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Introduction

The performance of a generative model is highly dependent

on the accuracy of the class-conditional PDFs, p(x|ω). For

example, Gaussians do not well model

• multi-model and asymmetric data
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Unfortunately data of this form is common. For instance in

modelling a word in speech recognition

• male/female pronunciation differences

• accent variability (UK/American English)

These same type of effects often occur in other areas in which

pattern recognition techniques are applied.

A general approach for modelling complicated distributions

is mixture modelling. The form considered in this lecture

is Gaussian mixture models (GMM). Under mild constraints

these can be shown to be able to model any PDF.
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Simple Example

Noise is generated by one of two sources. 60% of the time it is

generated by a Gaussian distribution of mean -1 and variance

1. 40% of the time it is generate by a Gaussian distribution

of mean 1 and variance 1. What is the overall distribution of

the noise observed?
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If a single Gaussian is used as a model, there is a poor fit.
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A weighted combination of two Gaussian PDFs fit the data

“perfectly”. This is a mixture model. What we are interested

in is the form and how to automatically train parameters of

this mixture model.
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Gaussian Mixture Models

The general form of a mixture model is

p(x|θ) =
M
∑

m=1

p(x, ωm|θm) =

M
∑

m=1

cmp(x|ωm,θm)

For a Gaussian mixture we have

p(x|θ) =
M
∑

m=1

cmN (x;µm,Σm)

where cm is the component prior of each Gaussian compo-

nent. For this to be a valid probability density function it is

necessary that
M
∑

m=1

cm = 1 and cm ≥ 0

The GMM parameters can be split into two parts

• component priors - M − 1 parameters, c1, . . . , cM

• component PDF - M times the parameters of a single

component, θ = {θ1, . . . ,θM}

Increasing the number of components will yield more pa-

rameters and a more powerful class-conditional PDF, leading

to a more powerful classifier

• need to be careful about correctly tuning the number of

components

Mixture models can be used with other forms of PDF (and

PMF), or combinations of different forms of PDF. This lecture

will concentrate on GMMs.
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Log-Likelihood Function

We will estimate the parameters of a Gaussian mixture model

using maximum likelihood (note mixtures of other distribu-

tions could also be considered).

To do maximum likelihood estimation, the log likelihood func-

tion for the data needs to be specified

L(θ) =
n
∑

i=1

log p(xi|θ) =
n
∑

i=1

log

[

M
∑

m=1

cmp(xi|ωm,θm)

]

where the dependence on the PDF for mixture component

ωm is explicit.

For ease of presentation, consider Gaussian distributions of

the form Σm = σ2
mI, although the principles can be easily

extended to more general covariance matrices.

Therefore

L(θ) =
n
∑

i=1

log

[

M
∑

m=1

cm

(2πσ2
m)

d/2
exp

(

−
∥

∥xi − µm

∥

∥

2

2σ2
m

)]

Now, it is necessary to find the partial derivative of L(θ) with

respect to the parameters of the mixture distribution.
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Log-Likelihood Derivative

Due to the form of the log likelihood we will (during the

derivation below) use the substitution (from Bayes’ noting

that the cm is a prior probability)

P (ωm|xi,θ) =
cmp(xi|ωm,θ)

p(xi|θ)
=

cmp(xi|ωm,θ)
∑M

j=1 cjp(xi|ωj,θ)

where P (ωm|xi,θ) is the posterior probability of mixture com-

ponent ωm being associated with vector xi.

Considering a particular parameter θm that is associated with

(only) the mth mixture component.

∂L(θ)

∂θm
=

n
∑

i=1

1

p(xi|θ)

∂ [cmp(xi|ωm,θm)]

∂θm

cm is not a function of θm. Consider just the mean of compo-

nent ωm

∂L(θ)

∂µm

=

n
∑

i=1

cmN (xi|ωm,θm)

p(xi|θ)

(xi − µm)

σ2
m

=

n
∑

i=1

P (ωm|xi,θ)
(xi − µm)

σ2
m

Unlike a Gaussian, no closed-form solution, as P (ωm|xi,θ) is

a non-linear function of the mean µm.

Gradient descent (or related schemes) could be used, but any-

thing better?
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“Incorrect” Updates

Initially ignore the dependence of the posterior P (ωm|xi,θ)

on the component parameters θm, equating to zero yields to

find the estimate of the mean, µ̂m,

0 =
n
∑

i=1

P (ωm|xi,θ)
(xi − µ̂m)

σ2
m

1

σ2
m

n
∑

i=1

P (ωm|xi,θ)µ̂m =
1

σ2
m

n
∑

i=1

P (ωm|xi,θ)xi

µ̂m =

∑n
i=1 P (ωm|xi,θ)xi
∑n

i=1 P (ωm|xi,θ)

Repeating the process for the variance term σ2
m yields an up-

date of

σ̂2
m =

1

d

∑n
i=1 P (ωm|xi,θ)

∥

∥xi − µ̂m

∥

∥

2

∑n
i=1 P (ωm|xi,θ)

Unfortunately these estimates are only correct when the esti-

mates used to get the posterior P (ωm|xi,θ) is the same as the

new estimates - must be at a local maximum!

In general it is not possible to guarantee that the log-likelihood

function, L(θ), will increase.
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Simple “EM”

−4 −3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

The above diagram shows two Gaussian components, each

having an equal prior (c1 = c2 = P (ω1) = P (ω2) = 0.5). We

have single dimensional training data x1, . . . , xn.

If the correct component for each observation was known we

could use the standard estimation formulae for each of the

components.

• BUT we don’t know the correct component.

• BUT we can estimate the assignment using the Gaussians

above.

This is a classification problem, so use Bayes’ to assign it.
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Simple “EM” (cont)

Let the assignment variable be z. For the above example we

label all the data using

zi =

{

ω1 if xi > 0

ω2 if xi < 0

The the estimate of the mean is then

µ̂1 =
1

n1

∑

zi=ω1

xi

n1 is the number of samples assigned to ω1. The variance is

σ̂2
1 =

1

n1

∑

zi=ω1

(xi − µ̂1)
2

The prior can be estimated simply by using the relative fre-

quencies of class ω1 and ω2

ĉ1 =
n1

n1 + n2

Similarly for class ω2.

We now have new estimates of the component parameters.

We can therefore get new estimates of the assignment z. We

can carry on doing this loop until nothing changes.

This is a simple iterative process that is guaranteed not to

decrease the likelihood.
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Lagrange Optimisation

To estimate the component priors from the maximum of the

log likelihood function, we note the constraint that the com-

ponent priors must sum to one and be positive. This can be

done using the method of Lagrange multipliers1.

• Assume a extremum (maximum/minimum) of a scalar

valued function f(x) is required subject to a constraint.

• If the constraint can be expressed as g(x) = c then we can

transform the constrained optimisation into an uncon-

strained one by finding the extremum of the Lagrangian

function

L(x, λ) = f(x) + λ [g(x)− c]

• λ is called the Lagrange multiplier

• Find for extremum

∂L(x, λ)

∂x
=

∂f(x)

∂x
+ λ

∂ [g(x)− c]

∂x
= 0

Solve to give the required value of x and λ and hence

extremum of f(x) subject to the constraint g(x) = c.

• Note also that
∂L(x, λ)

∂λ
= 0

when the constraint is satisfied.

• We will use this method in several places in this course.

1see Bishop (1995) p.64 for an alternative method
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“Incorrect” Prior Updates

The constraint to add is that
∑M

m=1 cm = 1. In this case add

λ(
∑M

m=1 cm − 1), so the Lagrangian to optimise is

L(θ, λ) = L(θ) + λ(
M
∑

m=1

cm − 1)

Differentiating this

∂ (L(θ, λ))

∂cm
=

n
∑

i=1

P (ωm|xi,θ)

cm
− λ

∂ (L(θ, λ))

∂λ
=

M
∑

m=1

cm − 1

Ignoring the dependence of P (ωm|xi,θ) on cm, then the up-

date (satisfy the first differential)

ĉm =
1

λ

n
∑

i=1

P (ωm|xi,θ)

Satisfying the second differential (
∑M

m=1 cm = 1) requires

M
∑

m=1

1

λ

n
∑

i=1

P (ωm|xi,θ) = 1, λ =
n
∑

i=1

M
∑

m=1

P (ωm|xi,θ) = n

so

ĉm =
1

n

n
∑

k=1

P (ωm|xi,θ)
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Parameter Estimation

The previous process has performed a “hard” assignment of

observation to component. This can be generalised to a prob-

abilistic assignment. This form of update is then referred to

as an example of the Expectation-Maximisation algorithm.

The theory behind this will be discussed in the next lecture.

EM is an iterative process, so let the parameters at iteration k

be denoted by θ(k)

µ(k+1)
m =

∑n
i=1 P (ωm|xi,θ

(k))xi
∑n

i=1 P (ωm|xi,θ
(k))

σ(k+1)2
m =

1

d

∑n
i=1 P (ωm|xi,θ

(k))
∥

∥xi − µ
(k+1)
m

∥

∥

2

∑n
i=1 P (ωm|xi,θ

(k))

c(k+1)
m =

1

n

n
∑

i=1

P (ωm|xi,θ
(k))

The more general update for the covariance matrix is

Σ
(k+1)
m =

∑n
i=1 P (ωm|xi,θ

(k))(xi − µ
(k+1)
m )(xi − µ

(k+1)
m )′

∑n
i=1 P (ωm|xi,θ

(k))

The application of these equations is guaranteed to provide

an increase in the likelihood function unless the likelihood

function is at a local maximum (proof of E-M next lecture ...).

Thus

L(θ(k+1)) ≥ L(θ(k))



3. Gaussian Mixture Models 13

EM Training Procedure

Each iteration of the E-M algorithm for Gaussian Mixtures

operates in two stages:

1. Find the posterior probability of mixture component oc-

cupation using the current parameter values.

2. Update the parameters of the Gaussian mixture as though

the posterior probabilities were the true values.

Therefore the overall procedure is

1. Initialise the parameters of the mixture, θ(0), - for exam-

ple set all component priors to be equal, all variances to

be equal, and use different values for the mean vectors

and set k = 0

2. Compute P (ωm|xi,θ
(k)) for every data point and accumu-

late the statistics for the numerators and denominators of

the re-estimation formulae. Also compute the log likeli-

hood of the data set

3. Update the parameters as necessary to give θ(k+1), set k =

k + 1

4. If the log likelihood increase is less than a threshold stop,

else goto 2.

Note that only a local maximum of the likelihood function is

found by this procedure so the initialisation of the scheme is

important, and can have problems (e.g. a variance can tend

to zero and likelihood become infinite!)
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Simple Worked Example

Consider some data from 2 classes:

Class 1 has points

[

1

0

]

,

[

1

1

]

,

[

0.6

0.6

]

,

[

0.7

0.4

]

Class 2 has points

[

0

0

]

,

[

0

1

]

,

[

0.25

1

]

,

[

0.3

0.4

]

The aim is to build a mixture model on the composite data.

The variances of both components are fixed at the identity

matrix. Initial values of the means are

µ1 =

[

0.25

0.25

]

, µ2 =

[

0.75

0.75

]

First the posteriors for the two model sets are required.

Class 1 has posteriors :

Comp1 0.5 0.3775 0.4750 0.4875

Comp2 0.5 0.6225 0.5250 0.5125

Class 2 has posteriors:

Comp1 0.6225 0.5 0.4688 0.5374

Comp2 0.3775 0.5 0.5312 0.4626

This gives updated means of:

µ1 =

[

0.4491

0.5143

]

, µ2 =

[

0.5129

0.5851

]

This model has an increased likelihood of generating the data.

Further iterations will increase the likelihood further.
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Further Example

The E-M algorithm was applied to the problem of estimating

the parameters of a mixture model (mixture weights all set

equal and not updated) as shown below. There are 5 Gaus-

sian components in the mixture and the covariance matrices

are diagonal (though not constrained to be equal in each di-

mension). The figures shows the evaluation of training on

initialisation, 1 iteration, 3 iterations and 16 iterations.
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Extracting Structure

Rather than using GMMs to model arbitrary PDFs, they may

be used to extract structure from unlabelled data. Consider

some simple speech data from which the formants (F1 and

F2) have been extracted and the hard GMM assignment.
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A two component GMM could be used to model the data.

The hope is that the components will model different classes

of the underlying data. Though it is not possible to label

what the class component labels are it can be used to decide

if data is similar to one class or another - clustering

The problems are:

• how many components to use;

• the final solution depends on the initialisation!


