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1 Introduction 

 We apply the powerful, flexible and efficient nonparametric Classification and 

Regression Trees (CART) algorithm1 [Breiman, Friedman, Olshen, and Stone (1998)] 

to the analysis of mortgage default data while conducting the first academic study of 

mortgage default in Israel. CART�s strengths in dealing with large data sets, high 

dimensionality, mixed data types, missing data, different relationships between 

variables in different parts of the measurement space, and with outliers, is particularly 

appropriate for our data. Moreover, CART is intuitive and easy to interpret. We find 

that borrowers� features rather than mortgage contracts features are the strongest 

predictors of default if accepting �bad� borrowers is more costly than rejecting 

�good� ones. If these costs are equal, mortgage features are used as well. The higher 

(lower) the ratio of misclassification costs of bad risks versus good ones, the lower 

(higher) are the resulting misclassification rates of bad risks and the higher (lower) are 

the misclassification rates of good ones. This is consistent with real world stylized 

facts of rejection of good risks in attempt to avoid bad ones. 

Regression in general, and logistic regression in particular, require the 

elimination of a whole observation vector if one of its elements is missing, do not 

handle well cases where the number of explanatory variables is large relative to the 

number of cases, and, requires homogeneity, the same relations among the data all over 

the measurement space. 

Mortgage financing is an essential decision for both borrowers and lenders. Not 

only is this decision qualitatively important, it is quantitatively significant: aggregate 

outstanding mortgage balances, and thus the capitalization of various mortgage related 

                                                 
1 In this paper we focus on the classification aspect of CART only. Regression analysis has been 
employed extensively in the literature. 
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securities, is in the trillions.2 No wonder that the various aspects of mortgage 

contracting has been one of the most extensively researched topics in real estate finance 

and economics, both theoretically and empirically. Amongst these aspects, mortgage 

default has been one of the leading topics. Understanding mortgage default is necessary 

for appropriately valuing mortgages and for borrowers� and lenders� optimization. 

Indeed, there is a steady flow of theoretical and empirical studies including new 

approaches, methodologies, and perspectives in mortgage default research and there 

seems to be a general consensus that more research is needed beyond accounting for the 

dynamic changes in markets. In this paper, we attempt to contribute to this effort by 

suggesting a new approach: the use of the CART methodology in analyzing mortgage 

default. For related results and references, please see the following very partial sample 

of recent related works: Foster and Van Order (1984), Clauretie and Terrence (1990), 

Kau, Keenan, Muller, and Epperson (1992), Kau and Keenan (1993), Lekkas, 

Quigley, and Van Order (1993), Vandell (1993), Kau, Keenan, and Kim (1994), 

Quigley and Van Order (1995), Vandell (1995), Ambrose, Buttimer, and Capone 

(1997), Deng (1997), Capozza, Kazarian, and Thomson (1997), Capozza, Kazarian, 

and Thomson (1998), Karolyi and Sanders(1998), Stanton and Wallace (1998), 

Ambrose and Buttimer (2000), Deng, Quigley, and Van-Order (2000), Ambrose, 

Capone, and Deng (2001), Sanders (2002), and Ambrose and Sanders (2003). 

Our main purpose in analyzing the mortgage data is the binary classification of 

borrowers into two risk classes: potential defaulters and those unlikely to default. We 

use a data base, which we refer to as a learning sample, to develop the decision rule for 

the classification. Our learning sample consists of data both on the predictors, which we 

also call independent variables or features, and on the binary outcome variable: 

                                                 
2 Rough extrapolation of Miles�s (1990) several estimates of U.S. real estate value puts today�s value at 
the order of magnitude of 7 trillion dollars. 
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defaulted or did not default. Our learning sample consists of data on 3,035 mortgage 

borrowers. The features include asset value, asset age, mortgage size, number of 

applicants, the main applicant�s occupation, income, and family information, and other 

characteristics of the asset and the applicant: thirty three features in all. 

The task of predicting a binary outcome from a collection of relevant features is 

traditionally carried out using well known tools such as logistic regression. There are 

two main types of logistic regressions: the completely parametric linear one, and the 

nonparametric additive one, see Hastie, Tibshirani, and Friedman (2001). In the latter, 

functions of the features are inserted into the logit function3 additively, and the form of 

each function is left open and is estimated by the data. In our case, the logit would have 

been the log of the odds of being classified a likely defaulter. These two logistic 

procedures may be considered complementary. When the dependence of the logit on the 

collection of features is patently nonlinear, the additive logistic procedure is usually 

adopted. Both procedures, although very effective for small to medium data sets with a 

limited number of features, become unwieldy for data sets with a large number of 

features relative to the number of cases in the data, and for any large data set as might 

be found in risk assessment studies. Furthermore, under logistic regression, the 

classification process generally remains completely opaque, even when it provides as 

accurate a classification as the data warrant. Thus, for most users the estimated model is 

a black box. This limits the model effectiveness, the use of the model, and the 

appreciation for either its strength or its limitations. It also limits the development of 

intuition for the classification rules implied by the method. 

                                                 
3 The logit function is the log of odds function. Thus if the odds are n:k (p/1-p), the logit function is 
log(n/k) [log(p/(1-p))]. 
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Another class of classifiers are the linear, quadratic, or nonparametric 

discriminant analyzers4 [see Hastie, Tibshirani, and Friedman (2001)]. The first two 

procedures divide the feature space into two complementary subspaces assuming 

normality of the features. This assumption is unlikely to hold in most cases, particularly 

when many of the features are ordinal or nominal categorical variables, as is common in 

business data. The nonparametric procedures include k-nearest neighbor rules5 as well 

as less available procedures that mimic the parametric discriminant algorithms. All 

these methods yield classification rules that are unintelligible to the general user who is 

familiar with the subject matter, but is not an expert statistician. 

The deficiencies of the commonly used traditional methods that we reviewed 

above, led us to choose a new method called CART: Classification and Regression 

Trees. CART is a powerful, flexible nonparametric data analysis tool. It uses binary 

trees, a method that Sonquist introduced in the sixties at the University of Michigan and 

Morgan and Messenger developed there in the seventies into an ancestor classification 

method. CART strengthens and extends these original methods. It was first introduced 

independently by Breiman and Friedman in 1973, who later joined forces with Stone 

and then with Olshen. CART was first introduced to the general reader and is fully 

described in by Breiman, Friedman, Olshen, and Stone (1998).6 

As far as we know this method has never been used in real estate data analysis. 

Unlike most of the above traditional methods, CART is a nonparametric method that 

does not require any model or functional form. It is particularly well adapted to large 

data sets, data sets that include a large number of features (high dimensionality), and 

                                                 
4 Roughly speaking, linear, non-linear, and non-parametric analyzers divide the space of features, 
linearly, non-linearly, and by ordinal ranking, respectively.  
5 The Kth nearest neighbor rule due to Fix and Hodges (1958) may be succinctly defined as follows: Let 
d(X,Y)  be a distance function, say Euclidian distance, between two points, X,Y in the feature space. 
Fix an integer K>0. Classify a new point X into class j if the largest number of points among the K 
points nearest to X that belong to one class, belong to class j. 
6 The first version of this book is from (1984). 
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nonstandard data structures. The latter include data sets that include a mixture of data 

types, data that has different relationships among variables in different parts of the 

measurement space (non-homogeneity), data with many outliers, and missing data. We 

explain below the way in which it handles very well missing data. These circumstances 

are precisely the circumstances that stomp CART�s major traditional competitor, 

logistic regression. In addition, CART handles categorical variables as easily as 

continuous ones and is very efficient in terms of computer execution time and memory 

required. 

CART handles missing data in a novel way, not used to our knowledge by any 

other classification method. First, the classification algorithm creates a simple binary 

tree structure. Then, it uses this tree structure to classify new cases. In the likely event 

that a case with missing features is presented to be classified, CART offers alternative 

trees for each combination of missing features. To describe this important feature of 

CART, we will schematically describe the binary classification tree that CART 

produces, couching the description in our example of mortgage applicants� risk 

assessment when necessary. 

In Sections 2 and 3 we elaborate on CART structure and methodology 

respectively. We do that for pedagogical reasons and to introduce a new methodology 

into the area of real estate data analysis. We believe that it can be used to great benefit. 

Section 4 describes the data, reports the results of the CART data analysis that we 

performed, and discusses the outcomes. Section 5 presents some general discussion and 

conclusion. 
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2 Classification Trees: Structure 

The CART binary tree consists of a root node, internal nodes and leaf (terminal) 

nodes. Each root and internal node is a parent node with two daughter nodes. Each 

node, say t, is described by the subset of the original learning sample that it contains. 

For all but the leaf nodes, this subset is divided into two groups, going to daughter 

nodes tl and tr. The split at each node is described by a rule that depends on one selected 

feature. Let this feature be X, and assume, first, that the X is continuous. Then, the split 

is of the form X≤s or X>s, for some constant s. If X is categorical, then the split is of the 

form X∈S or X∉S, where S is some nonempty subset of X�s possible categories. The 

feature X is selected among all possible ones, and s (or S) is selected among all possible 

splits, with a view towards minimizing the diversity of the resulting subsamples 

forwarded to the two daughter nodes. Diversity of a subsample, roughly speaking, is a 

measure of its heterogeneity. We define specific measures of diversity below. As we 

will see in Section 3, CART offers several splitting methods. 

Initially, CART produces a large maximal tree and then prunes it into a simpler 

final tree. Although node splits are selected by maximizing the local reduction in 

diversity, this procedure also minimizes the overall tree diversity, please see Section 3.  

It does not necessarily, however, minimizes the risk or cost of misclassification. CART 

offers several pruning procedures that we will discuss in Section 4. The choice of a 

splitting rule and the choice of a pruning procedure are both important for achieving a 

stable tree yielding as small a risk/cost of misclassification as is possible for a given 

data. It turns out that the class assignment problem is relatively simple. The critical 

choices are those of selecting splits and in determining when to stop splitting. 

For classifying data when some feature data is missing, CART provides at each 

node alternative splitting rules. For each missing feature CART offers an alternative 
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splitting rule that is as close as possible to the main splitting rule in terms of minimizing 

the diversity of the resulting daughter nodes. 

CART�s efficiency and clever treatment of missing data, very prevalent in large 

data sets, are but two reasons for the enthusiasm with which it has been adopted in the 

fast developing field of Data Mining, and the field of Medical diagnosis. Another 

compelling reason for adopting CART over traditional model-based classifiers is its 

intuitive appeal. Most statistics consumers find nonlinear, generalized regression, such 

as logistic regression, far less intuitive, and far more indirectly related to their 

application, than the classification tree provided by CART. The latter represents in a 

simple and accessible tree structure the decision process associated with the 

classification. Generally the tree involves only a small fraction of the features available 

in the data, and gives a clear indication of the importance of the various features in 

predicting the outcome. No intensive model interpretation is required for understanding 

the output, as is the case in logistic regression for example. 

Other, less obvious advantages of CART are its ability to use both continuous 

and categorical features, and its resistance to outlying values present in one or more 

continuous features. CART�s resistance to outliers is due to its use of splits of the form 

X≤s or X>s. Such splits hardly depend on outlying values. Furthermore, the splits 

considered by CART are invariant under monotone transformations. That is, any 

monotone transformation such as log or square root, of one or more of the features, does 

not alter the final tree. Therefore, CART does not require any pre-transformation of the 

data.  

Because the selection of candidate variables for splitting might be too limiting, 

CART permits the expansion of the set of candidate variables to include linear 

combinations of variables in the feature set. Naturally, any user who wishes to use a 
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different function of existing features, may define it and add it to the feature set. 

Moreover, the choice of features to be included in the feature space will depend on the 

subject matter, and is left to the user to select. 

Finally, the process of selecting the features to be included in the tree, and the 

structure of the binary tree itself is completely automatic. No expert statistician is 

required to reduce the number of features to a manageable number, and no 

transformations are required. 

In our risk assessment classification problem the choice of CART was indicated 

by two properties of our data: the large number of features (thirty three), and the large 

number and complexity of the missing feature data. In addition, the easy interpretability 

of the CART algorithms was very desirable. 

Naturally, all these attractive features of CART do come at a certain cost. For 

small data sets CART tends to provide somewhat less accurate classifications, when 

compared to logistic regression for instance. For most users, however, and certainly in 

applications such as default risk classification, where transparency and ease of use are 

of paramount importance, a small loss in accuracy is not decisive. In simulation 

experiments carried out by Breiman, Friedman, Olshen, and Stone (1998), it was shown 

that in most simulated learning samples CART performed (in terms of true 

misclassification rate) as well or better that the nearest neighbor rule, except for one 

data set. They also compared CART to a stepwise (in deciding which features to retain 

in the discriminant function) linear discriminant rule. The latter was found slightly more 

accurate than CART, but of course its form is less appealing than CART�s decision tree 

rule. 

Another limitation of CART is the instability of the tree structure that it 

provides. A slight change in the learning sample data may alter the structure of the tree 
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substantially, although it will not alter its discrimination ability very much. This 

problem exists in data sets with markedly correlated features. The problem is of course 

shared by other methods, and is well recognized by users of linear or logistic regression. 

In CART, the problem translates into the existence of several splits at a single node that 

are almost equivalent in reducing the total diversity of the daughter nodes. The selection 

of a particular split is then rather arbitrary, but may lead to widely different trees. This 

instability implies that users must beware of over-interpreting the location of certain 

features in the tree produced by CART, despite the temptation to do so [see Breiman, 

Friedman, Olshen, and Stone (1998)]. 

 
 

3 Classification Trees: Method 

In this section we first provide a more detailed description of the classifier 

CART that we use on our mortgage data. We use general terms, and refer the reader to 

Breiman, Friedman, Olshen, and Stone (1998) for more technical details. Our 

description aims to provide the reader with sufficient understanding of the method to 

make educated decisions in selecting the CART options that are appropriate for a 

certain data set. We will then specify the particular options in CART that we applied to 

our data. In the following section we describe the data and the results. 

As we explained in the introduction, the CART algorithm is a recursive 

procedure; starting at the root node, and then at every internal node, it selects a single 

feature, and a threshold value s to split the group of individuals at the node into two 

groups to be placed at two new daughter nodes. CART grows the largest tree possible, 

called a maximal tree, that is the tree whose leaves (terminal nodes) cannot be split any 

further. A node may not be split any further either because it contains only cases that 
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belong to a single class, or because no reduction in total diversity can be obtained by 

further splitting. 

CART provides three possible splitting methods: Entropy, Gini, and Twoing. 

Each of these choices may be adopted along with a structure of classification error 

costs, ( | )C i j , the cost of classifying a case into class i, when in fact it belongs to class 

j. Once the tree is complete, CART offers various options for pruning the large tree and 

reducing it to a tree with far fewer nodes but with a similar discrimination ability. 

3.1 Splitting Rules    

We first assign a prior probability, , 0 1,j jp p≤ ≤  to every class j into which 

cases are classified, 1,..., ,j J= , with 
1

1.
J

j
j

p
=

=∑  In case the user does not provide prior 

probabilities, the relative frequencies of the classes in the learning sample are used as 

prior probabilities. In order to create a tree one needs to specify: 

1. A criterion of diversity. 

2. A goodness of split criterion function at node t, for feature X, and threshold 

split value s, ( , )d s t∆ , that determines how good the split is in reducing 

diversity of the two daughter nodes for feature X. 

3. A splitting rule. 

4. A �stop splitting� rule. 

5. A rule for assigning a terminal node (a leaf) into one of the J classes. 

6. A misclassification cost structure for evaluating the resulting tree 

performance. 

The splitting rules are of the form X≤s or X>s, for some constant s when the 

feature X is quantitative or at least ordinal. When X is qualitative with L categories, 
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CART tries all possible distinct binary splits, 12 1L− −  in number7. At each node of the 

tree the program searches through the features one by one, determines the best split for 

each X, and then the best X to split on at that node. Each split causes the resulting 

groups into which the data is split to be more homogeneous (less diverse) than the 

parent group. 

A splitting rule is derived from a diversity function [called impurity function by 

Breiman, Friedman, Olshen, and Stone (1998)]. Let the cost, ( | )C i j , of misclassifying 

a case that belongs to class j into class i, obey ( | ) 0C i j ≥  and ( | ) 0C i i = , and let 

( | ), 0 ( | ) 1p j t p j t≤ ≤ , 1,...,j J= , be the proportion of class j cases present at node t 

of the tree. J denotes the number of classes. Thus, for each node t, 
1

( | ) 1
J

j
p j t

=

=∑ . 

We shall now present the three major diversity functions that CART uses at 

some node t. We shall distinguish between two different cases. In the first case, the cost 

of misclassification of any item, regardless of its actual class, and regardless into which 

class it was misclassified, is uniform. In the second case, the cost of misclassifying a 

case belonging to class j into class i, denoted by ( )C i j , may depend both on i and on j. 

1. The Entropy function under uniform costs is 

 
1

( ) ( ) log[ ( )]
J

E
j

d t p j t p j t
=

= −∑ , (1) 

 and is, under non-uniform costs 

 
1 1,

( ) ( ) ( ) log[ ( )]
J J

E
j i i j

d t C i j p j t p j t
= = ≠

= −∑ ∑ , (2) 

 where i stands for the class into which the case is classified and j stands for its 
true class. 

 

                                                 
7 There are 2L  total combinations, when order does not matter and excluding the �all-nothing� split we 
have 2 1L − . 
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2. The Gini index of diversity under uniform costs is 

 
1

2

1 1 1

1( ) ( | ) ( | ) 1 ( | )
2

J J J

G
j i j

d t p i t p j t p i t
−

= = =

 
= = − 

 
∑∑ ∑ , (3) 

 which, in the binary case, simplifies to 

 ( ) (1| ) (2 | )Gd t p t p t= , (4) 

 and is, under non-uniform costs 

 
1

1 1

( ) ( ) ( )[ ( ) ( )]
J J

G
j i

d t p j t p i t C i j C j i
−

= =

= − +∑∑ . (5) 

 
3. The twoing function, with daughter nodes tL and tR, and where the 

probabilities Lp  and Rp  are the proportions of cases at going to nodes tL 

and tR respectively, is 

 1

( ) ( ) ( )
4

J
L R

T L R
j

p pd t p j t p j t
=

= −∑ . (6) 

We remark that the Entropy and the Gini index diversity functions refer to the 

diversity of cases at a given node. Therefore as a tool for splitting cases at a node, a 

change in diversity from that of the parent node, to the sum of diversity at the daughter 

nodes is required. The twoing function, on the other hand, measures a class-prevalence 

distance between the daughter nodes, anticipating that the diversity within the daughter 

nodes will decline when the split achieves a higher degree of difference in the 

prevalence of the different classes in the two daughter nodes. Thus, to achieve the 

highest reduction in diversity, one chooses the split s that maximizes the towing 

function. 

 Note that both the Entropy function and the Gini index achieve their maximum 

value at node t when the distribution of cases to classes is uniform. Both achieve their 

minimum, zero, when all cases at the node fall into a single class. In contrast, the 
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twoing function which measures the heterogeneity between the daughter nodes, 

achieves its minimum when the daughter nodes contain exactly the same distribution of 

classes, and its maximum when all cases belonging to a given class are found in one 

node. Thus if there are two nodes, all cases of class 1 belong to one node, and of class 2, 

to the other node. 

Once the Gini or Entropy diversity functions is chosen, a splitting rule, that is a 

splitting value s* is adopted at node t that maximizes the reduction in diversity obtained 

by the split. Using the notation just developed, we define the gain in (reducing) 

diversity reduction obtained by splitting node t into two nodes, L and R using the 

threshold s, for some feature, as 

 ( , ) ( ) ( ) ( )L L R Rd s t d t p d t p d t∆ = − − , (7) 

where Lp  and Rp  are the proportions of cases going to nodes tL and tR respectively. 

This gain in diversity reduction is also referred to as the goodness of the split s for node 

t. Splitting is continued as long as the goodness of the best split at t is positive. We 

reemphasize that this procedure applies to the Gini index and Entropy functions only. 

3.2 Selecting and Pruning a Tree 

Suppose that a tree T has been generated with terminal nodes Tt, we then define 

the tree diversity as 

 ( ) ( , )
tt

D T d s t
∈Τ

= ∑ . (8) 

As was pointed out by Breiman, Friedman, Olshen, and Stone (1998), although 

we select a tree by choosing the best splitting feature, and the best split for that feature 

at each node, the resulting tree is also the tree that minimizes the diversity D(T). It is not 

necessarily the best tree from the point of view of misclassification. 
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The goodness of the tree as a classification instrument may be characterized in 

terms of its estimated misclassification rate. When misclassification costs are not 

uniform, a reasonable definition of the (generalized) expected misclassification cost is 

 
1 1,

( ) ( ) ( ) ( )
J J

j i i j
R T C i j Q i j i jπ

= = ≠

= ∑ ∑ , (9) 

where Q(i|j) denotes the proportion of class j cases misclassified into class i, and π(j) is 

the prior probability of a case being in class j. 

 Of course these estimated misclassification rates are highly underestimated, 

because they depend on the data that produced the classification rules to begin with. 

Two better methods of estimating misclassification costs are available in CART: The 

Cross-Validation method, and the Test-Sample method. In the former, the learning 

sample is randomly split into K equal size subsamples. K is usually set to be ten, but 

may be changed for very small or very large data sets. A CART tree is produced K 

times, each time from a different group of K-1 (usually 9) subsamples. The rule is used 

to classify the cases in the tenth subsample left out in the tree construction, and the 

resulting misclassification rates are noted. The K (usually 10) misclassification rates 

thus obtained are then averaged to obtain the Cross-Validation misclassification rates 

QCV(i|j). These are then plugged into the R(T) formula above to obtain the overall Cross-

Validation misclassification rate RCV(T) that takes into account prior probabilities and 

non-uniform misclassification costs. 

 When the data set is sufficiently large we do not have to resort to Cross-

Validation to produce a misclassification rate estimate that is not severely downward 

biased. In that case we simply take a single random test subsample from the learning 

sample and take the misclassification rates of the cases not included in the Test-Sample 
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as our estimates of Q(i|j). The resulting overall misclassification rate estimate is denoted 

by RTS(T). 

 Breiman, Friedman, Olshen, and Stone (1998) proceed to estimate the standard 

errors (SE) of RCV(T) and of RTS(T). Here standard errors refer to the distribution of 

RCV(T) and of RTS(T) produced by the random selection of subsamples in both the Test-

Sample case and in Cross-Validation. The purpose of these SE estimates is to be used in 

pruning the maximal trees. A maximal tree is initially produced by splitting nodes until 

they are pure in the sense that each terminal node contains only cases that belong to a 

single class, or nodes whose diversity cannot be reduced by further splitting.  

It turns out that in trying to select a subtree of the maximal tree that minimizes 

the estimated misclassification cost, a large number of subtrees will yield approximately 

the same estimated misclassification cost. It is then reasonable to stop the search for the 

best pruned tree once a subtree is found that is within one SE of the minimum estimated 

misclassification cost subtree. This is called in CART the 1 SERULE. Once the subtree 

is selected, that is pruning is completed, CART uses another Cross-Validation to 

estimate the expected misclassification error of the pruned tree. In simulation 

experiments carried out by Breiman, Friedman, Olshen, and Stone (1998) the final RTS 

came within one SE of RCV. 

It is evident that using different diversity measures, different misclassification 

cost structures, Cross-Validation versus Test-Sample, and various levels for SERULE 

(0 or 1), generally, various classification trees are obtained. Criteria for selecting the 

�best� tree are then required. One criterion is the cost-complexity of a tree.  

The cost-complexity of a tree is defined by 

 (T) (T) TR Rα α= + ! , (10) 
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where α  is a complexity coefficient, 0< α , and |T~|  is the number of terminal nodes of 

the tree. Because the estimated misclassification rate tends to decrease as the number of 

terminal nodes of a tree increases, the proposed cost-complexity measure penalizes a 

tree for the proliferation of its terminal nodes; the complexity parameter α  may be 

thought of as complexity per node. This cost-complexity may then be used to compare 

the small number of trees obtained via the carefully selected methods described above. 

Another useful comparison of classification trees in the binary case is obtained 

using the concepts of sensitivity and specificity commonly used in test evaluation. In 

binary classification, we identify as �bad� the category that we most want to identify. In 

our example, that category would be the likely-to-default category. The other category 

will be referred to as �good.� Sensitivity and specificity now split the overall correct 

classification rate into its essential components. Sensitivity of the tree is the (estimated) 

probability that a new �bad� case will be classified as �bad� when processed by the tree. 

Specificity (of the tree) is the (estimated) probability that a new �good� case will be 

identified as �good� by the tree. 

 This completes our concise description of the main components of CART. For a 

more accurate and detailed description of the method please see Breiman, Friedman, 

Olshen, and Stone (1998) or Hastie, Tibshirani, and Friedman (2001). See also Bloch, 

Olshen, and Walker (2002) work on misclassification estimation, which contains some 

illuminating general comments on CART. We also recommend the latter for further 

references. 

 
4 Data Analysis with CART 

Our data consists of end of the year 1998 information regarding residential 

mortgage contracts that were issued during the years 1993 through 1997 by a major 

Israeli mortgage bank. The bank contracted the consulting firm GStat Ltd. to analyze 
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these data, providing them with some electronic but mainly paper files of several 

dozens of thousands mortgage contracts. About 1500 of these contracts were delinquent 

during the period. Out of the of non-delinquent mortgages, GStat Ltd. chose about 1500 

mortgage contracts at random. This defined a set of 3,035 mortgage contracts. GStat 

Ltd., keyed in a subset of mortgage and borrowers and features from the bank�s paper 

files, and merged it with electronic bank data and created the data base. Following a 

suggestion from the bank, GStat Ltd. gave us a subset of these data. 

Our study seems to be the first Israeli academic open mortgage default study. 

The surprising absence of previous studies stems probably from lack of mortgage 

default data, which, in turn, is probably a consequence of the non-competitive nature of 

the Israeli banking industry in general, and mortgage banking in particular. The two 

largest Israeli banks control about 80% of the Israeli banking retail market. The data 

that we received suffers however from some important limitations. For example, 

although a single mortgage contract could have several delinquencies, no information 

on the time, size, and number of these contract delinquencies was available in our data. 

For that reason, delinquency became a binary attribute, with no time dimension. Despite 

this limitation, the data provided an excellent example of the use of the CART 

methodology, as well as a first, albeit limited, analysis of the Israeli mortgage market. 

We first ran a descriptive analysis of the features: means, univariate analyses, 

and frequencies. Then, we checked correlations to assess the pair wise associations 

among the features. We also examined the relationships between the dependent variable 

and each of the independent variables using t-tests, or nonparametric tests. These did 

not raise any particular issue with any of the features. We then ran the CART analysis 

using the CART program that Salford Systems (www.Salford.com) distributes. 

The thirty three features were: 
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Features related to the mortgage size and type 

CSUM �   mortgage total size 

CROOMS �   number of rooms in the property 

MONTHRET �  monthly payment 

GRANT_PR �  % of the property value given to borrower as a grant 

RETINC_P �   % of monthly payment from monthly income 

VALNECSN �  present value of property 

YTR_HA �   balance of the mortgage 

YTR_HA_O �  balance of the government supplementary mortgage 

YIT_SILK �   balance of the mortgage including late fees and penalties 

VAL_NECS �  original value of the property 

SHETACH �   area of the property 

SIL_MUKD �   1 if mortgage prepaid, 0 otherwise 

NGUARANT �  number of guarantors 

PERIOD �   term to maturity of mortgage 

CDESIG �   designation of property 

 1 �   living quarters 

 2 �   apartment to rent 

 3 �   property for business use 

CTARGET1 �  purpose of mortgage 

1 �   buy an apartment 

2 �   buy an apartment second-hand 

3 �   build own apartment 

4 �   other real-estate purpose 

5 �   renovation purpose 
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6 �   refinancing mortgage 

7 �   not for living or remodeling 

8 �   other 

Features describing the borrower(s) 

CLOANERS �  number of borrowers on the mortgage 

FCHILD �   number of children of first borrower 

FINCOME �   monthly income of first borrower 

NETINCOM �  monthly net income 

AGE1 �   age of first borrower 

CSPOUSE -  1 if first borrower is married, 0 otherwise 

EDUC1 �   education of first borrower 

 1 �   elementary 

 2 �   high school 

 3 �   some college 

 4 �   college degree 

 5 �   other 

FCODE2 �   first borrower's occupation 

 1 �   teacher 

 2 �   driver 

 3 �   engineer 

 4 �   academic: social sciences 

 5 -   practical engineer 

 6 �   professional (worker) laborer 

 7 �   unprofessional laborer 

 8 �   salesman 
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 9 �   clerical worker 

 10 �   clerical/religious student 

 11 �   agricultural worker 

 12 �   pilot 

 13 �   medical doctor 

 14 �   paramedical worker 

 15 �   sales worker 

 16 �   policeman 

 17 �   army personnel 

 18 �   care giver 

 19 �   businessman 

FEXP �   first borrower's work experience 

FDUTY �   first borrower job's managerial capacity 

 1 �   top manager 

 2 �   manager 

 3 �   not a manager 

FFAMCON �   first borrower�s marital status 

 1 �   married 

 2 �   divorced 

 3 �   widow/widower 

FSTABLE �   first borrower job permanence 

 1 �   permanent worker 

 2 �   not permanent 

 3 �   other 

FSTATUS �   first borrower job status 
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 1 �   employee 

 2 �   self-employed 

 3 �   both 1 and 2 

 4 �   student 

 5 �   Yeshiva student 

 6 �   house-person (housewife) 

 7 �   retired 

 8 �   on (public assistance) some assistance 

 9 �   receives alimony 

 10 �   unemployed 

 11 �   not working 

 12 �   other 

RUSSIA �   borrower from Russia? 

 1 �   yes 

 2 �   no 

ETHIOPIA �   borrower from Ethiopia? 

 1 �   yes 

 2 �   no 

FINC_CHI �   first borrower monthly income divided by number of children 

FSUM_CHI �   first borrower mortgage size divided by number of children 

The original data included variables associated with the second borrower. 

Because these contained much missing data and because we could not tell whether there 

was a second borrower in these cases, we decided to eliminate them from the analysis. 

Also, the last two variables were added on the suspicion that they may turn out to be 

more predictive of default than FINCOM and NETINCOM, respectively. 
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We ran CART on the n=3,035 borrowers data using different options for 

creating and pruning the final trees. Our aim was to classify these borrowers into good: 

non-defaulters, and bad: defaulting borrowers. 

We ran CART five times creating five trees, each under different option 

combinations, as follows. 

First option combination 

Misclassification costs: uniform 

Splitting criterion: Gini index 

Misclassification estimation: Cross-Validation 

Pruning criterion: SERULE=0 (search for �best� subtree with minimum 

estimated weighted misclassification rate) 

Second option combination 

All options remain as in 1, save for SERULE=1 (search for subtree that is 

within 1 SE of the �best� subtree). This change was expected to lead to a tree 

that shares many of the qualities of the tree obtained under 1, but is less 

expensive to obtain and implement. 

Third option combination 

All options remain as in 1, except that the following non-uniform 

misclassification costs were used: 

C(classify as bad | borrower is good) = 1 

C(classify as good | borrower is bad) = 1.5 

Here the cost of misclassifying a bad borrower as a good risk is considered 1.5 

times more costly than the reverse. With this misclassification cost structure, 

the same tree was obtained with pruning using SERULE=1. 
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Fourth option combination 

All options remain as in 1, save for Cross-Validation being replaced by Test-

Sample. With a large sample, such as we have, it was deemed possible to 

replace the more costly Cross-Validation misclassification estimation by the 

Test-Sample method. 

Fifth option combination 

All options remain as in 4 (Test-Sample method), but with cost structure as in 3 

(non-uniform cost structure) and pruning using SERULE=1. The tree obtained 

using these specifications with SERULE=0 was too unwieldy (36 terminal 

nodes, or leaves) and was dropped. 

Several points are raised by the results displayed in Table 1. 

• Trees possessing high sensitivity relative to specificity are obtained when 

the misclassification cost of a �bad� borrower into a �good� one is taken to be 

higher than the reverse misclassification. Trees 3 and 5 display this 

characteristic. 

• The smallest tree, tree number 3, also possesses the smallest overall 

(penalized) cost complexity. It possesses remarkably high sensitivity, as 

measured by Cross-Validation, and relatively low specificity. In risk-control 

application, such as ours, this ratio of sensitivity to specificity may be 

desirable. 

• If a more balanced treatment of the two possible misclassification: �bad� to 

�good� and �good� to �bad� is desired, then tree number 2, which has a 

slightly higher overall cost-complexity, may be the proper choice. 

• The estimated cost-complexity, sensitivity and specificity of the fourth tree 

were obtained via a random sample of borrowers, rather than by the more 
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robust Cross-Validation method. Since it does not have any particular 

feature to recommend it over trees 3 and 2, we did not attempt to estimate its 

cost-complexity, sensitivity and specificity using Cross-Validation. 

• Regarding features that have surfaced as predictive in many of the trees: 

1. Most of the primary features are associated with the borrower and not 

with mortgage attributes. 

2. EDUC1 (some college versus no college) appears as the first splitting 

variable in all five trees. 

3. If we select the most parsimonious tree 3, only borrower characteristics 

really matter, and the second feature is FDUTY (manager or top 

manager, versus non-manager). Surprisingly, managers (with some 

college education) are classified as bad risk, as are borrowers with no 

college education. FDUTY appears as a significant splitting variable in 

tree 1. In trees 2, 4, and 5 it appears to be replaced by other work 

features associated with it: FSTATUS, borrower job status, and 

FCODE2, borrower's occupation. 

4. The period of the mortgage appears as the second splitting feature in all 

trees that use uniform costs. It seems that non-uniform costs, such as 

those used for trees 3 force borrower features in, and mortgage features 

out. Re: trees 1 and 2. In this risk identification application, this may be 

very desirable. This is not quite the case with tree 5, but the use of Test-

Sample there, makes all cost evaluations and variable choices somewhat 

suspect. 
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5. Important borrower features appear to be: education, status at work: 

FSTATUS, FCODE2 or FDUTY, # of children (FCHILD) or income 

per child: FINC_CHI. Finally, AGE1 appears in trees 1 and 2. 

6. One has to be careful in interpreting our results because our paper does 

not allow for a changing environment. If the real-world equilibrium is 

dynamic, the sample will capture dynamic effects as well as endemic 

cross-sectional attributes during the sample period. Examining the 

sample period, we could not think of events that could be considered 

"regime switching" during the sample period. Neither could we think of 

events that would have changed the nature of the Israeli real estate 

market. Judging our conclusions ex post, none of our findings seem 

especially sensitive to dynamic effects. 

7. Our data looks at the status and history of many contracts at a certain 

date. Thus, one has to be concerned with truncation consequences. If the 

probability distributions are iid or even if the population is in steady 

state with respect to the measured attributes, then we should not have a 

truncation bias problem. Moreover, although a measure of contract age 

might have helped reduce (not eliminate) a possible truncation bias, this 

is not a relevant issue here because of special characteristics of the 

Israeli real estate market and of our data set. Israeli lenders tend to avoid 

foreclosures at all costs. Thus, guarantors are co-signed on the each 

mortgage contract. In case of delinquency, the bank captures the owed 

value from the guarantors. Consequently, none of the roughly 1500 

delinquent properties in our sample were repossessed, and delinquency 

is therefore an ageless, binary attribute in our data. 
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8. Based on this study, we would recommend tree 2 or 3 for classification 

of future borrower into �good� or �bad� risks. Tree 3 is more 

conservative, but seems so parsimonious that its intended users of the 

procedure may shy away from it. 

9. It is interesting to study the two candidate classification trees 2 and 3. 

Briefly, classification via tree 2 prescribes the following rule sequence:  

i. If applicant has at least some college education, stop and rate him a 

good risk. 

ii. Otherwise, if the period of the mortgage is over 27.5 years, stop and 

declare the applicant a bad risk. 

iii. If the applicant has at most high school education (or other for 

EDUC1), and the mortgage period is under 27.5 years, then if the 

applicant is either a student, or a housewife, or self employed (or 

other for variable FSTATUS) then stop and declare the applicant a 

bad risk. 

iv. Otherwise (to  i iii) check applicant�s job classification FCODE2. If 

applicant is an engineer, an academic, employed by the army, 

Yeshiva student, care taker, or a para-medical worker, then stop and 

declare the applicant a good risk. 

v. Otherwise (to  iv), if he has three or more children (FCHILD), stop 

and declare him a bad risk. 

vi. If he has 2 or fewer children, and is under 32.6 years of age (AGE1), 

then stop and declare him a bad risk. If he is over 32.6 years of age 

with 2 or fewer children, declare him a good risk. 

For tree 3 the decision process proceeds as follows: 
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i. If the applicant has at most a high school education, (or is other for 

EDUC1), stop and rate him a bad risk. 

ii. Otherwise, check his employment type FDUTY. If he is a manager 

or a senior manager, stop and declare him a bad risk. Otherwise stop 

and rate him a good risk. 

10. Tree 3 described above is rather surprising: a senior or regular manager 

with at least some academic education is considered a bad risk, but a 

non-manager with the same educational level is considered a good risk. 

However, as might be expected, an applicant with at most a high school 

education is considered a bad risk. An explanation of the classification 

of senior and regular managers as bad risks and of non-managers as 

good ones is consistent with higher rate of ruthless default of the former. 

This, in turn, is consistent with lower reputation default costs of the 

managers vis-à-vis non-managers. Non-managers might find ruthless 

default too costly in the long run. 

11. Tree 2 seems to conform to expectations, except possibly for some 

results such as: A business person, a policeman, or a professional 

electrician with a mortgage for under 27.5 years, and at least 3 children 

is considered a bad risk, but an academic with any number of children, 

and any length mortgage is considered a good risk.   

12. The decision processes described in points 9 and 10 are clearly attractive 

for direct application in a bank or lending institution setting. It is also 

clear that decision tree 3, because of its limited use of both mortgage and 

applicant characteristics, may not find many takers. Tree 2 on the other 
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hand contains fewer surprising choices, and is far more likely to be 

chosen. 

We remark that the CART analysis we have performed directly on the data 

without any pre-analysis that might narrow down the field of potential predictors of 

good risk customers, may now itself be used as input to other classifiers. For example, 

logistic regression that would be stomped by the number of features in the data, by the 

huge number of categories in some of the nominal categorical predictors, and by the 

large number of missing values, can now be attempted using predictors that have been 

identified as useful by CART. This post-processing by another classifier could 

potentially improve somewhat the accuracy of the CART classifier. Here we mention 

also the post-processing proposed by Freund and Schapire (1997) called boosting, and 

bagging proposed by Breiman (1996); both procedures enhance the accuracy of the 

CART classifier. 

Finally, we would like to comment about prepayment in relation to default. 

Prepayment terms are uniformly regulated in Israel to depend on market conditions 

such that, absent idiosyncratic reasons, the option to prepay is worthless. Thus, we can 

safely say that in our data prepayment is not a substitute for default. We cannot say the 

opposite, however. Actually, the higher rate of default of managers versus non-

managers of the same education level suggests that default may sometime substitute 

prepayment. 

 
 

5 Conclusion 

We have provided a concise introduction of CART, its main features, and 

guidelines for its implementation as a classification tool. We have also applied the 

method to mortgage default data from a major Israeli bank. Our data had special 
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features, most of which are intimately connected to the nature of the rules governing 

the Israeli mortgage market. Valuable information was gleaned from the data using 

CART with various option choices. We emphasized the process of selecting a final 

classification tree, which depends both on the CART method, and the particular 

subject matter at hand. We consider this work preliminary, and hope to receive more 

complete data in the future that will enable us to refine our findings. 

If the cost of accepting bad risks exceeds that of rejecting good ones CART 

uses borrowers� features only. If the cost of accepting bad risks equals that of 

rejecting good ones, CART uses mortgage features such as term and property value as 

well. The higher (lower) the ratio of misclassification costs of bad risks versus good 

ones, the lower (higher) are the resulting misclassification rates of bad risks and the 

higher (lower) are the misclassification rates of good ones. This is consistent with real 

world stylized facts of rejection of good risks in attempt to avoid bad ones. 

The classification process allows the examination of hypotheses. For example, 

Tree 3 is consistent with higher rate of ruthless default by senior and regular managers 

vis-à-vis non-managers. This is consistent, for example, with lower reputation 

penalties of default for managers. Moreover, as we elaborated earlier, CART 

generates many trees that are of similar quality, on the one hand, but that use different 

features and splits on the other. Thus, one could examine those trees and determine 

whether they negate various insights/hypotheses or are consistent with them. 
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Table 1 
Summary of the main characteristics of the five trees we selected for consideration 

 

TREE SPECIFICATIONS # Internal Nodes: 
# Terminal Nodes 

α=0.004, Cost 
Complexity 

� (0 | 0)p , �0�=�bad� 
Sensitivity 

� (1|1)p , �1�=�good� 
Specificity 

Splits on Variables 

1 
C(1|0)=C(0|1)=1 

GINI, CV, 
SERULE=0 

12 : 13 .4475 .587 .662 

EDUCI, PEIROD, FSTATUS, 
FCODE2, FCHILD, AGE1, 
VAL_NECS, FINC_CHI, 

YIT-SILK, FDUTY, ECODE2 

2 
C(1|0)=C(0|1)=1 

GINI,CV, 
SERULE=1 

6 : 7 .4300 .619 .577 EDUC1, PEIROD, FSTATUS, 
FCODE2, FCHILD, AGE1 

3 

C(1|0)=1.5 
C(0|1)=1 

GINI, CV, 
SERULE=0 or 1 

2 : 3 .4250 .840 .334 EDUC1, FDUTY 

4 

C(1|0)=C(0|1)=1 
GINI, TEST-

SAMPLE, 
SERULE=0 

4 : 5 .4385 .446 .717 EDUC1, PERIOD, FSTATUS, 
VALNECSN 

5 

C(1|0)=1.5, 
C(0|1)=1 

GINI, TEST-
SAMPLE, 

SERULE=1 

5 : 6 .4620 .890 .234 
EDUC1, RETINC_P, 
FINC_CHI, FCODE2, 

FSTATUS 
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Tree #2 

Node 1 ≜ ≜ ≜ ≜ Root Node    
N = 3,035 

Split by: EDUC1 ≜≜≜≜ Education 
At least some college →→→→ 

←←←← Elementary, High School, Other 
Node 2

N = 2,040 
Split by: PERIOD 

< 27.941 →→→→ 
←←←← ≥ 27.941 

TERMINAL NODE 7 
N = 995 

Classification: GOOD Node 3
N = 1,756 

Split by: FSTATUS 
All other categories →→→→ 

←←←← Self Employed, Student, Housewife

TERMINAL NODE 6 
N = 284 

Classification: BAD 

TERMINAL NODE 1 
N = 312 

Classification: BAD 

Node 4
N = 1,444 

Split by: FCODE2 
Engineer, Academic Profession, 
Physician, Military, Child Care →→→→

←←←← Other

TERMINAL NODE 5
N = 118 

Classification: GOOD

Node 5
N = 1,328 
Split by: 
FCHILD 
> 2.5 →→→→ 
←←←← ≤ 2.5 TERMINAL NODE 4

N = 480 
Classification: BAD 

Node 6
N = 848 

Split by: AGE1
> 32.562 →→→→ 
←←←← ≤ 32.562

TERMINAL NODE 3
N = 326 

Classification: GOOD 

TERMINAL NODE 2 
N = 520 

Classification: BAD 
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Tree #3 

 

Node 1    ≜≜≜≜ Root Node    
N = 3,035 

Split by: EDUC1    ≜≜≜≜    Education 
At least some college →→→→ 

←←←← Elementary, High School, Other 

TERMINAL NODE 1 
N = 2,040 

Classification: BAD 

Node 2
N = 995 

Split by: FDUTY    ≜≜≜≜ Job Managerial Capacity
Non Manager →→→→ 

←←←← Manager or Senior Manager

TERMINAL NODE 2 
N = 221 

Classification: BAD 

TERMINAL NODE 3 
N = 774 

Classification: GOOD 


