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ABSTRACT

Segmental Minimum Bayes Risk (SMBR) Decoding involves the
refinement of the search space into sequences of small sets of
confusable words. We describe the application of Support Vector
Machines (SVMs) as discriminative models for the refined search
spaces. We show that SVMs, which in their basic formulation
are binary classifiers of fixed dimensional observations, can be
used for continuous speech recognition. We also study the use
of GiniSVMs, which is a variant of the basic SVM. On a small
vocabulary task, we show this two pass scheme outperforms MMI
trained HMMs. Using system combination we also obtain further
improvements over discriminatively trained HMMs.

1. INTRODUCTION

Support Vector Machines [1] are pattern recognizers that classify
data without making any assumptions about the underlying process
by which the observations were generated. In their basic formula-
tion SVMs are binary classifiers. Given a data sample to be clas-
sified, the SVM will assign it as belonging to one of two classes.
In training an SVM each labeled data point is represented as a real
valued vector of fixed high dimension. The SVM is defined by a hy-
perplane in this feature space that is constructed so as to maximize
a measure of the “margin” between two classes. A new data sample
is classified by the SVM according to the decision boundary defined
by the hyperplane. The location of the hyperplane is usually deter-
mined by a small number of the training samples which are ideally
those near the boundaries of the two classes. As a consequence,
SVMs are often observed to generalize well in cases when training
data is limited. It is also possible to improve classification per-
formance by transforming the raw data into a higher dimensional
feature space so that the two classes can be more easily separated
by a linear classifier. Due to these and other beneficial properties,
SVMs have been successfully used in many pattern recognition
tasks [2] [3]. In this paper, we take the simple view that an SVM
is a binary classifier of fixed-length data vectors.

In speech recognition we would like to classify a variable length
sequence of fixed dimension patterns which are typically vectors
of acoustic spectral energy measurements. These raw observation
sequences can be expected neither to have fixed dimension nor to
belong to one of only two classes. Only the simplest of word or
phrase recognition tasks can be described as binary classification of
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d-duration sequences. If SVMs are to be employed in contin-
s ASR, their simple formulation as binary classifiers will have
e overcome or circumvented.
Smith et al. [4] have developed score-spaces [5] to represent a
able length sequence of acoustic vectors via fixed dimensional
tors. This is done by using HMMs to find the likelihood of each
uence to be classified and then computing the gradient of the
lihood with respect to the HMM parameters. Since the HMMs
e a fixed number of parameters, this yields a fixed-dimension
ure to which the SVMs can be applied. It has the added benefit
the features provided to the SVM can be derived from a well-

ned HMM recognizer. However, the SVM is still essentially a
ry classifier, so that this approach is still limited to the binary
sification of variable length sequences.
To apply SVMs beyond the two-class problem we employ an
roach to continuous speech recognition in which the recogni-
task is transformed into sequential, independent classification
s. Each of these sub-tasks will be a binary recognition problem
hich the goal is to decide which of two words were spoken. This
ds a large but manageable sequence of binary decision problems
SVMs will be trained and applied to each. This is fundamen-
an ASR rescoring approach. HMMs are used to generate

gnition lattices in the usual way, and these lattices are post-
cessed to identify regions of acoustic confusability in which
first-pass HMMs were unable to distinguish between compet-
word hypotheses. The goal of this work is to apply SVMs to
lve the uncertainty remaining after the first-pass HMM-based
gnizer. We will build on previous work in which this two-pass
gnition approach was used to develop specialized discrimina-
training procedures for HMMs [6, 7].
We refer to this divide-and-conquer recognition strategy as
ustic code-breaking. The idea is first to perform an initial recog-
on pass with the best possible system available, which we take

MM-based; then isolate and characterize regions of acoustic
fusion encountered in the first-pass; and finally apply models to
h region that are specially trained for these confusion problems.
s provides a framework for incorporating models that might not
rwise be appropriate for continuous speech recognition. We

erve in passing that since the first-pass HMM system provides
oper posterior distribution over sequences, this approach may
ess affected by the label-bias problem that can be encountered
n discriminative classifiers are applied in sequential classifica-
[8].
To place our work in context, there have been previous applica-



tions of SVMs to speech recognition. Ganapathiraju et al. [9] obtain
a fixed dimension problem by using a heuristic method to normalize
the durations of each variable length sequence. The distances to the
decision boundary in feature space are then transformed into phone
posteriors using sigmoidal non-linearities. Smith et al. [4] use
score-spaces to train SVMs followed by a majority voting scheme
among binary SVMs to recognize isolated letters. Golowich et al. [10]
interpret multi-class SVM classifiers as an approximation to multi-
ple logistic smoothing spline regression and use the resulting SVMs
to obtain state emission densities of HMMs. Forward Decoding
Kernel Machines [11] perform maximum a posteriori forward se-
quence decoding, where transition probabilities are regressed as a
kernel expansion of acoustic features and trained by maximizing a
lower bound on a regularized form of cross-entropy.

In the following sections we review the Segmental Minimum
Bayes Risk framework that we use for sequence recognition. We
then give brief descriptions of SVMs and scores-spaces, providing
only the detail needed to describe our work. We will describe
the use of GiniSVMs that will allow non-positive kernels to used
for sequence classification. We then present our experiments and
results followed by our conclusions and ideas for future work.

2. SMBR FOR SPEECH RECOGNITION

Given a suitable loss function l(W, W ′) between two word strings
W andW ′, the Minimum Bayes Risk (MBR) [12] decoder attempts
to minimize the empirical risk. It is formulated as

Ŵ = argmin
W ′εW

∑
WεW

l(W, W ′)P (W |A) (1)

where W represents all possible word strings in the grammar and
A are the observed acoustics.

For this search to be practical, W is usually represented by
the paths in a N-Best list or a lattice. However, the summation
and minimization over this search space (between word strings
W and W ′) in MBR decoders can still be prohibitively expen-
sive. SMBR [13, 14] decoders address this issue by reducing
the search problem to a sequence of smaller independent search
problems, i.e., the lattice is broken up or cut into a sequence of
M smaller sub-lattices. Under certain assumptions [13, 15], the
MBR search Equation 1 decomposes into a sequence of indepen-
dent MBR searches over each of the sub-lattices. Standard MBR
decoding is then performed over each of these smaller lattices

Ŵi = argmin
W ′

i εWi

∑
WεWi

l(Wi, W
′
i )Pi(W |A) (2)

where Ŵi is the best path in the ith sub-lattice and Wi represents
all possible strings in the ith sub-lattice. Finally, the sentence-level
MBR hypothesis is obtained as Ŵ = Ŵ1 · Ŵ2 · · · ŴM .

There are many lattice cutting schemes. In risk-based lattice
cutting [16], each path in the lattice is aligned to the MAP sen-
tence hypothesis Ŵ . The path is then segmented so that the loss
function relative to the MAP hypothesis remains consistent, i.e.,
l(Ŵ , W ′) =

∑M
i=1 l(Ŵi, W

′
i ).

Lattice cutting produces pinched lattices (Fig. 1, middle). The
segmentation process is designed so that the structure of the original
lattice is not disrupted: new paths may be introduced, but no paths
in the original lattice are lost, except possibly by pruning. Since
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. 1. Lattice Segmentation for Estimation and Search. Top:
t-pass lattice of likely sentence hypotheses with MAP path in
; Middle: Alignment of lattice paths to MAP path; Bottom:
ned search space Ŵi consisting of segment sets selected for
riminative training and rescoring

paths from the original lattice are preserved, we can use these
hed lattices for acoustic rescoring.
In this work we used Period-1 risk-based lattice cutting. This

duces sub-lattices whose strings are at most one word long
. 1, bottom). We prune these so that only the the MAP hy-
esis remains in regions of high confidence; in regions of low

fidence, the pinched lattice contains the MAP hypothesis along
the competing word hypotheses. We perform the pruning ag-

sively so that in regions of acoustic confusability there are at
t two competing words - the MAP hypothesis and one other.
h of these segments is called a confusion pair. These are word
s, e.g., {V, B}. Associated with each instance of these pairs
he lattices are the acoustic segments that caused these confu-
s; these are the acoustic observations and their time boundaries
ided by the lattice.

3. GINISVMS

now briefly review the GiniSVM [11]. Given training data
}N

i=1 and their labels {yi}N
i=1, where xi ∈ RN and yi ∈

, +1}, the basic SVM searches for the hyperplane with the
est separating margin by minimizing a regularized cost func-
.
GiniSVM is a multi-class probabilistic regression machine
provides conditional probability estimates of each class. For a
ry classification problem, GiniSVM reduces to a special case

he quadratic SVM and minimizes the following cost function

1
2

∑
i,j

αi[K(xi,xj) +
2γ

C
δij ]αj − 2γ

∑
i

αi (3)



subject to ∑
i

yiαi = 0, 0 ≤ αi ≤ C, (4)

where γ is the rate distortion factor chosen as 2log2 and C is the
SVM trade-off parameter that determines how well the SVM fits the
training data. Similar to the usual SVM formulation, GiniSVMs
employ a kernel K(·, ·) to map input vectors to a higher dimension
space. GiniSVMs have the advantage that, unlike SVMs, they can
employ non positive-definite kernels.

New observations x are then classified as

y = sgn(
∑

i

yiαiK(x,xi)) + b (5)

whereb is the bias of the hyperplane that results from the constraints
of the cost function [1].

4. SCORES AND SCORE-SPACES

Fisher scores [5] have been suggested as a means to map variable
length observation sequences into fixed dimension vectors and the
use of Fisher scores has been investigated for ASR [4]. Each com-
ponent of the Fisher score is defined as the sensitivity of the likeli-
hood of the observed sequence to each parameter of an HMM.

If O is an observation sequence and θ = [θ�
1 , θ�

2 ]� are the
parameters of two HMMs trained for the binary classes 1 and 2,
the projection of the observation sequence into the score-space is
given by

ϕ(O) =
[

1
∇θ

]
ln

(
p(O|θ1)
p(O|θ2)

)

=


 ln p(O|θ1)

p(O|θ2)
∇θ1 ln p(O|θ1)

−∇θ2 ln p(O|θ2)


 (6)

We first define the parameters of the jth Gaussian observation
distribution associated with state s in HMM i as (µi,s,j , Σi,s,j). In
this work we derive the score space solely from the means of the
multiple-mixture Gaussian HMM state observation distributions,
denoted via the shorthand θi[s, j, k] = µi,s,j [k]; the decision to
focus only on the Gaussian means will be discussed in Section 7.
The gradient with respect to these parameters [4] is

∇µi,s,j ln P (O|θi) =
T∑

t=1

γi,s,j(t)
[
(ot − µi,s,j)�Σ−1

i,s,j

]�
,

where γi,s,j is the posterior for mixture component j, state s under
the ith HMM found via the Forward-Backward procedure; and T
is the number of frames in the observation sequence.

We now discuss issues in using scores derived in this way as
features to be classified by SVMs.

5. SVM IMPLEMENTATION

We first adjust the scores for each utterance via mean and variance
normalization. The normalized scores are given by

ϕN (O) = Σ̂−1/2
sc [ϕ(O) − µ̂sc], (7)

where µ̂sc and Σ̂sc are estimates of the mean and variances of the
scores as computed over the training data of the SVM. Ideally, the
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ion would be performed by the scaling matrix Σ̂sc as

ϕN (O) = Σ̂−1/2
sc ϕ(O) (8)

re Σ̂sc =
∫

ϕ(O)′ϕ(O)P (O|θ)dO. For implementation pur-
es, the scaling matrix is approximated over the training data

Σ̂sc =
1

N − 1

∑
(ϕ(O) − µ̂sc)�(ϕ(O) − µ̂sc) (9)

re µ̂sc = 1
N

∑
ϕ(O), and N is the number of training samples

the SVM. However we used a diagonal approximation for Σsc

e the inversion of the full matrix Σ̂sc is problematic. Prior to
mean and variance normalization, the scores for each utterance
normalized by the utterance length T .
For ASR, the linear kernel (K(xi,xj) = xi

′ · xj), has pre-
sly been found to perform best among a variety of positive-

nite kernels [17]. We found that while the linear kernel does
ide some discrimination, it was not sufficient for satisfactory
ormance. This observation can be illustrated using kernel maps.
ernel map is a matrix plot that displays kernel values between
s of observations drawn from two classes, C1 and C2. Ideally
,y ∈ C1 and z ∈ C2, then K(x,y) � K(x, z). and the ker-
map would be block diagonal. In Figs. 2 and 3, we draw 100
ples each from two classes to compare the linear kernel map
e tanh kernel (K(xi,xj) = tanh(d ∗ xi

′ · xj)) map. Visual
ection shows that the map of the tanh kernel is closer to block
onal. We have found in our experiments with GiniSVM that
tanh kernel far outperformed the linear kernel; we therefore
s on tanh kernels for the rest of the paper.
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. 2. Kernel Map K(xi,xj) for the linear kernel over two class
.

The GiniSVM classification performance was found to be sen-
e to the SVM trade-off parameter C. Unless mentioned oth-
ise, a value of C = 1.0 was chosen for all the experiments in
paper to balance between over-fitting and the time required for

ning.
For efficiency and modeling robustness there may be value in
cing the dimensionality of the score-space. There has been
arch [18] [17] to estimate the information content of each di-
sion so that non-informative dimensions can be discarded. As-
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Fig. 3. Kernel Map K(xi,xj) for tanh kernel over two class data.

suming independence between dimensions, the goodness of a di-
mension can be found based on Fisher discriminant scores as [17]

g[d] =
|µ̂sc[1][d] − µ̂sc[2][d]|
Σ̂sc[1][d] + Σ̂sc[2][d]

(10)

where µ̂sc[i](d) is the dth dimension of the mean of the scores of
the training data with label i and Σ̂sc[i][d] are the corresponding
diagonal variances. SVMs can then be trained only in the most
informative dimensions by applying a pruning threshold to g[d].

6. SVMS IN AN SMBR FRAMEWORK

We now describe the steps to incorporate SVMs in the SMBR
framework.

6.1. Identifying confidence sets in the training set

Initial lattices are generated using the baseline HMM system to de-
code the speech in the training set. The lattices produced are then
aligned against the reference transcriptions [13]. Period-1 lattice
cutting is performed and each sub-lattice is pruned (by the word
posterior) to contain two competing words. This process identi-
fies regions of confusion in the training set. The most frequently
occurring confusion pairs (confusable words) are kept, and their as-
sociated acoustic segments are identified, retaining time boundaries
and the true identity of the word spoken.

6.2. Training SVMS for each confusion pair

For each acoustic segment in every sub-lattice, likelihood-ratio
scores as given by Equation 6 are generated. The dimension of
these scores is equal to the sum of the number of parameters of the
two competing HMMs plus one. If necessary, the dimension of the
score-space is reduced using the goodness criterion (Equation 10)
with appropriate thresholds. SVMs for each confusion pair are
then trained in our normalized score-space using the appropriate
acoustic segments identified as above.
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SMBR decoding with SVMs

ial test set lattices are generated using the baseline HMM sys-
. The MAP hypothesis is obtained from this decoding pass
the lattice is aligned against it. Period-1 lattice pinching is
ormed on the test set lattices. Instances of confusion pairs for
ch SVMs were trained are identified and retained; other confu-
pairs are pruned back to the MAP word hypothesis.

The appropriate SVM is applied to the acoustic segment asso-
ed with each confusion pair in the lattice. The HMM outputs
e regions of high confidence are concatenated with the outputs

he SVMs in the regions of low confidence. This is the final
othesis of the SMBR-SVM system.

Rationale

most ambitious formulation of acoustic code-breaking is to
identify all acoustic confusion in the test set, and then return
e training set to find any data that can be used to train models

emove the confusion. To present these techniques and show
they can be effective, we have chosen for simplicity, to focus

modeling the most frequent errors found in training. Earlier
k [6] has verified that training set errors found in this way are
d predictors of errors that will be encountered in unseen data.

7. EXPERIMENTS AND RESULTS

evaluate our proposed method on the OGI-Alphadigits cor-
[19]. This is a small vocabulary task that is fairly challenging.
baseline Word Error Rates (WERs) for ML models are around
; this ensures that there are enough number of errors to allow

analysis. The corpus has a vocabulary of 36 words: 26 let-
and 10 digits. The corpus has 46,730 training and 3,112 test
rances. We first describe the training procedure for the vari-
baseline models. A more detailed description can be found in
mpiotis et al. [7].
Word based HMMs were trained for each of the 36 words. The
d models were left-to-right with approximately 20 states each,
ixtures per state. The data are parametrized as 13 dimensional

CC vectors with first and second order differences. The baseline
models were trained HTK-style [20]. The AT&T decoder [21]
used to generate lattices on both the training and the test set.

ce the corpus has no language model (each utterance is a random
word string), an unweighted free loop grammar was used during
oding. MMI training was performed [22] [23] at the word level
g word time boundaries taken from the lattices. A new set of
ces for both the training and the test sets was then generated
g the MMI models. The Lattice Oracle Error Rate for these
ces was 1.27%. Period-1 lattice cutting is then performed on
e lattices; the number of confusable words in each segment is
her restricted to two. This increased the Lattice Oracle Error
e to 3.11%. At this point there are two sets of confusion pairs

the pinched lattices, one set comes from the training data, and
other from the test data. We keep the 50 confusion pairs that
observed most frequently in the test data. All other confusion
s in training and test data are pruned back. We emphasize that
is a ‘fair’process; the truth is not used in identifying confusion.

ched Lattice MMI (PLMMI) [7] is then performed on the MMI
els with these lattices.
Table 1 presents the results for the baseline HMM systems.
n though the pinched lattices have a higher oracle error rate,



we see the PLMMI models have substantial gains over the MMI
models (7.98% vs. 9.07%).

SVMs were then trained for the 50 dominant confusion pairs
using the GiniSVM toolkit [24]. Log-likelihood ratio scores were
generated from the 12 mixture MMI system. The time boundaries
were estimated by the same HMM system. The scores are then
normalized as described in section 5.

We initially investigated score spaces constructed from both
Gaussian mean and variance parameters. However, training SVMs
in this complete score space is impractical since the dimension of
the score space is prohibitively large; the complete dimension is
approximately 40,000. Filtering these dimensions based on Equa-
tion 10 made training feasible, however performance was not much
improved. We hypothesize that there is significant dependence be-
tween the model means and variances so that the underlying as-
sumptions of the goodness criterion are violated.

We then used only the filtered mean sub-space scores for train-
ing SVMs (training on the unfiltered mean sub-space is still imprac-
tical because of the prohibitively high number of dimensions). The
best performing SVMs used around 2,000 of the most informative
dimensions, which is approximately 10% of the complete mean
space. As shown in Table 1, applying SVMs to the MMI system
yields a significant 9.5% relative reduction in WER from 9.07%
to 8.20%. This demonstrates that the SMBR-SVM system can be
used to improve performance of MMI trained HMM continuous
speech recognition systems.

In comparing the MMI and SMBR-SVM hypotheses, we ob-
served that they differ by more than 4%; this has been observed
in some but not all previous work [10, 25, 4]. We therefore per-
formed a simple system combination: for each acoustic segment
in a confusion set, if the posterior of the HMM output is greater
than a threshold, we accept the HMM output; else, we choose the
SVM output. This was done because in these experiments the SVM
posteriors were not found to be reliable indicators of word correct-
ness. This combined system (‘Voting’ in Table 1) gives comparable
performance to the PLMMI system (8.04% vs.7.98%).

SVMs were also trained on the filtered mean only sub-space of
the 12 mixture PLMMI models. The best performing SVMs in this
case also used 10% of the most informative dimensions. While the
performance was comparable to the PLMMI HMM system, we still
do not improve upon it (8.01% vs. 7.98%) However, the same sys-
tem combination scheme outlined above does produce significant
gains over the PLMMI HMM system (7.73% vs. 7.98%).

Finally, the effect of the SVM trade-off parameter (C in Equa-
tion 4) was studied. Figure 4 presents theWER results from training
the SVMs for the confusion pairs at different values of C. We find
some sensitivity to C, however optimal performance was found
over a fair broad range of values (0.3 to 1.0).

All experiments reported thus far employ a global trade-off
parameter value for the SVMs trained for the confusion pairs. We
now investigate tuning the trade-off parameter for each SVM. The
results in Table 2 show that further gains can be obtained by finding
the optimal value of this parameter for each SVM. The oracle result
is obtained by ‘cheating’and choosing the parameter for each SVM
that yields the lowest class error rate. An alternative systematic
rule for choosing the parameter based on the number of training
examples is presented in Table 3 whereC decreases with the amount
of training data. WER results using SVMs trained with the trade-
off parameter set by this rule are presented in Table 2. By this
tuning we find that the SVMS have the potential to improve over
the PLMMI HMMs.
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ML 10.14 - -

MMI 9.07 8.20 8.04

PLMMI 7.98 8.01 7.73

Table 1. WERs for HMM and SMBR-SVM systems.

. 4. WERs for different PLMMI SMBR-SVM systems as the
al SVM trade-off parameter (C) is varied.

8. CONCLUSIONS AND FUTURE WORK

have introduced and developed a new approach for the applica-
of SVMs in ASR. The idea is to first perform an initial recogni-
pass with the best possible HMMs; then isolate and characterize
ons of acoustic confusion; and then use specially trained SVMs
solve these confusions. On a small vocabulary task, we showed
ificant improvements over MMI trained HMMs. While we find
ificant improvements over MMI training, we are still investi-
ng the best way to incorporate the recently developed PLMMI
ning procedure into the SMBR-SVM framework. However, we

that system combination yields improvement over both these
s of discriminative training.
We have also investigated the use of GiniSVMs, a variant
he basic SVMs, for their use in ASR. We found significant
rovements over basic SVMs which we believe is due to the
ity of GiniSVMs to incorporate non-positive-definite kernels
aining.
We also see considerable improvement in the performance of

s through selection of the most informative score-space di-
sions, as has been noted [17]. We suspect this to be an artifact
e approximation to the scaling matrixΣsc. If improved normal-

ion of the score-space is found either through better numerical
hods or an improved modeling formulation, the SMBR-SVM
ulation should yield improvements over pure HMM formula-

s [5].
Previous work [17] suggests that the best performing HMMs
not necessarily the best HMMs to seed the SVMs. In our case
of any system other than that used to generate lattices leads
omplications in implementing SMBR-SVM systems. This re-
es further work.
We have so far studied a simple task so that we could develop
modeling framework and present it without complications. Our



HMM SMBR-SVM Voting

PLMMI 7.98 8.01 7.73

Oracle - 7.77 7.59

Piecewise C - 7.88 7.67

Table 2. WERs for SMBR-SVM systems with trade-off parameter
tuning.

N N > 10,000 N > 10,000 N > 5,000 N < 500
N < 5,000 N < 500

C 0.33 0.75 1.0 2.0

Table 3. Piecewise Rule for choosing trade-off parameter (C)
through the number of training observations (N ).

ultimate goal is however to apply this framework to large vocabu-
lary continuous speech recognition, where we expect to face data
sparsity and prohibitively large score-space dimensions.

We have not made use of the ability of the GiniSVMs to gen-
erate conditional probability estimates over hypotheses. We expect
to be able to see further improvements in system combination by
deriving these posteriors directly from the SVM.
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