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Abstract—Recently there has been interest in combined gen-
erative/discriminative classifiers. In these classifiers features for
the discriminative models are derived from generative kernels.
One advantage of using generative kernels is that systematic
approaches exist how to introduce complex dependencies beyond
conditional independence assumptions. Furthermore, by using
generative kernels model-based compensation/adaptationtech-
niques can be applied to make discriminative models robust
to noise/speaker conditions. This paper extends previous work
with combined generative/discriminative classifiers in several
directions. First, it introduces derivative kernels basedon context-
dependent generative models. Second, it describes how derivative
kernels can be incorporated in continuous discriminative models.
Third, it addresses the issues associated with large numberof
classes and parameters when context-dependent models and high-
dimensional features of derivative kernels are used. The approach
is evaluated on two noise-corrupted tasks: small vocabulary
AURORA 2 and medium-to-large vocabulary AURORA 4 task.

I. I NTRODUCTION

Most automatic speech recognition (ASR) systems use
generative models, hidden Markov models (HMM), as the
acoustic models. Likelihoods from these models are combined
with the prior, the language model, using Bayes’ rule to
yield the sentence posterior. Although successful, it is widely
known that the underlying models are not correct. This has
lead to interest in discriminative classifiers which directly
model sentence posteriors/decision boundaries given a setof
features extracted from the observation sequence. There are
several options how features can be extracted from observation
sequences. This includes event detectors [1], generative kernels
[2] and other parametric and non-parametric approaches [3].
Event detectors make use of multiple parallel feature streams
which operate at different levels of granularity such as word,
multi-phone and phone. This flexibility enables a wide range
of short and long-spanning dependencies. However, the current
applications of event detectors do not attempt to improve the
underlying acoustic models, the recognition results from these
models are used to derive features. Additionally, the issues
associated with adapting feature streams to noise/speaker
conditions are not easy to handle.

Generative kernels derive features from generative models
and have several advantages. First, the use of competing log-
likelihoods, first and higher order derivatives of log-likelihood
offers a systematic approach of adding new acoustic features.
In contrast to log-likelihoods the derivatives do not inherit
conditional independence assumptions from generative models
and enable other short and long-spanning dependencies. Sec-
ond, the generative kernels can be adapted to noise/speaker

conditions using model-based compensation/adaptation ap-
proaches [4]. Third, since generative kernels derive features
from generative models the parameters of these models can be
re-estimated to extract more discriminative features. Previous
work with generative kernels has examined several feature
configurations. The use of log-likelihood features extracted
from whole-word and context-dependent HMMs was inves-
tigated in [5] and [6] respectively. However, the features
in these approaches inherited the underlying HMM condi-
tional independence assumptions. Derivative features have
been examined in [4] and [7]. However, the generative models
used in these approaches were whole-word models and small
vocabulary recognition tasks were considered.

This paper extends the previous work with derivative fea-
tures to handle medium/large vocabulary speech recognition
tasks. This requires three fundamental issues to be addressed.
The first issue is the large number of context-dependent dis-
criminative classes. The approach based on phonetic decision
tree clustering [6] to ensure that sufficient amount of training
data exists for robust parameter estimation is adopted. With
derivative features parameter tying introduces another issue.
When more than one distinct generative model is used to
extract features the discriminative parameters become sensitive
to the order of components in these models. A simple approach
is proposed where discriminative parameters associated with
derivatives are tied within the states. The third issue is that
large margin training should be used with high-dimensional
features and limited amount of training data, however, current
implementations [8] can not handle high-dimensional features.
In this paper an on-the-fly variant of minimum Bayes’ risk
training is performed.

II. COMBINED GENERATIVE AND DISCRIMINATIVE

CLASSIFIERS

Generative models are well known for their natural han-
dling of variable length sequences, adaptability to varying
noise/speaker conditions, efficient learning and inference al-
gorithms. For discriminative classifiers these issues are not
easy to handle. This section provides details on a combined
approach which offers the benefits of generative models with
the additional power of discriminative classifiers.

Consider a framework illustrated by Figure 1 where the
shaded part corresponds to generative models and the rest
to discriminative classifiers. The generative part is a stan-
dard model-based HMM compensation/adaptation framework.
Given noise and speaker-dependent observation sequenceO
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Fig. 1. Combined generative and discriminative framework

the parameters of the canonical HMMs are compensated
to the target conditions using model-based techniques. The
discriminative part makes use of these compensated HMMs
and observation sequences to extract a set of features. These
features handle the mapping from variable length sequencesto
a fixed dimension and incorporate a range of short and long-
spanning dependencies. The advantage of this framework is
that the features extracted from the compensated HMMs will
be automatically adapted to target noise/speaker conditions. It
is then possible to train noise/speaker-independent discrimina-
tive classifiers.

In this work vector Taylor series (VTS) model-based com-
pensation is applied to map HMM parameters to target noise
conditions. The first-order VTS scheme described in [9] is
used. The mismatch function between the static part of clean
x
s
t and noise-corruptedos

t observation is given by
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whereC is a discrete cosine transformation matrix,1 is a unit
vector,ns

t andh are additive and convolutional noise vectors.
Applying the first-order VTS expansion and taking expectation
with respect to static parameters of componentθjm yields the
following form of updated mean and covariance
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where µh and µn,Σn are convolutional and additive noise
parameters estimated using maximum likelihood (ML) training
[10], I is identity matrix,Jjm is a component-specific Jacobian
matrix computation of which is fully described in [9].

Several options exist to estimate the canonical HMM pa-
rameters. One approach is to train HMMs on clean data.
Another approach is to adaptively train HMMs using ML [11],
[12] or minimum phone error (MPE) [10], [13] training on
multistyle data collected in various noise/speaker conditions.
This allows more data to be used in estimating canonical
model parameters.

III. D ERIVATIVE KERNELS

Generative kernels in Figure 1 extract features from genera-
tive models. The simplest example arelog-likelihood kernels.
The base (b) feature in equation (4) is a log-likelihood of

generative model computed for classωi from observation
sequenceO [2]

φ0
b(O|ωi) =

[
log (p(O|ωi))

]
(4)

Another example is shown in equation (5) where, in addition
to the correct classωi, log-likelihoods of competing classes
are also appended (a) [2]

φ0
a(O|ωi) =




log (p(O|ω1))
log (p(O|ω2))

...
log (p(O|ωK))


 (5)

The features derived from baseφ0
b and appendedφ0

a log-
likelihood kernels inherit conditional independence assump-
tions of the underlying generative models. In contrast to log-
likelihood kernels features derived fromderivative kernels
have different conditional independence assumptions. Con-
sider ρ-th order base derivative kernel where feature vector
has the following form

φ
ρ
b(O|ωi) =




log (p(O|ωi))
∇λ log (p(O|ωi))

...
∇ρ

λ log (p(O|ωi))


 (6)

In addition to correct class log-likelihood the feature vector in
equation (6) incorporates derivatives up to the orderρ with
respect to generative model parameters. Consider the first-
order derivatives taken with respect to componentθjm output
distribution parametersλjm = {µjm,Σjm}

∇
λjm

log(p(O|ωi)) =

T∑

t=1

P (θjm
t |O)∇λjm

log(p(ot|θ
jm
t )) (7)

These derivatives are functions of component posterior prob-
abilities, P (θjm

t |O), which depend on the whole observation
sequence. This means that the use of derivatives introduces
additional dependencies into the features. Higher-order deriva-
tives offer more complex dependencies [7].

Since not all first and higher order derivatives are equally
discriminative a subset of them are normally used. In [14]
the derivatives with respect to the mean vectors (1m) were
found to be the most discriminative first-order derivatives. The
feature vector in this case has the following form

φ1m
b (O|ωi) =




log (p(O|ωi))
T∑

t=1
P (θ1,1

t |O)Σ
−1/2
1,1 (ot − µ1,1)

...
T∑

t=1
P (θ1,M

t |O)Σ
−1/2
1,M (ot − µ1,M )

T∑
t=1

P (θ2,1
t |O)Σ

−1/2
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...
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P (θN,M

t |O)Σ
−1/2
N,M (ot − µN,M )




(8)



where N is the number of states andM is the number of
components in every state. Note that consistently with other
work in this area standard deviation rather than variance
normalisation is performed [4].

In order to illustrate the advantages of using first and higher
derivatives consider the following example [7]. A discrete
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Fig. 2. Example discrete HMM topology, transition and output probabilities

HMM with the topology shown in Figure 2 is used to model
two classesω1 andω2. The data for the two classes are

ω1 : AAAA, BBBB

ω2 : AABB, BBAA

When ML training is used to estimate HMM parameters
then the state transition and output probabilities shown in
Figure 2 are obtained. Since all estimated distributions yield
equal probabilities the HMM is not capable of distinguishing
between the two classes. The situation is different with deriva-
tive kernels. Table III shows values of selected derivatives.
When the first and second order derivatives are computed with

TABLE I
FEATURE VECTOR VALUES FOR SECOND-ORDER GENERATIVE KERNEL

Feature
Classω1 Classω2

AAAA BBBB AABB BBAA

∇2A 0.50 -0.50 0.33 -0.33
∇2A∇T

2A
-3.83 0.17 -3.28 -0.61

∇2A∇
T

3A
-0.17 -0.17 -0.06 -0.06

respect to output symbolA in state2 (line 1 and 2) then all
training examples may be correctly classified provided non-
linear decision boundaries can be modelled. With the cross-
state second order derivative∇2A∇

T

3A (line 3) a linear decision
boundary is sufficient. This second order derivative is capable
of capturing whether label changes or not on transition from
state2 to state3.

IV. CLASSIFICATION WITH DERIVATIVE KERNELS

A. Isolated case kernels

The derivative kernels from Section III can be directly
applied for isolated word classification tasks. One option to
extend them to classify sequences rather than isolated words
is to use acoustic code-breaking [15]. In this approach recog-
nition of continuous speech is broken down into classification
of a sequence of isolated speech segments. Given a word-level
hypothesis with alignment an isolated discriminative classifier
is sequentially applied to every segment. One classifier used
for this task are binary support vector machines (SVM). For

the SVMs the feature vector of the first-order derivative kernel
has the following form [14]

φ(Õ, ωi, ωj) =




log
(
p(Õ|ωi)

)
− log

(
p(Õ|ωj)

)

∇λ log
(
p(Õ|ωi)

)

∇λ log
(
p(Õ|ωj)

)


 (9)

where ωi and ωj are two classes and̃O is a segment of
observation sequence. Note that the feature vector in equa-
tion (9) is a joint feature vector which incorporates features
simultaneously from two classes. For multi-class classification
with SVMs schemes such as majority voting [14], [4] and
tree-based reductions [16] have been examined. However,
with large number of words the number of binary SVMs
required in these approaches becomes large. One option to
address this issue is to use a multi-class SVM [5]. However,
with high-dimensional derivative features and large number
of classes the total dimensionality of the joint feature vector
becomes huge. This makes constraint satisfaction of maximum
margin training computationally infeasible. Therefore in[5]
log-likelihood rather than derivative kernels were used.

The use of acoustic code-breaking approach is suboptimal in
several ways. The first issues is that the discriminative model is
defined on a word-level which is not useful for medium/large
vocabulary tasks. The use of subword models is complicated as
phone boundaries are hard to reliably estimate. Another issue
with acoustic code-breaking is that isolated segments rather
than continuous sequences are modelled.

B. Continuous case kernels

This paper extends derivative kernels to classify continuous
sequences by using continuous discriminative models [7], [5],
[6]. The model considered in this work has a log-linear form

P (W|O) =
exp(αTφ(O,W, θ))∑

W′ exp(αTφ(O,W′, θ′))
(10)

whereα are discriminative parameters andθ is an alignment.
An important decision to make is at which levelθ will segment
the data as this defines the level of conditional independence
assumption in the model. Segmenting data at the word-level
is not useful for medium/large vocabulary acoustic models.
Similarly to the work in [6] here the data is segmented at
the phone level. Figure 3 illustrates the structure of the model
in equation (10) by a lattice typically used in discriminative
HMM training [17]. There every word arc is segmented into
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Fig. 3. Structure modelling approach in continuous discriminative models



a sequence of phone arcs. This allows context-dependent
generative models attached to phone arcs to be directly used
in derivative kernels. The features extracted are shown in
Figure 3 as the column vectors. Note that for simplicity
context-independent labels are shown.

Given observation sequenceO and hypothesised word se-
quenceW aligned byθ the model in equation (10) assigns a
score equal to the exponent of the dot-product below

αTφ(O,W, θ)=

Lp∑

i=1

αTφ(Ot(wi,θ), wi)+

Lw∑

j=1

log (P (wj))(11)

The dot product in equation (11) is a summation of phone-
level dot products and word-level language model probabili-
ties. Features used at the phone-level are those extracted by
derivative kernels from generative models

φ(O, w) =




δ(w, ω1)φ
ρ
b(O|ω1)

...
δ(w, ωKp

)φρ
b(O|ωKp

)


 (12)

wherew is one ofKp context-dependent classes. The vector
in equation (12) is a high-dimensionaljoint feature vector,
the use of delta functions ensures that only oneφ

ρ
b(O|ωi) is

active on every phone arc. The language model probabilitiesin
equation (11) are obtained in this work from an-gram model.

During training/decoding the most likely alignment

θ̂/{θ̂,Ŵ} = argmaxθ/{θ,W}

{
αTφ(O,W, θ)

}
(13)

with respect to discriminative parametersα theoretically
should be used. The inference problem in equation (13) can be
solved using the semi-Markov equivalent [18] of the Viterbial-
gorithm. In [19] the impact of using the most likely alignment
was investigated with the appended log-likelihood features φ0

a

on a digit string recognition task. Small improvements were
observed over using alignments produced by HMMs. In this
work the use of optimal alignment was not investigated and
the alignment provided by HMMs was adopted.

V. PARAMETER TYING AND ESTIMATION

A. Parameter tying

When context-dependent generative models are used the
number of possible classes becomes large. It is unlikely
that the amount of training data available will be sufficient
to robustly estimate parameters of all classes. The standard
approach with generative models is to usestate-level phonetic
decision trees to cluster phonetically similar states together
[20]. Since discriminative classes in this work are defined on
a model rather than state level the trees created for generative
models can not be re-used. Therefore, another set ofmodel-
level decision trees is created as described in [6].

When derivative features are used there is an additional
issue to consider. In contrast to log-likelihoods the derivatives
are computed with respect to components of generative model
states. The clustering procedure applied in phonetic decision
tree building is insensitive to the order of states/components
and components when used at the model and state level

respectively. The derivative features however have a fixed
order. Consider an example on the left in equation (14) where
for simplicity the class label is omitted and one-state HMM
is assumed.
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log (p(O))
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∇λM

log (p(O))
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log (p(O))
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∇λM
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 (14)

When several generative models extract features for one dis-
criminative class then the order of components in these models
can adversely affect the discriminative ability of derivatives.
One option to overcome this is to ensure that a small number
of generative models is used by any discriminative class.
However, this can introduce robustness issues as fewer training
examples will be available. The option considered in this work
is to tie parameters associated with derivatives within states as
shown on the right in equation (14). With limited amount of
training data this approach can improve robustness by reducing
the number of parameters by a factor ofM .

B. Parameter estimation

The standard criterion to train log-linear models is a con-
ditional maximum likelihood (CML). For tasks such as ASR
minimum Bayes’ risk (MBR) training is a popular alternative
approach. The objective function in MBR training is given by

Fmbr(α) =

R∑

r=1

∑

W

P (W|O(r))L(W,W
(r)
ref) (15)

where loss functionL(W,Wref) may be defined on a sen-
tence, word, phone or frame level. In this work the standard
phone-level loss function [17] is used. Alternatively, with large
dimensional features and limited amount of training data large
margin training may be more appropriate. However, current
implementations of large margin training [8] can not handle
large dimensional features. Therefore in this work a variant of
MPE training [6] is used.

In MPE training of log-linear models standard gradient-
based optimisation is performed

∇αFmpe(α) =

R∑

r=1

∑

a∈L
(r)
den

C(a)P (a|O(r))φ(O
(r)
t(a), w) (16)

whereC(a) is phone arca contribution to the average accu-
racy,P (a|O) is arc posterior probability andφ(O, w) is given
by equation (12). Storing high-dimensional features attached to
every phone arc as in Figure 3 is impractical for medium/large
vocabulary tasks. In this paper on-the-fly training is performed
where every lattice is passed through twice. The first pass
extracts derivative features on the fly and accumulates dot
products with discriminative parameters. These phone-level
dot products are then combined with language model prob-
abilities in a lattice-based forward-backward algorithm [17]
to yield arc posterior probabilities and contributions. Inthe
second pass the gradient in equation (16) is accumulated.



Although every derivative is computed twice there is no need
to keep features attached to phone arcs. The derivatives can
be computed on-the-fly and destroyed once arca is finished.

Regularisation is important when estimating parameters of
log-linear models. In this work regularised training is per-
formed where the final objective function to maximise has
the following form

F(α) = Fmpe(α) −
1

2
(α − α0)

T
Σ

−1
α (α − α0) (17)

The second term in equation (17) originates from a Gaussian
prior. The mean of the prior has the form

α
(ω)
0 =

[
1 0 . . . 0

]T

(18)

which in equation (10) would yield the generative model
performance. The weight matrixΣα in this work has a
diagonal form where a separateσl and σd weights are used
for parameters associated with log-likelihood and derivatives
respectively.

VI. RESULTS

This section describes experiments with derivative kernels in
AURORA 2 and AURORA 4 task. Only first-order derivatives
with respect to mean vectors are considered. For all systems
the continuous discriminative models are initialised withthe
sparse parameter vector in equation (18) to yield generative
model performance on the first iteration. Similarly to other
work in this area RProp optimisation is performed [1]. To
prevent over-training a subset of test data was used to stop
training, Set A for AURORA 2 and Set B for AURORA 4.

A. AURORA 2

AURORA 2 is a connected digit string recognition task.
The number of classes is 11 plus thesil and sp model.
The generative model of digits is a whole-word HMM with
16 states and 3 components/mixture trained using ML on the
clean data. The setup used follows the one described in [4].
The continuous discriminative model is based on derivative
featuresφ1m

b in equation (8), no language model is used. As
a contrast another model is built based on one-dimensional
featuresφ0

b in equation (4). The number of discriminative
parameters is 21,554 and 13 respectively. The multi-style data
is used for training.

The word error-rate (WER) averaged over 0-20 dB test data
of the VTS-compensated HMMs (VTS) and discriminative
classifiers is shown in Table II. The first block quotes the

TABLE II
AURORA2 RECOGNITION RESULTS BASED ON CLEAN-TRAINED HMM S

System
Test set

Avg
A B C

VTS 9.8 9.1 9.5 9.5
SVM 7.5 7.4 8.1 7.6

φ0
b 8.1 7.4 8.2 7.8

φ1m
b 7.0 6.6 7.6 7.0

acoustic code-breaking results with binary SVMs [4] as de-
scribed in Section IV-A. As can be seen from Table II the

use of isolated discriminative classifier with derivative kernels
yielded large gains over the VTS. The second block in Table II
shows the performance of continuous discriminative models.
The one-dimensional featuresφ0

b show results comparable
to the performance of SVMs but have significantly fewer
parameters. The derivative featuresφ1m

b improve the result
of φ0

b relatively by 10%, however, the number of added
parameters is approximately half of those available to the
HMMs. Comparing the performance of the isolated SVMs and
continuous derivative kernels it can be seen that modelling
whole sentences rather than isolated segments gives consis-
tent gains. The same was observed with the appended log-
likelihood kernels in [5].

B. AURORA 4

AURORA 4 is a noise-corrupted medium/large vocabulary
task based on the Wall Street Journal (WSJ) data. Two
configurations of canonical HMMs were considered. The first
repeats the previous setup where the HMMs are trained from
clean data (SI-84 WSJ0 part,∼14 hours). In the second more
advanced VTS-adaptive training (VAT) is used to obtain the
canonical HMM [10], [12]. For both setups the HMMs are
state-clustered triphones (∼3140 states) with∼16 compo-
nents/mixture. Model-based noise compensation is done in
two cycles where multiple (4) iterations of VTS compensation
are performed for the training and test data, the supervision
hypothesis is updated after each cycle. The discriminative
model is based onφ0

b and φ1m
b features. The parameters of

discriminative classes are tied to yield 47 and 4020 classes.
Evaluation is performed using the standard 5000-word WSJ0
bigram model on four noise-corrupted test sets based on NIST
Nov’92 WSJ0 test set.1

The first configuration investigates the usefulness of deriva-
tive kernels based on context-dependent HMMs with different
number of discriminative classes. Table III shows AURORA 4
recognition results. The first block gives baseline performance

TABLE III
AURORA 4 RECOGNITION RESULTS BASED ON CLEAN-TRAINED HMM S

Classes System
State Test set

Avgtied α A B C D

VTS 7.1 15.3 12.1 23.1 17.9

47
φ0
b 7.6 14.6 11.8 22.2 17.2

φ1m
b

yes 7.5 14.1 11.3 21.6 16.6
no 7.4 14.3 11.7 21.9 16.9

4020
φ0

b 6.6 14.2 10.7 21.8 16.7

φ1m
b

yes 6.8 13.7 10.6 21.3 16.2
no 6.7 13.5 10.2 21.1 16.0

of the VTS-compensated HMMs. The second block gives
results for 47-class discriminative model based onφ0

b and
φ1m
b features. The first line in the second block shows that

the use of one-dimensionalφ0
b features gives gains over the

VTS although the number of added parameters is only 47.

1Test set A is clean, set B has 6 types of noise added, set C has the channel
distortion introduced and set D has both the additive noise and the channel
distortion. Average SNR in noise-corrupted data is 10 dB.



The next two lines show that whenφ1m
b features are used

then arbitrary ordering of components in HMMs has a clear
impact on discriminative model performance. The third block
in Table III shows results for 4020-class discriminative model
in the three cases described above. As in the case of 47
classes the use of one-dimensional features yielded gains over
the VTS. The addition of derivatives similarly improved the
results further. As discussed in Section V with large number
of classes the impact of arbitrary component ordering is
expected to be small. The results in Table III confirm this
by showing that tying parameters instead has lead to a small
drop in classification accuracy, However, since the number
of parameters in the tied case is less by a factor of 16 the
within-state tying is useful for making compact discriminative
models based on derivative kernels. Comparing the second and
third block consistent gains can be observed from using more
discriminative classes.

The second configuration used a VTS adaptively trained
HMM system (VAT). Note in this configuration both the
generative and discriminative models are trained on multistyle
data. The following table shows the performance of baseline
VAT, MPE-trained VAT (MPE-VAT) from [21] and 4020-
class continuous discriminative models based onφ0

b andφ1m
b

features. Comparing the VAT in Table IV (line 1) and the

TABLE IV
AURORA 4 RECOGNITION RESULTS BASED ONVAT HMM S AND

COMPARISON TOMPE-VAT HMM S

System Test set Avg
A B C D

VAT 8.6 13.8 12.0 20.1 16.0
MPE-VAT 7.2 12.8 11.5 19.7 15.3

VAT+φ0

b 7.7 13.1 11.0 19.5 15.3
VAT+φ1m

b 7.4 12.6 10.7 19.0 14.8

VTS in Table III (line 1) gain around 2% absolute can be
observed from the adaptive training of generative parameters.
The VAT+φ0

b discriminative model gives gains over the VAT.
The use of derivative features again improves the performance
further. Comparing Tables III and IV shows that the use
of derivative features in 4020-class VTS+φ1m

b model allows
to achieve the performance of more advanced VAT system.
Further, by comparing lines 2 and 3 in Table IV it is interesting
to note that the VAT+φ0

b model gives the same level of
performance as the MPE-VAT though the number of added
parameteres in the former is just 4020 and the generative
model is ML-trained. Finally, comparing the performance of
VAT+φ1m

b with the MPE-VAT system shows that derivative
features on average yield 0.5% absolute improvement and the
largest gain comes from the most noisy conditions.

VII. C ONCLUSION

This paper has described a continuous discriminative model
based on derivative kernels which is suitable for noise-robust
medium/large vocabulary speech recognition. Here the gen-
erative models are adapted to noise/speaker conditions using
model-based techniques. The adapted models are then used

to extract features from observation sequences. Previous work
in small vocabulary tasks with whole word/phone models has
been extended to allow context-dependent models to be used.
At the phone level, in addition to log-likelihood, the first-order
derivatives with respect to HMM mean vectors are used as the
features. Parameter tying and estimation with large number
of discriminative classes and high-dimensional features is de-
scribed. The performance of continuous discriminative model
was evaluated on two noise-corrupted tasks: AURORA 2 and
AURORA 4. Consistent gains have been observed over VTS-
compensated clean-trained ML, VTS adaptively trained ML
and MPE HMM systems.
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