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Module 4F10: STATISTICAL PATTERN RECOGNITION

Solutions to Examples Paper 1

1. Average risk in choosing class ωi is

R(ωi|x) =
c
∑

j=1

λ(ωi|ωj)P (ωj|x)

= 0.P (ωi|x) +
c
∑

j=1,j ̸=i

λsP (ωj|x)

where λ(ωi|ωj) is used to mean the cost of choosing class ωi where the true class is
ωj.

Hence
R(ωi|x) = λs (1− P (ωi|x))

Associate x with class ωi if highest posterior class probability and the average risk
is less than the cost of rejection

λs (1− P (ωi|x)) ≤ λr

P (ωi|x) ≥ 1− λr/λs

If the ratio λr/λs is close to 1 then the reject region will tend to zero. If λr/λs is
close to zero then nearly all examples will be rejected.

2. The computational cost for the 3 systems are

(a) Diagonal covariance the cost is 2d multiply accumulates.

(b) Full covariance the cost is d2 + d multiply accumulates.

(c) M component diagonal system the cost is 2Md.

In all cases the inverse covariance matrix is stored and the portion of the Gaussian
PDF not dependent on the observations is stored as a constant.

As a practical matter for the Gaussian mixture case, log(P (ωm)) is added to the
constant in advance and the computation can be arranged to use in the sum (in the
log domain)

log(exp(li(x)) + exp(lj(x))) = li(x) + log(1 + exp(lj(x)− li(x)))
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assuming that li(x) ≥ lj(x) and

li(x) = log(P (ωi)) + log(N (x;µi,Σi)))

This often saves one exponential calculation, the exponential is only calculated when
the value of the difference in logs is above a threshold, and handles any dynamic
range issues.

Note an approximation that is sometimes used for a GMM is that the overall likeli-
hood approximated by using only the largest of the component log-likelihoods i.e.

log(p(x)) ≈ max
m

(log(P (ωm)) + log(N (x;µm,Σm)))

This saves adding the logs above but is not useful for training where more precise
calculation is required.

3. (a) In this case, the variance is equal to 1 for each of the single dimensional Gaussians.
The log likelihood of the model for single dimensional Gaussians and two mixture
components is

l(θ) =
n
∑

k=1

ln

[

2
∑

m=1

cm
1

(2π)1/2
exp

{

−(xk − µm)2

2

}]

Here n = 9 and the question asks for the likelihood with c1 = c2 = 0.5 which can be
calculated as

9
∏

k=1

2
∑

m=1

1

q
exp

{

−(xk − µm)2

2

}

where 1/q = 0.199. Substituting in the data values and the mean values yields the
total likelihood of the data as 2.262× 10−7.

(b) To compute the re-estimated means and component priors / mixture weights,
find the posterior probabilities of each mixture component for each data sample and
accumulate numerator and denominator statistics. This is most easily done by writing
a small program/script. The posterior probabilities of each mixture component is
given in the table below.

x P (comp1|x) P (comp1|x)
-1.5 0.9933 0.0067
-0.5 0.9526 0.0474
0.1 0.8581 0.1419
0.3 0.8022 0.1978
0.9 0.5498 0.4502
1.3 0.3543 0.6457
1.9 0.1419 0.8581
2.3 0.0691 0.9309
3.0 0.0180 0.9820
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Then for each mixture component accumulate for mean re-estimation the numerator
∑

9

k=1 xkP (m|xk) and for the denominator
∑

9

k=1 P (m|xk). The same statistics used
for the denominator are also needed for component prior re-estimation.

Computing these values leads to µ̂1 = −0.0426 ; µ̂2 = 1.878 ; ĉ1 = 0.5266; ĉ2 =
0.4734. Use of these values to re-compute the likelihood yields an increase over the
initial values.

4. From lecture notes we can write the auxiliary function as

Q(θ, θ̂) =
M
∑

m=1

n
∑

i=1

P (ωm|xi)
d
∑

k=1

[xik log(λmk) + (1− xik) log(1− λmk)]

Differentiate this with respect to λqr give

∂Q(θ, θ̂)

∂λqr
=

n
∑

i=1

P (ωq|xi)

[

xir

λqr
− (1− xir)

(1− λqr)

]

Equating to zero gives

(1− λqr)
n
∑

i=1

P (ωq|xi)xir = λqr

n
∑

i=1

P (ωq|xi)(1− xir)

Rearranging yields the answer.

5. We can write

xi = ti + z

where z is Gaussian distributed, mean 0 and variance 1.

(a) Since the two are independent and both Gaussian distributed we know that

p(xi|θ) = N (xi;µ, σ
2 + 1)

We can write the log-likelihood of the training data as

l(θ) =
n
∑

i=1

log(N (xi, µ, 1 + σ2)

=
n
∑

i=1

−1

2

(

log(2π(1 + σ2)) +
(xi − µ)2

1 + σ2

)

Differentiating

∂l(θ)

∂µ
=

n
∑

i=1

xi − µ

1 + σ2

3

Equating to zero gives

µ̂ =
1

n

n
∑

i=1

xi

For the variance

∂l(θ)

∂σ2
=

n
∑

i=1

−1

2

(

1

(1 + σ2)
− (xi − µ)2

(1 + σ2)2

)

Equating to zero and using the ML estimate for µ

σ2 =

(

1

n

n
∑

i=1

(xi − µ)2
)

− 1

(b) This is the same set up as described in lecture. Let zi be the noise associated
with observation i. So

p(xi|zi, θ) = N (xi;µ+ zi, σ
2)

We first need to compute the posterior p(zi|xi, θ)

p(zi|xi, θ) =
p(xi|zi, θ)p(zi)

p(xi|θ)

= N
(

zi;
(xi − µ)

(1 + σ2)
,

σ2

(1 + σ2)

)

So writing down the auxiliary function

Q(θ, θ̂) =
n
∑

i=1

∫

(p(zi|xi, θ) log(p(xi, zi|θ̂))dzi

=
n
∑

i=1

∫

(p(zi|xi, θ) log(p(xi|zi, θ̂))dzi

+
n
∑

i=1

∫

(p(zi|xi, θ) log(p(zi))dzi

The second term is not dependent on the new model parameters, the distribution
of zi is known. This leaves the first term. From the previous definitions

Q̃(θ, θ̂) =
n
∑

i=1

∫

p(zi|xi, θ) log(p(xi|zi, θ̂))dzi

=
n
∑

i=1

∫

p(zi|xi, θ)

[

log

(

1√
2πσ̂2

)

− (xi − zi − µ̂)2

2σ̂2

]

dzi

=
n
∑

i=1

[

log

(

1√
2πσ̂2

)

− (xi − µ̂)2 − 2(xi − µ̂)E{zi|θ, xi}+ E{z2i |θ, xi}
2σ̂2

]
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We know that

E{zi|θ, xi} =
(xi − µ)

(1 + σ2)

E{z2i |θ, xi} =
σ2

(1 + σ2)
+

(

(xi − µ)

(1 + σ2)

)2

Differentiating with respect to µ̂ gives

∂Q̃(θ, θ̂)

∂µ̂
=

n
∑

i=1

1

σ̂2
(xi − µ̂− E{zi|θ, xi})

so

µ̂ =
1

n

n
∑

i=1

(

xi −
(xi − µ)

(1 + σ2)

)

=
1

n

n
∑

i=1

(σ2xi + µ)

(1 + σ2)

Differentiating with respect to σ2

∂Q̃(θ, θ̂)

∂σ̂2
=

1

2

n
∑

i=1

[

−1

σ̂2
+

(xi − µ̂)2 − 2(xi − µ̂)E{zi|θ, xi}+ E{z2i |θ, xi}
(σ̂2)2

]

Equating to zero gives

σ̂2 =
1

n

n
∑

i=1

[

(xi − µ̂)2 − 2(xi − µ̂)E{zi|θ, xi}+ E{z2i |θ, xi}
]

This problem is simple to solve using standard optimisation techniques. For EM the
correct answer is eventually obtained, but only after many iterations. For situations
where direct optimisation is not simple, EM is useful, for example mixture models.
Gradient descent could be used in these situations, but do not have the guaranteed
stability of EM.

6. It is possible to express A as

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 0 0
0 1 0

−1 1 0
0 0 1
0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

These expressions all match to experts. Thus (diag() yields a matrix with the vector
as the leading diagonal)

µ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1
1
1
2

−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; Σ = diag

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1
1
1
1
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Comparing the expansion to a standard Gaussian yields

Σ
−1

= A′A

µ = ΣA′µ

The mean can be used as the trajectory for speech synthesis. In numbers

x̂ = µ =

⎡

⎢

⎣

0.9231
1.7692
1.3846

⎤

⎥

⎦

When the two experts describing the “gradient” are removed x̂ simply becomes the
means

x̂ = µ =

⎡

⎢

⎣

1
1
2

⎤

⎥

⎦

7. From the form of the RBM it is possible to write

P (h|x, θ) =
J
∏

j=1

P (hj|x, θ)

The conditional distribution for dimensions j can be written as (using Bayes’ rule)

P (hj = 1|x, θ) = P (hj = 1,x|θ)
p(x|θ) ∝ P (hj = 1,x|θ)

Substituting hj = 1 into the energy function yields:

P (hj = 1,x|θ) ∝ exp

(

−
d
∑

i=1

(xi − ai)2

2σ2
i

+ bj +
∑

i

xi

σi
wij

)

For each dimension hj is either 1 or zero. It is also possible to write

P (hj = 0,x|θ) ∝ exp

(

−
d
∑

i=1

(xi − ai)2

2σ2
i

)

Combining these conditions together and cancelling terms yields

P (hj = 1|x, θ) = P (hj = 1,x|θ)
P (hj = 0,x|θ) + P (hj = 1,x|θ) =

exp(bj +
∑

i
xi

σi
wij)

1 + exp(bj +
∑

i
xi

σi
wij)

=
1

1 + exp(−bj −
∑

i
xi

σi
wij)
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The distribution for p(x|h, θ) can be found in a similar way. Here we could compute
P (h|θ).

P (h|θ) =
∫

exp

⎛

⎝−
⎛

⎝

d
∑

i=1

(xi − ai)2

2σ2
i

−
J
∑

j=1

bjhj −
∑

i,j

xi

σi
hjwij

⎞

⎠

⎞

⎠ dx

but again this is only necessary as a normalisation term. Thus considering only the
numerator term

p(x|h, θ) ∝ p(x,h|θ) = exp

⎛

⎝−
d
∑

i=1

(xi − ai)2

2σ2
i

+
∑

i,j

xi

σi
hjwij

⎞

⎠

Extracting out the terms for the first and second moments for a dimension xi

− x2
i

2σ2
i

+
xi

σ2
i

⎛

⎝ai + σi

∑

j

hjwij

⎞

⎠

Comparing to the standard Gaussian this directly yields

p(xi|h, θ) = N (xi; ai + σi

∑

j

hjwij, σ
2

i )

8. For the one v one classifiers: it is necessary to train and decode with K(K − 1)/2
classifiers. The no decision region is shown below
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The region marked in gray is “no decision”. In this case it appears to be both class
1 and class 2
For the one v rest classifiers: it is necessary to train and decode with (K−1) classifiers.
The no decision region is shown below
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