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Abstract—This paper describes a structured SVM framework and decoding [8]. In previous work with structured SVMs, a
suitable for noise-robust medium/large vocabulary speechecog- small vocabulary noise corrupted digit string recognitiask
nition. Several theoretical and practical extensions to pevious 55ed on whole-word HMMs was examined [4], [8].
work on small vocabulary tasks are detailed. The joint featue Thi tends th . f K of structured
space based on word models is extended to allow context- IS paper extends theé previous framework o structure
dependent triphone models to be used. By interpreting the SVMs to handle medium/large vocabulary continuous speech
structured SVM as a large margin log-linear model, illustrates recognition tasks. By interpreting the structured SVM as a
that there is an implicit assumption that the prior of the |arge margin log-linear model, illustrates that there isiran
discriminative parameter is a zero mean Gaussian. However, ,jicit assumption that the prior of the discriminative parter
depending on the definition of likelihood feature space, a no . . .
zero prior may be more appropriate. A general Gaussian prioris 'S & ZEf0 mean Gaussian. However, dependlng_on the property
incorporated into the large margin training criterion in a f orm  Of log-likelihood feature space, the mean of prior should no
that allows the cutting plan algorithm to be directly applied. be zeros. We relax this assumption by incorporating a more
To further speed up the training process, 1-slack algorithm general Gaussian prior into the large margin training ddte
caching competing hypothesis and paralielization stratéigs are  j, 5 form that allows the cutting plan algorithm to be dirgctl
also proposed. The performance of structured SVMs is evaluad . . LS .
on noise corrupted medium vocabulary speech recognition & apphed. The generalized criterion will not only lead totbet
AURORA 4. trained parameters, but also help to reduces the convexgenc

time in large scale application. In order to solve the reslilt
. INTRODUCTION optimisation problem on larger tasks;slack algorithm has

Most automatic speech recognition (ASR) systems use be used to replace the previousslack algorithm for
generative models, in the form of hidden Markov modeleducing the number of constraints. To further speed up the
(HMMs) combined with class priors, the language model twaining process, caching and parallelization strategiesalso
yield the sentence posterior based on Bayes’ rule. Althoughoposed. Experimental results are presented on medium to
discriminative training can be performed, the underlyingdm large vocabulary noise-corrupted ASR tasks: AURORA 4.
els are still generative. This has led to interest in distrative
models, e.g., Structured Conditional Random Fields (SCRF)
[1], and structured Log Linear Model (LLM) [2], [3], where Consider a training set witk data pairs,{O(’“),wig}
Fhe posterior of the word-sequgncg given the Observat'\c/)vrr]]ereo(” = {og">, e og)} is an observation sequence and
is directly modelled. For these discriminative models three (. ")y

} is the reference labels. In structured

— L)
important decisions need to be made: the form of the featurgset {wy oo Wi - . )
to use; the appropriate training criterion; and how to han VM for continuous speech recognition [8], our goal is to find
continuous speech a discriminant functiomx" (O, w; 8) that measures how well

A number of features have been investigated at the franﬁlg?w matches the give, such that
model and word level [1], [4]. Features based on generative W= argmaX{QT(ﬁ(o’W;g)} (1)
models are an attractive option as they allow state-ofaithe- w0
speaker adaptation and noise robustness approaches &or gés the predicted label sequence for observatinsvhere o
ative models to be used [5]. Discriminative models are oftés the discriminative parameter vectas(O, w; 0) is a joint
trained using Conditional Maximum Likelihood (CML) [1], feature vector and is the hidden variable that segments the
[2]. Alternatively, there has been interest in large mafgih observationsO;.r into |w| corresponding labels. To extend
[6] and minimum Bayes’ risk [7] criteria. To handle contirusd previous structured SVMs system [4], [8] to medium/large
speech, structured discriminative models require a segmeocabulary continuous speech recognition three impodant
tation of the frames into word, or sub-word units. Usuallgisions need to be made: at which level the hidden variable
these segmentations are generated by standard HMM acougtisegments the continuous speech; the form of the features
models. Gains are observed by optimising these segmematitv use based on context-dependent sub-word models; and the
based on the discriminative models parameters in bothitigiin appropriate training criterion with efficient learning atghm.

Il. STRUCTURED SUPPORTVECTORMACHINES
R

r=1



A. Joint Feature Space the same observed context are included. For example, the

This section describes the features to be used by structuf@@ture space of segmeo,, .. ;) with matched contextan
SVMs for medium/large vocabulary ASR. In previous smalf® expressed as
vocabulary system [4], [8], the observations are segmented
at the word level, however in order to extend the struc-
tured SVMs to medium-large vocabulary tasks data has t6p(O¢(a—z+c)) =
be segmented at sub-word level, such as phones. Given an
alignment@ splits the observation sequence ifito segments
O = {O4(w,0): - Os(w;,0): - - Os(w, .0}, WN€rew; IS  hig requces the dimensionality of the feature spate from
th context-dependgnt phone label in this work. The refgjltlthe number of context-dependent phorgisto the number
joint feature space is defined as of mono phones\/;. The second approach is to reduce the
dimension of sparse vecta¥(-) by clustering the{v;}2,
using a phonetic decision tree. This is actually the model-
level parameter tying described in [3] whané¥:) and o (V3
are tied ifv; andwv; belongs to the same leaf node. Thus the
whereP(w) is the standarad-gram language model probabil-total dimensionality of joint feature spacelig, x M. In this
ity, @ is the tensor producti(w;) is a sparse vector indicatework, M, and M, are both set to 47, the number of mono
the position ofw; in the dictionary{uv;}2., and¢(Oy.;.6)) phones.
is the generative model based log likelihood feature space f The joint feature space described above is based on
segmentOy (., 6), fixed segmentation. For a specific data g&r, w), the “most
likely” segmentatiord is considered,

logp(ot(a—m+c); )\(afaJrc))
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Ow = o) log(p(O; A™7)) B. Large Margin Training

where X is the generative model parameters. These genera- . L)

tive model based features allows standard noise and speaké&piven the training data palr{,o " 7Wref} , the parame-

adaptation schemes to be used to derive robust feature.sptys of structured SVM can be trained by SBT\}ing the follagvin
Thus the dot-product of the)(O, w; ) and structured SVM optimisation problem [8], [9]:

parameterx can be evaluated by accumulating every segment

1 C &
2
score [4] min Slledl”+ & ;ir )
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where o = [a(vl)T, aoT , a(”M)T, aw]T. Fig. 1 r=1,..., R,
demonstrates an example of using Eq. (2) to construct join

; (r) (MY i
feature space for data pdi©, w) given segmentatiof. where & 2 0 are the slack variables anfi(w.;, w.’) is

the loss function between referenwﬂ% and its competing

20(0_[(" o T (=) [=))¢(0,w;0) hypothesisw'”. The constraints in Eq. 57) can be explained
i _ A iy Hillopeer as follows. For every training pajl0("), w."}), the best score
- = - i of the correct pair should be greater than all competingspair
AR EN I LN Il L : (0, w'") by a margin determined by the loss. Note that
O NN 1B = = since the number of possible competing hypothasi@) is
e bre o xger abic B ey very large, there are lots of constraints in Eq. (7).
S - T g () Substituting the slack variable in the constraints to the
- e ’ objective function, the structured SVMs problem in Eq. (7)
Fig. 1. lllustration of constructingpint feature space from triphone HMMs

based log-likelihood feature space.

can also be expressed asniimisationof

concave

(aTgb(O(r)’ wim). O(T)))

ref)

When medium/large vocabulary ASR are considered there
is an issue with above context-dependent feature space [3]. 1||a||2 +
The set of context-dependent phone modeis} ., yields a 2112
very large joint feature space. Although in theory this ciou
used, the number of determinative model parameters becomes
large. Two approaches proposed in [3] to address this proble
are adopted this work. One is to reduce the dimension of
the feature spacep(-) by selecting a small set of “suitable”where[ | is the hinge-loss function. The constraints in Eq. (8)
generative models. Here only the generative models thaé shaclude two maximum of a set of linear functions. Each
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maximum function is convex with respect ¢a However, the Comparison between Eq. (14) and Eq. (8) suggests that, the
objective function in Eq. (7), as also shown in Eq. (8), ishorstructured SVM used in this work can also be viewed as a large
convex. To solve this non-convex optimization problem, amargin trained log linear model with “most discriminative”
algorithm based on concave-convex procedure [10] anchguttisegmentation.
plane algorithm [9] is proposed in previous work [8].
I1l. GAUSSIAN PRIOR

C. Relationship with Log Linear Models _ . o

The structured SVMs problems formulated in Eq. (1) anéjltThe previous section has shown that, when training the

. . : . standard structured SVMs, an implicit assumption is made

(7) can be interpreted as decoding and large margin traini ST : . .
. . : . t the prior distribution o& is standard Gaussian, with zero

of log linear models. To see this, we write the posterior ef th

hvpothesized labelsy aiven O as a member of exponential "e&" and identity covariance matrix. However, depending on
fgmp“ 9 P the feature space defined in Eqg. (3), the mean of pyigr,
Y. should not be zeros. A proper mean of prior should be the

. exp (aT¢(OaW§‘9)) one that can yield the HMM baseline performance
P(w|O;a,0) = 7(0: ) . )

argmax p' (0, w; 6) = arg max log (P(O|w; )\)‘%mP(w)) !
where Z(0;a) = 3 exp (aTgb(O,w’;é’)) ensures that v
the model is a properly normalized probabili§,is the best
alignment that maximises posterior probabilyw|O; «, 0),
0 = arg maxy o' ¢(O, w; ). Recognition with this log linear
model can be simply expressed as

which implies that the value gf is one for the correct class,
zero otherwise, thus for class, p(**) = [1,0,...,0]T. This
motivates us to look for a more general large margin training
criterion that can relax the structured SVMs prior assuampti
and incorporate a general Gaussian prior
W = argmax P(w|O;a, ) = argmax o' ¢(O,w;6) (10) _

v w,0 F(a) = Fin(a) —log (P(c)) (15)
This is equivalent to structured SVM decoding in Eq. (1).

In order to train a robust model capable of generalizing we\i[
on high-dimension space even with limited data, large nmargi
based approaches can be applied [6], [11]. If the margin for ~ 1 Te-1
log linear models is defined as the log posterior probability Fla) =g la—p) B (a=p)+ Fula).  (16)
ratio of the referencqw(’”) 6} and best competing hy-

ref?

pothesis/alignmen{w, 8}, the large margin training for log

here P(a) = N(a; u, ). Thus, the objective function of
ructured SVMs training (Eq. (8)) can be generalized as

Note that the normalization terrt—!' can always be de-
composed and merged into the feature space by using trans-

linear modell can t;%e expressed as minimising formed featuresh(0, w: 0) — S (0, w: ). In this work,
Fin(a) = B Zr:l (11) we assume the log-likelihood features are already properly
) 13 () A(r) scaled, and simply using = CI. In order to utilize the
max E(w,w(T}) —log P(Wyet|O 50"6} ) training framework for Eq. (8) proposed in [8], we introduce
wetw () " P(w|O™; ., ) . &= (a—p)toexpress Eq. (16) in the form of Eq. (13)
where[ - | is the hinge-loss function. Substituting Eq. (9) into PN Srp C. ~ 17
Eqg. (11) and canceling out the normalization tefO; «), Fa) 2”0‘”2 + O Funla+p) (17)
we will have Therefore the training criterion of structured SVMs (Eq. 8)
_ l . o T (r) (7). g(r) can be generalized asinimising
flm(a) - R Z |: Ig(%?( (Oé ¢(O aWrefae ))

r=1

—max (& + )T $(0", wli);0)))
o6(m)

1w CO&
+ max {E(W,W(T))+aT¢(O(T),W;0)}:|+ (12) §||0‘||2+§Z:1

5 ref
w;éw(T o
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Note that above criterion is the unregularized part of E{. (8 + max {L(w,wﬁg) +(@a+p)" ¢>(0(7')7w;0)}:| (18)
To retrieve the regularization ter§j|c||3, a standard Gaussian WHWree 0 +
distribution /' (a; 0, CT) can be incorporated into the criterion

as the prior probability? (), Note that once the optimal reference alignméfit is given,

then Eq. (18) can be reformulated in the form of Eq. (8) (see
F(a) = Fin(ar) — log (N (e; 0, CT)) (13) Algorithm 1 for more detail), where the loss is now become

a score-augmented loss function
where the log priofiog (AV(c; 0,CT)) = —5=a'a + const. 9

2 ~
Ignoring the terms that constant e, yields the following  Z(w,w'"}) = uTAGO™) Wil w)+ L(w,w)) (19)
regularized objective

Fla) = 5llalf +C - Fule) 14

acoustic and language loss  transcription loss

lacoustic deweighting.



Algorithm 1: Structured SVM learning algorithm for ASR.  Algorithm 2 : 1-slack Cutting plane algorithm [9] for Eq. (22).
0. Initial: & = [0,0,0.. ], p=[1,0,0...] ; Input: { (O™, w):0("))}E_ | C and precisiore;

ef>

1. Fixing &, searching the optimal reference alignment Initial empty constraint set#” « (J;

0(") for each training pai(O(T>,w§:)f) in numerator repeat _
lattices using forward-backward algorithm: I* solving the 1-slack ?F’ US'”QCCU”em pool */
- (&,§) —arg min —[|&l|3 + ¢ (23)
6" = argmax ((@+ )" SO, wiih:67)), ¥ r wezo 210 ETR
(21) STY W &'y Ap+ Y Lwl) wil))<¢
.. A . . ~ .. .. . r=1 r=1
2. Fixing 6", optimisea by m|r_1|m|2|ngthe folk_mmg_ whereAg = $(0™, w(:00)) — $(0™), w); 6™).
convex upper bound using cutting plane algorithm in . : . -
Algorithm 2: for r = 1..R do /* Generating most competing hypothesis: */
9 ’ linear R ) ~ -
1 , C R — =N wi’),o,‘J) — argn;ax{ﬁ(w,wl(f;g) + &T¢(O(7'),w;9)} (24)
Slal+ 2> [—aTe(0"), wik6")  (22) v
r=1 end
+ max {E(W,W(T)f) +a'p(0") w; G)H W —w u{w 0V ;[ putitin the pool */
ww() .0 e + until  /* no constraint can be found that is violated by more than
N _ R R
where£(w, w,5;) = n"Ap(0), wii), w) + L(w, o)) &' Y Ap+ Y LW wiy) <€ te
_ r=1 r=1
3. go back to Step 1 until converge; return o

4. returna

no constraint can be found that is violated by more than the

where Agp = ¢(0"), w;8) — ¢(0(r)’wg;é(r)), uTAD desired precision.
can be viewed as an acoustic and language score loss. The IV. | MPLEMENTATION |SSUES

decoding of structured SVMs based ancan be written as - . . . .
An efficient implementation of the algorithm is important

W = argmax ((d—i—p,)T ¢(O,W;g)). (20) for medium to large vocabulary speech recognition. In the
w,0 following we summarized several design decisions that have
One interesting property of expression (18) is that eveft if & substantial influence on practical efficiency.
is not well trained, e.g., in the earlier training stage,hwét lack optimisati
properp the algorithm can still generate sensible competin'%;' 1-slack optimisation
hypothesis and reference alignments using the max terms irf here are two form of cutting plane algorithms [9}slack
Eq. (18). This is particularly helpful to reduce the conwerge and 1-slack algorithms. An advantage of thelack algorithm
time in medium/large vocabulary ASR. is the number of constraints and support vectors it produces
To solve the non-convex optimisation problem with respeé much smaller tham-slack case. In theory, the-slack
tive to & in Eq. (18), an algorithm based on concave-convéddorithm may addr constraints in every iteration, where
procedure [10] is proposed in Algorithm 1. It works similar t the size of training set. The 1-slack algorithm only adds a
the iteration process of EM. First, we find the “most likely’Single constraint per iteration at most. In practice, fordwa
segmen® for current parametai. This correspond to find the 4 experiments, 1-slack algorithms produce less then 500
linear upper bound of the concave term of Eq. (18). Secorfftive constraints at the solutions, whereaslack algorithms
with the current segmenf), the resulted convex Optimiza_produce more tha®0, 000 constraints after 20 iterations which
tion can be solved using-slack cutting plane algorithm [9] make it impractical for medium/large vocabulary ASR. For
described in Algorithm 2. These two steps will go sever&{URORA 2 small vocabulary task, both algorithms can be
iterations. The detail is shown in Algorithm 1. applied. 1-slack algorithm only produce4 support vectors
Note that the objective function in Eq. (22) is convex éor yvhereas the numbgr in-slack case i$29. This means that
however, solving this problem is not trivial. Because thenau N the 1-slack algorithm the QP problem (Eq. 23) on current
ber of constraints is exponentially large, although the bem working sets that need to be solved in each iteration are much
of valid constraints that actually affect the solution isiied. Smaller. _ _
One existing algorithm for this type of problem is the 1-&lac Another interesting property aboutslack algorithm (Al-
cutting plane algorithm summarized in Algorithm 2, wher@0rithm 2) is that constraints depend diy_; A¢ instead of
the quadratic programming (23) only has 1-slack variabhe Tindividual Ag(O"), w') w(”). Therefore, some competing
algorithm iteratively construct a working sgt of constraints. hypothesi8w5f) could be involved in the constraints many
In each iteration, it computes the solution over the cur#nt times. To avoid the time wasted on repeatedly searching the
(Eg. (23)), finds the most violated constraint (Eq. (24))d arsamew!”, the 10 most recently use(zﬁqb(o(r),wﬁ’;)f,wir))
adds it to the working set. The-slack algorithm stops oncefor each training observatio®”) are cached.



Large Margin Training Ol . . . .
TS o—oooooo oo ~ However forl-slack algorithm used in this work can be easily

parallelized without any degradation. In theory, one could
make use of up tdr parallel threads, each searching the best
competing hypothesis for a subset of training data. Pdirale
the loop for Eq. (24) will lead to a substantial speed-up m th
number of threads.

Generating
Numerator
Lattice ™"

|
v

1 max {L(chrl)-,w)+(lT¢(0(’),w;(-))}]——v
|| w,0 € 1%

Generating
Denominator
Lattice "

Quadratic Programming

N V. NOISE ROBUSTNESS
_T.'i'.T'.'?,P_h.a_s.e ___________________________ R In ASR, the acoustic conditions during training and testing
Decoding Phase o are seldom matched. For standard generative models, model-
O Generating 1 o | W based compensation schemes such as Vector Taylor Series
Denominator arg max o ¢(0,W,9) — -
Lattice 1" woe Lo (VTS) compensation [12] are a popular and successful ap-
proach to handling this problem. When applying the same con-
Fig. 2. The diagram of training and decoding for structur&ts. cept to structured SVMs there are two options. First, the dis
. . . . T -\ T = N\T
For both then-slack and the 1-slack algorithms, constraintgfiminative model parametersy’ = [l alom) T,

that were added to the working set in earlier iterationsroft€an be modified to be noise dependent. However with very
become inactive later. These constraints can be remoVédited data in the target domain, in these experimentsgiein
without affecting the theoretical convergence of the atpar.  Uttérance, this is not possible.

This is practically useful since it leading to a relativetgaller ~ Alternatively, the parametera associated with the joint

QP to be solved in later iterations. feature space are modified [5]. This can be achieved using
- any model-based compensation scheme. In this work VTS is
B. Efficient search used. Considering just the static components of the a@ousti

Theoretically, the large margin training criterion dissed models, the compensated mean vector and covariance matrix
in the previous section can be directly applied to the modef componentn of the generative model are given by
training. In practice, to make the algorithms applicable to
larger vocabulary ASR, there are two search sub-problems #!"™ =Clog (eXP(C'l(Him) + pn) + eXP(C'INn))
must be solved efficiently (see Fig. 2), the best reference 2 (m) _ 3(m)5(m) 3(m)T | (I_J(m))z (I_J(m))T
alignment Eq. (21) in Algorithm 1 and the best competing * "
hypothesis/alignment Eq. (24) in Algorithm 2. wherep!™ and={" are the “clean” speech component mean
In previous work on small vocabulary digit string recogniyector and covariance matrix, angd,, ¥, and p, are the
tion task, it is feasible to search all the possible alignt®enadditive and convolutional noise parameters respectilis
and competing hypothesis in those two subproblems by usifi@ DCT matrix andJ "™ is Jacobian matrix [12]exp() and
a Viterbi-style search [8]. However, it is not practical folog() are element-wise exponential and logarithm respectively.
larger tasks because the request to handle the exponenti@d noise model parameters are estimated using maximum
large searching space for all possibie and 6. Similar to |ikelihood estimation [13]. Thus in this work structured BV
the discriminative training in [7], numerator and denontima parameters are assumed to be noise-independent, wheeeas th

lattices L™ and LL** are generated to restrict the larggjenerative model parameters are noise-dependent.
searching space. Then a lattice-based searching algoigthm

proposed to find the best competing path (hypothesis) among VI. EXPERIMENTS

the lattices. Note that" (O™, w; @) can be calculated arc  This section describes experiments with the structured
by arc using Eqg. (4) and a standard MPE approximate loss BY/Ms in AURORA 2 and 4. The AURORA 2 results are
can also be computed on the arc level. Thus the best compeiiguded to contrast the performance ofslack with n-
path Eq. (24) can be efficiently achieved through an arstack algorithms and the gains from modeling the prior. The
level forward-backward searching over the lattice. Sirjla AURORA 4 results are used to illustrate the performance of
Eg. (21) can also be efficiently searched in the numeratgfoposed structured SVMs algorithms for noise robust nmadiu
lattice L™ . vocabulary speech recognition.

For large scale applications, the computational load durin AURORA 2 is a standard small vocabulary digital recogni-
training is dominated by finding the best competing hypotliion task. The vocabulary sizk/ is only 12 (one to nine, plus
esis/alignment. For the-slack algorithm, in order to run it zero, oh and silence). The utterances are one to seven digits
in parallel on many machines, the sequential update mode|®fg based on the TIDIGITS database with noise artificially
the standard cutting plane algorithm needs to be modifiedd@ded. The generative models (HMMs), are 16 emitting states
a batch-mode update. Note that farslack algorithm, this whole word digit models, with 3 mixtures per state. There
parallelization will decrease the performance slightly2[8 are three test sets each includes 20dB five SNRs. Set A

2 . , _ was used as the development set for tuning parameters for

Because in the sequential modeslack algorithm,a can be updated after .
every training sample. This allows the algorithm to pothti find better all systems, such as the penalty faafoin structured SVMs.
competingw for the subsequence samples, but it can not be parallelized. The joint feature space is based on appended-all features in



TABLE |
AURORA 2 RECOGNITION RESULTY{WER %) OF VTS BASEDHMM,
LOG LINEAR MODEL (LLM) [3] AND STRUCTUREDSVMS (SSVM)USING
1-SLACK, SEQUENTIAL-MODE n-SLACK ALGORITHMS AND GENERALIZED
LARGE MARGIN TRAINING WITH GAUSSIAN PRIOR(ALG. 1).

TABLE I
AURORA 4 RECOGNITIONRESULTS. FOR SSVM, ui, MEANS LARGE
MARGIN TRAINING & WITH GAUSSIAN PRIOR(ALG. 1),0 MEANS
UPDATING THE SEGMENTATION IN THE NUMERATOR LATTICE

L Test Set WER (%
[ Model  [[SetA[SetB[SetC [Ag. | Model || Criterion ATB | C |(D) Avg
HMM 98 | 91 | 95 95 [HMM ]| ML [7.1]15.3[12.2] 23.1][ 17.8]
LLM (CML) 81 | 77 83 81 LLM CML 72114.7(11.1]22.8][17.4
SSVM (n-slack) || 76 | 7.2 | 8.0 75 MPE 7.3114.7|11.2| 22.7|| 17.4
SSVM (I-slack) || 7.6 | 7.3 | 7.9 7.5 LM (p, 1-slack) || 7.5]14.3[11.4] 21.9]] 16.9
SSVM (u.lslack)|| 75 | 71 | 79 || 7.4 SSVMI | M (1, 6. 1-slack)|| 7.4| 14.2| 11.3] 21.9] 16.8

Eq. 3, no language model is used. The performances of VTife structured SVM as a large margin log-linear model, 4llus
compensated HMM, log linear models proposed in [3] and theates that there is an implicit assumption that the pricihef
structured SVMs with different training algorithms anderia  discriminative parameter is a zero mean Gaussian. However,
are shown in Table I. Examining the results in this tableysho depending on the definition of likelihood feature space, a
the benefit of using-slack algorithm in structured SVM wherenon-zero prior may be more appropriate. The assumption is
the WER are almost the same withslack algorithm but with relaxed by incorporating a more general Gaussian prior into
much fewer support vector@4 compared with169) and less the large margin training criterion in a form that allows the
computation. Small but consistent gains are observed whaitting plan algorithm to be directly applied. To speed up th
training structured SVMs with general Gaussian prior usingaining process, strategies suchlaslack algorithm, caching
1-slack algorithm (last two lines in the table). The mean @fompeting hypothesis and parallelization are propose@. Th
Gaussian prior is set as tlelearned using-slack algorithm performance of structured SVMs is evaluated on AURORA 4.
(the second last line in the table). Gains are observed over both VTS-compensated HMM and
AURORA 4 is a noise-corrupted medium to large vocalleg linear models. Kernelization of this structured SVM to
ulary task based on the Wall Street Journal (WSJ) data. Quipport high dimensional feature spaces such as derivative

configuration repeats the previous setup where the HMM figature space will be investigated in the future.

trained from clean data (SI-84 WSJO part, 14 hours). The
HMMs are state-clustered triphones (3140 states) with 16

ACKNOWLEDGMENT

components/mixture. Four iterations of VTS compensatien a The authors would like to thank Toshiba Research Europe
performed for the test data. To compare with the log line&td, Cambridge Research Lab, for partly funding this work.

model proposed in [3], the joint feature space of structured
SVMs follows the same setup described in [3] with x 47
dimensions. The log linear models and structured SVMs ardl
trained on the multi-style data. Evaluation is performeitigis [2]
the standard 5000- word WSJO bigram model on four noise-
corrupted test sets3 based on NIST Nov92 WSJO test sét!
Table Il shows the AURORAA4 results of structured SVMs
trained using large margin criteria with a general Gaussial4!
prior. The mean of prior is set as the parameters of CML
trained log linear model. The results from last two linesvgho [5]
that optimising the segmentation in the numerator lattietdy
small gain in performance. Compared to the CML traineci6
log linear models with same dimension features, propose
structured SVMs yielded a.4% relative reduction in WER. [7]
Note that due to too many constraintsslack algorithm can
not be applied in AURORA 4. For this larger task, it is also
impractical to train structured SVMs without considering a
proper prior, since the standard large margin training &tro I
mean of prior convergences too slow. [10]

VIl. CONCLUSION

This paper described a structured SVM framework suitab[lle1 ]
for noise-robust medium/large vocabulary speech reciognit [12]
Several theoretical and practical extensions to previaug
small vocabulary task have been made. First, the joint featy, ;
space based on word models is extended to allow context-
dependent triphone models to be used. Second, by intergreti
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