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Introduction

So far we have looked at generative models where the para-
metric form of the model is specified then the parameters
trained. It would be useful to look at more general classes
of generative model that are more universal. For discrimi-
native classifiers, neural network are one form of universal
approximator, what about generative models?

One form that has been examined for a range of tasks is the
restricted Boltzmann machine (RBM). This is a particular form
of energy based model (EBM) that is simple to train. In EBMs

p(x|θ) =
1

Z
exp (−G(x|θ))

where

• G(x|θ) is an energy function that yields a score for the
observation x

• Z is the normalisation term that ensures that there is a
valid PDF

The aim is to adjust the parameters of the energy function,
θ, so the amount of energy is minimised - this increase the
likelihood.
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Energy Based Model

p(x|θ) =
1

Z
exp (−G(x|θ))
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Energy Based Model

p(x|θ) =
1

Z
exp (−G(x|θ))

Gaussian Distribution

G(x|θ) =
1

2
(x− µ)′Σ−1(x− µ)
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Hidden Variables

To increase the power of the EBM it is possible to add la-
tent variables in the same way as multiple components were
added for the Gaussian mixture model. The joint distribution
of (discrete) hidden h and (continuous) observed x variables
is

p(x,h|θ) =
1

Z
exp (−G(x,h|θ))

the normalisation term, or partition function, is

Z =
∫

∑

h
exp (−G(x,h|θ)) dx

The marginal distribution for the observed data is then

p(x|θ) =
1

Z

∑

h
exp (−G(x,h|θ))

This can be written in terms of the free energy

F(x|θ) = − log
⎛

⎝

∑

h
exp(−G(x,h|θ))

⎞

⎠

which allows the original (non latent variable form) to be de-
rived

p(x|θ) =
1

Z
exp (−F(x|θ))

Though the form is the same the model parameters θ have
changed to reflect the fact that latent variables have been
introduced. The complexity of optimising this function de-
pends on the nature of the free energy function.
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Hidden (Latent) Variables

p(x,h|θ) =
1

Z
exp (−G(x,h|θ))

p(x|θ) =
1

Z

∑

h

exp (−G(x,h|θ))
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UPS Digits Example

For an example of RBMs generating digits see:

http://www.cs.toronto.edu/%7Ehinton/digits.html
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Restricted Boltzmann Machines

One useful constraint to introduce is that the connections in
the energy function are only between the observations and
hidden layers, there are no connections between elements of
the same layer.

h2 h3

x2 x3x1 x4

h1

Given this form a restriction, the resulting model is a restricted
Boltzmann machine.

So far there has been no discussion of the nature of the en-
ergy function or the nature of the parameters. One form of
parametrisation (related to the form of neural networks de-
scribed later) is to have the following parameters

• observed layer bias: d-dimensional vector, a

• hidden layer bias: J-dimensional vector, b

• connection: d× J-dimensional matrix, W

Some standard forms of function are described in the next
slide.
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Restricted Boltzmann Machine

h2 h3

x2 x3x1 x4

h1

G(x,h|θ) = −
d
∑

i=1

aixi −
J
∑

j=1

bjhj −
∑

i,j

xihjwij
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Energy Functions

Two forms of energy function are:

• Discrete Observations: The simplest (original) form is to
have both observed and hidden variables being discrete.
Here

G(x,h|θ) = −
d
∑

i=1
aixi −

J
∑

j=1
bjhj −

∑

i,j
xihjwij

In order to train the parameters it will be necessary to
define the two conditions distributions relating the ob-
served, x, and hidden, h, variables:

P (hj = 1|x,θ) =
1

1 + exp(−bj −
∑

i xiwij)

P (xi = 1|h,θ) =
1

1 + exp(−ai −
∑

j hjwij)

• Continuous Observations: when the observations are con-
tinuous (hidden still discrete) the following form can be
used

G(x,h|θ) =
d
∑

i=1

(xi − ai)2

2σ2
i

−
J
∑

j=1
bjhj −

∑

i,j

xi
σi
hjwij

Again the two conditions distributions relating the ob-
served, x and hidden h variables need to be found:

P (hj = 1|x,θ) =
1

1 + exp
(

−bj −
∑

i
xi
σi
wij

)

p(xi|h,θ) = N

⎛

⎜

⎝xi; ai + σi
∑

j
hjwij, σ

2
i

⎞

⎟

⎠
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Maximum Likelihood Criterion

D = {x1, · · · ,xN}

L(θ) = log p(D|θ) =
N
∑

i=1

log p(xi|θ)
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Parameter Estimation

As with the other models the parameters of the system

θ = {a, b,W }

need to be estimated. Again maximum likelihood estimation
can be used. The training data are a set of N samples

D = {x1,x2, . . . ,xN}

The criterion to optimise is

L(θ) =
N
∑

i=1
log(p(xi|θ))

For RBMs gradient decent based algorithms are used. Here
the update rule has the form

θ[τ + 1] = θ[τ ] + η ∇L(θ)|θ[τ ]

All that is required is to get the gradient of the log-likelihood.
This can be written as

∇ log(p(x|θ) = ∇ log
⎛

⎝

∑

h
exp (−G(x,h|θ))

⎞

⎠ −∇ log(Z)

The problem is that deriving an analytic expression for the
normalisation term Z may not possible (as with PoEs).
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Gradient Calculation

p(x|θ) =
1

Z

∑

h

exp (−G(x,h|θ))

∇ log(p(x|θ) = ∇ log

(

∑

h

exp (−G(x,h|θ))

)

−∇ log(Z)
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Normalisation Term Gradient

This gradient can be expressed as

∇ log(Z) =
1

Z
∇

⎛

⎝

∫

∑

h
exp (−G(x,h|θ)) dx

⎞

⎠

=
∫

∑

h

1

Z
∇ (exp (−G(x,h|θ))) dx

= −
∑

h

∫

⎛

⎝

1

Z
exp (−G(x,h|θ))∇G(x,h|θ)

⎞

⎠ dx

= −
∑

h

∫

∇G(x,h|θ)p(x,h|θ)dx

This has allowed the gradient of the normalisation term to be
expressed as the expected value of the gradient of the energy
function with respect to p(x,h|θ). However it is still not pos-
sible to find an expression for Z.

Rather than solving integrals it is possible to approximate
the integral by drawing a finite number of samples for the
distribution (Monte-Carlo approach)

∫

f(x)p(x)dx ≈
1

K

K
∑

k=1
f(x(k))

where x(k) is a sample generated from p(x).

Fortunately drawing a sample from p(x,h|θ) is not a func-
tion of Z - no need to find Z!
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Sampling

∇ log(Z)=−
∑

h

∫
(

1

Z
exp (−G(x,h|θ))∇G(x,h|θ)

)

dx

=−
∑

h

∫

∇G(x,h|θ)p(x,h|θ)dx

∫

f(x)p(x)dx ≈
1

K

K
∑

k=1

f(x(k))
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Sampling

∇ log(Z) = −
∑

h

∫

∇G(x,h|θ)p(x,h|θ)dx

∇ log(Z) ≈ −
1

K

K
∑

k=1

∇G(x(k),h(k)|θ)
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RBM Gibbs Sampling

Generating observations from general probability density func-
tions is a whole research area. In this lecture we will just use
(not discuss in detail) Gibbs sampling from p(x,h|θ)

For many situations it is not possible to generate a sample
x(k) from a distribution directly (as is the case here). Gibbs
sampling says that a sample from a distribution can be gener-
ated by fixing some elements, generate samples conditional
on the fixed elements, and repeat for all elements.

For RBMs as there are no connections within a layer it is sim-
ple to split the data between the hidden units and observed
units.

x1 x2 x3 x4

h1 h2 h3

(0) (0) (0) (0)

(0) (0) (0)

x1 x2 x3 x4

h1 2 h3

(0) (0) (0) (0)

(1) (1) (1)

x1 x2 x3 x4

h1 h2 h3

(1) (1) (1) (1)

(1) (1) (1)h

1. set k = 0, initialise observed vector, x(0)

2. draw a sample of the hidden vector h(k+1) from

P (h|x(k),θ)

3. draw a sample of the observed vector x(k+1) from

p(x|h(k+1),θ)

4. k = k + 1; goto (2)

This generates a final sample: {x(∞),h(∞)}
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RBM Gibbs Sampling

x1 x2 x3 x4

h1 h2 h3

(0) (0) (0) (0)

(0) (0) (0)

x1 x2 x3 x4

h1 2 h3

(0) (0) (0) (0)

(1) (1) (1)

x1 x2 x3 x4

h1 h2 h3

(1) (1) (1) (1)

(1) (1) (1)h

P (hj = 1|x,θ) =
1

1 + exp(−bj −
∑

i xiwij)

P (xi = 1|h, θ) =
1

1 + exp(−ai −
∑

j hjwij)
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RBM Gibbs Sampling (cont)

For both the binary and continuous observations the condi-
tional distributions have been defined. For the continuous
case

P (hj = 1|x,θ) =
1

1 + exp
(

−bj −
∑

i
xi
σi
wij

)

p(xi|h,θ) = N

⎛

⎜

⎝xi; ai + σi
∑

j
hjwij, σ

2
i

⎞

⎟

⎠

have been defined. Thus generating data from this RBM re-
quires sampling from a discrete distribution (based on lo-
gistic regression) or Gaussian distribution and iterating. All
these are simple operations.
There are a few issues that need to be addressed to make
Gibbs’ sampling work:

• number of iterations: a finite number of samples are run
in practice. This needs to be large enough so that the
samples that are actually used are independent of each
other;

• sensitivity to initial value: if the initial observation vector
is not “reasonable” it may take many iterations to reach
values that are samples from the required distribution.
This is the burn-in period;

• number of samples: there have to be sufficient samples
that the estimate of the integral is “good”.
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Gradient Estimate (details)

Need to find the gradient of the log-likelihood with respect
to the model parameters θ. From slide 5

∇ log(p(x|θ)) = ∇ log
⎛

⎝

∑

h
exp (−G(x,h|θ))

⎞

⎠ −∇ log(Z)

Differentiating the first term yields

∇ log
⎛

⎝

∑

h
exp (−G(x,h|θ))

⎞

⎠ =
−∑

h∇G(x,h|θ)exp (−G(x,h|θ))
∑

h exp (−G(x,h|θ))
= −

∑

h
P (h|x)∇G(x,h|θ)

The derivative of the training data for this first term is some-
times expressed in terms of approximating samples drawn
from the true distribution of the observed data pdata(x), (x1, . . . ,xN

the training data!)
∫

∑

h
P (h|x)∇G(x,h|θ)pdata(x)dx

≈
1

N

N
∑

i=1

∑

h
P (h|xi)∇G(xi,h|θ)

From slide 6 the normalisation can be approximated as

∇ log(Z) = −
∑

h

∫

∇G(x,h|θ)p(x,h|θ)dx

≈ −
1

K

K
∑

k=1
∇G(x̂(k), ĥ

(k)
|θ)

Combining these together yields
1

N
∇L(θ) ≈

1

K

K
∑

k=1
∇G(x̂(k), ĥ

(k)
|θ)

−
1

N

N
∑

i=1

∑

h
P (h|xi)∇G(xi,h|θ)
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Sampling

1

N
∇L(θ) ≈

1

K

K
∑

k=1

∇G(x̂(k), ĥ(k)|θ)

−
1

N

N
∑

i=1

∑

h

P (h|xi,θ)∇G(xi,h|θ)
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Gradient Estimate

As both the derivative of the numerator and denominator
can be expressed in terms of drawing samples from distribu-
tions, the complete log-likelihood derivative is often written
as

1

N
∇L(θ) = ⟨∇G(x,h|θ)⟩

model
− ⟨∇G(x,h|θ)⟩

data

where

• ⟨.⟩
data

indicates the expected value based on the data

• ⟨.⟩
model

indicates the expected value based on the model

Using the Gibbs sampling estimates it is now possible to de-
fine gradient of the log-likelihood function

∇L(θ) = N
∫

∑

h
p(x,h)∇G(x,h|θ)dx−

N
∑

i=1

∑

h
P (h|xi)∇G(xi,h|θ)

≈
N

K

K
∑

k=1
∇G(x̂(k), ĥ

(k)
|θ)−

N
∑

i=1

∑

h
P (h|xi)∇G(xi,h|θ)

Here the samples {x̂(k), ĥ
(k)
} are the ones extracted from Gibbs

sampling that are expected to be independent.

Thus the gradient can be defined without explicitly having to
generate the normalisation term (though the samples could
be used to find this of course).
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Contrastive Divergence

Though the previous approach can be used to find the gradi-
ent it is still too slow for many applications, due to both the
burn-in period and number of Gibbs sampling iterations to
obtain independent samples.
To address this some additional approximations can be used.

• set the initial value of the observations to one of the train-
ing samples x(0) = xi

• limit the number of iterations of Gibbs sampling before

generating the sample x̂
(k), ĥ

(k)
. Though this means that

the samples are still going to be correlated with the data
point it allows the computational load of the sampling
process to be controlled. Systems can be trained using a
single iteration of Gibbs sampling.

Both of these approximations means that the gradient used
is not the “correct” gradient. However in practice these ap-
proximations allow large data sets to be used to train the
RBM.

Contrastive divergence optimisation is a general approach
for optimisation systems where it is not possible, or imprac-
tical, to compute the normalisation term Z. The example of
general PoEs is one scenario where this can also be applied.
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RBM Classifiers

RBMs are generative models, they yield p(x|θ). In theory
they could be used as part of a generative classifier - for ex-
ample for a K class classifier

P (ωi|x,θ) =
p(x|θi)P (ωi)

∑K
k=1 p(x|θk)P (ωk)

where p(x|θk) is an RBM trained on the data from class ωk.

BUT the training of the RBM was designed so that it was not
necessary to find the normalisation term. As this will vary
from class to class, ie Zk for class ωk, it will not simply cancel
between numerator and denominator.

Various approximations have been examined to achieve this.
For example the unnormalised RBM probabilities can be used

p̃(x|θk) =
∑

h
exp (−G(x,h|θk))

This can be fed into a softmax function of the form

P (ωi|x,θ,α) =
exp(log(p̃(x|θi)) + αi)

∑K
k=1 exp(log(p̃(x|θk)) + αk)

Effectively normalisation terms (and priors) are trained in a
separate softmax optimisation stage.
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Multiple Layer RBMs

It is possible to stack multiple layers of RBMs together, pro-
vided only connections between layers are used. After train-
ing one layer, the inferred hidden units h can be fixed and
used as training examples for another level.

x3x1 x4 x2 x3x1 x4

h1 h2 h3 h3

h1 h2 h3h1 h2 h3

x2

This process allows a stacked version of the RBM to be trained.
This will be discussed later in the course for the initialisation
of multi-layer perceptrons.
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UPS Digits Example

For an example of RBMs generating digits see:

http://www.cs.toronto.edu/%7Ehinton/digits.html


