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Abstract—This paper describes a structured SVM framework
suitable for noise-robust medium/large vocabulary speechrecog-
nition. Several theoretical and practical extensions to previous
work on small vocabulary tasks are detailed. The joint feature
space based on word models is extended to allow context-
dependent triphone models to be used. By interpreting the
structured SVM as a large margin log-linear model, illustrates
that there is an implicit assumption that the prior of the
discriminative parameter is a zero mean Gaussian. However,
depending on the definition of likelihood feature space, a non-
zero prior may be more appropriate. A general Gaussian prioris
incorporated into the large margin training criterion in a f orm
that allows the cutting plan algorithm to be directly applied.
To further speed up the training process, 1-slack algorithm,
caching competing hypothesis and parallelization strategies are
also proposed. The performance of structured SVMs is evaluated
on noise corrupted medium vocabulary speech recognition task:
AURORA 4.

I. I NTRODUCTION

Most automatic speech recognition (ASR) systems use
generative models, in the form of hidden Markov models
(HMMs) combined with class priors, the language model to
yield the sentence posterior based on Bayes’ rule. Although
discriminative training can be performed, the underlying mod-
els are still generative. This has led to interest in discriminative
models, e.g., Structured Conditional Random Fields (SCRF)
[1], and structured Log Linear Model (LLM) [2], [3], where
the posterior of the word-sequence given the observation
is directly modelled. For these discriminative models three
important decisions need to be made: the form of the features
to use; the appropriate training criterion; and how to handle
continuous speech.

A number of features have been investigated at the frame,
model and word level [1], [4]. Features based on generative
models are an attractive option as they allow state-of-the-art
speaker adaptation and noise robustness approaches for gener-
ative models to be used [5]. Discriminative models are often
trained using Conditional Maximum Likelihood (CML) [1],
[2]. Alternatively, there has been interest in large margin[4],
[6] and minimum Bayes’ risk [7] criteria. To handle continuous
speech, structured discriminative models require a segmen-
tation of the frames into word, or sub-word units. Usually
these segmentations are generated by standard HMM acoustic
models. Gains are observed by optimising these segmentations
based on the discriminative models parameters in both training

and decoding [8]. In previous work with structured SVMs, a
small vocabulary noise corrupted digit string recognitiontask
based on whole-word HMMs was examined [4], [8].

This paper extends the previous framework of structured
SVMs to handle medium/large vocabulary continuous speech
recognition tasks. By interpreting the structured SVM as a
large margin log-linear model, illustrates that there is anim-
plicit assumption that the prior of the discriminative parameter
is a zero mean Gaussian. However, depending on the property
of log-likelihood feature space, the mean of prior should not
be zeros. We relax this assumption by incorporating a more
general Gaussian prior into the large margin training criterion,
in a form that allows the cutting plan algorithm to be directly
applied. The generalized criterion will not only lead to better
trained parameters, but also help to reduces the convergence
time in large scale application. In order to solve the resulted
optimisation problem on larger tasks,1-slack algorithm has
to be used to replace the previousn-slack algorithm for
reducing the number of constraints. To further speed up the
training process, caching and parallelization strategiesare also
proposed. Experimental results are presented on medium to
large vocabulary noise-corrupted ASR tasks: AURORA 4.

II. STRUCTURED SUPPORTVECTORMACHINES

Consider a training set withR data pairs,
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|w|} is the reference labels. In structured

SVM for continuous speech recognition [8], our goal is to find
a discriminant functionαTφ(O,w; θ) that measures how well
the w matches the givenO, such that

ŵ = arg max
w,θ

{
αTφ(O,w; θ)

}
(1)

is the predicted label sequence for observationsO, whereα

is the discriminative parameter vector,φ(O,w; θ) is a joint
feature vector andθ is the hidden variable that segments the
observationsO1:T into |w| corresponding labels. To extend
previous structured SVMs system [4], [8] to medium/large
vocabulary continuous speech recognition three importantde-
cisions need to be made: at which level the hidden variable
θ segments the continuous speech; the form of the features
to use based on context-dependent sub-word models; and the
appropriate training criterion with efficient learning algorithm.



A. Joint Feature Space

This section describes the features to be used by structured
SVMs for medium/large vocabulary ASR. In previous small
vocabulary system [4], [8], the observations are segmented
at the word level, however in order to extend the struc-
tured SVMs to medium-large vocabulary tasks data has to
be segmented at sub-word level, such as phones. Given an
alignmentθ splits the observation sequence into|w| segments
O = {Ot(w1,θ), . . . ,Ot(wi,θ), . . . ,Ot(w|w|,θ)}, where wi is
the context-dependent phone label in this work. The resulting
joint feature space is defined as

φ(O,w; θ) ,





|w|∑

i=1

δ(wi)⊗ϕ(Ot(wi,θ))

log P (w)



 (2)

whereP (w) is the standardn-gram language model probabil-
ity, ⊗ is the tensor product,δ(wi) is a sparse vector indicate
the position ofwi in the dictionary{vk}Mk=1 andϕ(Ot(wi,θ))
is the generative model based log likelihood feature space for
segmentOt(wi,θ),

δ(w) =





δ(w − v1)
...

δ(w − vM)



 , ϕ(O) =





log(p(O; λ(v1)))
...

log(p(O; λ(vM)))



 (3)

where λ is the generative model parameters. These genera-
tive model based features allows standard noise and speaker
adaptation schemes to be used to derive robust feature space.
Thus the dot-product of theφ(O,w; θ) and structured SVM
parameterα can be evaluated by accumulating every segment
score [4]

αTφ(O,w; θ) =
|w|∑

i=1

α(wi)
T

ϕ(Ot(wi,θ))+αlm log P (w), (4)

where α = [α(v1)T, . . . α(vk)T . . . , α(vM)T, αlm]
T. Fig. 1

demonstrates an example of using Eq. (2) to construct joint
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Fig. 1. Illustration of constructingjoint feature space from triphone HMMs
based log-likelihood feature space.

When medium/large vocabulary ASR are considered there
is an issue with above context-dependent feature space [3].
The set of context-dependent phone models{vk}Mk=1 yields a
very large joint feature space. Although in theory this could be
used, the number of determinative model parameters becomes
large. Two approaches proposed in [3] to address this problem
are adopted this work. One is to reduce the dimension of
the feature spaceϕ(·) by selecting a small set of “suitable”
generative models. Here only the generative models that share

the same observed context are included. For example, the
feature space of segmentOt(a−x+c) with matched contextcan
be expressed as

ϕ(Ot(a−x+c)) =








log p(Ot(a−x+c); λ
(a−a+c))

...
log p(Ot(a−x+c); λ

(a−y+c))

log p(Ot(a−x+c); λ
(a−z+c))








M1

. (5)

This reduces the dimensionality of the feature spaceϕ(·) from
the number of context-dependent phonesM to the number
of mono phonesM1. The second approach is to reduce the
dimension of sparse vectorδ(·) by clustering the{vk}

M
k=1

using a phonetic decision tree. This is actually the model-
level parameter tying described in [3] whereα(vi) andα(vj)

are tied ifvi andvj belongs to the same leaf node. Thus the
total dimensionality of joint feature space isM2×M1. In this
work, M1 and M2 are both set to 47, the number of mono
phones.

The joint feature space described above is based on a
fixed segmentation. For a specific data pair(O,w), the “most
likely” segmentationθ̂ is considered,

θ̂ = arg max
θ

αTφ(O,w; θ). (6)

B. Large Margin Training

Given the training data pairs,
{

O
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(r)
ref

}R

r=1
, the parame-

ters of structured SVM can be trained by solving the following
optimisation problem [8], [9]:

min
α,ξ
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where ξr ≥ 0 are the slack variables andL(w
(r)
ref

,w
(r)
∗ ) is

the loss function between referencew(r)
ref

and its competing
hypothesisw(r)

∗ . The constraints in Eq. (7) can be explained
as follows. For every training pair(O(r),w

(r)
ref

), the best score
of the correct pair should be greater than all competing pairs
(O(r),w

(r)
∗ ) by a margin determined by the loss. Note that

since the number of possible competing hypothesisw
(r)
∗ is

very large, there are lots of constraints in Eq. (7).
Substituting the slack variable in the constraints to the

objective function, the structured SVMs problem in Eq. (7)
can also be expressed as aminimisationof

1

2
||α||22 +

C

R
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r=1

[

concave
︷ ︸︸ ︷

−max
θ(r)

(

αTφ(O(r),w
(r)
ref

; θ(r))
)

+ max
w 6=w

(r)
ref

,θ

{

L(w,w
(r)
ref

) + αTφ(O(r),w; θ)
}

︸ ︷︷ ︸

convex

]

+
(8)

where[ ]+ is the hinge-loss function. The constraints in Eq. (8)
include two maximum of a set of linear functions. Each



maximum function is convex with respect toα. However, the
objective function in Eq. (7), as also shown in Eq. (8), is non-
convex. To solve this non-convex optimization problem, an
algorithm based on concave-convex procedure [10] and cutting
plane algorithm [9] is proposed in previous work [8].

C. Relationship with Log Linear Models

The structured SVMs problems formulated in Eq. (1) and
(7) can be interpreted as decoding and large margin training
of log linear models. To see this, we write the posterior of the
hypothesized labelsw given O as a member of exponential
family,

P (w|O; α, θ̂) =
exp

(

αTφ(O,w; θ̂)
)

Z(O; α)
, (9)

whereZ(O; α) =
∑

w
′ exp

(

αTφ(O,w′; θ̂′)
)

ensures that

the model is a properly normalized probability,θ̂ is the best
alignment that maximises posterior probabilityP (w|O; α, θ),
θ̂ = arg maxθ αTφ(O,w; θ). Recognition with this log linear
model can be simply expressed as

ŵ = argmax
w

P (w|O; α, θ̂) = arg max
w,θ

αTφ(O,w; θ) (10)

This is equivalent to structured SVM decoding in Eq. (1).
In order to train a robust model capable of generalizing well

on high-dimension space even with limited data, large margin
based approaches can be applied [6], [11]. If the margin for
log linear models is defined as the log posterior probability
ratio of the reference{w(r)

ref
, θ̂(r)} and best competing hy-

pothesis/alignment{w, θ̂}, the large margin training for log
linear model can be expressed as minimising

Flm(α) =
1

R
·
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(11)
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+

where[ · ]+ is the hinge-loss function. Substituting Eq. (9) into
Eq. (11) and canceling out the normalization termZ(O; α),
we will have

Flm(α) =
1

R
·
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+
(12)

Note that above criterion is the unregularized part of Eq. (8).
To retrieve the regularization term12 ||α||

2
2, a standard Gaussian

distributionN (α;0, CI) can be incorporated into the criterion
as the prior probabilityP (α),

F(α) = Flm(α)− log (N (α;0, CI)) (13)

where the log priorlog (N (α;0, CI)) = − 1
2C

αTα + const.
Ignoring the terms that constant toα, yields the following
regularized objective

F(α) =
1

2
||α||22 + C · Flm(α) (14)

Comparison between Eq. (14) and Eq. (8) suggests that, the
structured SVM used in this work can also be viewed as a large
margin trained log linear model with “most discriminative”
segmentation.

III. G AUSSIAN PRIOR

The previous section has shown that, when training the
standard structured SVMs, an implicit assumption is made
that the prior distribution ofα is standard Gaussian, with zero
mean and identity covariance matrix. However, depending on
the feature space defined in Eq. (3), the mean of prior,µ,
should not be zeros. A proper mean of prior should be the
one that can yield the HMM baseline performance

argmax
w,θ

µTφ(O,w; θ) = arg max
w

log
(

P (O|w; λ)
1

αlm P (w)
)

1

which implies that the value ofµ is one for the correct class,
zero otherwise, thus for classv1, µ(v1) = [1, 0, . . . , 0]T. This
motivates us to look for a more general large margin training
criterion that can relax the structured SVMs prior assumption
and incorporate a general Gaussian prior

F̃(α) = Flm(α)− log (P (α)) (15)

whereP (α) = N (α; µ,Σ). Thus, the objective function of
structured SVMs training (Eq. (8)) can be generalized as

F̃(α) =
1

2
(α− µ)

T
Σ

−1 (α− µ) + Flm(α). (16)

Note that the normalization termΣ−1 can always be de-
composed and merged into the feature space by using trans-
formed features̃φ(O,w; θ) = Σ

1
2 φ(O,w; θ). In this work,

we assume the log-likelihood features are already properly
scaled, and simply usingΣ = CI. In order to utilize the
training framework for Eq. (8) proposed in [8], we introduce
α̃ = (α− µ) to express Eq. (16) in the form of Eq. (13)

F̃(α̃) =
1

2
||α̃||22 + C · Flm(α̃ + µ) (17)

Therefore the training criterion of structured SVMs (Eq. 8)
can be generalized asminimising
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,w; θ)
}
]

+

(18)

Note that once the optimal reference alignmentθ̂(r) is given,
then Eq. (18) can be reformulated in the form of Eq. (8) (see
Algorithm 1 for more detail), where the loss is now become
a score-augmented loss function

L̃(w,w
(r)
ref

) = µT∆φ(O(r),w
(r)
ref

,w)
︸ ︷︷ ︸

acoustic and language loss

+ L(w,w
(r)
ref

)
︸ ︷︷ ︸

transcription loss

(19)

1acoustic deweighting.



Algorithm 1 : Structured SVM learning algorithm for ASR.

0. Initial: α̃ = [0, 0, 0 . . .], µ = [1, 0, 0 . . .] ;

1. Fixing α̃, searching the optimal reference alignment
θ(r) for each training pair(O(r),w

(r)
ref

) in numerator
lattices using forward-backward algorithm:

θ̂(r) = argmax
θ(r)

(

(α̃ + µ)T φ(O(r),w
(r)
ref

; θ(r))
)

, ∀ r

(21)

2. Fixing θ̂(r), optimiseα̃ by minimizingthe following
convex upper bound using cutting plane algorithm in
Algorithm 2:

1

2
||α̃||22 +

C

R
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linear
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ref
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whereL̃(w,w
(r)
ref

) = µT∆φ(O(r),w
(r)
ref

,w) + L(w,w
(r)
ref

)

3. go back to Step 1 until converge;
4. returnα̃ ;

where ∆φ = φ(O(r),w; θ) − φ(O(r),w
(r)
ref

; θ̂(r)), µT∆φ

can be viewed as an acoustic and language score loss. The
decoding of structured SVMs based onα̃ can be written as

ŵ = argmax
w,θ

(

(α̃ + µ)
T

φ(O,w; θ)
)

. (20)

One interesting property of expression (18) is that even ifα̃

is not well trained, e.g., in the earlier training stage, with a
properµ the algorithm can still generate sensible competing
hypothesis and reference alignments using the max terms in
Eq. (18). This is particularly helpful to reduce the convergence
time in medium/large vocabulary ASR.

To solve the non-convex optimisation problem with respec-
tive to α̃ in Eq. (18), an algorithm based on concave-convex
procedure [10] is proposed in Algorithm 1. It works similar to
the iteration process of EM. First, we find the “most likely”
segment̂θ for current parameter̃α. This correspond to find the
linear upper bound of the concave term of Eq. (18). Second,
with the current segment̂θ, the resulted convex optimiza-
tion can be solved using1-slack cutting plane algorithm [9]
described in Algorithm 2. These two steps will go several
iterations. The detail is shown in Algorithm 1.

Note that the objective function in Eq. (22) is convex forα,
however, solving this problem is not trivial. Because the num-
ber of constraints is exponentially large, although the number
of valid constraints that actually affect the solution is limited.
One existing algorithm for this type of problem is the 1-slack
cutting plane algorithm summarized in Algorithm 2, where
the quadratic programming (23) only has 1-slack variable. The
algorithm iteratively construct a working setW of constraints.
In each iteration, it computes the solution over the currentW

(Eq. (23)), finds the most violated constraint (Eq. (24)), and
adds it to the working set. The1-slack algorithm stops once

Algorithm 2 : 1-slack Cutting plane algorithm [9] for Eq. (22).

Input: {(O(r),w
(r)
ref

; θ̂(r))}Rr=1 , C and precisionε;
Initial empty constraint set:W ← ∅;
repeat

/* solving the 1-slack QP using current pool */

(α̃, ξ)← arg min
α,ξ≥0

1

2
||α̃||22 +

C

R
ξ (23)

S.T.∀ W : α̃T

R∑

r=1

∆φ +
R∑

r=1

L̃(w
(r)
∗ ,w

(r)
ref

) ≤ ξ

where∆φ = φ(O(r),w
(r)
∗ ; θ

(r)
∗ )− φ(O(r),w

(r)
ref

; θ̂(r)).

for r = 1..R do /* Generating most competing hypothesis: */

w
(r)
∗ , θ

(r)
∗ ← arg max

w,θ

{

L̃(w,w
(r)
ref

) + α̃Tφ(O(r),w; θ)
}

(24)

end
W ← W ∪ {w

(r)
∗ , θ

(r)
∗ }

R
r=1; /* put it in the pool */

until /* no constraint can be found that is violated by more thanε */

α̃T
R∑

r=1

∆φ +
R∑

r=1

L̃(w
(r)
∗ ,w

(r)
ref

) ≤ ξ + ε ;

return α̃

no constraint can be found that is violated by more than the
desired precisionε.

IV. I MPLEMENTATION ISSUES

An efficient implementation of the algorithm is important
for medium to large vocabulary speech recognition. In the
following we summarized several design decisions that have
a substantial influence on practical efficiency.

A. 1-slack optimisation

There are two form of cutting plane algorithms [9],n-slack
and 1-slack algorithms. An advantage of the1-slack algorithm
is the number of constraints and support vectors it produces
is much smaller thann-slack case. In theory, then-slack
algorithm may addR constraints in every iteration, whereR
the size of training set. The 1-slack algorithm only adds a
single constraint per iteration at most. In practice, for Aurora
4 experiments, 1-slack algorithms produce less then 500
active constraints at the solutions, whereasn-slack algorithms
produce more than50, 000 constraints after 20 iterations which
make it impractical for medium/large vocabulary ASR. For
AURORA 2 small vocabulary task, both algorithms can be
applied. 1-slack algorithm only produce24 support vectors
whereas the number inn-slack case is629. This means that
in the 1-slack algorithm the QP problem (Eq. 23) on current
working sets that need to be solved in each iteration are much
smaller.

Another interesting property about1-slack algorithm (Al-
gorithm 2) is that constraints depend on

∑R

r=1 ∆φ instead of
individual ∆φ(O(r),w

(r)
ref

,w
(r)
∗ ). Therefore, some competing

hypothesisw(r)
∗ could be involved in the constraints many

times. To avoid the time wasted on repeatedly searching the
samew(r)

∗ , the 10 most recently used∆φ(O(r),w
(r)
ref

,w
(r)
∗ )

for each training observationO(r) are cached.
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Fig. 2. The diagram of training and decoding for structured SVMs.

For both then-slack and the 1-slack algorithms, constraints
that were added to the working set in earlier iterations often
become inactive later. These constraints can be removed
without affecting the theoretical convergence of the algorithm.
This is practically useful since it leading to a relatively smaller
QP to be solved in later iterations.

B. Efficient search

Theoretically, the large margin training criterion discussed
in the previous section can be directly applied to the model
training. In practice, to make the algorithms applicable to
larger vocabulary ASR, there are two search sub-problems
must be solved efficiently (see Fig. 2), the best reference
alignment Eq. (21) in Algorithm 1 and the best competing
hypothesis/alignment Eq. (24) in Algorithm 2.

In previous work on small vocabulary digit string recogni-
tion task, it is feasible to search all the possible alignments
and competing hypothesis in those two subproblems by using
a Viterbi-style search [8]. However, it is not practical for
larger tasks because the request to handle the exponential
large searching space for all possiblew and θ. Similar to
the discriminative training in [7], numerator and denominator
lattices L

num and L
den are generated to restrict the large

searching space. Then a lattice-based searching algorithmis
proposed to find the best competing path (hypothesis) among
the lattices. Note thatαTφ(O(r),w; θ) can be calculated arc
by arc using Eq. (4) and a standard MPE approximate loss [7]
can also be computed on the arc level. Thus the best competing
path Eq. (24) can be efficiently achieved through an arc-
level forward-backward searching over the lattice. Similarly,
Eq. (21) can also be efficiently searched in the numerator
lattice L

num .
For large scale applications, the computational load during

training is dominated by finding the best competing hypoth-
esis/alignment. For then-slack algorithm, in order to run it
in parallel on many machines, the sequential update mode of
the standard cutting plane algorithm needs to be modified to
a batch-mode update. Note that forn-slack algorithm, this
parallelization will decrease the performance slightly [8]2.

2Because in the sequential moden-slack algorithm,α can be updated after
every training sample. This allows the algorithm to potentially find better
competingw for the subsequence samples, but it can not be parallelized.

However for1-slack algorithm used in this work can be easily
parallelized without any degradation. In theory, one could
make use of up toR parallel threads, each searching the best
competing hypothesis for a subset of training data. Paralleling
the loop for Eq. (24) will lead to a substantial speed-up in the
number of threads.

V. NOISE ROBUSTNESS

In ASR, the acoustic conditions during training and testing
are seldom matched. For standard generative models, model-
based compensation schemes such as Vector Taylor Series
(VTS) compensation [12] are a popular and successful ap-
proach to handling this problem. When applying the same con-
cept to structured SVMs there are two options. First, the dis-
criminative model parameters,αT = [α(w̃1)T, . . . , α(w̃M)T],
can be modified to be noise dependent. However with very
limited data in the target domain, in these experiments a single
utterance, this is not possible.

Alternatively, the parametersλ associated with the joint
feature space are modified [5]. This can be achieved using
any model-based compensation scheme. In this work VTS is
used. Considering just the static components of the acoustic
models, the compensated mean vector and covariance matrix
of componentm of the generative model are given by

µ(m) =C log
(

exp(C-1(µ(m)
x

+ µh) + exp(C-1µn)
)

Σ
(m) =J

(m)
Σ

(m)
x

J
(m)T + (I− J

(m))Σn(I− J
(m))T

whereµ
(m)
x andΣ

(m)
x are the “clean” speech component mean

vector and covariance matrix, andµn, Σn and µh are the
additive and convolutional noise parameters respectively. C is
the DCT matrix andJ(m) is Jacobian matrix [12].exp() and
log() are element-wise exponential and logarithm respectively.
The noise model parameters are estimated using maximum
likelihood estimation [13]. Thus in this work structured SVM
parameters are assumed to be noise-independent, whereas the
generative model parameters are noise-dependent.

VI. EXPERIMENTS

This section describes experiments with the structured
SVMs in AURORA 2 and 4. The AURORA 2 results are
included to contrast the performance of1-slack with n-
slack algorithms and the gains from modeling the prior. The
AURORA 4 results are used to illustrate the performance of
proposed structured SVMs algorithms for noise robust medium
vocabulary speech recognition.

AURORA 2 is a standard small vocabulary digital recogni-
tion task. The vocabulary sizeM is only 12 (one to nine, plus
zero, oh and silence). The utterances are one to seven digits
long based on the TIDIGITS database with noise artificially
added. The generative models (HMMs), are 16 emitting states
whole word digit models, with 3 mixtures per state. There
are three test sets each includes0 − 20dB five SNRs. Set A
was used as the development set for tuning parameters for
all systems, such as the penalty factorC in structured SVMs.
The joint feature space is based on appended-all features in



TABLE I
AURORA 2 RECOGNITION RESULTS(WER %)OF VTS BASED HMM,

LOG LINEAR MODEL (LLM) [3] AND STRUCTUREDSVMS (SSVM)USING

1-SLACK, SEQUENTIAL-MODEn-SLACK ALGORITHMS AND GENERALIZED

LARGE MARGIN TRAINING WITH GAUSSIAN PRIOR(ALG. 1).

Model Set A Set B Set C Avg.
HMM 9.8 9.1 9.5 9.5

LLM (CML) 8.1 7.7 8.3 8.1
SSVM (n-slack) 7.6 7.2 8.0 7.5
SSVM (1-slack) 7.6 7.3 7.9 7.5

SSVM (µ,1-slack) 7.5 7.1 7.9 7.4

Eq. 3, no language model is used. The performances of VTS-
compensated HMM, log linear models proposed in [3] and the
structured SVMs with different training algorithms and criteria
are shown in Table I. Examining the results in this table, shows
the benefit of using1-slack algorithm in structured SVM where
the WER are almost the same withn-slack algorithm but with
much fewer support vectors (24 compared with169) and less
computation. Small but consistent gains are observed when
training structured SVMs with general Gaussian prior using
1-slack algorithm (last two lines in the table). The mean of
Gaussian prior is set as theα learned using1-slack algorithm
(the second last line in the table).

AURORA 4 is a noise-corrupted medium to large vocab-
ulary task based on the Wall Street Journal (WSJ) data. Our
configuration repeats the previous setup where the HMM is
trained from clean data (SI-84 WSJ0 part, 14 hours). The
HMMs are state-clustered triphones (3140 states) with 16
components/mixture. Four iterations of VTS compensation are
performed for the test data. To compare with the log linear
model proposed in [3], the joint feature space of structured
SVMs follows the same setup described in [3] with47 × 47
dimensions. The log linear models and structured SVMs are
trained on the multi-style data. Evaluation is performed using
the standard 5000- word WSJ0 bigram model on four noise-
corrupted test sets3 based on NIST Nov92 WSJ0 test set.
Table II shows the AURORA4 results of structured SVMs
trained using large margin criteria with a general Gaussian
prior. The mean of prior is set as the parameters of CML
trained log linear model. The results from last two lines shown
that optimising the segmentation in the numerator lattice yields
small gain in performance. Compared to the CML trained
log linear models with same dimension features, proposed
structured SVMs yielded a3.4% relative reduction in WER.
Note that due to too many constraints,n-slack algorithm can
not be applied in AURORA 4. For this larger task, it is also
impractical to train structured SVMs without considering a
proper prior, since the standard large margin training withzero
mean of prior convergences too slow.

VII. C ONCLUSION

This paper described a structured SVM framework suitable
for noise-robust medium/large vocabulary speech recognition.
Several theoretical and practical extensions to previous work in
small vocabulary task have been made. First, the joint feature
space based on word models is extended to allow context-
dependent triphone models to be used. Second, by interpreting

TABLE II
AURORA 4 RECOGNITIONRESULTS. FOR SSVM,µ, MEANS LARGE

MARGIN TRAINING α WITH GAUSSIAN PRIOR(ALG. 1), θ̂ MEANS

UPDATING THE SEGMENTATION IN THE NUMERATOR LATTICE.

Model Criterion
Test Set WER (%)

AvgA B C D
HMM ML 7.1 15.3 12.2 23.1 17.8

LLM
CML 7.2 14.7 11.1 22.8 17.4
MPE 7.3 14.7 11.2 22.7 17.4

SSVM
LM (µ, 1-slack) 7.5 14.3 11.4 21.9 16.9

LM (µ, θ̂, 1-slack) 7.4 14.2 11.3 21.9 16.8

the structured SVM as a large margin log-linear model, illus-
trates that there is an implicit assumption that the prior ofthe
discriminative parameter is a zero mean Gaussian. However,
depending on the definition of likelihood feature space, a
non-zero prior may be more appropriate. The assumption is
relaxed by incorporating a more general Gaussian prior into
the large margin training criterion in a form that allows the
cutting plan algorithm to be directly applied. To speed up the
training process, strategies such as1-slack algorithm, caching
competing hypothesis and parallelization are proposed. The
performance of structured SVMs is evaluated on AURORA 4.
Gains are observed over both VTS-compensated HMM and
log linear models. Kernelization of this structured SVM to
support high dimensional feature spaces such as derivative
feature space will be investigated in the future.

ACKNOWLEDGMENT

The authors would like to thank Toshiba Research Europe
Ltd, Cambridge Research Lab, for partly funding this work.

REFERENCES

[1] G. Zweig and P. Nguyen, “A segmental CRF approach to largevocab-
ulary continuous speech recognition,” inASRU, 2009.

[2] M. Layton and M. Gales, “Augmented statistical models for speech
recognition,” inProc. ICASSP, Toulouse, 2006.

[3] A. Ragni and M. J. F. Gales, “Structured discriminative models for noise
robust continuous speech recognition,” inProc. ICASSP, Prague, Czech
Repubic, 2011.

[4] S.-X. Zhang, A. Ragni, and M. J. F. Gales, “Structured loglinear models
for noise robust speech recognition,”Signal Processing Letters, IEEE,
vol. 17, pp. 945–948, 2010.

[5] M. J. F. Gales and F. Flego, “Discriminative classifiers with adaptive
kernels for noise robust speech recognition,”Comput. Speech Lang.,
vol. 24, no. 4, pp. 648–662, 2010.

[6] B. Taskar, “Learning structured prediction models: a large margin
approach,” Ph.D. dissertation, CA, USA, 2005.

[7] D. Povey, “Discriminative training for large vocabulary speech recogni-
tion,” Ph.D. dissertation, Cambridge University, 2004.

[8] S.-X. Zhang and M. J. F. Gales, “Structured support vector machines
for noise robust continuous speech recognition,” inProc. Interspeech,
Florence, Italy, 2011.

[9] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural SVMs,”Mach. Learn., vol. 77, no. 1, pp. 27–59, 2009.

[10] A. Yuille, A. Rangarajan, and A. L. Yuille, “The concave-convex
procedure (CCCP),” inAdvances in Neural Information Processing
Systems. MIT Press, 2002.

[11] F. Sha and L. K. Saul, “Large margin hidden Markov modelsfor
automatic speech recognition,” inNIPS, 2007, pp. 1249–1256.

[12] A. Acero, L. Deng, T. Kristjansson, and J. Zhang, “HMM Adaptation
using Vector Taylor Series for Noisy Speech Recognition,” in Proc.
ICSLP, Beijing, China, 2000.

[13] H. Liao and M. Gales, “Joint uncertainty decoding for robust large
vocabulary speech recognition,” Cambridge University, Tech. Rep.
CUED/F-INFENG/TR552, November 2006.


