Model-Based Approaches to Handling
Uncertainty

M.J.F. Gales

Abstract A powerful approach for handling uncertainty in observasies to modify
the statistical model of the data to appropriately refleistaimcertainty. For the task
of noise robust speech recognition, this requires modifygin underlying "clean”
acoustic model to be representative of speech in a pantitatget acoustic en-
vironment. This chapter describes the underlying conceptaodel-based noise
compensation for robust speech recognition and how it caappéed to standard
systems. The chapter will then consider important praldsaes. These include: i)
acoustic environment noise parameter estimation; ii)iefficacoustic model com-
pensation and likelihood calculation; iii) and adaptivaning to handle multi-style
training data. The chapter will conclude by discussing timétions of the current
approaches and research options to address them.

1 Introduction

There are many sources of variability in the speech signah s inter-speaker
variability, intra-speaker variability, background neisonditions, channel distor-
tion and reverberant noise (longer term channel distas)ioh range of approaches
have been developed to try and reduce the level of varighdidme are based on
general linear transformations [38, 18]; others based ondetrof how the variabil-
ity impacts the acoustic models or features [37, 17]. Thiptér will concentrate
on one particular form of variability, background noise andvolutional distortion.
Handling background noise is still a fundamental issue ieesh recognition.
There are often high levels of mismatch between the traicimgditions of the
acoustic models and test conditions in which they are reduio operate. Even
with no mismatch, background noise will impact the systemiggmance. As the

M.J.F. Gales
Cambridge University Engineering Department, TrumpingtStreet, Cambridge e-mail:
mjfg@eng.cam.ac.uk



2 M.J.F. Gales

level of noise increases the speech signal will become ndaakd the ability of

the acoustic models to discriminate between words will éase. Techniques for
handling noise should be able to deal with this increase getainty. This chap-
ter examines approaches that handle background-noisehaneel distortions by
modifying the parameters of the underlying acoustic mqdelshis case Hidden
Markov Models (HMMs) [52, 24]. This class of approaches iepfreferred to as
model-based noise compensation schemes *.

There is some debate as to whether model-based compensatiemes or
feature-based compensation, where the “clean” speectirizatsd, are the the most
appropriate form for noise robust speech recognition. &iciice the best scheme de-
pends heavily on the computational resources availabletiveln the scheme needs
to act causally, and the nature of the parametrisation hesed. This chapter will
briefly mention feature-based schemes, and how uncertaimtgluded. However
as model-based approaches are the more natural approaahdie ladditional lev-
els of uncertainty associated with noise robust speectgreiion, this will be the
focus of the discussion.

The next section will briefly discuss general forms of modigatation to speak-
ers or environment with a particular emphasis on how adaptaan be used to
handle uncertainty. The impact of noise on speech and tinesfof representation
that are often used will then be described. This is followgé Ibrief discussion of
feature-compensation. Model-based compensation is tascrided, along with a
discussion of computational efficiency and estimation bfred model parameters.
Finally conclusions are drawn along with possible futurections.

2 General Acoustic Model Adaptation

Given the range of variability (and related uncertaintyoasated with speech there
has been significant research devoted to handling this@ml€urrently, one of the
most popular approaches is to use linear transformatiotfseofnodel parameters.
This has been applied for rapid adaptation to speaker or@mwient changes.
Various configurations of linear transforms have been pgegoNote, the nota-
tion used in this section is consistent with the rest of thegtér. The clean speech
parameters (the canonical model) will be indicated by am the subscript, ang
for the corrupted speech (target condition) parameterss The corrupted speech

mean of componem will be indicated asu§m).

1. Maximum Likelihood Linear Regression (MLLR) [38, 23, 18]: one of the ear-
liest and most popular forms of adaptation. Initially ondiagtation of the means
was considered [38]. This was extended to adapting the eowa@ matrices as

1 There has been a large amount of work, and possible varfantsiodel-based noise compensa-
tion schemes. This chapter is not meant as a complete reviahsoch schemes. The presentation
is (naturally) biased towards work performed at Cambridgévérsity. However it is hoped that
all sections are covered with appropriate background eatass.
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well [57, 23, 18]. Here for component

uy" = AT 4 pl (1)
z§m) = Hm) g (M m) 2)

wherery, indicates the regression class to which componeb¢longs.

2. Constrained MLLR (CMLLR) [11, 18]: here the transformations of the means
and covariance matrice8,"™ andH(m are constrained to be the same, hence
the name CMLLR. Originally used for diagonal transformatimf the means
and variances of the acoustic models [11], efficient estondbrmulae and full
transforms were investigated in [18].

uy = HO (™ — b)) 3)
z(ym) = Hm g Tm) (4)

Rather than adapting the model parameters, for full transfat is more efficient
to implement this as a set of transformations of the feat[#r8ks Thus the ap-
proach is sometimes referred to as Feature MLLR (FMLLR). Nosvikelihood
can be expressed as

POy |m) = [A™ [y (A, 4 b ™ F() (5)
whereA('m) = H('m)-1 'y is the corrupted speech observations at tinféis form
of adaptation does not require the model parameters to bdfietbd-or large
vocabulary systems where there may be hundreds of thous@mdsnponents
this is a very important attribute.

3. Noisy CMLLR (NCMLLR) [33]: this is an extension to CMLLR that is specifi-

cally aimed at handling situations with additional unciertta Here

Py, M) = [AT™ |y (Almly, gl (™ s s i) 6)

Thus NCMLLR may be viewed as a combination of CMLLR with a eage bias
transform [57]. This form of transformation has the sameadtire as various
noise model-compensation schemes [33].

All of the above approaches involve a transformation of theaciance matrix.
Thus in all cases they can model changes in uncertainty itatiget conditions by,
for example, appropriately scaling the variances.

An interesting extension of these adaptation approachesaigtive training [4].
Here the transforms are used during the training procesheR#an training a
speaker (or noise) independent model-set to be adaptedug&rati’ canonical model
is trained that is suitable for adaptation to each of theeiacgnditions. Adaptive
training schemes have been derived for all the above tremsf¢4, 18, 33]. For
these adaptive training schemes changing levels of uriesria the training data
should be reflected in the the contribution of those framekeacanonical model.
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Frames with high levels of uncertainty should only make alooatribution to the
model updates.

These general adaptation schemes do not rely on explicielnaf speaker-
differences or the impact of noise on the clean speech.ddsiteear transforms, or
sets of linear transforms, are estimated given adaptaitan @hough advantageous
in the sense that these transforms are able to model corigrisaif differences,
they are only linear, or piecewise linear. Furthermore theber of parameters
for each transform can be largé,d?) whered is the size of the feature vector,
for full transforms. This makes them impractical for verpichadaptation, though
modifications to improve robustness are possible [7, 20].

To enable very rapid adaptation some low-dimensional esration of speaker
differences or the impact of noise is needed. For speakeptatitan vocal tract
length normalisation [37] is one such scheme. This requareingle parameter,
the warping factor, to be estimated. The equivalent foreoidustness is the set of
noise models associated with the particular acoustic enment and thenismatch
function for how the noise alters the clean speech.

3 Impact of Noise on Speech

The first stage in any form of feature or model-based compiemsacheme is to
specify how the noise alters the clean speech for the parsat&in being used.
In this section it is assumed that a “power-domain” MFCCeuabfeature vector is
being used.

3.1 Static Parameter Mismatch Function

The standard, simplified model of the impact backgroundtagdnoise,n;, and
convolutional distortionh; on the clearx;, is [1]

Y, = Clog (exp(C™(x + h;) +exp(Cny))
= f(%,h,m) @)

wherey, is the corrupted speech observation at tinaedC is the DCT.exp() and
log() are element-wise exponential and logarithm respectivelg. simple to see
that when the energy level of the noise is far greater tharofttae (convolutionally
distorted) clean speech thgn~ n;. The clean speech isasked by the noise.

Though (7) is the most commonly used form, a range of altemmatismatch
functions, or interaction functions, have also been pred$s7, 36, 10, 41, 21, 39].
These approaches can be split into two categories, donzs@eband phase-based
compensation.
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1. Domain-based[17]: this is the simplest form of modified compensation veher
the domain of the speech and noise compensation is treatetlasble param-
eter. Here

Yo = %,Clog (exp(C™y(x + ) + exp(C ™ ymy)) (8)

y determines the domain n which the clean speech and noisemitgmedy = 1
is the power-domainy = 1/2 magnitude domain. Its value can be empirically
tuned for a particular task.

2. Phase-based10]: domain-based approaches are not motivated from tpadmn
of noise on speech, they simply give a degree of flexibilitgl@img the mismatch
function to be optimised. A more precise formulation is dedi by taking into
account the phase between the clean speech and noise velegs

1
y, = Clog <exp(cl<xt 1)+ exp(Ch) + 2ayoexp S (x+ e+ m)))(9)

where a; is the vector of phase factors (the cosine of the angle betee
speech and the noise) at time instah@nd o is element-wise multiplication.
There have been a range of approximations within this fraonkevin [41] a fixed
value for all elements of the vectar was empirically determined. This is the
closest to the domain-based compensation schemes. Inueédd approaches
can be shown to equate fgr= 1 andy = 1/2. The optimal value for the AU-
RORA 2 task yielded similar mismatch functions for the twpagaches [21].
More precise forms of compensation tr@afs a random variable [10, 39, 65].
In [39] an analytic expression for the momentsaofvere derived. Rather than
using all the moments of the distribution af a simpler approach is to assume
that it is Gaussian distributed and use the analysis in [38ptain the variance.
However, since the phase factor has a physical interpoetaiti should lie in
the range -1 to +1. Thus an extension to this simple Gausgiprogimation
was used in [65] to compensate acoustic models using samagked approaches.
Here the variable is treated as

. N (a;;0,02) a € [-1,+1]
p(ai) O { 0 “ otherwise (10)

whereg?; is the phase factor variance for element

The rest of this chapter will focus on the standard form ofmatch function
given in (7). For some of the alternative mismatch functiorslel-based compen-
sation has also been examined [41, 21, 39, 65].
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3.2 Dynamic Parameter Mismatch Functions

The discussion so far has only considered the static paeasndthe feature vector
used for decoding usually consists of static and dynamiarpeaters. The standard
form for the dynamic parameters is

1 TWeir = Yeq)
Ay, = oW 12 (11)

wherew is the window-width used to determine the delta parame&&nmsilar ex-
pressions are used for the delta-delta parameﬂé&s, The form of (11) allows the
dynamic parameters to be represented as a linear transfdhm static parameters.
This is the approach used in [8, 64]. The observation veaodécoding can be
expressed as

yt Yt+w
Ay, | =D| : (12)
A%y, Yi-w

andD is the linear transform determined from (11). Provided thgrapriate corre-
lations in the feature vector are modelled this allows themaitch functions in the
previous section to be used. Though yielding an accurate @frdelta compensa-
tion this form is computationally expensive and requires-standard clean-speech
model statistics to be estimated. A similar style of forntiola has been used for
simple-difference delta and delta-delta parameters [17].

The above scheme is computationally expensive. Thus thé coazmon form
of mismatch function used is the continuous time approxond®25]. Here the fol-
lowing approximation is used

~ 9

Ay, ~ ==

_ oy ox
= ot

oy ox|  dy on
. Ox ot

oy ay
t In ot NﬁAxﬁﬁAm (13)

t

This is the standard form used in, for example, VTS compé&ns§]. For simplic-
ity of presentation dynamic parameters are not discussékeiun this chapter.

3.3 Corrupted Speech Distributions

Having derived a representation for the impact of noise enclean speech it is
useful to examine how it alters the form of the clean speestiidution. Under the
mismatch function for the static parameters in (7) and tisemption that both the
clean speech and the additive noise are Gaussian distfibutecorrupted speech
distribution will be non-Gaussian. This is illustrated fore dimension in Figure 1.
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(a) Clean Speech (speech mean=0) (b) Corrupted Speech (noise mean=-2)

Fig. 1 Clean Speech (a) Corrupted Speech (b) distributions in tlge$pectral Domain

As well as causing the distribution to be non-Gaussian,tesking” property of
noise on speech is clear. From Fig. 1 the low-energy speemnipletely masked
by the noise. This “masking” property has been used for soaigencompensa-
tion approaches [66] and is also exploited in the missingufeanoise robustness
schemes [53, 59].

4 Feature Enhancement Approaches

The first forms of noise robustness were based on featur@areriment approaches.
Originally variants on spectral subtraction [6] were p@sulThese were then re-
placed by minimum mean square error estimation schemes @)D, 9], either
requiring stereo data [49, 48, 9, 3], or using noise modéinases [61]. This sec-
tion will discuss MMSE style enhancement approaches and Unmertainty has
been included into these schemes.

For MMSE-based approaches [49, 9] the estimated clearcs@adimet, X;, is
given by

% = E{Xly:} (14)
The issue is what form the posterior distribution of the olspeech given the cor-
rupted speech should have. For simplicity this is often m&slito be jointly Gaus-
sian. However given the non-linear nature of the interactb speech and noise
in (7) a mixture of Gaussians is used to improve performainhbas forfront-end
componenh the joint distribution is modelled as
) (15)

(n) " s(n)
Yl [ |B 2,z
x p

) s
3

X X

)
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If the component that generated the distribution at tineeknown (herex), then
the MMSE estimate of the clean speech will be a linear transfaf the corrupted
speech [29]

% = & {X|y;, e} (16)
= uM+ ZP My - ) (17)

In practice the component is not known, so needs to eithestima&ted or treated
as a latent variable and marginalised over. For the latetable case

% = 3 P(ly)& (X0} (19)

There are a number of possible schemes that can be used hetimis of the
treatment of the component and the estimation of the conapiensparametera ("
andb("_ If the joint distribution (and hence associated margirisirihutions) is
known then the posterior can be obtained from

P(n)A (yi; uy” =)
SmP(m)A (v py™, ZM)

P(nly,) = (20)

The estimate of a single component can also be found fromabsegmsterior
fy = argmax(P(nly,)} (21)

An interesting alternative is to use an iterative EM-likegess [3]. Either the joint
distribution, or the transform, may be estimated from stetata [49, 3] or using
approaches based on model-based compensation [48, 61].

The estimate of the clean speekh,is then passed to the clean recogniser. Thus
the likelihood is approximated for a particul@cognition componenm by

POV IM) ~ A (% p™, Z) (22)

Wherey,(cm) andZ;m) are the mean vector and covariance matrix of the clean speech
trained acoustic model for component Thus the underlying assumption behind
this model is that the clean speech estimate is “perfec€spective of the level of
background noise. However for low SNR conditions whgre ny it is difficult to
get an accurate estimate of the clean speech.

One approach to address this problem is to add uncertaititgtestimate of the
clean speech [5, 61]. Here the posterior is assumed to besfaaus nature

X|y, ~ A (%, Zt) (23)
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whereZ; is the “uncertainty” associated with estimate at time instd. The like-
lihood is then computed as

p(ycIm) ~ [ p(xiy,) p(xim)dx 24
~ [ 068 20 (6 i, Z ik (25)

Though intuitively well motivated, from (24) it can be seéatthe likelihood is not
mathematically consistent.

An alternative more consistent scheme is to propagate #tehdlition of the
corrupted speech given the clean speech [12, 43]. Here

pym) =~ [ p(y; p(xm)dx (26)

Again the acoustic space is represented by a mixture moael. tNe distribution
(marginalizing over the components) is

P(Y:[X) =S P(n|x)p(y;|x.n) (27)

Compared to (19) this is more complex as the component goste(n|x), is con-
ditional on the clean speech latent variakleather than the corrupted observation
y;. Different approximations for this have been proposed 143,

Though mathematically more consistent, this form of appind®as an issue when
using the (required) approximations f&(n|x). This component posterior term
should vary continuously as the “unseen” clean speedianges. As this is highly
computationally expensive to deal with, the approximatiased produce a form
of “average” component posterior term to use for enhancériiée posterior dis-
tribution p(y;|X) is then the same for all “recognition” componenisAt very low
SNRs the averaged form of component posterior can ofterft irsp(y;|x) = p(n;)
as the vast majority, but not necessarily all, of clean spesw associated com-
ponents will be completely masked. As the posterior is nadependent ok, all
recognition components have the same distribution, so the frame is ignored in
terms of acoustic discrimination. The only form of discnivaiion will be associ-
ated with the language model. The information from any nasked speech (and
components) has been lost. Depending on the task this canehlavge impact on
recognition performance. This issue is discussed in detdd6]. Given that the
underlying attribute of feature-based approaches is thtziecement (with or with-
out uncertainty) is decoupled from recognition componghts problem cannot be
addressed within an enhancement framewiotls soon as there is a coupling be-

2 Theoretically the exact value &n|x) could be used. However ass a function of the recogni-
tion component this effectively becomes model-based cosgi®n. Interestingly if no uncertainty
is used such as in SPLICE [9] this problem does not occur gstbalmeans, not the variances, of
the distributions can be altered.
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tween the “enhancement” and the recognition components¢theme becomes a
model-based approach as discussed in the next section.

5 Model-Based Noise Compensation

The aim of model-based compensation schemes is to modifadbastic model
parameters so that they are representative of the HMM ouwtigtributions in the
target domain. The advantages of model-based compensati@mes is that the
additional uncertainty that results from the backgroundads directly modelled.
There is no need to estimate masks, or additional unceytaint

From Fig. 1 it is clear that even if the clean speech and nosé&aussian dis-
tributed, the resulting corrupted speech distribution as-Gaussian. In practice
when considering all elements in the feature vector theupded speech distribution
may be highly complicated with a large number of modes. Sqpexaches attempt
to model this complexity using for example GMMs [17]. Altatively Gaussian ap-
proximations for the likelihood at the observation vajyeather than for the whole
distribution ofy have been proposed [36]. Finally non-parametric schenrethéo
distribution ofy, have been used [65]. A common attribute of all these schesnes i
that they are computationally very expensive.

Rather than estimating the “true” distribution, a simpl@gximation is to as-
sume that the distribution of the corrupted speech is Gangsinature [17, 2]. Thus

(Y Im) ~ A (v ™, =) (28)

Whereu§m) and Z§,m> are the estimated mean vector and covariance matrix of the
corrupted speech for the target environment. The task is toowbtain appropri-

ate estimates of these corrupted model parameters. Usindastd ML-estimation,
these can be obtained using [17]

um =& fyimp, £ =& {yy"im} - T (29)

There are a number of approximations for these expectatiaissit within this
Parallel Model Combination (PMC) framework. This chapter will only consider
two such forms. The first, Vector Taylor Series (VTS) compgios [48, 2], is one
of the most popular approaches. The second based on sarmspliegies aims to
improve the approximations underlying VTS. Other formsgwssible for example
the log-normal approximation [17], spline interpolatidb8], and Jacobian com-
pensation [56]. However, for all these schemes it is wortpleasising that however
accurate the compensation scheme is, the final distribigi@pproximated by a
single Gaussian.

For all these schemes the noise parameters are usuallylesbdsing [17, 48]

N~ A (Hy,20), h=p, (30)
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Thus the convolutional noise is assumed to be constant.tiaddily the delta and
delta-delta noise means are often assumed to be zero [48§eHarameters may be
estimated [40], but the motivation for these estimates t<tear3. The estimation
of these parameters will be described in Section 7.

5.1 Vector Taylor Series Compensation

A currently popular form of model-based compensation is VHi&re a first-order
Taylor series approximation to the non-linearity of (7) $&d. Thus for component
mthe random variable for the corrupted spegéhrelated to the clean speexhnd
noisen random variables by [48]

yim~ £ (™, p) + 3™ (= p™) + (h— ) ) + (1 = 3™) (n— p,) (31)

where the Jacobial™ is defined as

gm _ 9y

- 0x (32)

u™ g

Using this approximation yields the following estimates floe corrupted speech
distribution

pl™ = (™ p, ) (33)
sm = gMgmymT o 3mys, (1 - 3T (34)

As the Jacobian will be full, this results in a full covari@nmatrix for the cor-
rupted speech distributioﬁy‘"‘). It is common to diagonalise this covariance matrix
to maintain efficient likelihood calculation and controkthumber of model param-
eters. Thus in practice the likelihood is computed as

pyIm) = A (v 1™ diag(={™) ) (35)

For a discussion of the impact of this approximation see.[64]

A nice aspect of VTS, and one of the reasons for its populasithat the lineari-
sation simplifies the estimation of noise and clean speedtehmarameters [48].
This is discussed in Section 7. However this linearisati@y fioe expected to im-
pact performance, thus alternative schemes are of interest

% These may be interpreted as a general mismatch functioertiizin motivating from the physical
impact of noise on speech.



12 M.J.F. Gales

5.2 Sampling-Based Approximations

VTS relies on a first-order (or possibly higher) Taylor seg&pansion. To improve
this form of approximation it is possible to use samplingesapproaches. This
section briefly describes two of these schemes. Both aimreztlly estimate the
integrals of the form, taking the mean of componmras an example,

H™ = [ [ 10, p(xim) p(n)dncx (36)

wheref (.) is given in (7).

The simplest approximation is based on Monte-Carlo sargphis both the clean
speech and the noise are Gaussian distributed there arelvleqms generating sam-
ples from them. This approximation, Data-Driven PMC (DPNIC7], then uses, for
example, the following update formula for the mean

~

1
#ym::Rk lﬂxw%#hnf“) (37)

wherex¥ is a sample drawn fromm~ ¢ (", (™) andn(® is a sample drawn
fromn~ 4 (p,,2,). Note in this case the noise and speech samples are drawn
independently.

The advantage of this form of compensation is that in thetlasiK — o the
compensation will be “exact” (given the assumptions thatdbrrupted speech dis-
tribution is Gaussian in nature). However a major disadwgaf this straightfor-
ward scheme is that as the number of dimensions being sarfnptadncreases, the
number of samples needs to be increased in order to get reftirstates.

One approach to address these limitations is to use unsceatesforms [31].
Rather than drawing independent samples from the speechasel a set of sam-
ples are jointly drawn given the means and variances of gsncspeech and noise.
Here the approximation, again for the mean, has the form
P SR S PON (38)
“y - ZE:OW(k) kZo ( 7“h7 )

The samples are drawn in a deterministic fashion. If the @lvdimension of the
combined vectoe® has dimensionality@ (the feature vector id-dimensional)

«(K)
ﬂ@:[m@] (39)

2d + 1 samples are then drawn in a symmetric fashion based om¢nibie depen-
dence of the combined vector on the clean speech component
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K
20 = W = o (40)
T
1
K — gy(m) 5 m gt a1
T
1
(k+-2d) _ ) (m) _ (M) o opflkt2d) =
z 138 [ (2d+K)Z; ]k, W 2024+ 1) (42)

-
where [\/K}k indicates the transpose kth row of the Choleski factorisation of

A andk is a tunable parameter. The number of samples increasesliires the
number of dimensions increases.

Unscented transform compensation has been applied, witls gaer VTS and
simpler forms of PMC, for both model compensation and feahased enhance-
ments [60, 28].

6 Efficient Model-Compensation and Likelihood Calculation

One of the issues with model-based compensation schemleatithey are com-
putationally expensive. Applying schemes such as VTS gela&ocabulary speech
recognition systems is currently impractical for real¢icompensation. The costs
associated with model-based compensation schemes caiithietsghree parts: i)
estimation of the noise parameters; ii) estimation of thmpensation parameters;
i) applying the compensation parameters to the acoustidats. The estimation of
the noise parameters is not discussed here, but in the raidrseThis section will
briefly describe approaches for reducing the computatimaal of the remaining
two stages.

One approach to address the problem of computational ctiseigoress model-
based compensation in a factored form [16]. To improve tfieiehcy this can be
rewritten in the following approximate form

pym) = [ plyx.m)p(xim)cx 43)
~ [ Pt/ Fm) POXIm) (44)

wherery, indicates the regression class that compomeielongs to. The distri-
bution of the clean speech is known, it's given by the cleaesh HMM. Thus
the problem is to find the conditional distributiop(y; |X,rm). It is interesting to
compare this form with the enhancement schemes in Sectidaré.the posterior is
dependent on either the component or regression classeadfar feature enhance-
ment it is not. This means that the approximate averagingtbeecomplete acoustic
space discussed in [46] and Section 4 will not occur for mddsied compensation
(unless very few regression classes are used).
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6.1 Compensation Parameter Estimation

For schemes such as VTS the compensation parameters rbgeeréhe Jacobians
associated with each component](™ . This is needed to compensate the covari-
ance matrices. This form of Jacobian can be computed as [2]

Jm — cpmc-t (45)

whereC is the DCT matrix and=(™ is a diagonal covariance matrix where the
elements on the leading diagonal are given by

(m) _ !
f 1+exp([CHi(H, — My — Hy)) “o

and [CY]; is theith row of C1. This calculation is dominated by a matrix-matrix
multiplication (in the dimensionality of the static paraers) per recognition Gaus-
sian component. For large vocabulary speech recognitiemdpidly becomes im-
practical.

Rather than using VTS the approximation in (44) can be uséd. dim is to
obtain an efficient form for the regression-class specified@tonal distribution,
p(¥;|x,r). One approach is Joint Uncertainty Decoding (JUD) [42].eHle joint
distribution is assumed to be Gaussian at the regressies leleel. Thus

I ) ow

The conditional distribution is also Gaussian where

p
p

=z
z r) z(r

Xy “x

)

W) = 1)+ 200 x ) (@9)
n _ -1
=2y -z Ey) (49)

As all distributions are Gaussian, the marginal will als@zissian. The likelihood
in the joint framework can be computed as

PV [m) = A (y; ™ (™ — b)) ) (M 4 sy (miT) - (50)

where the compensation transform parameters are obtagiregl u

HO = 5050,
b(r) — y}({r) _ H(r)‘lyg)
50 HOLEOACT _ 50 (51)

These compensation parameters only need to be computeddbrod theR re-
gression classes, rather than all recognition compon&hisarameters of the joint
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distribution, other than the cross temﬁ’;, can be obtained using for example VTS,
or from the clean speech training data. For VTS the cross tammbe found us-
ing [62, 43]
(N _ snynT

2y =21 (52)
The cost of computing the compensation parameters persggreclass is more ex-
pensive than computing them for a single component, but tingoer of regression
classes can be made orders of magnitude smaller than theenofrddomponents. It
is also flexible as the number of regression classes can limted depending on
the available compute resources.

6.2 Compensating the Model Parameters

Having derived the compensation parameters the model paeasnmust then be
modified. In a similar fashion to (35), whatever form of comgation is used it
should require only diagonal covariance matrix likelih@adtulations. Directly ap-
plying the VTS compensation parameters requires calaglatie means and co-
variance matrices for every component. For large systermsahidly becomes im-
practical. Three alternative options for model compensadre described below.

1. VTS-JUD [67]: this form is the most closely related to VTS. Equatié) is
used with diagonal covariance matrices. Thus the likelthiscwomputed as

p(Y|m) = A (yt; H(rm)(“}((m) _ b(fm))7diag(H(fm)(z£{m) + zgm))H(fm)T)) (53)

This scheme requires the all recognition parameters todnsfiormed. Thus the
cost of applying the compensation parameters is compatatsgandard VTS.
However there is the advantage of only computing the congigmsparameters
at the regression class level.

2. JUD [43]: here the likelihood is computed as

Py, [m) = [ATm) g (Almly, 4 bl (™) s 5 () (54)

where the compensation transform parameters are obtagieglA(") = H(")1,
This form of compensation only requires a bias to be appbete clean covari-
ance matrix. However to limit the computational cost thisartance bias term,
}_'f)r), needs to be diagonal. Using a full joint distribution andgdinalising the
covariance matrix in (54) yields poor performance [43]. @di@ss this problem,
the form of the joint distribution can be modified. Here

) (55)

)
y H
Hig (vl

diag =) diag Z{1))

y
diag =) diag =)
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This yields diagonal forms for the compensation parameateisl). Note it will
also be more efficient to compute the compensation parasadteis form only
requires compensation parameters at the regression eladsdnd only a vari-
ance bias to be applied at the recognition component level.

This form of compensation has exactly the same form as NCM{&)Rbut de-
rived from a noise compensation perspective. For a disoussithe attributes
and comparison of the two approaches see [34].

3. Predictive CMLLR (PCMLLR) [22]: this uses the same form of transforma-
tion as CMLLR [18]. However rather than estimating the tfams parameters
from adaptation data, they are estimated from the modedebesrrupted speech
distributions. The form of likelihood calculation is

p(ytm) = [AT™ |y (AT bl Z(m) (56)
Here the model parameters are not altered, but there isi@ulicosts in esti-
matingA(") andb(") from the compensation form. For a discussion of the compu-
tational costs of this see [67]. Though PCMLLR is an appration to the cor-
rupted distribution, it has additional flexibility. By ugjrfull or block-diagonal
transformations, correlation changes in the featureevean be efficiently mod-
elled. This is not possible with standard VTS where diagongariance matrices
are used. This flexibility has been found to yield improvedgenance [67]. An-
other advantage of this approach is that adaptive trairsingiy simple, as the
standard CMLLR adaptive training approach can be used [67].
Interestingly PCMLLR has exactly the same form as the MMSHrege in (18).
However there are two important differences. First PCMLERépendent on the
regression class. Second the compensation parameteesaeddrom minimis-
ing the KL-divergence to the estimate of the corrupted speéstribution rather
than from a MMSE perspective [63]. As the KL divergence loakgEomplete
distributions (rather than just the first-order moments iIMI$E) changes in the
uncertainty can be modelled with PCMLLR.

It is simple to show that when the number of regression ctassthe same as the
number of components, both VTS-JUD, JUD and PCMLLR becorastidal to the
standard model compensation scheme being used to derij@rhdistribution.

7 Adaptive Training and Noise Estimation

So far the discussion has assumed that all the model panametgiired for com-

pensation are known. In practice this is rarely the casegi@ally the background
noise was simply estimated from periods of “silence” in test ttonditions. This
required the use of a voice activity detection scheme, ambved any link be-

tween the clean model parameters and the estimates of the. Rairthermore there
is no way to estimate the convolutional noise. For the clgmesh parameters it
was assumed that clean (high SNR) training data was alwajsble to estimate
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the clean models. However this did not allow application domor found, data
to be used in the training process. Thus recently there hers ¢p@wing interest in
training both the acoustic models [45, 30, 32] and noise hd&e 35, 44, 40] in a
full ML framework. This research area has parallels withedepments in speaker
adaptation where the speaker transform parameters are edtenated in an ML
fashion [38] and the canonical model parameters are estimeting adaptive train-
ing [4].

The standard approach to estimate the parameters is to nsexine likelihood
of the data. Thus the aim is to find the model paramemfsthat maximise

F(M) = PO S ¥ (ver ™, diag £™)) (57)

where the summation ové includes all possible state sequences for the obser-
vation sequence. In common with standard HMM parametaritrgj EM is used.
Thus the following auxiliary function is maximised (ignog all terms independent

of the model to be estimated)

2(At) =3 A 09 (4 (v ", clag(£,")) (58)

where the posterior of the observation at titleeing generated by componant
%(m), is determined using the “current” model paramete#s, The task is now to
estimate the clean speech model parameters for each ofmhmocrentsﬂfcm) and

}Aiim), and noise model parametefs,, fi, andZ,, that maximise (58).

Two approaches have been described in the literature. T8tddito introduce
a second level of EM, where the clean speech, or noise, atttareconsidered as
continuous latent variables. This will be referred to asEMeapproach. The second
is a direct approach based on second-order optimisati@mse$ This section gives
a summary of some of the attributes of these schemes. Neittlee forms used is
exact, a series of approximations is made in each case. Hiestsgeme needs to
be determined empirically for the task (and approximafiofisnterest. For a more
detailed analysis and contrast of the two approaches sg¢e [15

7.1 EM-based Approaches

From the VTS approximation (31) it can be seen that the coetupbservation can
be written in the form of a generative model where

yima IMxM 4 (|~ 3Myp g gm g 4 gm (59)

and
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Xy (™ 57 (60)
n ~ W(ﬁn?in) (61)
™~ (ui™, =) (62)
where
[ng) _ ”§m) 7J(m)y}({m) — (I *J(m))yn (63)
S s(m _ gm gmgmT _(j _ gimy 5, (1 — gm)T (64)

andy(ym) and2§m) are the corrupted speech distributions at the current clpaech
and noise model parameters. This now has the form of a gdaetat analysis style
model, for which EM-based update formulae can be applied 265 35, 30, 33].
This allows the clean speech parameters and the noise parartebe found in an
iterative fashion. Note the convolutional noise bias isesitmated within an EM-
style framework (as it has no variance) but is estimated iBMrstyle approach and
is related to the bias transform estimation [57] (and alsthéoestimation scheme
in [48]).

The estimates of the clean speech means and covariancdseoane expressed

ad

am s k™ & {Xly;, m}

. (65)
2t K(m)
m) T
. &
5™ _ diag ( Ik {X)r(m o} _ ﬂi”ﬁf”) (66)
2t %
and the noise parameters as
o _ I 6 nly,m) (67)
B Zm,t %(m)
m) T
. & N
$a= diag(zm" ‘ e ) (68)
Zm,t %(

where the expectations are over the distribution deterghinethe current model
parameters.

However compared to the standard general FA-style EM-asiim approaches,
which are guaranteed not to decrease the likelihood at éaciion, there are two
important additional approximations being made.

1. Fixed 'loading matrix’ and bias. For this form of FA-styéstimationJ(™ and
£(M are assumed not to be functions of the clean speech and ravismeters

4 For simplicity of notation the multiple noise conditionstiwould normally be present for adap-
tive training have been ignored.



Model-Based Approaches to Handling Uncertainty 19

to be estimated. This is not the case as the Jacobian willgghas the model
parameters change.

2. Diagonal covariance matrices. Using the form of genezatiodel in (59) means
that the corrupted speech distribution will be a full cosade matrix (the loading
matrix J(™ is full). However this covariance matrix is diagonalised éfficient
decoding (35). The joint distribution between the cleanespeand corrupted
speech (this is the basis for the FA-style estimation) thassthe form

(m)
y H
M e (lyi’“) ) )
However from the generative model in (59) the corrupted speevariance ma-
trix can be expressed as

diag Z{™) Jm z(m
smymT  sm

)

S gmEMymT (- g E, (1 - 3T 4 g (m (70)

From (69) this should be diagonal. For these two expressmbg consistent,

the off-diagonal terms that results fraii” being full andfim) being diagonal
must be cancelled out by elements from the noise terms. $hi®t possible
for all components a3(™ is component specific whereas the noise is common
for all components. Hence the generative model is not ctamgisvith the joint
distribution® so the EM-style approach is not guaranteed to increase Kileay
function. Similar issues arise for the noise estimatiorcAs alternative, though
approximate solution, is to diagonalise the Jacobianishise approach adopted
in [13]. However this introduces additional approximasdn the form of the
generative model.

Both of these approximations mean that the update is noagteed to increase the
auxiliary function. To overcome this problem it is possite'back-off” estimates
by explicitly evaluating the auxiliary function. This beoes important if multiple
iterations are performed. Thus though mathematicallyagled is important to be
aware of the approximations being used with this approach.

One of the advantages of these FA-style training approdshéat it is simple
to incorporate discriminative training criteria such asBPB0] into the adaptive
training framework [13].

7.2 Second-Order Approaches

Rather than using an EM-style approach it is possible to tss&lard gradient de-
scent style schemes to directly maximise (58) [45, 32]. Fgeeral second-order
approach the update has the form

5 It is not clear that the joint covariance matrix in (69) isated to any generative model of the
form given in (59) where the noise model is shared over meltpmponents.
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92.9() 220 1 toa9
i(m (m) o (M2 (M 5 (M2 -
Hy Hx J iy Opx 00y S(m)
ima| = | 2|+ | _ote0 a22( 50 (72)
o
* * 06" op™ a(6§m>2)2 06"

where 2(.4;.4) is written as2() to save spacem(:“)2 is the vector of leading
diagonal elements dr;m% and( is the learning rate. Considering the estimation of

the clean speech meqm)([m), the derivative can be written as (the fixed variables are
explicitly expressed to make the form of the derivative glea

020 _omM|  s20| 08| 020 72
op" &M op" &M 0ﬁ§,m> &im ap™ P 06§m>2 am

In common with the FA-style approaches these second-om@oaches make a
number of approximations.

1. Second-order approximation. In common with all secordkpschemes there is
the assumption that the “error-surface” is quadratic iuraatin practice this is
not the case. Additionally the form of the Hessian is ofterdified, for example
diagonalised, and approximated to simplify optimisation.

2. Approximate derivatives. The mean derivative given ) (g often not used. For
example in [32] the second term in (72) is assumed to be zénaes The gradient
is approximated by

02()
om”

~ 3m 920
om om"

(73)

am
Though simplifying the derivative, it shifts the statiopgoints of the function.

As there is no guarantee of increasing the likelihood, faseestimation backing-
off approaches can be used [44]. For the model parametenag&in additional
smoothing can also be added [44].

8 Conclusions and Future Research Directions

This chapter has reviewed a number of schemes associatednoidel-based ap-
proaches for handling uncertainty. The discussion comatss on techniques for
handling high levels of background noise and channel distogs this is one of
the most important forms of varying uncertainty in the spregignal. A number of
approaches, as well as issues, are highlighted. Thesaladiue model compen-
sation process itself; the computational costs assocwitedhis process; and how
the parameters of all elements of the process can be estirfrate data. Though
no performance figures have been given in this chapter, feeereces given allow
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a comparison of a number of approaches to be made. In partithé AURORA
2 test set [27] has been used to evaluate a number of systehis wiconsistent
framework.

One of the interesting aspects of model-based compensatgmarch is that
techniques originally developed for general linear transf adaptation schemes
(whether speaker or environment) are being increasinglgl.ushus schemes based
on ML-estimation of the model parameters [38], adaptivining schemes [4] are
becoming popular. Additionally discriminative trainirgalso being used [13].

Though there has been improvements in the level of noisestobss for speech
recognition, there are still a number of issues that nee@ @addressed. The author
feels these will become increasingly important as the cerigl of the task and
range of conditions under which ASR systems are requireg@éoated increases.

1. Impact of noise on speechit is not possible to derive representations for the
impact of noise on the speech for all forms of parametrigafithis chapter has
assumed that MFCC parameters are being used. Even theuatiad of basic
front-end schemes such as CMN mean that the mismatch farzdionot be de-
rived, though approached geared to handling this have beréred [47]. Due to
this reason, and the added problem of delta and delta-deitareters, feature-
enhancement schemes based on stereo training [3] are usedntine noise
robustness with state-of-the-art front-end processiradh sas semi-tied trans-
forms [19] and fMPE [51]. Generalising model-based comp#as techniques
to handle state-of-the-art front-ends will be an importasearch area.

2. Handling changes in correlation though the Jacobian associated with schemes
such as VTS are block-diagonal in structure the resultivgiéance matrices are
diagonalised for speed of decoding. This is known to degraciegnition perfor-
mance [43, 64, 67]. Predictive linear transform scheme®aesframework for
addressing this [22]. However to date research in addmgdbkia problem has
been limited. As performance requirements for robust ASRAWWSNR condi-
tions increases this topic will become increasingly imanott

3. Improved distribution modelling : the majority of model-based compensation
schemes assume that each speech and noise componentydigieid a Gaus-
sian distributed corrupted speech component. As prewialistussed this is not
true. Obtaining more efficient non-Gaussian schemes thaulrent versions
may yield improved performance over the Gaussian apprdioms

4. Speed of compensation/parameter estimatiorone of the main objections to
model-based approaches is that they are slow. For larg®utzog systems there
may be hundreds of thousands of Gaussian components. Imgrtne speed of
all aspects of model-compensation is essential for it torbadly applied. For
example using incremental forms of noise estimation/camsaton [14] is one
approach to handling this.

5. Reverberant noise extending the range of environments for which model com-
pensation schemes can be used. For example to handle longeeerberant
noise as well as additive noise, a model-based approackdsibed in [54].

6. Improved acoustic modelling as the level of background noise increases, and
the associated uncertainty of the speech increases, it s@ynie increasingly
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important to improve the form of the acoustic models beingdufer the clean
speech, noise and corrupted speech. One approach in thiidlir is to use
HMM generative models to obtain scores for use in a discrtie classi-
fier [21].

In summary model-based compensation schemes are a verglnasty of han-

dling uncertainty in speech recognition. However therdilssignificant research
required to enable these techniques to achieve the levpbrfifrmance, both speed
and accuracy, to allow their general deployment in a wideyesof speech applica-
tions.
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