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Abstract—Combining generative and discriminative models training criterion; and how to handle the structure in conti
offers a flexible sequence classification framework. This geer de-  yous speech. A number of features have been investigated at
scribes a structured support vector machines (SSVM) approeh 16 frame, model and word level [12], [14]. Features based on

in this framework suitable for medium to large vocabulary fi del ttracti " th llotgst
speech recognition. One important aspect of SSVMs is the generatve models are an attractive option as they allowe-sta

form of the joint feature space. In this work features based on Of-the-art speaker adaptation and noise robustness ap@E®a
context-dependent generative models are used. These feas for generative models to be used [16]. Discriminative medel

require a segmentation to be specified, a Viterbi-ike schesn are often trained using the conditional maximum likelihood
for obtaining the “optimal” segmentation is described. Large (CML) [12], [13] criterion. However for high-dimensional

margin log linear models with a zero mean Gaussian prior of feat th be i ith lisati A
discriminative parameters is shown to be an example of this eatures, there may be issues with generalisation. 9

model. However’ depending on the nature of the feature space the training Criterion iS not ||nked W|th the eVaIUationterion.
a non-zero prior may be more appropriate. An extended SSVM To address this there has been interest in large margin [14],

training algorithm is proposed to allow a general Gaussian por  [17], [18] and minimum Bayes’ risk [19] criteria for discrim
to be incorporated into the large margin criterion. To speed \a4ve models. Depending on whether the structure in seaten

up the training process, a 1-slack algorithm, caching compgeg . . N .
hypotheses and parallelization strategies are also desbgd. The level labels is explicitly modelled discriminative modeisl

performance of SSVMs is evaluated on small and medium to be divided intounstructured and structured approaches in
large speech recognition tasks: AURORA 2 and 4. this work. Several commonly used unstructured and stradtur

models are summarized in Table I.

TABLE |
. INTRODUCTION SUMMARY OF UNSTRUCTURED AND STRUCTURED MODELSM?3N IS

Continuous speech recognition (CSR) systems are typically SHORT FORMAX-MARGIN MARKOV NETWORK [18], WHICH IS AN
trained using a large (compared to many machine learning 'NSTQTNFIL'J‘(\:TT'S2EOIFSSCTARPUT%TRUERDES§WAFR%JHNEETC@SO';\éV[HzEO?E THE
tasks) amount of training data, millions of words of langelag
model training data and millions of frames of acoustic mod
training data [2]. In addition, CSR is structuredclassifica- ML Naive Bayesian Network— HMM [5]
tion problem [3], [4] in which class labels (sentences) havecm iy || -09/StC Regression [21f CRF [22]
meaningful internal structure (e.g., words). Thus, altffothe Flat Direct Model [11]— SCRF [23] or CAug [13]
number of possible class labels in this problem is unlimited Large Margin|| (Multi-Class) SVM [24] — l\s/ltnz\::t[ulrse]dO;VM [20]
the labels are related, they all consist of a common set of bas

structures, e.g., words and phones. Unstructured models, e.g. logistic regression model and

Most CSR systems use structured generative models, in $igport vector machines (SVMs), assume class labels age ind
form of hidden Markov models (HMMs), as the acoustic moghendent and have no structure. When applying these models
els. HMMs for individual sub-sentence units can be simply complete utterance in CSR, the space of possible classes
combined together to form a model for a class label. Likelbecomes very large, e.g., a 6-digit length utterance yiedds
hoods from these HMMs are combined with the prior, usuallasses. One solution to deal with this, similar to acoustic
an n-gram language model, to yield the sentence posteri@sde-breaking [25], is to segment the continuous speech int
based on Bayes’ rule [5]. This enables posteriors of alliptess words/sub-words observation sequences. For each segment,
sentences to be obtained. Although discriminative trgifé}- multi-class SVMs or logistic regression can be applied i th
[10] of HMMs has been shown to yield performance gaingome fashion as an isolated classification tasks [14], [16],
the underlying acoustic models are still generative, wita t[21]. However, this approach has two problems. First, the
standard HMM conditional independence assumptions, and tassification is based on one, fixed, segmentation. Second,
form of posteriors are found by Bayes’ rule. This has legach segment is treated independently. Another solutidm is
to interest in discriminative models, e.g., flat direct medeincorporate the structure into the model. For logistic esgr
(FDM) [11], segmental conditional random fields (SCRF) [12kions, this structured extension leads to CRFs. For SVNiis, th
conditional augmented models (CAug) [13] and log linegfields SSVMs [20].
model (LLM) [14], [15], where the sentence posterior given This paper proposes a structured SVMs (SSVM) framework
the observation is modelledirectly. for medium to large vocabulary CSR. The features are derived

For discriminative models three important decisions negfbm generative kernels, which provides an elegant way of
to be made: the form of the features to use; the appropriambining generative and discriminative models. Thesegen

_ , ; ative model-level features usually depend on the segnientat
Part of this work has been presented in ASRU (Hawaii, Decer@®®1) [1].

S.-X. Zhang, and M.J.F. Gales are with the Cambridge UrityeBngineering of th_e observations [12], [14] This segm_entat!on is itE."Elf
Department, U.K. (email{sxz20, mjfg @eng.cam.ac.uk). function of the model. A Viterbi-like algorithm is describe
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to obtain theoptimal segmentationsing the current discrimi- associated to context-dependent phone lahellThe resulting
native model parameters. This paper also describes areefficjoint feature space can be defined as
large margin training scheme based on lattices. Standard (v1) |w| _
SSVMs are shown to be related to large margin log linear « Elé(wl 1,}1)1[’(0”9)

model with a zero mean Gaussian prior of the discriminatiye— : (0, w;0) 2 | . :
parameter. However, depending on the property of the featur o) 2 0(wi —vn)3p(O10)
space, a non-zero mean may be more appropriate. An approach | o™ log P(w)

to incorporate a more general Gaussian prior into SSVM

training is detailed. An important feature is that this prie Here {vi}{L, denotes for example all possible triphones in
used in a form that allows the cutting plane algorithm to J&e dictionary,é(w; — vy) is the Kronecker delta function,
directly applied. Using an appropriate prior can reduce tt#@dv(O;je) is the feature vector extracted for segments.
convergence time in large scale application. Furthermiore, (W) is the standardh-gram language model probability.
order to reduce the number of constraints during paramefifhough more general language model features can be ap-
optimisation on larger taskd-slack cutting plane algorithm Pended, they are not considered in this work. Fig. 1 shows
is used rather than the standareslack algorithm. To speed @n example of using equation (2) to construct a joint feature
up the training process, caching and parallelization esgias SPace for data paifO, w) given a segmentatiofl. Note that
are also proposed. Experimental results are presentedalh sifie position ofy»(O;;6) in the joint feature space depends on
and medium to large vocabulary CSR tasks: AURORA 2 art$ labelw;.

a. G0 (0, w:6)
0w =), [=
Il. STRUCTURED SUPPORTVECTORMACHINES _/ o < - [_]+[_] b
DenoteO = {0, ...,0r} as an observation sequence anc* Q. l-] [:] [-] .
w = {wi,...,ww} as the corresponding label sequence - - - ;
In SSVMs for CSR, the goal is to learn a weight vecter . { ; ; i) : _ﬁ: : =
A linear discriminant functionaT$(O,w) is then used to & i o [:.] oy
measure how well a label sequeneematches an observation =~ Ww: @& ek //’
sequencd, such that R ( log W) )

Fig. 1. Constructing thgoint feature space from feature space.

To map each variable-length segmént, to a fixed dimen-

is the recognized label sequence for a giv®n Here o Sional vectory(O;6), a feature spaces related to sequence
is the discriminative parameter vectap(O,w) is a joint kernels [27] can be used. Of particular interest in this work
feature vector characterizing the statistical depen@snoi are those sequence kernels based on generative models. As
the (O, w) pair. Unlike multi-class SVMs where a weightwell as yielding a mapping to a fixed vector size, these
vector a,, is used for each class to compute a score [24], generative kernels allow standard speaker and noise ditapta
SSVMs use goint feature-space and a single weight vectoBpproaches developed for CSR to be used to derive robust
a. To apply SSVMs to LVCSR three important decisionéatures [16]. There are a number of possible generative
need to be made: the form of the joint featurdd0, w) to kernel-induced feature spaces, (0;)9) that can be used to
use; efficient decoding algorithm based on the joint featurdorm thejoint feature spacey(O, w; 8). The simplest example
and the appropriate training criterion and efficient leagni is the log-likelihood feature space

algorithm. log pA(Olv1)

WA (0) = : 3
A. Joint Feature Space A(0) . 3)

. _ _ log pA(Olvw)
This section describes the features that are used by SSVM?ere A denotes the generative model parameters, and

for midmm an_cti_ Iarge_ CSR taslI;s. Fotf generale;o;trl]nuogi(olvk) is the likelihood for generative model;. This
speet(): refcogm !gln’ g||ven an o Sﬁrva 'ﬁn §e(:(1ju CENE  feature space concatenates the log-likelihoods from atletsy
number of possible classes, I.e., hypothesized Sentercesy | ,qing the correct model and competing ones, to yield

can be very _Iarge. To handle this Pmb'em* the Iapds a8ditional information from the observations. More gehera
decomposed into shared structure units, phonetic un“BS'Thfeature-spaces, such as derivative ones [28], can relax the
an additional level of hidden variabl@ that represent this conditional independence assumption

segmentation is introduced. In previous small vocabularyUsing the above joint feature-spaces the dot-product of the

systems [14], [26], the observations were segmented at t E-O w: §) and structured SVM parametercan be evaluated
word level, however medium to large vocabulary tasks d 2a2:cu’mulating every segment score [14]

Wo = argmax {aTgb(O, W)} ()

must be segmented at a sub-word level, such as phones |w] T

to yield complete vocabulary coverage. Given an alignmenia’ ¢(O, w; 0) = 5. a(®?) ¥x(0;j9) + '™ log P(w), (4)

6 that splits the observation sequence ifte| segments i=l

O ={0y,...,0jjg,..., 0w e}, With corresponding labels where o™ = [a(vl)T, T .,a(UM)T,al‘“] andw; €

w = {wi,...,wi,..., W}, WhereO;q is thei-th segment {v;},,. One elegant property of this joint feature space is



that it allows the standard HMM baseline to be obtained g characterize the dependencies (@, w) pair for thedis-

simply setting the value ak associated with the correct modekriminativemodel. There is thus a potential mismatch between

to be one and zero for all competing models (see (3)), i.e., tt6) and (7).

sparse vectors") = [10...0]",---, o™ =[00...1]7 The segmentation variab# should be optimised based on

ando!™ is the language model scaling factor. the discriminative models. For general feature-spacesnbt
When medium to large vocabulary CSR are considered thgressible to define efficient algorithms to achieve this. Hawve

is an issue with directly using this feature space with cantefor the log-likelihood feature-spaces (3) it is possibldeT

dependent phones. The set of all possible models?”, decoding formula (6) now becomes

yields a very larggoint feature space. Although in theory this

could be used, the number of discriminative model pararaeter {Wa,0a} = arg s {aT¢(0,w;0)}. (®)

Zgg(ﬁgzsﬂ:gg;ba\g%’a; r? (;O:fehzsd C\)I;féz Er(irp]i?svdo rll?. g:lc%oven the joint feature-space (2) a Viterbi-style algaritho

to reduce the dimension of the feature spdde) by selecting SONE’T equation (8) can be f".‘"?d- Ba;ed on equatmn (4) itis
a small set of “suitable” models. For example, instead afigisi possible to express the maximisation in equation (8) as

the full feature space, theatched-contexteature space of a {wa,0a} = 9
segmentO with the labela—b-+c can be used here as lwl M
log pA(Ola—a-+c) argmax { max > Zagﬂi) log pa(Ojjelvr) + o™ log P(w)
. i=1 k=1
P (0) = (6)

For the form of feature-space in (3) this expression is eelab
factorial HMM inference [30]. The search process (9) can be
split into two distinct terms. First given a segment the sdor
This reduces the dimensionality of the feature spgoe:) each model, the log-likelihood and the score for the languag
from the number of context-dependent phones to the model need to be computed. This is the standard forward-
number of monophone¥/;. The second approach is to reducgackward algorithm for HMMs. The second is obtaining the
the dimension by tying the discriminative model parameter gptimal segmentation which requires a modified two-stage
using a phonetic decision tree [29]. For exampleyiindv;  \jterbi search. This process is illustrated in Fig. 3. The
belong to the same leaf node in a decision tree, ti&h and phone HMMs are shown in parallel witBynchronisation

") are tied. Thus the dimensionality of joint feature spaggoints shown in black which are determined by the segment
reduced ta\/, x M, +1, whereM; is the number of leaf nodes hgoyndaries.

in decision tree. This is illustrated in Fig. 2. In this workly HMM-1
and M, are both set to 47, the number of monophones.

log pa(Ola—y+-c)
log pa(Ola—z+c) Ay

context eee
m ¢(O, W; 0)

a-at+a | wm a-a+c (- =) m) (m) (=
e = e [-]+ - _> [-]+[-]+ D E
a-a+c - a-z:+c = = tled = = - 200 —p i LN
a-z+c || mm i i

; H H et HMM-M t
z-z+4z || = - = log P(W) Fig. 3.  Decoding procedure illustration. The black circieslicate the
. S i synchronisation points where th®/ HMM log likelihoods and language

| em—— o MM, +1 model score are merged.
“a-b+c” L 102 P(W) Jar o +1

This search process is similar to a semi-Markov search
process [31]. The best score (and alignment history) foballa
sequencewv ending withw’ at timetg, is stored a&pg’: ),

B. Inference with optimal segmentation (') -
. ) , pr. =maxa' ¢(Oq.,,w;0). (20)
The joint feature space described above is based on a spe- * w,0
cific segmentatiord. In SCRF [12], CAug [13] and LLM [14] Gijyen this timet,. (the start time of current decoding seg-
based systems, the segmentati@hs, are typically generated meny) the forward score up-to timtefor each modeby, is
using standard generative model HMMs. These segmentat|%§nputed at the end state of that modek px(Os,, .c|vr).

are fixed for both decoding and training. For inference thighe pest score for a label sequence ending witt time ¢

Fig. 2. Selecting matched context and discriminative patemtying.

yields can then be expressed as
Wa = argmaxa’ $(0, w; 03), ©) ot = max Lol + s o QD)
where@y = arg max P(0|w)pA (0|0, w). (7) . u
— (w)
Equation (7) can be solved when HMMs are used using theWhere St w) = (tw) = ,;1 oy 10gPA(Orgritlvr) +

Viterbi algorithm. Although@, is the optimal segmentationa'™ log P(w|w') is the score for segmentt.s, w’) : (t,w)
for the generativemodel, it may not be the best segmentatiowhich can be computed using the forward-backward algorithm



Optimise reference segmentation
T

andts, € [0,¢— 1]. By running the above Viterbi-style search
from time1 to 7' the optimal sentence and segmentation can be ® 'E
obtained by tracing back the model and time index maximising 7 i

(w\w\)
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Convex Optimisation

The complexity of the above process@MT?). Pruning
options are available, e.g., limiting’ in (11) to the topN
models with highest scores and constraint the look-back tim

tst to last7 frames. Additionally, more efficient approxima- % 7

tions, e.g., Gibbs sampllng and Yarlatlonal methods [m}]d: Fig. 4. The illustration of Step 1 and 2 in Algorithm 1 for joilearning the
be used to reduce the computation load. However these are g@dmetersx of structured SVM and optimal segmentatiég, for CSR.

investigated in this work.

where¢, > 0 are the slack variables ant{w"}, w(") is the
loss function between the referen@ézi and its competing

, ) , . hypothesisw("). The constraints in equation (16) can be
The previous section has shown that giverthe optimal . 7ineq as follows. For every training pai©™), w(7)),
alignmentd,, can be inferred. However, during training bo.”}he best score of the reference pair should be greater than al
a and@ are unknown and depend on one another. The Opt'%mpeting pairgO™), w(") by a margin determined by the

alignment may vary with; and adjustin_g the alilgr_lment.s ,Wi" loss. However the number of possible competing hypotheses
affect the optimal value odv. In this section, the joint training w(") is huge. Therefore, the challenge is to solve an optimisa-

of the structured SVM and the optimal alignment is describq%n problem with a large number of constraints, although th

C. Large Margin Training

with a large margin criterion.
The training data consists of paif© ("), w'’) le, where
0" is ther*™™ observation sequence amﬂ is its reference

number of active constraints that affect the solution istéich
Substituting the slack variablg. from the constraints into
the objective function, equation (16) can be reformulated a

label sequence. In a similar fashion to the latent SVM [32] arthe minimisationof

structured SVM [20], [33], the parameters and hidden véemb
can be jointly trained by solving the following optimisatio
problem:

R
1, ., C
mip gllel® 7 26

s.t. For every utterance=1,..., R,

(16)

For all competing hypothesig” # w(") :

{aqu(o(T), wr). 0<T>)} {aqu(:)e(fr), W, g(m)}

max
a(r)

> ‘C(Wl(r:%a W(T)) - gTv

— max
o

concave

1 C & ") ot

SllalB+= > [~ max (aT¢(00, wii:0™))  (7)
+ max {E(wgi,w)+aT¢(O(T),w;0)H
w7£wr:f70 +

convex

where] |, is the hinge-loss function. Because of thex(-),

the objective function is non-differentiable and non-sthoo
However, the maximum of a set of linear functions is convex.
Therefore, the objective function in equation (17) comgsis

Algorithm 1: Structured SVM learning algorithm for CSR.

Algorithm 2 : 1-slack Cutting plane algorithm [20] for Eq. (13)

0. Initial: a = [1,0,0...] and6) = 6" ;

1. Fixing o, optimise the reference segmentatién”

for each training paifO™, w'")) using the Viterbi-style
algorithm in Section II-B:

(r). 0(7‘)

ref’

(r) — T (r)
(7 —argrggfi{a d(0OV) w )}, vr o (12)
2. Fixing 0,(;), optimise a by minimizingthe following
convex upper bound ((17A (13)), using the cutting

plane algorithm in Algorithm 2:

linear
R

1 2 c T r (r) . p(r)
Sllali+ 2> [—aT¢(0"), wik:60) (13)
r=1
+ max {Lw,w)+aT$(0"), wi6)} |
+

w;éwxf) ,0

3. go back to Step 1 until converge;
return « ;

Input: {(0), w("): 05"}, , C and precisior;

Initial empty constraint set?” « ;

repeat
/* solving the 1-slack QP using current constraint set */

1, C
(en§) —arg min Slaff + ¢ a4

R R
STY W/ :a' Y A¢™ + Y £(wll) W

Yh<e

1
_ ¢>(O<T)7wm'

ref)

r=1 s
whereAg™) = ¢(0™), wS”;657) %))
for r = 1..R do /* generating best competing hypothesis: */

v~v((;) s éfj) «— arg max

w,0

{E(w,w(r)

ref

) +a’ @0, wi6)} (15)

end
W —w u{wS,05}E ;¥ putitin constraint set */
until  /* no constraint can be found that is violated by more that
R R
al 3 A0 + 3 Liwiy, Wi)) < €+¢
r=1 r=1
return o




concave and convex parts. To solve this non-convex optiargin for the log linear models is defined as the log-posteri
misation problem with respective ta in equation (17), an ratio of the referencevﬁ’;ic and best competing hypothesig

algorithm based on the concave-convex procedure [32], [3g illustrated in Fig. 5, large margin training for log limea
is proposed in Algorithm 1. It works similar to the iterativemodel can be expressed @mnimising

process of EM. First, the optimal reference segmentation 1 R

6% for the current parameter are found in Step 1. This Fron(e, A) = R’ Zml (19)
corresponds to finding the linear upper bound of the concaye P(w(r) 100): 0., )

term of equation (25) as shown in Fig. 4. Second, with thF max {L(wﬁ’;},w) — log ( ret e © )H
current reference segmentatieﬁ"), the optimal value ofx wAW, P(w|O™; 8, @) +

based on (13) is found. These two steps can then be repeated. ) . o
The objective function in equation (13) of Algorithm 1V\(here£(wref,w? is a loss f_unct|0n_|ntroduced to f:ontrol the
is convex ina, however, solving this problem is not trivial SiZ€ Of the margin and - ] is the hinge-loss function. There

because the criterion is non-differentiable. Existingoaitthms are two sets of pa_rameters for LLMs, discriminative parame-
for this problem fall into two groups. The first group of a|g0_ter3a and generative model parameter$o extract features.

rithms use generalized gradient-based approaches: slitxgra One general extension_ o_f t_hi_s criterion is to incorporaterpr
methods [35] and exponentiated gradient methods [36]. The®): £(A) and thenminimising

second group uses the cutting plane algorithm Whigh dpes not]_-(m A) = Fulan ) — log (P(a)) — log (P(N)).  (20)
take a single gradient step, but always takes an optimalistep

the current constraint set [20], [37]. In this work, theslack [N this work the generative model parametexsare assumed
cutting plane algorithm summarized in Algorithm 2 is uset have been trained and fixed. (19) can then be expressed as
to solve this convex optimization problem. Here the quadrat 1 & () 1 (1)
programming optimisation (14) only has 1-slack variabtee(s 7 (@) = —log(P(@)) + R Z [_ 10g P(Wyet |0V o, )
section IV-A for details). The algorithm iteratively constts a r=1

working set#” of constraints. In each iteration, it computes the | 5% {E(w,wﬁ’;)f) +log P(w|O"); 4, a)}} (21)
solution over the current set” (14), finds the most violated w£w!r) +

constraint (15) 6"(;)’ 0 are the best competing hypOtheSiﬁ'he prior P(«) is assumed to be Gaussian with a zero mean
and its optimal segmentation), and adds it to the working set

) . : aéwd scaled identity covariance matiiXI, thuslog P(a) =
This 1-slack algorithm stops when no constraint can be fourllogN(O CT) x —LaTa. Substituting equation (18) into
e . . , b Te] .
that is violated by more than the desired precision (21) with this prior assumption anchnceling outhe normal-

D. Relationship with Log Linear Models ization terms in (18), yields the objective function (17hig

Just as SVMs can be interpreted as large margin |Ogi5§léggeStS that the structured SVM used in this work can also

regressions [38], the SSVM can be viewed as large margin Ioe .V'eWEd asa Iar_ge margin trained log linear model with an
oﬁtlmal segmentation.

e, oSt of 00 Inear el (a1 s ron-ifrenale because of e
' function. Thus gradient-based algorithm cannot be diyectl

_exp (aT¢(07w; 0a)) applied. One suitable algorithm to train the large margiftLL
B Y exp (aT¢(0,w';0.))’ is described in Section II-C. It is also possible to apply #-so

w’ max approximation to this objective function, for examgie t
where 6 is the best segmentation that maximises posterigirge margin [9] and boosted MMI [40] training for HMMs.
probability P(w|O; 6, av), i.e.,6, = argmax a'¢(0,w;6). This yields a differentiable objective function. Howevéist
Decoding with this log linear models can be simply express@@proximation minimises an upper bound of equations (21)

P(w|0O;0,, @) (18)

as rather than the criterion itself
wWo = argmax P(w|O; 04, 1 i r
o = argmax P(w|0; 0, @) Fla) < ~log(P(a) + 5 Y [— log P(w\e}|0"); 0a, )
= arg max{ max a0, w; 0)} r=1

ref

(r) (r).
This yields both the optimal word sequence and alignment and’ log { ; P (ﬁ(w’ v )) P(w[O™; ba, a)}} n (22)

is equivalent to structured SVM inference in equation (8). ) )
In order to robustly train a model which has good generalus equation (22) a”‘?‘WS 9rad|gnt-based approach to be
ization in a high-dimensional space with limited data, ¢éarg@PPlied, but it is not the “real” maximum margin in (21).

margin based approaches can be applied [17], [39]. If theThe log linear model described above only uses the “most
likely” segmentation. Alternatively, “all possible” segmta-

competing w reference w'”) tions could be considered. This turns the equation (18)¢o th

\Margin i SCRF, or CAug model [41],
W3 ;; 2—3¢ ' >log P(w|O; a)

i\ Log Posterior of LLM . 20: exp (aT¢(07 w3 0))
P(w|O;a) = S oxp (aT B0 W 07)) (23)

w’ 6’

Fig. 5. The margin of log linear models is defined in log pastedomain
betweenw,.s and the best competing hypothesis



Substituting (23) into the large margin criteria (21) wiald  Algorithm 3 : Structured SVM training with Gaussian prior
to a more complex concave-convex object, which can also D&y “njtial: & = [0,0,0.. ], & = [1,0,0.. ]
solved using the proposed Algorithms 1 and 2. This form of
model is not investigated in this work.

1. Fixing a, optimise the reference aIignmenﬁg), Vo7,

0\ = arg max{ (a+p) o0, wil: 0("))}7 (28)

[1l. FORM OF PRIOR o)
The previous section has shown that when training stan-2. Fixing 0(02‘), optimise & by minimizing

dard SSVMs, an implicit assumption is made that the prior 1, _ » C & T ) (). ()
distribution of o is Gaussian, with zero mean and identity §||a||2+§;1 [_a A0, Weei; 0a7) (29)
covariance matrix. However, for the feature space defined in
equation (3), the prior meany, should be non-zero. One
appropriate form of prior mean is the one that yields the HMM I o .
baseline performance where where L(w,o, w) = ' Ap'™ + L{Wrep, W) .
& in problem (29) can be learned using Algorithm 2.

+ max {L(wli),w)+a" (07, w;6)}]
wetw(™ o +

ref

T L 1
0,w:0) = 1 ( O|w: \)7= P ) . )
argn“l;%xu ¢(0,w:6) RS HE08 p(Olw; A) (w) 3. go back to Step 1, until convergeturn a = & + u;

The value ofu should thus be one for the correct class, zero

otherwise, for example class, (") = [1,0,...,0]T. This
motivates the need for a more general large margin trainingOne interesting property of (25) is that everaifis not well
scheme that incorporate a general Gaussian pfigr) = trained, e.g., in the early training interation, with a peop
N(a;p, X) into SSVM training. Thus, the SSVMs trainingthe algorithm will still generate sensible competing hyysts
in equation (17) can be generalizedrtonimise and segmentation using equation (27). This is particularly
. o& helpful in reducing the convergence time in medium to large
5(oz—,u)TE’l(oz —m)+ > [— Igl(%aTMO‘”,wiQ; 6")  vocabulary CSR (see Section VI-B for more details).
r=1
+, max {L(wg‘;w) +o¢T¢>(O‘7‘),w;(9)}]+ (24) IV. | MPLEMENTATION |SSUES

An efficient implementation of the training algorithm is
ﬂ%portant for medium and large vocabulary speech recagniti
i systems. In Section Ill, a prior was introduced that helped
can always be decomposed and merged into the feature sp Hlce the number of training iterations. In this sectioress

. — 1 .

Iloy tllffmg trinst:]orr?ed lflfalt.lﬁreﬁ((jof’ Wt’ 9) = 2:2¢(0, W’g)t' bdesign options are described that have a substantial ic#guen
n this work, the log-likelinood features areé assumed 1o e, computational efficiency. To reduce the memory cost,
consistently scaled, so tha = CT is a reasonable ap-

o - o slack optimisation is used as an alternativetslack optimisa-
proximation. In order to utilize the training framework leds P P

. L tion. To reduce the training and decoding time, a latticeelda
on equation (17), it is necessary to transform the parametghiciem search is proposed

a = (a — p). Reformulate equation (24) in the form of (17)
1, & A. 1-slack optimisation
§||a||2+§2 There are two forms of cutting plane algorithms [26},
o slack and 1-slack algorithms. The algorithm used in thiskyor
© max {L(wﬁQ,w)Jr(a+u)T¢(O<7')7W%9)}] and described in Algorithm 2, is the 1-slack version. An
10l 0 . advantage of thel-slack algorithm is that the number of
Minimising equation (25) can be solved using Algorithm Fonstraints and support vectors generated is much smiadler t
and a modified version of Algorithm 1. Similar to Algorithmfor then-slack case [20]. In theory, the-slack algorithm can
1, once the optimal reference alignmedif’ is given, then @dd I constraints at every iteration, where is the size of
equation (25) can be expressed as (29) which is exactly f@ning set. Converse}Ly, the 1-slacl§%alggrlthm adds attraos
same form of (13) with a new score-augmented loss functigingle constrainia™ -, A+ 30 | L(win, wd) < €,
per iteration (as shown in Algorithm 2). For example, in AU-
RORA 4 experiments, 1-slack algorithms produced less than
(26) 300 active constraints, whereasslack algorithms produced
score loss  transcription loss more tharns0, 000 constraints after 20 iterations (still far from
pg converge). This makesslack algorithms impractical for
arge vocabulary CSR, since each constraint includegia
dimensional joint feature vector. 20 iterationsrotlack opti-
misation required more around 18G of memory for AURORA
{Wa, 00} = argmax ((d + u)T é(0, w; 0)) . (27) 4. This rapidly becomes impractical using the current cot@pu
w6 infrastructure. Thus for AURORA 4 experiments, only the

'Raising a fractional power— on HMM likelihoods known as acoustic resu!t of 1-slack algorithm (with proper prior) is shown in
deweighting [6]. " Section VI-B.

This new expression is still concave-convex as long
the matrix X! is positive definite. Note the matri—!

—max {(a+ )" 907, w0} (25
o(m)

WHEW.

—_—— —

ref’ ref’ W)

1T Ap(") can be viewed as an acoustic and language sc
loss, whereAg™ = (0™, w;:0) — (0™, w05,

sy YWrefs

Inference with SSVMs based al can be written as
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Fig. 7. The diagram of training and decoding for SSVMs.
Caching Another interesting property aboixslack algorithm
(Algorithm 2) is that constraints depend oEfZl A" B. Efficient search
instead of individuals(O("), w; 85). Thus, the competing  Theoretically, the large margin training criterion dissee
hypothesesvg) can be involved in the set of active constraintth the previous section can be directly applied to train the
many times. To avoid the computational cost of repeatediyodel parameter. In practice, to make the algorithms appli-
searching for (the sama?(of) in the large space (or lattice),cable to larger vocabulary systems additional speed ingrov
the 10 most recently useqb(O("),vv(of);é(of)) for each training ments are required. There are two search sub-problems that
sample are cached. Therefore the search process for the basst be solved efficiently (see Fig. 7): the best reference

competing hypothesis (15) becomes segmentation equation (12) in Algorithm 1 (or (28) in Al-
forr=1,...,Rdo gorithm 3); and the best competing hypothesis/segmentatio
w{) « search equation (15) in the caches equation (15) in Algorithm 2. By using the approximate MPE
end for loss [19] it is possible to approximate the IoS$w§2¢,w)
if ZRzl A" remainsthen at the segment level and incorporate it into (11). These two
vVJ) — search equation (15) in decoding spae, _search problems can thu_s be_ solved using the Viterbi-style
end if inference algorithm described in the Section II-B.

. . . Lattices constrained search In small vocabulary speech
The aim of the.cachlng stra}tegy IS to reducg the number |%cognition task, it is feasible to search all possible sagm
callslto search in the decoding space (or Iat'uce?. tations and competing hypothesis in the two search problems
Pruning For both then-slack and 1-slack algorithms, con-owever, it is not practical for larger tasks because of dngd
straints added to the working set in early iterations often bgag,ch space of all possible and@. Similar to discriminative
come inactive later. These constraints can be removed With‘?raining in [19], numerator and denominator lattide®™ and
affecting the final solution. This is practically useful @it 7y aen 5y generated to restrict the search space. Then a lattice-
leads to a relatively smaller QP problem to be solved in latghseq search algorithm is used to find the best competing
iterations. In this work constraints that have not beenvactipath (hypothesis) among the lattices. The MPE approximate
for 50 iterations are pruned to reduce the memory cost.  |oss [19] is computed at the arc level. Fig. 8 shows a lattice
ConvergenceAccording to Theoren2 in [34], iterating step search where: is a node in thé.*®, »’ is one of its previous

1 and step 2 of Algorithm 1 is guaranteed to monotonicallyodes, andp,, is the best path score at node Thus, the

decrease the objective function (17) and will converge tgest competing path (hypothesis) in equation (15) can tieen b
a minimum or saddle point. For the AURORA 2 task, theound using the following arc-level recursion

criterion value for this algorithm against iteration is shmin
Fig. 6. Every point in Fig. 6 is a minimum solution of the QP P = max {pn + sp—n} (30)
problem (14) in Algorithm 2 under a set of constraints. The .

criterion is increased because the cutting plane algoriteps Whergan,} is the segmental score fc_;r the arc betweéand
adding more constraints to the QP [20] to get closer to tfe This lattice based arc-level Viterbi search is a degesdrat
“real” minimum. However wher!” is updated the objective Version of (11). Similarly, equation (12) can also be effitie
function drops because the linear part of (13) decréaseiearched in the numerator lattige™.

The gap between the solid curve and dashed curve indicé Lattice-based forward propagation @ Lattice-based backward trace

the differences from optimising the segmentatiénin (13),
compared to the one obtained from the generative mayel,
in (7).

Tracing
the max

2The object drops also because the set of previous constrdistarded.

Although in theory the previous constraints could be kemtiplementation ) )
simplicity this was not performed. Fig. 8. Inference based on the lattices using arc-level dodvbackward

algorithm.



o — TABLE ||
Parallelization. For large scale applications, the computa-\yroRA 2 ResULTS(WER %)0F VTS BASED HMM, M ULTI-CLASS

tional load during training is dominated by finding the bestSVMs(MSVM) [14], LOG LINEAR MODEL (LLM) [29], AND SSVMs
competing hypothesis/segmentation. For theslack algo- USING7-SLACK ALGORITHMS.
rithm, in order to run in parallel on many machines, the Model [[Param.]| Criteria _[[Set A[Set B[Set C [[Avg. ]

sequential update mode of the standard cutting plane ghgori [HMM-VTS [[ 46, 732 || ML [ 98191 95 [ 95]
needs to be modified to a batch-mode update. Note that for theV'SVM +144 LM 83 ] 81| 86 | 83
n-slack algorithm, this parallelization will decrease treefpr- LLM +144 CML 811 77| 83 | 81
mance slightly [26]. However thel-slack algorithm used in L_SSYM || *144 ||LM (n-slack)] 7.8 | 7.3 | 80 || 7.6
this work can be easily parallelized without any degradgitio TABLE 1li

AURORA 2RESULTS(WER %)0OF VTS BASEDHMM, MSVM, LLM
AND SSVM (n-SLACK) IN DIFFERENTSNRS CONDITIONS

SNR Set A Avg. of Set A, Band C
(dB) |[HMM [MSVM [ LLM [SSVM]| HMM [MSVM [LLM [SSVM

performance. Paralleling the loop for equation (15) wikide
to a substantial speed-up in the training process.

V. ADAPTATION

In speech recognition, the acoustic conditions duringntrai | 15 | 24 | 20 | 19| 18 | 24 | 20 | 20| 18
ing and testing are seldom matched (due to inter-speaker
variability, intra-speaker variability, background meisand 00 || 20.6| 25.1 | 24.9| 239 || 285 | 254 | 245| 235
channel distortions). For HMMs, a range of model adaptatioffaig | 98 | 83 [ 81] 78 || 95 | 83 | 81 76 |
researches have been devoted to handling this problemasuch
maximum likelihood linear regression (MLLR) [42] and Vec-and modeling the prior. The AURORA 4 experiments are used
tor Taylor Series (VTS) [43]. When applying these concepts to illustrate the performance of the proposed SSVM framé&wor
SSVMs there are two options. First, the discriminative mod&r medium vocabulary speech recognition. The 5K Wall Stree
parametersa” = [a®)",... a®T] can be adapted.Journal (WSJO) data, the clean part of AURORA 4, were used

However with very limited data in the target domain, in thes® €evaluate the performance of SSVMs excluding the noise
experiments a single utterance, this is very difficult. affects.

_ _Alternat|vely, the HMM parametera assoma_ted with the A. AURORA 2

joint feature space can be adapted [16]. In this work VTS is ) ) L ]
used to handle background noise. Considering only thecstati AVRORA 2 is a small vocabulary continuous digit recogni-

elements of the acoustic models, the compensated mearr vetig§! task. The vocabulary sizé/, is only 12 (one to nine, plus
and covariance matrix of component of the generative 20 oh and silence). The utterances are one to seven digits
model A are given by long based on the TIDIGITS database with noise artificially

added. The 8440 clean mixed-gender training utterances wer
(™ =Clog (exp(C'l(u}({m) + ) +exp(C'1un)) used to train the acoustic generative models (HMMs). 39

dimensional observations consisting of 12 MFCCs appended
B =gt 4 (1= J0) S (1= )T with the zeroth cepstrum, delta agd delta-delta coepfﬁsient
Whereu}({m) andz}({m) are the “clean” speech Component meawere used. The generative mOdelS, HMMS, were 16 em|tt|ng
vector and covariance matrixl andm En and [y, are the states whole word d|g|t mOde|S, with 3 mixtures per state.
additive and convolutional noise parameters respectiv@ly All three test sets, A, B and C, were used. For sets A
is the DCT matrix andl™ is Jacobian matrix consisting ofand B, there were a total of 8 noise conditions (4 in each)
partial derivatives of noise-corrupted speech with respec at 5 different SNRs, 0dB to 20dB. For test set C noise
clean speech [43kxp() andlog() are element-wise exponen-convolutional distortion was also added. Set A was usedeas th
tial and logarithm respectively. The noise model paransetee development set for tuning parameters for all systems, asch
estimated using maximum likelihood estimation [44]. Thus ithe penalty factoiC’ in SSVMs. The parameters of SSVMs
the target condition the parameters of proposed SSVMs cifre trained using the same subset of the multi-condition
be assumed to be speaker and noise-independent, wherea§@ing data as [16]: three of the four subsets (N2-N4) and

HMM parameters and joint feature spaces are speaker dRtge of five SNRs (10dB, 15dB, 20dB).
noise-dependent. To evaluate the benefit of the proposed SSVMs framework,

a range of configuration were compared. The baseline genera-
VI. EXPERIMENTS tive system was HMM based with VTS compensation. These
This section describes the evaluation of the proposed SS\Wdmpensated HMMs were also used to derive: the noise robust
algorithms described in previous sections. To illustrdtat t joint feature space; the word-level segmentation for théimu
the proposed SSVMs can be adapted to the mismatchiass SVMs; and the lattices for the structured SVM training
acoustic condition, the noise-corrupted corpus AURORA and inference. For all configurations the joint feature spac
and 4 were used. The AURORA 2 corpus is used to contragas based on appended-all likelihood features (3). For this
between the performance a@fslack andn-slack algorithms, task no language model was used. The performances of VTS-
and demonstrate the gains from optimising the segmentaticympensated HMM, the log-linear models proposed in [29],

3Because in the sequential modeslack algorithm« can be updated after ~ 4This allows the generalisation of the SVMs, LLMs and SSVMsitseen
every training sample. This allows the algorithm to potahti find better noise conditions to be evaluated on test set A as well as #iesé¢s B and
competingw for the subsequence samples, but it can not be parallelized. C, as no data from noise condition N1 and SNRs 5dB and 0dB wsed.u



TABLE IV TABLE V
AURORA 2RESULTS(WER %) OF SSVMS TRAINED USINGN-SLACK AURORA 4 RESULTS BASED ONVTS-COMPENSATEDHMM s. FOR

ALGORITHM WITHOUT/WITH OPTIMISING 6 AND 1-SLACK ALGORITHMS SSVM, s MEANS LARGE MARGIN TRAINING ox WITH GAUSSIAN PRIOR
WITHOUT/WITH GAUSSIAN PRIOR(ALG. 3+2). SVIS SHORT FOR (ALG. 3+2). ALL POSSIBLE HYPOTHESISW AND SEGMENTATIONSE ARE

SUPPORT VECTORS RESTRICTED BY LATTICES GENERATED BYHMM-VTS.

[ Training Algorithm 1@ [# SV]  Set A[Set B[ Set C [Avg. | — Test Set WER (%)
n-slack [14] 9~ 629 78 | 73| 80 || 7.6 Model | Paramy  Criterion == | A9
?-Sllaclf ([ifl 12) za 62492 ;-g ;é ;-g ;‘51 [HMM-VTS [[3.98M || ML [7.1]15.3[12.2[ 23.1][17.8|
-slac g. o . . . .
1-slacky (Alg. 3+2)[ 6. | 30 || 75 | 7.0 | 7.9 || 7.4 LLM | +2210 fﬂ“é'é ;é ﬂ'; ﬂ% ggg i;'i

[ SSVM [ +2210]]LM (1-slack)[[7.4] 14.2[11.3]21.9] 16.8]
multi-class SVMs [14] and SSVMs with different training

; Tl ; TABLE VI
algorithms and criteria are shown in Table Il and IV. The AURORA 4 RESULTS BASED ONVTS ADAPTIVELY TRAINED HMM .

log-linear model (LLM) was trained withl., regularization. (| possisLE HYPOTHESISW AND SEGMENTATIONS6 ARE RESTRICTED

For reference, the detailed results on different SNR of Set A BY LATTICES GENERATED BY HMM-VAT.

are also shown in Table Ill. o Test Set WER (%)
Examining the results in Table Il shows that the structured Model Criterion A[BJC]D Avg

SVM achieved the best results among all the systems. TheHMM-VAT | ML [[8.6]13.8[12.0]20.1][16.0]

multi-class SVM is an unstructured model where the observa LLM CML 7.8]13.6]11.3]20.2][15.8

tion sequence is first segmented into words based on HMMs MPE 7.7113.5/11.2]20.0]| 15.7

and individual “segmented” words classified independently [ SSVM [ LM (I-slack) [[7.5[13.3[ 11.1]19.6][ 15.4]
The difference in performance between the structured SVM
and multi-class SVM systems shows the impact of fixing tH&aining and test data. To compare with the log linear model
segmentation rather than including structures in the mddel ~ Proposed in [29], the joint feature space of the SSVMs fodlow
overall gain from using SSVMs over the VTS-compensatdfe same setup as in [29}7 x 47 dimensions. In the first
HMM system was over20%.°> Note that the number of three configurations, both the log linear models and SSVMs
parameters in HMM and proposed SSVM system are in tie trained on the multi-style data. Evaluation was peréatm
same range—more thath, 000 for HMM and 144 more for using the standard 5000- word WSJO bigram model on four
SSVM. Thus, the improvement obtained were not just tmpise—corrupted test sets based on NIST Nov'92 WSJO test set
result of increasing parameters. Test set A is clean, set B has 6 types of noise added, set C has
Examining the results in Table IV, the first two lines shohe channel distortion introduced (desk-mounted secgndar
that optimising the segmentation yields small, but comsist microphones recorded) and set D has both additive noise and
gains, in performance over using the HMM-based alignme@fiannel distortion. The average SNR in noise-corrupted dat
0, about3% relative reduction on average. The results algg 10 dB. Set B is used as the development set for tuning
show the benefit of using thie-slack algorithm as the WER parameters of all systems.
are almost the same with-slack algorithm but with far fewer ~ The first configuration used clean trained HMMs with
support Vectorszg Compared W|t|'629) and less memory cost VTS compensation. Table V shows the AURORA4 results of
(83M compared with 922M). Small gains are also observéxSVMs trained with a general Gaussian prior (Algorithm 3).
when training SSVMs with general Gaussian prior using The mean of the prior was set as the parameters of CML
slack algorithm (last two lines in the table). The mean dfained log-linear model. The log linear models [29] and

Gaussian prior is set as thelearned using-slack algorithm SSVMs based on the sam210 (47 x 47 + 1) dimensional
(the second last line in the table). joint features. Compared to the CML trained LLM, SSVMs

yielded a3.4% relative reduction in WER. For this task, the

B. AURORA 4 n-slack algorithm cannot be applied due to memory issues

AURORA 4 is a medium vocabulary task based on the Weiore than 18G required) described in Section IV-A. The
Street Journal (WSJ) data. Four configurations of canoniGgck algorithm without a proper prior is also impracticatiae
HMMs were considered. The first repeats the previous setdgmber of iterations becomes very large for this size offieat
where the HMMs were trained using clean data (SI-84 WSd@ace (over 1000 iterations were run without convergence).
part, 14 hours) and used with VTS compensation. In thghe only algorithm that can be applied is the proposethck-
second more advanced systems VTS-adaptive training (VAL)algorithm (it converged in 258 iterations), as the priodgse
was used to obtain the canonical HMM [45]. In the third MPEensible model parameters when there are few constraints as
and VAT training was used to obtain the canonical HMMjescribed in Section Ill. For small vocabulary tasks, ssiarg
[46]. In the final experiment clean trained HMMs withoufor the best competing hypothesis and segmentation ishleasi
VTS are applied to demonstrate the performance of SSVMgwever, it is not practical to do this in AURORA4. Therefore
excluding the noise affect. For all setups the HMMs wereestatthe search space of all possible 6 here are restricted by
clustered triphones (3140 states) with 16 componentsiméxt the |attices. Given the lattices, the decoding complexitié
Four iterations of VTS compensation were performed for thesyyMs and HMMs are in the same order of magnitude.

5 . . _ The second configuration used a VTS adaptively trained

The proposed SSVM based on the “uncompensated” HMMs is al

evaluated. The performan&.8 on set A. Comparing with “uncompensated"?Q/AT) HMM SYSte.m: the in this conflguratlpn both the gen-
HMMSs baseline43.8, a consistent improvement is achieved. erative and discriminative models were trained on mulisty




TABLE VII
AURORA 4 RESULTS BASED ONMPE-VAT TRAINED HMM s. ALL
POSSIBLE HYPOTHESISV AND SEGMENTATIONSO ARE RESTRICTED BY
LATTICES GENERATED BYMPE-VAT HMM s.

o Test Set WER (%)
Model Criterion ATB[C[D Avg
[HMM-MPE-VAT || MPE  [[7.2][12.8[11.5][19.7] 15.3]
| SSVM _ [[LM (I-slacky)[[6.9] 12.7] 11.2] 19.4] 15.0]

TABLE VI
WSJO0 RESULTS BASED ON MAXIMUM LIKELIHOOD TRAINED HMM . ALL
POSSIBLE HYPOTHESISV AND SEGMENTATIONSO ARE RESTRICTED BY
LATTICES GENERATED BYHMMSs.

[ Model ] Criterion | Test Set WER (%) |
[ HMM ML I 7.3 |
[ SSVM [ LM (1-slacky) ] 6.8 |

data. Table VI shows the performance of the baseline VAT
system, the log-linear models [29] and SSVMs based on the

same2210 dimensional joint features. These features were ex- The authors would like to thank Toshiba Research Europe

10

likelihood feature space, a non-zero prior may be more ap-
propriate. This assumption is relaxed by incorporating aemo
general Gaussian prior into the large margin training ddte
in a form that allows the cutting plane algorithm to be dilect
applied. Finally, to speed up the training process, stieseg
such asl-slack algorithm, caching competing hypothesis and
parallelization are proposed.
The performance of SSVMs was evaluated on AURORA 2
and 4. Significant gains are observed over both HMMs and log
linear models. In this work the generative model parameters
A, are assumed to have been trained. Joint learfilgx} in
the large margin framework will be investigated in the fetur
Future work will also involve the kernelization of the praeal
structured SVM to support high dimensional feature spaces
such as the derivative feature space [28].
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V (line 1) shows gains of abow% absolute. In comparison
with the HMM-VAT system and LLMs, the SSVMs gain on
average about% and2% relative improvements. a

The third configuration used an MPE and VAT trained
HMM system. In this configuration the generative and dis-
criminative models were both discriminatively trainedbfea  [2
VII shows the performance of baseline MPE-VAT HMMs,
the log-linear models [29] and SSVMs based on the same
2210 dimensional joint features. These features were extractdél
using likelihoods of MPE-VAT HMMs. In comparison with the
MPE-VAT HMMs, the proposed SSVMs on average yield
relative improvement.

In the fourth configuration both generative and discriminars)
tive models were trained and evaluated on the clean part of
AURORA4 (the standard 5K WSJO setup). SSVMs were basig]
on the same210 dimensional joint features. These feature
were extracted using likelihoods of clean HMMs. The WER
(%) of the clean HMMs and proposed SSVMs are shown in’]
Table VIII. ® The relative improvement i8%.

(4]

(8]
VIl. CONCLUSION

This paper has described a structured SVM framewor[?]
suitable for medium to large vocabulary speech recognition
Several theoretical and practical extensions to previooik w !
on small vocabulary task [14] are reported. First, the joint
feature space based on word models is extended to alldi
context-dependent triphone models to be used. Second; sifg
the joint feature space requires the segmentation of frames
into words/subwords to be specified, an optimal segmemtatid3]
approach is described. Third, by interpreting the strle:dur[l4]
SVM as a large margin log linear model, illustrates an imiplic
assumption that the prior of the discriminative parametea i
zero mean Gaussian. However, depending on the definitiontb¥

6Note the HMM performance 7.3% in Table VIII is slightly worsean
7.1%, the VTS set A result in Table V, because VTS on clean idadatually
performing utterance-dependent normalisation.
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