
BOOSTING GAUSSIAN MIXTURES IN AN LVCSR SYSTEM

Geo�rey Zweig and Mukund Padmanabhan

IBM T. J. Watson Research Center

fgzweig,mukundg@watson.ibm.com

ABSTRACT

In this paper, we apply boosting to the problem of

frame-level phone classi�cation, and use the resulting

system to perform voicemail transcription. We develop

parallel, hierarchical, and restricted versions of the clas-

sic AdaBoost algorithm, which enable the technique

to be used in large-scale speech recognition tasks with

hundreds of thousands of Gaussians and tens of mil-

lions of training frames. We report small but consistent

improvements in both frame recognition accuracy and

word error rate.

1. INTRODUCTION

Boosting is a technique for sequentially training and

combining a collection of classi�ers in such a way that

the later classi�ers make up for the de�ciencies of the

earlier ones. Many variants exist [1, 7, 2, 3], but all fol-

low the same basic strategy. There is a sequence of iter-

ations, and at each iteration a new classi�er is trained

on a weighted set of the training examples. Initially,

every example gets the same weight, but in subsequent

iterations, the weights of hard-to-classify examples are

increased relative to the easy ones. The outputs of

the classi�ers are then combined in such a way as to

guarantee certain bounds on both training and testing

error [2, 6]. Boosting algorithms have been successfully

applied to a wide variety of problems, including a re-

cent application to boosting neural nets in a continuous

speech recognition system [8].

One of the main advantages of boosting is that it

is possible to automatically generate very long streams

of classi�ers - anywhere from tens to thousands - that

usually produce better and better composite perfor-

mance. Although boosting was originally presented as

a method for combining relatively weak classi�ers, in

this paper we focus on using the technique to com-

bine state-of-the-art Gaussian-mixture systems. Unfor-

tunately, these systems are very large, and generating

This work was supported by DARPA Grant MDA972-97-C-
0012.

and combining long streams of them requires some al-

gorithmic modi�cations. The main contribution of this

work is to develop and test parallel, hierarchical, and

restricted variants of boosting that are suitable for use

in extremely large systems.

2. THE ADABOOST ALGORITHM

In this section, we review the AdaBoost algorithm, and

describe hierarchical and restricted extensions that al-

low for large speedups in training time. We base this

work on the speci�c variant AdaBoost.M2 of [1], which

we will refer to simply as AdaBoost.

2.1. Parallel AdaBoost for ML Classi�ers

The input to the AdaBoost algorithm is a set of labeled

training pairs, (xi; yi), where xi represents the features

associated with the ith example, and yi is its label. In

our application, the xi are acoustic feature-vectors and

the yi are context-dependent phone labels. At each

iteration t, a function ht(x; y) is learned that maps a

feature/label pair into a number between 0 and 1. The

function need not represent a probability distribution,

though in our implementation it does. A weight, �t, is

assigned to each classi�er, and the output of the com-

posite classi�er is given by

H(x; y) =
X
t

�
log

1

�t

�
ht(x; y):

In our implementation, the atomic classi�ers are

mixtures of Gaussians, with one mixture for each con-

text dependent phone. Denoting the jth Gaussian of

phone i's mixture by G
j
i , and its mixture weight bym

j
i ,

and the prior on phone i by P (i), the classi�er learned

at each iteration has the form:

ht(x; y) =
P (y)

P
jm

j
yG

j
y(x)P

c P (c)
P

j m
j
cG

j
c(x)

: (1)

The AdaBoost algorithm maintains a distribution

For each iteration t:

1. For each class c in parallel, weight and train:

� Dt(i; y) =(
1

k�1
; y 6= c else 0 t = 0

Dt�1

Zt�1
� �

(1+ht�1 (xi;c)�ht�1(xi;y))=2
t�1 t > 0

� Weight example j as wt(j) =
P

yDt(j; y).

� Train a new ML model for class c with the

weighted examples.

� Store Zc
t =
P

i

P
yDt(i; y).

2. Compute Zt =
P

c Z
c
t

3. For each class c in parallel, compute pseudoloss:

�
c
t =

1
2

P
i

P
y
Dt(i;y)

Zt
(1� ht(xi; c) + ht(xi; y))

4. Compute total pseudoloss �t =
P

c �
c
t and beta:

�t = �t
1��t

. If �t > 1, terminate and use only

iterations 1 : : : t� 1.

Figure 1: Parallelized AdaBoost. In the parallelized

sections, the index i refers only to examples of class c.

k is the number of classes.

D(i; y) over all possible example/label pairs (xi; y)
1,

and the goal at each iteration t is to produce a classi�er

ht that minimizes the \pseudoloss":

�t =
1

2

X
i

X
y

Dt(i; y)(1 � ht(xi; yi) + ht(xi; y))

Minimizing this quantity has been shown to minimize

upper bounds on training, and, in the binary-case, on

testing error-rates [2, 6]. In order to train with a

maximum-likelihood procedure, we replace the detailed

distribution D(i; y) with a simpler one that assigns a

single weight to each example xi, by summing over all

class-wise weights: wt(i) =
P

yDt(i; y). Whereas min-

imizing the true pseudoloss would require a gradient

descent technique - because changing the parameters

associated with one class will a�ect all the others (see

Equation 1) - this simpli�cation allows us to train mod-

els for each class independently and in parallel, and is

also used in [8]. The parallelized algorithm is presented

in Figure 1. The quantity Zt is a normalizing constant.

The exact form of the parallel algorithm is moti-

vated by the fact that with thousands of classes and

tens of millions of examples, it is impossible to store

Dt(i; y), and therefore each time it is used, it must be

recomputed from scratch. In Figure 1, it is computed

1D(xi; yi) is always 0, so this is equivalent to a distribution
over mislabel pairs.

-800

-600

-400

-200

0

200

400

600

-600 -400 -200 0 200 400 600

"class.0"
"class.1"
"class.2"

Figure 2: Training points.

-800

-600

-400

-200

0

200

400

600

-600 -400 -200 0 200 400 600

"class.0"
"class.1"
"class.2"

Figure 3: The points accounting for 90% of Zc
t , after

20 iterations.

twice for each example - once in step 1, and once in step

3. In the original algorithm [1] (which is expressed in

terms of �ve steps), it is used three times - once in step

1, once in step 3, and once in step 5. In the paral-

lel algorithm, the distribution Dt(i; y) is not actually

normalized until step 3, but this delayed normalization

does not a�ect the answer, since it is only the relative

weights of the examples that matter during training.

By setting h to a constant value, the pseudoloss will

trivially achieve a value of 0.5, and beta a value of 1.

Hence a functional classi�er will always have a beta

less than 1, ensuring that examples with large values

for h(xi; yi) will be de-emphasized in step 1.

Intuitively, the boosting algorithmworks by placing

high weight on hard-to-classify examples, and thereby

focusing attention on the decision boundaries between

classes. Figure 2 displays the points in a three class,

two-dimensional classi�cation task. Figure 3 shows the

points accounting for 90% of the total weight of each

class (i.e. 90% of Zc
t) after 20 iterations.

The computational demands of AdaBoost are se-

vere: in order to compute the pseudoloss or update

Input: Phone confusion matrix C in which C(i; j)

represents the fraction of occurrences of phone i that

are classi�ed as phone j.

Initialize: Construct a set S of sets Si in which Si

contains a single member representing phone i.

De�ne:

W (i; j) =
P

Members(Si)

P
Members(Sj)

C(i; j); 8i; j

Repeat until jSj = k: Merge the pair of sets Si, Sj

for which
W (i;j)

jSijjSjj
is maximum - remove Si and Sj from

S and replace them with Si [Sj .

Output: S.

Figure 4: Phone clustering algorithm. The output is a

set of k phone clusters.

the weight distributions, it is necessary to compute

ht(xi; y) for all pairs of examples and classes. If there

are f frames, g Gaussians learned per iteration, and i

iterations, the runtime isO(fgi). When theDt(i; y) are

recomputed from scratch to conserve memory and disk

space (thus requiring the computation of h0 : : :ht�1 in

addition to ht), the runtime is O(fgi2). This has mo-

tivated us to explore two streamlined variants of Ad-

aBoost.

2.2. Restricted AdaBoost

The simplest way of reducing the computational load

is to identify for each example xi a small subset of

\candidate" classes, and to assume that the h values

for all the other classes will always be 0. We do this

by computing h0(xi; y) after the initial iteration for

all classes y, and then de�ning the set of candidate

classes as those that come within some �xed fraction

of the maximum h value for xi. In our implementa-

tion, we �xed the candidate-inclusion fraction at one

part in a thousand, and roughly 50 out of the 2000

context-dependent phones ended up as candidates for

each frame. Assuming that there are c candidates on

average per frame, the runtime is reduced fromO(fgi2)

to O(fg + fci
2).

2.3. Hierarchical AdaBoost

In the hierarchical version of AdaBoost, we partition

the phones into clusters, and use boosting only to di�er-

entiate between the phones within a single cluster. As-

suming there are m clusters of equal size, both in terms

of the number of constituent phones and the number

of training frames, the total computational load is re-

duced from O(fgi2) to O(fgi
2

m
).

In the following, we will index clusters by k, and use

h
k(x; y) to refer to the level of plausibility assigned to

the example-label pair (x; y) according to the models

associated with cluster k. Further, ky represents the

cluster containing class y. In the hierarchical version

of boosting, we compute h(xi; y) as

h(xi; y) = P (kyjxi)h
ky (xi; y) (2)

=
P (ky)P (xijky)P
f P (kf)P (xijkf)

h
ky (xi; y) (3)

The cluster priors P (ky) are determined as the fraction

of the total training data belonging to any phone in

cluster ky. Using z to represent phones, P (xjky) is

computed as:

P (xjky) =
X
z2ky

P (zjky)P (xjz):

The quantity P (zjky) is the fraction of training data

within cluster ky that belongs to phone z, and P (xjz) is

computed by evaluating the mixture of Gaussians asso-

ciated with z. We use only the Gaussian mixtures from

the �rst iteration of boosting to determine P (xjky).

This is because the Gaussians in subsequent iterations

are placed near the decision boundaries of the phones

within a cluster, and may not give a good representa-

tion of the points within the cluster as a whole.

To obtain the phone clusters, we use the bottom-

up clustering scheme illustrated in Figure 4, and in our

experiments used 15 clusters.

3. EXPERIMENTAL RESULTS

We evaluated our algorithms by testing them on a

voicemail transcription task [5]. The training data con-

sists of ordinary voicemail messages gathered at IBM,

and the test set is 86 similar messages. Altogether,

there are several million training frames, and 240 thou-

sand test frames. The 39-dimensional acoustic vectors

consisted of cepstra, deltas, and double-deltas. We

used a baseline system with 134k Gaussians and 2313

context-sensitive phonetic units to do a Viterbi align-

ment of the data in order to get the examples for each

phone that we then trained on. The baseline system

is about as large a system as we can train with the

available data.

After boosting, we used the composite H values to

rank-order the phone-labels for each frame in the test

data. These ranks were then fed into the standard IBM

decoder [4]. In order to downweight silence and mum-

bling, we found it bene�cial to equalize the phone pri-

ors in Equation 1 by initially weighting the examples

of each class inversely proportional to the total number

of examples in that class.

System 1st It. 2nd 3rd 4th 5th

69k-H 40.64% 40.29 39.77 - -

69k-R 40.64 40.58 39.77 - -

134k-H 39.71 39.73 39.74 - -

134k-R 39.71 39.48 39.15 39.10 38.92

Table 1: Word error rates for hierarchical (H) and re-

stricted (R) boosting.

System 1st It. 2nd 3rd 4th 5th

69k-H 16.3% 16.8 17.1 - -

69k-R 16.3 16.8 17.0 - -

134k-H 16.6 17.6 17.9

134k-R 16.6 17.7 17.9 17.9 18.1

Table 2: Frame recognition rates.

Table 1 presents word-error results for two di�erent

sized hierarchical and restricted systems: one which we

built from scratch by adding roughly 69k Gaussians at

each iteration, and one in which we started with the

134k baseline system and added roughly 116k Gaus-

sians per iteration. The smaller systems were run for

3 iterations for testing purposes. The larger hierarchi-

cal system was run for 3 iterations because one of the

clusters contained a large number of classes with many

associated frames; this was a bottleneck that prevented

more iterations. Except for the larger hierarchical sys-

tem, the word-error rates continually decrease. We hy-

pothesize that the hierarchical scheme is more suscep-

tible to overtraining because for a given class belonging

to a given cluster, there are many examples that lie in

regions of space that are associated with classes which

are not cluster members. In the hierarchical scheme,

these examples will receive low weight because it looks

like they have no competition from other classes. In

contrast, the restricted scheme is sensitive to all possi-

ble classes. To verify this, we looked at the candidate

lists generated for each frame, and found that on aver-

age only 38% of the candidate classes are in the cluster

associated with the frame's class. We believe that this

is because with noisy data it is hard to �nd clusters

that do not have a signi�cant number of exceptions.

Table 2 shows the frame recognition rates on the

alphabet of 2313 context-dependent phones, with the

examples from each class weighted equally.

To get a notion of how sharply boosting focused

on probable classes, at each iteration we computed the

entropy H of the weight distribution over the examples

for each phone. The quantity 2H gives a measure of

the e�ective number of examples for that phone at that

iteration, and in Table 3, we show how the total number

System 1st It. 2nd 3rd 4th 5th

69k-H 1.0 0.996 0.989 - -

69k-R 1.0 0.999 0.997 - -

134k-H 1.0 0.995 0.986

134k-R 1.0 0.999 0.996 0.992 0.988

Table 3: Normalized number of training examples.

of e�ective examples varied, normalized to a fraction

of the total number of training frames. The fact that

the hierarchical scheme focuses on a smaller number

of examples is consistent with its observed tendency to

overtrain.

4. CONCLUSION

The combination of theoretical expectations with ex-

perimental veri�cation leads us to believe that boosting

is an e�ective way of building large systems. Experi-

mentally, we have found that hierarchical and restricted

variants of the basic AdaBoost algorithm allow us to

improve on very large systems.

5. REFERENCES

[1] Yoav Freund and Robert Schapire. Experiments with
a new boosting algorithm. In Proceedings of the Thir-

teenth International Conference on Machine Learning,
Bari, Italy, July 1996. Morgan Kaufmann.

[2] Yoav Freund and Robert Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119{137, 1997.

[3] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: A statistical view of boosting. Tech-
nical report, www-stat.stanford.edu/ hastie/Papers/,
1998.

[4] P.S. Gopalakrishnan, L.R. Bahl, and L.R. Mercer. A
tree search strategy for large-vocabulary continuous
speech recognition. In ICASSP-95, 1995.

[5] M. Padmanabhan, G. Saon, S. Basu, J. Huang, and
G. Zweig. Recent improvements in voicemail transcrip-
tion. In Eurospeech-99, 1999.

[6] R. Schapire, Y. Freund, P. Bartlett, and W.S. Lee.
Boosting the margin: A new explanation for the ef-
fectiveness of voting methods. Annals of Statistics,
26(5):1651{1686, 1998.

[7] R. Schapire and Y. Singer. Improved boosting algo-
rithms using con�dence-rated predictions. In Proc. 11th

Annual Conference on Computational Learning Theory,
1998.

[8] Holger Schwenk. Using boosting to improve a hybrid
hmm/neural network speech recognizer. In ICASSP-99,
1999.

