
Multiclass Classification with Filter Trees

Alina Beygelzimer
beygel@us.ibm.com

IBM Research, Hawthorne, NY

John Langford
jl@yahoo-inc.com

Yahoo! Research, New York, NY

Pradeep Ravikumar
pradeepr@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Abstract

We present a new algorithm, filter tree, for reducing (cost-sensitive) k-class
classification to binary classification. The filter tree is provably consistent,
in the sense that given an optimal binary classifier, the reduction yields an
optimal multiclass classifier. (The commonly used tree approach is provably
inconsistent.)

The filter tree is robust. It suffers multiclass regret at most log2 k times the
binary regret. The filter tree can also be used for cost-sensitive multiclass
classification, where each prediction may have a different associated loss.
The resulting regret bound is superior to the guarantees provided by all
previous methods.

1 Introduction

In k-class classification, the goal is to assign instances to one of k possible classes. Binary
(two-class) classification is a well-studied special case.

Given that there are many good binary learning algorithms and many multiclass classifica-
tion problems, a common approach has been to create meta-algorithms which use binary
classifiers to make multiclass predictions.

Table 1 summarizes the characteristics of some known reductions from multiclass to binary
classification. Here e is the average binary error rate, and the Error column gives an upper
bound on the error rate of the multiclass classifier as a function of e.

We are also interested in the regret of a classifier defined as the difference between its error
rate and the smallest possible error rate on the same problem. Regret measures avoidable
loss, and thus it is often a more meaningful notion for “hard” problems with high inherent
noise. In the table, r is the average binary regret and the Regret column is an upper
bound on the multiclass regret in terms of r. The entries with “none” indicate that no
regret transform provably exists. This says that given an optimal (i.e., regret-zero) binary
classifier, the reduction does not yield an optimal multiclass classifier in the presence of
noise. Equivalently, the method is inconsistent.

The Evaluations column gives the number of evaluations of the binary classifier which are
necessary to make the multiclass prediction at test time.

Error Regret Evaluations
WOA [2] ∼ k

2 e none k

All Pairs [6] (k − 1)e (k − 1)r k(k−1)
2

Tree dlog2 ke e none dlog2 ke
ECOC [4] 4e none O(log k)

PECOC [9] 4
√

e 4
√

r large
Filter Tree dlog2 ke e dlog2 ke r dlog2 ke

Table 1: A comparison of different reductions from multiclass to binary classification

In the table, WOA stands for Weighted One-Against-All, which is an improved version of
One-Against-All [2]. ECOC is the Error Correcting Output Code reduction [4], and PECOC
is a probabilistic version of ECOC from [9].

Tree (see, for example, [5]) is a divide-and-conquer technique, which distinguishes between
the labels using a binary tree. The root node contains the entire label set {1, . . . , k}.
Starting from the root, the set of labels at each internal node is recursively split in half, and
a classifier is trained to distinguish between the two subsets.

The All-Pairs reduction [6] works by learning a classifier to predict, for each pair of classes
(i, j): “Is label i more probable than label j?” To make a multiclass prediction, the reduction
runs the

(
k
2

)
classifiers and outputs the label maximizing the number of pairwise “wins”,

with ties broken arbitrarily.

The filter tree has the best performance in each category, except when compared to ECOC
and PECOC. ECOC has a better error transform bound, but it is inconsistent. PECOC
has a better dependence on the number of labels k, but a worse dependence on the binary
regret since

√
r ≥ r for 0 ≤ r ≤ 1.

The filter tree also naturally supports cost-sensitive multiclass classification where each
prediction has a different associated cost. The dependence on the costs is superior to the
Weighted All-Pairs reduction [3] (a cost-sensitive variant of All-Pairs), and SECOC [9] (a
cost-sensitive variant of PECOC); both have an upper bound dependent on the expected
sum of costs. The dependence for a filter tree is on the expected sum of cost differences (see
Theorem 4.1 for a precise definition), which is never larger than the sum of costs, yielding
a better bound.

The filter tree algorithm is similar to Adaptive Directed Acyclic Graphs [7], which were
introduced as a computational optimization on Decision Directed Acyclic Graphs [10], and
analyzed as an error transform. The filter tree differs in the training mechanism, which
is essential for the regret analysis, and in the generalization to cost-sensitive multiclass
classification.

The filter tree algorithm is presented in Section 3. Section 4 provides the analysis. In
Section 5 we contrast our algorithm with existing methods. Section 6 concludes with exper-
imental results.

2 Definitions

A k-class classification problem is defined by a distribution P over X×Y, where X is some
observable feature space and Y = {1, . . . , k} is the label space. The goal is to find a classifier
c : X→ Y minimizing the classification loss on P given by

e(c, P) = Pr(x,y)∼P [c(x) 6= y].
The classification regret of c on P is defined as

r(c, P) = e(c, P)−min
c∗

e(c∗, P).

The motivation for regret analysis is to separate avoidable loss from loss inherent to the
problem. The resulting bounds thus apply nontrivially for problems with large inherent
noise.

Binary classification corresponds to the k = 2 case.

A cost-sensitive k-class classification problem is defined by a distribution D over X×[0,∞)k.
The goal is to find a classifier h : X→ {1, ..., k} minimizing the expected cost

e(h, D) = E(x,~c)∼D

[
ch(x)

]
.

Here ~c ∈ [0,∞)k gives the cost of each of the k choices for x. Similarly to the multiclass
case, the regret of h on D is defined as r(h, D) = e(h, D)−minh∗ e(h∗, D).

In importance-weighted binary classification, predicting some examples correctly is more
important than predicting others. The problem is specified by a distribution D on X ×
{0, 1}×[0,∞) and loss function E(x,y,w)∼D [wI(b(x) 6= y)], where I(·) is 1 when the argument
is true and 0 otherwise.

3 The Filter Tree Algorithm

The filter tree algorithm is illustrated by Figure 1. In a nutshell, the algorithm is a “bottom-
up” tree algorithm, essentially equivalent to a single elimination tournament on the set of
labels.

The underlying graph structure is a binary tree, constructed recursively from the root as in
the tree reduction. Prediction problems associated with the nodes are different, however.
Working from the leaves toward the root, each internal node predicts which of its two inputs
is more likely, given the features.

In the first round, the labels are paired according to the graph, and a classifier is trained
for each pair to predict which of the two labels is more likely. (The labels that don’t have a
pair in a given round, win that round for free.) The winning labels from the first round are
in turn paired in the second round, and a classifier is trained to predict whether the winner
of one pair is more likely than the winner of the other. This process repeats until an overall
winner is declared at the root.

Algorithm 1 The filter tree training algorithm
Filter-Tree-Train (cost-sensitive training set S, importance-weighted binary learner
Learn)

1. Fix a binary tree T over the labels.
2. For each internal node n in the order from leaves to roots:

(a) For each example (x, c1, ..., ck) ∈ S

i. Sn = ∅
ii. Let a and b be the two classes input to n (for internal nodes, these are the

predictions of the left and the right subtrees on input x).
iii. Sn ← Sn ∪ {(x, arg min{ca, cb}, |ca − cb|)}

(b) Let predictn = Learn(Sn)
3. return {predictn}

Algorithm 2 The filter tree testing algorithm
Filter-Tree-Test (classifiers {predictn}, test example x ∈ X)

Output the label l such that every classifier on the path from leaf l to the root prefers label
l.

The filter tree algorithm comes in two parts: training (Algorithm 1) and testing (Algorithm
2). The actual predictions form a filter tree, as shown in Figure 1. The algorithm here is
stated for cost-sensitive multiclass prediction. The multiclass variant is formed by projecting
multiclass examples (x, y) into cost sensitive examples (x,~c) where cy = 0, and for all y′ 6= y,
cy′ = 1. The filter tree algorithm relies upon an importance weighted binary learning

1 2 3 4 5 6

1 vs 2 3 vs 4 5 vs 6
7

{winner of 1 vs 2} vs {winner of 3 vs 4} {winner of 5 vs 6}
vs 7

.

Figure 1: Filter Tree. Each node predicts whether the left or the right input label is more
likely, conditioned on a given x ∈ X. The final output node predicts the best label for x.

algorithm, which takes examples of the form (x, y, i), where x is a feature vector used
for prediction, y is a binary label, and i is a positive real-valued importance. Importance-
weighted binary classification can be further reduced to binary classification using the costing
reduction [11] or other methods.

One important detail in Algorithm 1 is forming the right training set to distinguish between
the labels. Each training example for node n is formed conditionally on the predictions of
the classifiers on the path from n to the true label. The process of training classifiers to
predict the best of a pair of winners from the previous round is repeated until the “root”
classifier is trained.

The testing algorithm is very simple. We just predict which input to the root node has the
best label, then go to the node predicting that output, and repeat until a leaf is reached,
determining the multiclass prediction.

There are several variants of this algorithm, which may have significant differences in per-
formance in practice.

1. All-pairs variant: Every classification at any node n is essentially between two
labels computed at test time, implying that we could simply learn one classifier for
every pair of labels that could reach n at test time. (Note that a given pair of labels
can be compared only at a single node, namely their least common ancestor in the
tree.) The conditioning process and the tree structure gives us a better analysis than
is achievable with the All-pairs algorithm. This variant uses more computation and
requires more data but often maximizes performance when the form of the classifier
is constrained (confirmed experimentally; see Section 6).

2. Matching measures variant: For the cost-sensitive multiclass version of the tree,
there is room for improvement. The essential observation is that predicting well at
most of the nodes in the filter tree is irrelevant. In particular, the prediction at any
node not on the path from the root to the predicted leaf is irrelevant. Given this
observation, it may be possible to improve performance by optimizing prediction
on the relevant nodes at the expense of prediction on the irrelevant nodes. Iterative
approaches which gradually shift importance onto the most relevant nodes may
help.

4 Reduction Analysis

In this section, we analyze the regret transform of the filter tree algorithm. First, we define
several concepts necessary to understand the theorem statement.

Filter-Tree-Train transforms cost-sensitive multiclass examples into importance-weighted
binary examples. This process implicitly transforms a distribution D over examples for the
original problem into a distribution Filter-Tree(D) over examples for the problem we
reduce to. There are many induced problems, one for each call to the oracle. However,
there is a simple trick which allows us to consider only a single induced problem.

The trick is to add the node index n as an additional feature into each importance weighted
binary example, and then train based upon the union of all the training sets. The learning al-

gorithm produces a single binary classifier predict(x, n) for which we can redefine predictn(x)
as predict(x, n). Given this, we can define the induced distribution Filter-Tree(D) by the
following process: (1) draw a cost-sensitive example (x,~c) from D, (2) pick a uniform ran-
dom n, (3) create an importance-weighted sample ((x, n), y, i) according to line 2(a)(iii),
except with n added into the features.

This one-classifier trick may appear suspect because classifiers are conditionally dependent
on other classifiers closer to the leaves. In practice, there are known effective iterative
techniques for dealing with this cyclic dependence. In theory, we quantify over all predictors,
which means that we can regard the learned predictor as fixed (i.e., independent of the drawn
samples), implying that the induced problem is well defined.

When reducing to importance-weighted classification, the theorem changes as importance
weights change. To remove the importances, we compose the reduction with the Cost-
ing reduction [11] (by altering the underlying distribution using rejection sampling on the
importance weight).

The core theorem relates the regret of a binary classifier to the regret of a cost sensitive
classifier.

Theorem 4.1. For all binary classifiers b and all cost sensitive multiclass distributions D,

r(Filter-Tree(b, .), D)

≤ r(b, Filter-Tree(D))Ex,~c∼D

∑
n∈T

in,x,~c

where in,x,~c is the importance weight given by 2(a)(iii).

Before proving the main theorem, we state the corollary for multiclass classification.

Corollary 4.2. For all binary classifiers b and all multiclass distributions D on k labels,

r(Filter-Tree(b, .), D)

≤ r(b, Filter-Tree(D))dlog2 ke

The proof of the corollary given the theorem is simple since for any (x, y), the induced x,~c
has at most one node per level with induced importance weight 1; all other importance
weights are 0. Therefore,

∑
n in,x,~c ≤ dlog2 ke.

4.1 Proof of Main Theorem

It is sufficient to prove the claim for any x ∈ X because that implies that the result holds
for all expectations over x.

Conditioned on the value of x, each label y has a distribution over costs cy with an expected
value E~c∼D|x[cy]. The zero regret cost sensitive classifier predicts arg miny E~c∼D|x[cy]. Sup-
pose that Filter-Tree(b, x) = y′, inducing cost sensitive regret

r(y′, D|x) = E~c∼D|x[cy′]−min
y

E~c∼D|x[cy].

The proof of the theorem is done in two steps:

1. Show that the sum over the binary problems of the importance weighted regret is
at least r(y′, D|x).

2. Apply the costing analysis from importance weighted binary classification to binary
classification.

For the first step we use induction, starting at the leaves. The induction hypothesis is that
the sum of the regrets of importance-weighted binary classifiers in any subtree bounds the
regret of the subtree output.

For node n, each importance weighted binary decision between class a and class b has an
importance weighted regret which is either 0 or

rn = |E~c∼D|x[ca − cb]|
= |E~c∼D|x[ca]− E~c∼D|x[cb]|,

depending on whether the prediction is correct or not.

Assume without loss of generality that the predictor outputs class b. The regret of the
subtree Tn rooted at n is given by

rTn = E~c∼D|x[cb]− min
y∈Γ(Tn)

E~c∼D|x[cy],

where Γ(Tn) denotes the set of leaves in Tn.

As a base case, the inductive hypothesis is trivially satisfied for trees with one label. Induc-
tively, assume that ∑

n′∈L

rn′ ≥ rL,
∑
n′∈R

rn′ ≥ rR

for the left subtree L of n (providing a) and the right subtree R (providing b).

There are two possibilities. Either the minimizer comes from the leaves of L or the leaves
of R. The second possibility is easy since we have

rTn = E~c∼D|x[cb]− min
y∈Γ(R)

E~c∼D|x[cy]

= rR ≤
∑
n′∈R

rn′ ≤
∑

n′∈Tn

rn′ ,

which proves the induction.

For the first possibility, we have
rTn

= E~c∼D|x[cb]− min
y∈Γ(L)

E~c∼D|x[cy]

= E~c∼D|x[cb]− E~c∼D|x[ca] + E~c∼D|x[ca]

− min
y∈Γ(L)

E~c∼D|x[cy]

= E~c∼D|x[cb]− E~c∼D|x[ca] + rL

≤ rn +
∑
n′∈L

rn′ ≤
∑

n′∈Tn

rn′ ,

which completes the induction. The inductive hypothesis for the root is that

r(y′, D|x) ≤
∑
n∈T

rn,

implying
r(y′, D|x) ≤

∑
n∈T

rn = (k − 1) · ri(b, Filter-Tree(D)),

where ri is the importance weighted regret on the induced problem. (Recall that (k − 1) is
the number of nodes in the filter tree.)

The remainder of the proof is about the reduction from importance weighted binary clas-
sification to binary classification. The folk theorem proved in [11] says that for all binary
classifiers b and importance weighted binary problems D′ we have:

ri(b, D) = r(b, D′)Ex,y,i∼D[i]
where ri is the importance weighted binary regret and D′ is the induced binary distribution.

For the filter tree reduction, the expected importance is
1

k − 1
E(x,~c)∼D

∑
n∈T

in,x,~c.

Plugging this in, we get the theorem.

5 Inconsistency and Frailty of Other Approaches

In this section, we formalize the claims made in the introduction about the inconsistency
and frailty of other approaches.

5.1 Inconsistency of the Tree reduction

One standard approach for solving multiclass classification with a binary classifier learner is
to split the set of labels in half, learn a binary classifier to distinguish between the subsets,
and repeat recursively until each subset contains only one label. Multiclass predictions are
made according to the leaf for which all binary predictors above the leaf in the tree prefer
the leaf.

The fundamental drawback of this approach is that it is inconsistent. The following theorem
shows that there exist multiclass problems such that if we have an optimal binary classifier
for the induced distribution Tree(D), the reduction does not yield an optimal multiclass
predictor. The proof is constructive, and the intuition closely follows the similar theorem
for error correcting output codes [9].
Theorem 5.1. For all k ≥ 3, for all binary trees over the labels, there exists a multiclass
distribution D such that

r(Tree(b∗, .), D) > 0

for any b∗ = arg minb e(b, Tree(D)).

Proof. Find a node with one subset corresponding to two labels and the other subset corre-
sponding to a single label. (If the tree is perfectly balanced, simply let D assign probability
0 to one of the labels.) Since we can freely rename labels without changing the underlying
problem, let the first two labels be 1 and 2, and the third label be 3.

We choose a distribution D with the property that labels 1 and 2 have a slightly larger than
1/4 chance of being drawn given x:

D(y = 1 | x) = D(y = 2 | x) = 1/4 + 1/100,

while label 3 has a probability slightly less than 1/2:

D(y = 3 | x) = 1/2− 2/100.

Under this distribution, the fraction of examples for which label 1 or 2 is correct is 1/2 +
2/100, so any minimum error rate binary predictor must choose either label 1 or label 2.
Each of these choices has an error rate of 3/4 − 1/100. The optimal multiclass predictor
chooses label 3 and suffers an error rate of 1/2 + 2/100, implying that the regret of the tree
classifier based on an optimal binary classifier is 1/4− 3/100 > 0.

5.2 Frailty of the All-Pairs Reduction

The All-Pairs reduction is consistent (as an application of a theorem in [1]). However, as a
reduction it may be relatively frail against difficult binary classifier and problem pairs.

The All-Pairs reduction starts by constructing
(
k
2

)
binary classifiers, one for every pair of

classes (i, j). Given a training dataset S = {(x, y)}, the binary classifier for the (i, j)-class
pair is trained with dataset {(x, I(y = i)) : (x, y) ∈ S and y = i or y = j}. Thus each binary
classifier is trained to discriminate between two particular classes. Given a test example,
each of the binary classifiers predicts a winner amongst its two classes, and the class with
the highest number of wins is chosen as the multiclass prediction, with ties broken randomly.

Letting All-Pairs(D) denote the induced binary distribution, we have the following obser-
vation.
Theorem 5.2. For all k ≥ 2, there exists binary classifiers b and multiclass distributions
D such that

r(All-Pairs(b, .), D) = (k − 1)r(b, All-Pairs(D)).

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

F
ilt

er
 T

re
e

E
rr

or
 R

at
e

Tree Error Rate

Tree vs Filter Tree performance

Decision Tree
Logistic

y=x

Figure 2: Performance comparison of Tree versus Filter-Tree on several different datasets
with a decision tree or logistic regression classifier. The Filter Tree appears to perform better
in practice.

The frailty which this theorem demonstrates has not been strongly exhibited by experimen-
tal evidence, as seen in Section 6.

Proof. The proof is constructive. Pick any distribution D with a deterministic dependence
between y and x. Conditioned on x suppose that y = 1 is the probability 1 label. The All
Pairs reduction only produces binary examples with the property that i = 1 or j = 1, which
implies that the classifier suffers no regret for predictions that do not involve label 1. There
are k − 2 predictions involving label 2 but not label 1, and in each of these the classifier
might predict that label 2 is the winner. By suffering regret 1

k−1 (1 error out of k − 1) for
mispredicting the class 1 and 2 decision, class 2 can have k − 1 wins implying that it is the
winner overall, inducing multiclass regret 1.

6 Experimental Results

We compared the performance of Filter Trees and the All-Pairs variant of Filter Trees
(discussed at the end of Section 3) to the performance of All-Pairs and the Tree reduction,
on a number of publicly available multiclass datasets [12].

Table 4 gives the basic properties of the datasets tested. Some datasets came with a standard
training/test split: isolet (isolated letter speech recognition), optdigits (optical hand-
written digit recognition), pendigits (pen-based handwritten digit recognition), satimage,
and soybean. For all other datasets, we reported the average result over 10 random splits,
with 2/3 of the dataset used for training and 1/3 for testing. (The splits were the same for
all methods.)

We used decision trees (J48) and logistic regression as binary classifier learners, both avail-
able within Weka [13] (default parameters were used). We did not perform any optimization
or parameter tuning. (Indeed, some datasets have significantly better error rates reported
using other, more computationally involved methods.) Our objective in performing these
experiments was to provide a basic sanity check for the analysis presented in the paper,
across a variety of different datasets.

Test set error rates using each of the binary classifier learners are shown in Tables 2 and 3.
The lowest error rate in each row is shown in bold (ignoring the difference, which in some
cases is insignificant).

There are two different settings to consider.

1. Computation constrained. We might be able to afford only O(log k) evaluations of
a binary classifier. For this setting, the Filter Tree is typically as good as or better
than the Tree reduction as shown in Figure 2. (Table 2 provides the numbers.)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
ll

P
ai

rs
 F

ilt
er

 T
re

e
E

rr
or

 R
at

e

All Pairs Error Rate

All Pairs vs AP-Filter Tree performance

Decision Tree
Logistic

y=x

Figure 3: Performance comparison of All-Pairs versus All-Pairs Filter Tree on several differ-
ent datasets with a decision tree or logistic regression classifier. There is no clear dominance.

2. Computation unconstrained. In this setting, plausible algorithms include All-Pairs
(which is O(k2)) and the All-Pairs Filter Tree (which is O(k)). Figure 3 compares
these approaches, where we discover no real dominance between the algorithms.
(Table 3 provides the numbers.)

7 Discussion

We show that there exists a tight consistent method for reducing multiclass classification to
binary classification. All previous methods for multiclass to binary reduction have either an
incomparable or dominated analysis (see the table in the introduction). For cost-sensitive
classification, the filter tree reduction analysis is simply superior to all previous approaches.
Our experiments show that the filter tree approach is generally superior to the tree approach
in practice. When computation is unconstrained, the comparison of all-pairs and all-pairs
filter tree shows that neither dominate in practice.

Two mysteries arise here.

1. Error correcting codes have transform properties independent of k (and a poor de-
pendence on the binary regret). The ability to error correct seems to be an intrinsic
necessity to achieving this sorts of analysis. Is there an error correcting variant of
the filter tree which can achieve an independent-of-k analysis? The natural exten-
sion of the filter is an algorithm which repeatedly compares classes with a similar
number of losses until all classes but one have suffered at least n losses.

2. All previous approaches for reducing cost sensitive multiclass classification had a
dependence on the expected sum of costs, so the improved dependence on the ex-
pected sum of cost differences is striking for the filter tree. Nevertheless, there is
significant room for improvement because the expected sum of cost differences can
be O(k) even when the costs are bounded [0, 1]. Is an O(k) dependence necessary,
or is it possible to reduce cost sensitive multiclass to binary just as well as we can
reduce multiclass to binary?

References

[1] Erin Allwein, Robert Schapire, and Yoram Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers, ICML 2000.

[2] Alina Beygelzimer, John Langford, and Bianca Zadrozny. Weighted One Against All,
AAAI 2005.

[3] Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny.
Reductions between classification tasks, ICML 2005.

[4] Thomas Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes, Journal of Artificial Intelligence Research, 2:263–286, 1995.

Dataset Tree FT All-Pairs APFT

arrhythmia 37.64 36.37 34.32 34.97
audiology 32.37 31.93 28.08 31.30
ecoli 21.00 18.75 18.90 18.75
flare 16.42 16.38 16.38 15.57
glass 33.84 34.02 32.18 31.86
isolet 27.30 24.60 12.40 14.60
kropt 40.32 39.66 36.50 35.81
letter 16.53 15.96 9.58 11.77
lymph 25.22 22.28 21.83 22.28
mfeat-zernike 32.24 32.81 25.84 27.45
nursery 3.55 3.49 3.49 3.49
optdigits 15.50 13.50 10.60 12.20
page-blocks 2.99 2.84 3.00 2.95
pendigits 8.00 7.60 7.00 7.60
satimage 14.60 15.10 14.30 14.30
soybean 15.70 13.00 13.00 13.00
vehicle 30.86 31.11 31.57 28.93
vowel 29.06 28.92 24.64 24.57
yeast 44.04 44.21 43.99 44.06

Table 2: Test error rates (in %) using J48 as the binary learner. The last column, APFT,
corresponds to the all-pairs variant of the Filter Tree discussed in Section 3.

[5] John Fox. Applied Regression Analysis, Linear Models, and Related Methods, Sage
Publications, 1997.

[6] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling, Proceedings of
the 1997 Conference on Advances in Neural Information Processing Systems, 507–513,
1998.

[7] Boonserm Kijsirikul, Nitiwut Ussivakul, Surapant Meknavin. Adaptive directed acyclic
graphs for multiclass classification, PRICAI 2002.

[8] Eun Bae Kong and Thomas G. Dietterich, Error-Correcting Output Coding corrects
bias and variance, ICML 1995.

[9] John Langford and Alina Beygelzimer. Sensitive Error Correcting Output Codes, COLT
2005.

[10] John Platt, Nello Christianini, and John Shawe-Taylor. Large margin DAGs for multi-
class classification, NIPS 2000.

[11] Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by cost-
proportionate example weighting, ICDM 2003.

[12] C. Blake and C. Merz, UCI Repository of machine learning databases, University of
California, Irvine.

[13] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools with
Java implementations, 2000:
http://www.cs.waikato.ac.nz/ml/weka/.

Dataset Tree FT All-Pairs APFT

arrhythmia 55.27 55.04 40.44 34.97
audiology 31.83 27.69 24.98 25.90
ecoli 18.00 18.10 15.20 17.10
flare 16.17 16.07 16.09 16.03
glass 39.37 38.46 38.43 38.13
isolet 35.30 26.50 8.40 10.40
kropt 58.55 58.09 56.34 57.06
letter 51.84 49.89 16.66 17.62
lymph 24.32 24.20 23.86 24.07
mfeat-zernike 25.68 23.24 19.21 20.56
nursery 7.36 7.41 7.39 7.39
optdigits 18.40 11.70 5.00 5.90
page-blocks 4.06 3.31 3.12 3.21
pendigits 23.40 22.40 6.10 5.10
satimage 25.80 24.50 15.20 15.10
soybean 16.80 16.50 13.60 13.60
vehicle 21.60 21.37 20.78 20.31
vowel 35.85 30.53 11.85 12.90
yeast 45.13 43.66 42.28 43.26

Table 3: Test error rates (in %) using logistic regression as the binary learner. The last
column, APFT, corresponds to the all-pairs variant of the Filter Tree discussed in Section 3.

Dataset k Examples H

arrhythmia 13 452 0.65
audiology 24 226 0.75
ecoli 8 336 0.73
flare 7 1,388 0.31
glass 6 214 0.84
isolet 26 7,797 1.00
kropt 18 28,056 0.84
letter 25 20,000 1.00
lymph 4 148 0.61
mfeat-zernike 10 2000 1.00
nursery 5 12,960 0.74
optdigits 10 5,620 1.00
page-blocks 5 5473 0.27
pendigits 10 10,992 1.00
satimage 6 6,435 0.96
soybean 19 683 0.90
vehicle 4 846 0.99
vowel 11 990 1.00
yeast 10 1,484 0.75

Table 4: Basic properties of the datasets. To give some sense of balance of the empirical
class distribution P , we list the value of H = H(P)/ log(k), where H(P) is the empirical
entropy of P .

