergence).
The only algorithm that can be applied is the proposed1-slack-
µ algorithm (it converged in 258 iterations), as the prior yields
sensible model parameters when there are few constraints as
described in Section III. For small vocabulary tasks, searching
for the best competing hypothesis and segmentation is feasible.
However, it is not practical to do this in AURORA4. Therefore
the search space of all possiblew,θ here are restricted by
the lattices. Given the lattices, the decoding complexities of
SSVMs and HMMs are in the same order of magnitude.

The second configuration used a VTS adaptively trained
(VAT) HMM system. Note in this configuration both the gen-
erative and discriminative models were trained on multistyle
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TABLE VII
AURORA 4 RESULTS BASED ONMPE-VAT TRAINED HMM S. ALL

POSSIBLE HYPOTHESISw AND SEGMENTATIONSθ ARE RESTRICTED BY
LATTICES GENERATED BYMPE-VAT HMM S.

Model Criterion
Test Set WER (%)

AvgA B C D
HMM-MPE-VAT MPE 7.2 12.8 11.5 19.7 15.3

SSVM LM (1-slack-µ) 6.9 12.7 11.2 19.4 15.0

TABLE VIII
WSJ0 RESULTS BASED ON MAXIMUM LIKELIHOOD TRAINED HMM S. ALL

POSSIBLE HYPOTHESISw AND SEGMENTATIONSθ ARE RESTRICTED BY

LATTICES GENERATED BYHMM S.

Model Criterion Test Set WER (%)
HMM ML 7.3
SSVM LM (1-slack-µ) 6.8

data. Table VI shows the performance of the baseline VAT
system, the log-linear models [29] and SSVMs based on the
same2210 dimensional joint features. These features were ex-
tracted using the likelihoods of VTS adaptively trained HMMs.
Comparing the VAT in Table VI (line 1) and the VTS in Table
V (line 1) shows gains of about2% absolute. In comparison
with the HMM-VAT system and LLMs, the SSVMs gain on
average about4% and2% relative improvements.

The third configuration used an MPE and VAT trained
HMM system. In this configuration the generative and dis-
criminative models were both discriminatively trained. Table
VII shows the performance of baseline MPE-VAT HMMs,
the log-linear models [29] and SSVMs based on the same
2210 dimensional joint features. These features were extracted
using likelihoods of MPE-VAT HMMs. In comparison with the
MPE-VAT HMMs, the proposed SSVMs on average yield2%
relative improvement.

In the fourth configuration both generative and discrimina-
tive models were trained and evaluated on the clean part of
AURORA4 (the standard 5K WSJ0 setup). SSVMs were based
on the same2210 dimensional joint features. These features
were extracted using likelihoods of clean HMMs. The WER
(%) of the clean HMMs and proposed SSVMs are shown in
Table VIII. 6 The relative improvement is7%.

VII. C ONCLUSION

This paper has described a structured SVM framework
suitable for medium to large vocabulary speech recognition.
Several theoretical and practical extensions to previous work
on small vocabulary task [14] are reported. First, the joint
feature space based on word models is extended to allow
context-dependent triphone models to be used. Second, since
the joint feature space requires the segmentation of frames
into words/subwords to be specified, an optimal segmentation
approach is described. Third, by interpreting the structured
SVM as a large margin log linear model, illustrates an implicit
assumption that the prior of the discriminative parameter is a
zero mean Gaussian. However, depending on the definition of

6Note the HMM performance 7.3% in Table VIII is slightly worsethan
7.1%, the VTS set A result in Table V, because VTS on clean datais actually
performing utterance-dependent normalisation.

likelihood feature space, a non-zero prior may be more ap-
propriate. This assumption is relaxed by incorporating a more
general Gaussian prior into the large margin training criterion
in a form that allows the cutting plane algorithm to be directly
applied. Finally, to speed up the training process, strategies
such as1-slack algorithm, caching competing hypothesis and
parallelization are proposed.

The performance of SSVMs was evaluated on AURORA 2
and 4. Significant gains are observed over both HMMs and log
linear models. In this work the generative model parameters
λ, are assumed to have been trained. Joint learning{λ,α} in
the large margin framework will be investigated in the future.
Future work will also involve the kernelization of the proposed
structured SVM to support high dimensional feature spaces
such as the derivative feature space [28].
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