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ABSTRACT

Recently there has been interest in structured discriminative
models for speech recognition. In these models sentence posteriors
are directly modelled, given a set of features extracted from the
observation sequence, and hypothesised word sequence. In pre-
vious work these discriminative models have been combined with
features derived from generative models for noise-robust speech
recognition for continuous digits. This paper extends this work to
medium to large vocabulary tasks. The form of the score-space
extracted using the generative models, and parameter tying of the
discriminative model, are both discussed. Update formulae for
both conditional maximum likelihood and minimum Bayes’ risk
training are described. Experimental results are presented on small
and medium to large vocabulary noise-corrupted speech recognition
tasks: AURORA 2 and 4.

Index Terms— Structured model, Noise robustness, Context
modelling, Conditional Maximum Likelihood, Minimum Phone Er-
ror

1. INTRODUCTION

Most automatic speech recognition (ASR) systems use generative
models, in the form of hidden Markov model (HMM), as the acous-
tic model. Likelihoods from these models are combined with the
prior, the language model, using Bayes’ rule to yield the sentence
posterior. Although successful, it is widely known that the underly-
ing models are not correct. This has lead to the interest in discrim-
inative models, where the posterior probability isdirectly modelled.
Depending on how the structure of sentences is modelled, many pro-
posed discriminative models can be divided intosemi-structuredand
structured. The semi-structured models, e.g. segmental conditional
random fields (SCRF) [1], assume a word-level structure. The use of
multiple feature streams at the word-level permits a range of events,
such as an occurrence of phones, multi-phones and the whole words,
to be incorporated. This flexibility enables a wide range of short and
long-spanning dependencies. However, the current applications of
SCRFs do not attempt to improve the underlying acoustic model,
the recognition results from the standard HMM acoustic model are
used to derive features and combined with other event detectors.

Structured models, on the other hand, maintain the standard
medium to large vocabulary partitioning of words into sub-word,
phone, units. This partitioning allows discriminative models to be
used as the underlying acoustic model, as all possible words can
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be modelled, given an appropriate dictionary, which is not possible
with the semi-structured models. An example of structured models
is a conditional augmented (CAUG) model [2], where the range of
possible dependencies is restricted to the phone level. At the phone
level dynamic kernels based on generative models (HMM) provide a
systematic approach to adding new dependencies through the use of
competing likelihoods, and first and high-order derivatives. Extract-
ing features based on generative models has the added advantage
that state-of-the-art model-based compensation approaches to adapt
features to noise/speaker conditions can be used [3]. The standard
approach to training discriminative models is conditional maximum
likelihood (CML). However alternative criteria such as minimum
Bayes’ risk (MBR) [2] and large margin (LM) training [4, 5] have
also been proposed.

In previous work with CAUG models a small vocabulary noise-
corrupted digit string recognition task based on whole-word HMMs
was examined [5]. This paper extends the previous work to han-
dle medium/large vocabulary continuous speech recognition tasks.
There are two fundamental issues to handle. First an appropriate
score-space is required. Using all possible models, is impractical.
Thus context-dependent dynamic kernels are proposed to provide
consistent and compact features for context-dependent classes. Sec-
ond, an appropriate level for clustering the parameters of the dis-
criminative model is required, this does not need to be the same as
the generative model. In this paper the use of phonetic decision tree
clustering to ensure that sufficient training data exists for robust pa-
rameter estimation is investigated. Discriminative model training us-
ing both CML and MBR criteria are described.

The paper is organised as follows. Section 2 describes the form
of the structured model. Various types of features and the aspect of
noise robustness is then detailed in Section 3. Parameter tying is de-
scribed next. Section 5 provides reestimation formulae for CML and
MWE/MPE training. Experimental results are given in Section 6.
Finally, Section 7 presents the conclusions.

2. STRUCTURED MODEL

The structured model considered has the form of log-linear model
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whereθ segments the observation. For this work this is obtained
from the generative model. This model has two parameter vectors:
discriminativeα and generativeλ parameters.

The form of feature vectorφ(O, θ,w; λ) depends on which
knowledge sources are available. Typically, features are extracted



from the acoustics,φ(O, θ|w; λ), and the language model,ψ(w; λ).
Other features, for example the alignment posterior,P (θ|w; λ), can
also be used. Therefore
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Note a bias term could also been added for generality.
An important issue is to decide at what level the latent variable

θ segments the data. This determines the level of conditional inde-
pendence between the features. In previous work [5] the data was
segmented at the word level, however this is not useful for medium-
large vocabulary acoustic models. Here the data is segmented at
the phone level. Thus given the alignment the dot-product in equa-
tion (1) evaluates to
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whereφ(Ot(wi,θ) ; λ) are features extracted from the sub-sequence

Ot(wi,θ) andα
(wi)
am are the associated acoustic parameters.

As this work is primarily interested in the acoustic model, only
standardn-gram language models are used. Thus there is only a sin-
gle dimensional language model feature. Furthermore the value of
αlm was not trained, it was empirically set to the standard language
model scale-factor. The alignment posterior features were also not
used in this work.

3. SCORE-SPACE FEATURES

This section describes the acoustic feature to be used by the struc-
tured model. The discussion focuses on features derived from gen-
erative models, as this allows model-based noise and speaker com-
pensation schemes to be applied.

In this work the the feature-space derived from the generative
models will be referred to as ascore-space. Various score-spaces
have been proposed in the literature [2], [6]. Examples include the
appended-all score-space, φ
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which incorporates the log-likelihoods of all models, including the
correct class. This form of score-space allows the standard genera-
tive model to be obtained, simply by setting the value ofα to be one
for the correct class, zero otherwise. Thus for classω1, this yields the
sparse vectorα(ω1) =

ˆ

1 0 . . . 0
˜

T

. By appending the scores
from competing classes enables a more informative score-space to
be derived from the observation sequence.

Alternatively derivative score-spaces can be extracted. In ad-
dition to the log-likelihood information, the derivatives of the log-
likelihood with respect to the generative parameters are used. The
simplest example is the first-orderlog-likelihood score-space

φ
(1)
L (O|ω; λ) =

»

log (p(O|ω; λ))
∇λ log (p(O|ω; λ))

–

(5)

The first-order derivatives for HMMs are a function of component
posterior probabilities,P (θjm

t |O; λ), which depend on the whole

sequence of observations. This means that the conditional indepen-
dence assumptions of the underlying generative model are not main-
tained in the features extracted.

When medium/large vocabulary speech recognition systems are
considered there is an issue with the appended-all score-spaces. The
set of generative models comprises all context-dependent phone
models. This yields a large score-space. Though in theory this could
be used, the number of determinative model parameters becomes
large. One option to address this problem is to include a small
number of “suitable” models.

A simple approach is adopted in this paper, where the score-
space includes every model that shares the same observed context.
An example of the score-space withmatched contextis given below

2

6

6

6

4

a − a + c

...
a − y + c

a − z + c

3

7

7

7

5

K×1

(6)

This reduces the dimensionality of the score-space toK.
One advantage of using generative models to define features is

that model-based noise compensation can be used to make discrim-
inative classifier robust to changes in noise/speaker conditions [3].
A popular and successful approach is based on vector Taylor series
(VTS). In this work the first-order VTS scheme described in [7] is
used. Considering just thestaticcomponents the compensated mean
and covariance in statej and componentm are given by
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Σ̂jm = JjmΣjmJ
T

jm + (I − Jjm)Σn(I − Jjm)T (8)

where convolutional noise meanµh and covarianceΣh = 0, addi-
tive noise meanµn and covarianceΣn are the parameters of the noise
model estimated from the data using maximum likelihood (ML) esti-
mation [8]. Other terms in equations (7) and (8) include the discrete
cosine transformation matrixC and the component-specific Jaco-
biansJjm fully described in [7].

4. DISCRIMINATIVE MODEL PARAMETER TYING

For small vocabulary systems, where whole-word models are used,
the parameters of the discriminative model,α, are associated with
the individual words. For larger systems, where the data is seg-
mented at the phone-level and often state-level decision tree tying
used to determine context-dependent models, the appropriate tying
of the parameters is less clear. If there is sufficient training data the
parameters could be specified at the context-dependent phone level,
as determined by the state-level decision tree. However it is not pos-
sible to guarantee that all context-dependent models are observed in
the training data, as complete context-dependent models are used for
the score-spaces rather than state-level features.

To address this problem model-level parameter tying is per-
formed to determine the appropriate tying of the discriminative
model parameters. The standard approach based on phonetic deci-
sion trees [9] is used. However, care is required as the generative
parameters are themselves tied at the state-level. When using two
distinct decision trees, it is possible to get atree-intersectstyle ap-
proach where the effective number of distinct models becomes very
large. This can result in robustness issues when training the models.

There are several possible solutions that can be adopted. The
one examined in this work consists of clustering only those discrim-
inative parameters where the generative model for the correct class



appearsat the leaf nodes of the decision trees created for generative
models. The leaves of this model-level tree can be guaranteed1 to
have a minimum occupancy count in the training data and at least one
distinct state. A consequence of this approach is that the maximum
number of possible classes for the discriminative model is the num-
ber of distinct context-dependent models. The system is also sensi-
tive to the context label assigned to each of the context-dependent
generative models, this will be investigated in future work.

5. PARAMETER ESTIMATION

This section first provides the details of CML training and then de-
scribes a form of minimum Bayes’ risk training. For brevity of pre-
sentation regularisation terms in the objective functions are omitted.

The CML training is the standard criterion maximising the aver-
age log-posterior of training data.
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1
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whereR is the number of training sentences. Although bothλ andα

can be optimised in this workλ is assumed to be trained using, e.g.,
ML estimation. The standard MMI/MPE lattices [10] are used for
efficiency. The gradient with respect to discriminative parameters
αam is given by
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whereLnum andLden are numerator and denominator lattices respec-
tively, a is a lattice arc,P (a|O; λ, α) is arc posterior probability,
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is acompositefeature vector, whereφ(O; λ) is the standard feature
vector given, e.g., in equation (4). The arc posterior probabilities
can be computed using the standard MMI forward-backward algo-
rithm [10] by replacing the HMM likelihood on the arca with the

dot-productα(w)
am

T

φ(Ot(a); λ); the language model log-probability,
the alignment log-posterior and the bias (if used) weighted by the
corresponding discriminative parameters are added to each arc as
usual. The combined quantity will be referred to as a CAUGscore.
The gradient expressions for other components ofα are similar and
omitted here.

Another popular criterion is the MBR training. The objective is
to minimise the expected loss in the average sentence accuracy

Fmbr(λ, α) =
1
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1Some decoders append both the silence (sil) and short-pause (sp)
models to every pronunciation in the dictionary. Since thesil model pre-
vents the expansion of the context some of the classes may lose training ex-
amples if the correct pronunciation with thespmodel has been pruned away.
In practice with sufficiently large pruning values this rarely happens.

where the loss function,L(w,wref), is computed between givenw
and the reference sentencewref. Exactly computingL(w,wref)
for all paths in a lattice is expensive so various approximations
have been developed to allow computation to be carried out on the
phone/word level. The approach used in this work [10] computes
the accuracy of hypothesised phone/wordw attached to arca by
looking for a reference phone/wordwref maximising

A(w;wref) = max
wref∈wref

(

−1 + 2d(w, wref), if w = wref

−1 + d(w, wref), if w 6= wref

)

(13)

whered(w, w′) gives the amount of overlap in time betweenw and
w′. In the exact case this expression yields 1, 0 and -1 for cor-
rect recognition, substitution and insertion error. In practice it is
more convenient to work with phone accuracies. The gradient of the
equivalent objective function to be maximised is given by

∇αamFmpe(λ, α) = (14)
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whereC(a,wref,Lden) denotes the average accuracy of sentences
passing arca minus the average accuracy of all sentence inLden.
This is the standard quantity computed during the MWE/MPE train-
ing of HMM parameters [10]. The only difference is that similarly
to the CML training the HMM likelihood on each arc is replaced by
the CAUG score. As in the CML case the gradients with respect to
other components ofα can be obtain in the similar way.

6. EXPERIMENTS

This section describes experiments with the structured discrimina-
tive models in AURORA 2 and 4. The AURORA 2 results are in-
cluded to contrast the performance of CML and MBR training with
large margin training published previously [5]. For all systems the
discriminative models are initialised with the sparse parameter vec-
tor to yield generative model performance on the first iteration. The
first order gradient-based optimisation with increasing step size is
used (back-tracking is performed whenever required). To prevent
over-training a development set was used to stop training, Set A for
AURORA2 and Set C for AURORA4.

AURORA2 is a noise-corrupted connected digit string recogni-
tion task. The number of classes is 11 plus thesil andsp model.
The generative model is a whole-word HMM with 16 states and 3
components/mixture trained using ML on the clean data. There are
three test sets available for testing. The setup used follows the one
described in [3]. The CAUG model is based on the appended-all
score-space in equation (4), no language model is used. The num-
ber of discriminative parameters is 145. The multi-style data is used
for training. The word error-rate (WER) performance of the VTS-
compensated HMM and the CAUG models is shown in the following
table. In Table 1 all forms of training of the CAUG model achieve
gains over the baseline HMM system. The best results were obtained
with large margin training. However the gains over MWE training
are relatively small and large margin training is not easily mapped
to the parallelisation required for training large systems. As a sim-
ple contrast a single dimension score-space system (using the correct
class) was also constructed. Using the more complicated score-space
with all models gave consistent gains over this simpler model.

AURORA 4 is a noise-corrupted medium to large vocabulary
task based on the Wall Street Journal (WSJ) data. Two configurations



Classifier Crit
Test Set

Avg
A B C

HMM ML 9.8 9.1 9.5 9.5

CAUG
CML 8.1 7.7 8.3 8.1
MWE 7.9 7.4 8.2 7.9
LM 7.8 7.3 8.0 7.7

Table 1. AURORA2 Recognition Results

have been considered.2 The first repeats the previous setup where the
HMM is trained from clean data (SI-84 WSJ0 part,∼14 hours). In
the second more advanced VTS-adaptive training (VAT) is used to
obtain the canonical HMM [8, 11]. The HMMs are state-clustered
triphones (∼3140 states) with∼16 components/mixture. Multiple
(4) iterations of VTS compensation are performed for the test data,
the supervision hypothesis is updated after each cycle. The CAUG
model is based on the context-dependent score-space in equation (6)
and trained on the multi-style data. The language model parameters
were fixed, only the most likely alignment was considered (αp = 0)
and no bias used. Evaluation is performed using the standard 5000-
word WSJ0 bigram model on four noise-corrupted test sets3 based
on NIST Nov’92 WSJ0 test set.

System Crit Class
Test set

Avg
A B C D

HMM ML - 7.1 15.3 12.2 23.1 17.8

CAUG

CML
47 7.2 14.7 11.1 22.8 17.4

432 7.1 14.5 11.0 22.4 17.1
4020 6.7 14.4 10.8 22.1 16.9

MPE
47 7.3 14.7 11.2 22.7 17.4

432 7.0 14.4 11.3 22.0 16.9
4020 6.7 14.3 10.4 21.9 16.7

Table 2. AURORA4 Recognition Results

The first configuration investigates the usefulness of model-level
phonetic-decision tree clustering (Section 4) for parameter tying. Ta-
ble 2 shows the initial AURORA4 results with VTS-compensated
HMM and CAUG models trained using CML and MPE. As expected
as the number of classes increases performance improves. For all test
sets the MPE-trained CAUG outperformed the CML-trained model,
though all CAUG models outperformed the baseline average. When
the number of distinct classes reaches 4000 the gains over the VTS-
compensated HMM is more than 1% absolute. Note even for the
largest CAUG configuration the increase in the number of model pa-
rameters is less than 5% compared to the baseline HMM system.

System Crit
Test set

Avg
A B C D

HMM (VAT) ML 8.6 13.8 12.0 20.1 16.0
CAUG MPE 7.5 13.0 10.9 19.4 15.3

Table 3. AURORA4 VTS Adaptively Trained Recognition Results

The second configuration used an VTS adaptively trained HMM
system. The following table shows the baseline performance and

2The results given here are based onHDecode from HTK V3.4. Using
HTK 3.4.1 results in small differences in performance. This isdue to the
improvement introduced to HTK 3.4.1 in the path merging stage.

3The test set A is clean, set B has 6 types of noise added, set C has the
channel distortion introduced and set D has both the additive noise and the
channel distortion. SNR is randomly chosen bewteen 5 and 15 dBfor test
data and between 10 and 20 dB for multi-style training data.

MPE-trained CAUG with 4029 classes4. As expected the VAT sys-
tem in Table 3 on average out-performed the baseline clean system,
16.0% compared to 17.8%. Again the use of a CAUG MPE trained
model yielded gains for all test sets. Note for this configuration both
the generative model and the discriminative model are trained on
multi-style data.

7. CONCLUSIONS

This paper has described a structured discriminative model suitable
for noise-robust medium/large vocabulary speech recognition. Here
generative models, which can be compensated to handle speaker
and noise changes, are used to extract features from the observation
sequence. Previous work using whole-word models are extended
to allow context-dependent sub-word model to be used. Context-
dependent kernel are used to yield compact feature vectors at the
phone level. Additionally model-level phonetic decision tree clus-
tering of the discriminative model parameters, is described. Both
conditional maximum likelihood and minimum Bayes’ risk train-
ing of these models are detailed. The performance of classifier was
evaluated on a simple AURORA 2 and more complex AURORA
4 noise-corrupted speech recognition tasks. Consistent gains has
been observed over clean trained and VTS adaptively trained VTS-
compensated HMM systems.
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