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Abstract

Standard techniques to increase automatic speech recognition noise robustness typically

assume recognition models are clean trained. This “clean” training data may in fact not be

clean at all, but may contain channel variations, varying noise conditions, as well as differ-

ent speakers. Hence rather than considering noise robustness techniques as compensating

clean acoustic models for environmental noise, they may be thought of as reducing the acous-

tic mismatch between training and test conditions. This report examines the application of

VTS model compensation or model-based Joint uncertainty decoding to clean and multi-

style trained systems. An EM-based noise estimation procedure is also presented to produce

ML VTS or Joint noise models depending on the form of compensation used. Alternatively,

compared to multistyle training, adaptive training with Joint uncertainty transforms, also

referred to as JAT in this work, provides a better method for handling heterogeneous data.

With JAT, the uncertainty bias added to the model variances de-weights observations pro-

portional to the noise level. In this way, Joint transforms normalise the noise from the data

allowing the canonical model to solely represent the underlying “clean” acoustic signal. This

report presents a novel Joint adaptive training framework including formula for estimating

the transforms and canonical model parameters. Lastly, large vocabulary systems are often

trained on multistyle data sets such as broadcast news or conversational telephone speech

that have a variety of noise conditions. However, to date not much research has been done

on compensating such systems built with non-artificially corrupted data. In this report, ex-

periments are conducted on an artificially corrupted Resource Management database and the

large vocabulary Broadcast News corpus of collected broadcast recordings.



1 Introduction

Many standard noise robustness techniques presume that the acoustic model has been trained
on clean audio data. Though the signal-to-noise ratio may be high, there still may be residual
background noise, channel differences and likely many different speakers. Hence, clean training
may be considered a form of multistyle training [28] since acoustic models not only model speech
variability, but also additional variation due to different voices and interfering noises. Multistyle
training generates acoustic models that have shown to be more robust to noise than those produced
from clean data [18]. Furthermore, it has been demonstrated that front-end feature enhancement
schemes are more effective with multistyle acoustic models rather than clean trained [8, 40]; these
results are reported on artificially corrupted data with small and 5k-word vocabularies. To date,
there has been little research on applying noise robustness techniques to large vocabulary systems
trained on non-artificially corrupted data. This report explores the use of powerful noise robustness
methods such as VTS model compensation [30] and model-based Joint uncertainty decoding [25]
on such a system. An EM-based noise estimation procedure is presented to produce ML VTS
or Joint models of the convolutional and additive noise depending on the form of compensation
used. This provides a better estimate of the noise, given the compensation form, and allows for
estimation of noise even during speech, as opposed to the frequently used technique of estimating
the noise from background, non-speech areas as in [9, 3].

An alternative form of model training to multistyle is adaptive training. This may be applied
to remove unwanted factors, such as speaker differences or the acoustic environment, from being
included in the acoustic models [2, 5, 16]. Rather than force the acoustic model to represent
all these factors, as expected in multistyle training, transforms are used to model the variation
from different factors. A standard form of adaptive training is to use MLLR transforms [2];
however, due to their linear nature they can only normalise low levels of noise, and hence are
unsuitable for adaptive training with data that has large variations in SNR. This motivates a novel
model training framework called Joint adaptive training (JAT), based on noise normalisation
using Joint transforms for training models on noisy data. In contrast to adaptive training with
CMLLR [14], JAT takes into account the SNR of the data when estimating the canonical model
parameters. When the noise subsumes the speech, the uncertainty variance bias ensures those
observations do not contribute to the model parameter update. In this way, JAT weights the
training data using uncertainty due to noise. Hence, JAT explicitly handles a large range of SNR
in the training data, producing a final acoustic model that is truly clean.

This report is organised as follows: First a model of the noisy environment is introduced along
with a general framework for representing speech in noise. Two compensation forms that fall
within this framework are described in section 3: Joint uncertainty decoding and VTS compen-
sation. Section 4 presents an EM framework to estimate a ML noise model for generating Joint

and VTS compensation parameter. Following in section 5, the Joint adaptive training framework
is introduced. Results are reported in section 6 on an artificially corrupted Resource Manage-
ment database [34] and a simplified Broadcast New system [19] that transcribes actual collected
broadcast recordings. Lastly, conclusions and future directions are given in section 7.

1



2 Modeling Environmental Noise

A variety of factors, which affect the end speech signal that is transcribed, may be considered
noise. There may be ambient noise around the speaker, the speaker themself might make breathy
or lip sounds, task or emotional stress may contribute changes in the speech, or the channel might
be noisy or different. It is the first and last factors that are typically the dominant sources of

Figure 1: Model of the corrupted speech environment.

noise, yielding this effective and often used model of the noisy acoustic environment shown in
figure 1 [12, 1]. This depicts the following model of corrupted speech

y[m] = h[m] ∗ x[m] + n[m] (1)

where y[m] is the noise-corrupted speech, h[m] represents the channel or convolutional noise, x[m]
the clean speech and n[m] the additive noise. In the cepstral domain this relationship is given by

yi = ci log(exp(C-1(x + h)) + exp(C-1n)) (2)

= xi + hi + ci log(1 + exp(C-1(n − x − h))) (3)

where matrices C and C-1 are the discrete cosine transform matrix (DCT) and its inverse. The
vector ci denotes the ith row of the DCT. The log and exp functions operate at an element level
on the resultant filterbank vectors.

A Monte Carlo simulation can give insight as to how noise affects a clean speech distribution.
This is shown in figure 2, where the effects of increasing the magnitude of noise with variance 1 are
demonstrated on a clean speech distribution of mean 10, variance 5, in the log-spectral domain.
When the SNR is high, there is a distinct bimodal distribution. However, as the noise energy
increases, the separability is lost and the distribution is once again unimodal with a strong skew.
Also, there is a increase in the mean of the noisy speech and a decrease in variance which can be
discerned by observing how the estimated ML normal distribution changes (dashed). Eventually
when the noise mean is sufficiently large, the clean speech is subsumed, and the corrupted speech
distribution becomes the noise distribution.

One framework for incorporating the effects of environmental noise is represented in the dy-
namic Bayesian network (DBN) shown in figure 3. Here, the noise corrupted speech observation
ot at time t is assumed to be conditionally independent of all other observations given the hidden
clean speech st and noise nt at that time frame. The clean speech and noise are assumed to
be generated by HMMs with states θn

t for the noise1 and θt for the clean speech. In most auto-
matic speech recognition systems, dynamic features are appended to the static: For example in
a sequence of observations O = {o1, . . . , oT }, a single observation is comprised of static, velocity
and acceleration features ot = [yT

t ∆yT

t ∆2yT

t ]T and the hidden clean speech vector defined as
st = [xT

t ∆xT

t ∆2xT

t ]T .

1A single state is assumed for the noise model in this report.
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Figure 2: Monte Carlo simulation of effect of increasing noise on speech.

Figure 3: Noise robustness DBN. Emitting states shaded.
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Using this model of the corrupted speech depicted in figure 3, the likelihood of the corrupted
speech may be expressed as

p(ot|M,M̌, θt) =

∫

p(ot|st,M̌)p(st|M, θt)dst (4)

where

p(ot|st,M̌) =

∫

p(ot|st, nt)p(nt|M̌, θn
t )dnt (5)

and M̌ denoting the compensation model parameters, which may or may not have an explicit
model of the noise2. The uncompensated “clean” acoustic model M consists of Gaussian compo-

nents each defined by a prior, cm, mean, µ
(m)
s , and variance, Σ(m)

s . Thus, the likelihood calculation
in equation 4 has two distinct parts: Only the first p(ot|st,M̌), is a function of the noise; the
second is the standard clean speech likelihood.

This noise robustness DBN has been used as a framework for uncertainty decoding [7, 24]. In
the uncertainty decoding version of SPLICE, Bayes’ rule is applied to equation 5 and a piece-wise
linear, SPLICE, approximation of the clean speech posterior is used [7]. The front-end Joint de-
coding scheme directly estimates equation 5 using the joint distribution of the clean and corrupted
speech. In both forms, the compensation parameters M̌ are independent of the model parameters
M allowing fast front-end compensation. More powerful schemes may maintain dependence of
the corrupted speech conditional distribution to the acoustic model, permitting the compensation
to operate more informatively using a detailed knowledge of the clean speech model.

2If the compensation model parameters M̌ are single-pass retrained, as in [24], then no noise model is explicitly
estimated.
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3 Model-based Noise Compensation

Many approaches have been formulated to improve automatic noisy speech recognition. These
can be broadly grouped into the following areas: inherently robust front-ends, feature enhance-
ment, and model-based compensation. Inherently robust front-ends such as RASTA [17] or other
perceptually motivated auditory processing attempt to provide front-end forms that are immune
to noise in speech; while they may provide some small level of robustness, they are generally not
very effective [37, 15]. Hence most noise robustness schemes aim to directly address the effects
of noise on speech as given by equation 3; this assumes that the frame/state alignments do not
differ between clean and corrupted speech. Enhancement schemes, such as spectral subtraction [4]
or cepstral mean normalisation, aim to remove the corrupting noise itself from the features, but
cannot effectively address the varying compressive effect of the noise on model variances [24]. More
powerful model-based techniques approximate equation 3 to compensate the mean and variance
of the state output distributions based on a model of the noise. Two specific model-based tech-
niques are discussed in this report: first-order VTS model compensation and model-based Joint

Uncertainty Decoding.

3.1 Vector Taylor Series Compensation

Deriving a corrupted speech output distribution, given the clean acoustic model and a noise model,
is not straightforward. Directly determining the expected value of equation 3 is problematic due
to the non-linear effect of noise on cepstral speech features. Hence many approximations to this
function have been proposed, such as selecting the maximum of either the noise or speech, i.e. noise
masking [43] or Parallel Model Combination [12]. Another approach is to linearise equation 3 with
a truncated vector Taylor series (VTS) [30, 21, 1] to individually update each model component.
The first-order VTS approximation of the static corrupted speech for dimension i is

yvts,i = yi

∣

∣

µ0
+ ∇x yi

∣

∣

µ0
·
(

x − µ(m)
x

)

+ ∇n yi

∣

∣

µ0
·(n − µn) + ∇h yi

∣

∣

µ0
·(h − µh) (6)

where
∣

∣

µ0
is the Taylor series expansion point indicating the function is evaluated at the clean

speech component mean µ
(m)
x , and current estimates of the additive noise mean µn and channel

noise µh. The symbol · indicates the dot product. Hence the corrupted speech mean may be
approximated by the expected value of equation 6

µ
(m)
y,i = E {yi} (7)

≈ E {yvts,i} = yi

∣

∣

µ0
(8)

= µ
(m)
x,i + µh,i + ci log(1 + exp(C-1(µn − µ(m)

x − µh))) (9)

assuming the clean speech, additive noise and channel noise are independent of each other and are
Gaussian distributed random variables. The covariance is given by

Σ(m)
y = E

{

yyT
}

− µ(m)
y µ(m)T

y (10)

≈ E
{

yvtsy
T

vts

}

− µ(m)
y µ(m)T

y (11)

≈
∂y

∂x

∣

∣

∣

µ0

Σ(m)
x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂h

∣

∣

∣

µ0

Σh

∂y

∂h

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σn

∂y

∂n

∣

∣

∣

T

µ0

(12)

which also assumes the clean speech and noise are random variables and independent. Since the
Jacobian matrices

∂y
∂x ,

∂y
∂x and

∂y
∂n are full, the corrupted speech covariance matrix will also be

full and hence is normally diagonalised for standard decoders. Also, it is often assumed that the
channel noise does not vary, that is Σh = 0. Hence the static corrupted speech variance may be
given by

Σ(m)
y ≈ diag

{

∂y

∂x

∣

∣

∣

µ0

Σ(m)
x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σn

∂y

∂n

∣

∣

∣

T

µ0

}

(13)
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Like with PMC, using these update formula assumes that a clean speech Gaussian component
corrupted by noise may be approximated by another Gaussian distribution; this is clearly not
optimal since it was shown in figure 2 that the corrupted speech distribution can be bimodal.
Nevertheless, for efficiency this approximation is maintained.

The Ds ×Ds sized Jacobian matrices, where Ds is the number of static features, are given by

∂y

∂x

∣

∣

∣

µ0

=
[

∇x yi

∣

∣

µ0
· · ·∇x yDs

∣

∣

µ0

]T

= I − CFC-1 (14)

∂y

∂h

∣

∣

∣

µ0

=
∂y

∂x

∣

∣

∣

µ0

,
∂y

∂n

∣

∣

∣

µ0

= CFC-1 (15)

and the elements of the diagonal matrix F are

fii =
exp(c-1

i (µn − µ
(m)
x − µh))

1 + exp(c-1

i (µn − µ
(m)
x − µh))

(16)

The terms fii vary from 0 to 1 depending on the ratio of the speech to the noise. If the noise level

µn is greater than the speech µ
(m)
x in the log-spectral domain, then fii → 1 and

∂y
∂x

∣

∣

µ0
tends to

zero; otherwise if little noise is present, fii → 0 and
∂y
∂x

∣

∣

µ0
also tends to identity. The term

∂y
∂n

∣

∣

µ0

behaves in the opposite manner to
∂y
∂x

∣

∣

µ0
. From equations 14 and 15 it can be shown that

∂y

∂x

∣

∣

∣

µ0

+
∂y

∂n

∣

∣

∣

µ0

= I (17)

Hence it can be observed that the compensated variance in equation 13 scales between the clean
speech variance in low noise to the additive noise variance in high noise.

3.1.1 Compensating Dynamic Features

Standard acoustic models use simple differences or linear regression to compute delta parameters
to model the dynamic features of speech. This complicates the compensation of these features for
noisy conditions. Hence a Continuous-Time approximation [12] may be used to derive the compen-
sated dynamic parameters. Full derivations for the dynamic features are given in appendix A, with
the final compensation formulae summarised here. The delta noisy mean may be approximated
by

µ
(m)
∆y = E

{

∂y

∂t

}

= E

{

∂y

∂x

∂x

∂t
+

∂y

∂n

∂n

∂t
+

∂y

∂h

∂h

∂t

}

(18)

≈ E

{

∂yvts

∂x

∂x

∂t
+

∂yvts

∂n

∂n

∂t
+

∂yvts

∂h

∂h

∂t

}

(19)

≈
∂y

∂x

∣

∣

∣

µ0

µ
(m)
∆x (20)

assuming that the additive and convolutional noise are constant, i.e. ∆n = ∆h = 0. Similarly for
the dynamic noisy speech variance

Σ
(m)
∆y = E

{

∂y

∂t

∂y

∂t

T
}

− µ
(m)
∆y µ

(m)T
∆y (21)

≈ E

{

∂yvts

∂t

∂yvts

∂t

T
}

− µ
(m)
∆y µ

(m)T
∆y (22)

≈ diag

{

∂y

∂x

∣

∣

∣

µ0

Σ
(m)
∆x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σ∆n

∂y

∂n

∣

∣

∣

T

µ0

}

(23)
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assuming that there is no variance in the convolutional noise. Following the same reasoning, the
delta-delta parameters are then

µ
(m)
∆2y

≈
∂y

∂x

∣

∣

∣

µ0

µ
(m)
∆2x

(24)

Σ
(m)
∆2y

≈ diag

{

∂y

∂x

∣

∣

∣

µ0

Σ
(m)
∆2x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σ∆2n

∂y

∂n

∣

∣

∣

T

µ0

}

(25)

although more approximations are required as detailed in section A.1.

3.2 Joint Uncertainty Decoding

Uncertainty decoding for noise compensation has shown to be an effective compromise between
fast, feature enhancement schemes and more computationally intensive model-based schemes [7,
24, 25]. Uncertainty decoding takes advantage of the factorisation given in equation 4 by using
an appropriate form of approximation for the conditional distribution in equation 5 for a par-
ticular noise environment. As the complexity of this approximation may be independent of the
complexity of the actual acoustic models, there is a large degree of flexibility in choosing the
computational cost of the decoding process. In front-end uncertainty decoding, conditional distri-
butions p(ot|st,M̌) are estimated for different regions of the corrupted acoustic space; it was found
that this approach suffered from a significant problem [26]. In contrast, the more efficient model-
based Joint uncertainty decoding form [25, 26] ties the corrupted speech conditional distribution
given the clean to the acoustic model distribution. The components m in the acoustic model can
be clustered into classes of acoustically similar components [36, 13]. Hence, the conditional is a
function of which class, rm, the acoustic model component belongs to

p(ot|st,M̌) ≈ p(ot|st, rm,M̌) (26)

This clean speech given the corrupted speech conditional can be derived from a joint distribution of
the clean and corrupted speech for the class rm. The joint distribution is assumed to be Gaussian

[

st

ot

]

∼ N

([

µ
(rm)
s

µ
(rm)
o

]

,

[

Σ(rm)
s Σ(rm)

so

Σ(rm)
os Σ(rm)

o

]

)

(27)

and thus the conditional distribution will also be Gaussian. Although, it has been shown that this
conditional is highly non-Gaussian [3, 24], results indicate this is not an unsuitable approxima-
tion [26]. When this form is used in the uncertainty decoding framework, the corrupted speech
observation likelihood may be given by

p(ot|θt,M,M̌) =
∑

m∈θt

cm|A(rm)|N
(

A(rm)ot + b(rm); µ(m)
s ,Σ(m)

s + Σ
(rm)
b

)

(28)

for state θt and the transform parameters

A(rm) =Σ(rm)
s Σ(rm)-1

os , b(rm) = µ(rm)
s − A(rm)µ(rm)

o (29)

Σ
(rm)
b =A(rm)Σ(rm)

o A(rm)T − Σ(rm)
s
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So that full covariance decoding is not necessary, a diagonal approximation of the joint distribution,
given by equation 27, may be made

N

([

µ
(rm)
s

µ
(rm)
o

]

,

[

Σ(rm)
s Σ(rm)

so

Σ(rm)
os Σ(rm)

o

]

)

≈

N













































µ
(rm)
x

µ
(rm)
∆x

µ
(rm)
∆2x

µ
(rm)
y

µ
(rm)
∆y

µ
(rm)
∆2y























,





























Σ(rm)
x 0 0

0 Σ
(rm)
∆x 0

0 0 Σ
(rm)
∆2x













Σ(rm)
xy 0 0

0 Σ
(rm)
∆xy 0

0 0 Σ
(rm)
∆2xy













Σ(rm)
xy 0 0

0 Σ
(rm)
∆xy 0

0 0 Σ
(rm)
∆2xy







T 





Σ(rm)
y 0 0

0 Σ
(rm)
∆y 0

0 0 Σ
(rm)
∆2y



















































(30)

where the covariances are assumed diagonal, and the covariances between the static, velocity and
accelerations are considered zero. This diagonal approximation was shown to provide good robust-
ness, although block-diagonal and full covariance forms, which require full covariance decoding,
showed even better results; keeping the linear feature transform full, and diagonalising the variance
bias term produced poor results [25].

Increasing the number of classes R to equal the number of model components M , using this

diagonal acoustic model variance approximation Σ
(m)
x,diag, is equivalent to VTS model compensation

of each individual acoustic model component. The component corrupted speech likelihood in
equation 28 may be re-expressed

p(ot|θt,M,M̌, m) = |A(rm)|N
(

A(rm)ot + b(rm); µ(m)
s ,Σ(m)

s + Σ
(rm)
b

)

(31)

= N
(

ot; A
(rm)-1

(

µ(m)
s − µ(rm)

s

)

+ µ(rm)
o , (32)

A(rm)-1
(

Σ(m)
s − Σ(rm)

s

)

A(rm)-T + Σ(rm)
o

)

If M = R then there is a one-to-one mapping of rm to m, hence µ
(m)
s = µ

(rm)
s , and Σ(m)

s = Σ(rm)
s ,

making the differences between these terms zero, therefore from equation 32

p(ot|θt,M,M̌, m) = N
(

ot; µ
(rm)
o ,Σ(rm)

o

)

(33)

= N
(

ot; µ
(m)
o ,Σ(m)

o

)

(34)

where µ
(rm)
o and Σ(rm)

o are derived from the clean speech model parameters using VTS, and
hence equivalent to the VTS form. This result can be extrapolated to the Joint uncertainty
method converging, when R = M , to whatever model compensation technique is used to derive
the joint distribution needed to the compute the Joint parameters, including for example PMC
or single-pass re-training [12].

This convergence of model-based Joint uncertainty decoding to whatever form of compensation
is used to generate the joint distribution is a very useful property. It allows a flexibility in
controlling the computational cost of the Joint scheme by adjusting the number of model classes
R. Using a VTS approximation to compensate each acoustic model component, is equivalent to
deriving a corrupted given the clean speech conditional for each component in equation 4; this
involves computing and applying two Jacobian matrices for each component, both O(MD2

s) costs,
where recall Ds is the number of static features. In contrast, Joint transforms are estimated
per class. This allows sharing the cost of computing the joint distribution over the class, which
is far cheaper at O(RD2

s), assuming the number of classes R is much smaller than the number
of components M . The compensation itself may also be more efficient where only R means can
be updated rather than all M components. The update of every model variance is also simpler
with a single vector addition, rather than several matrix multiplies and an add necessary for VTS
compensation.
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The decoding form for model-based Joint uncertainty decoding is similar to CMLLR, where
the features are transformed by a matrix and bias, however there is now an additional variance

bias Σ
(rm)
b . An efficient implementation of CMLLR uses multiple parallel features for each re-

gression class to avoid changing the model parameters; however with Joint uncertainty decoding,
the model variances and cached normalisation terms must be updated. However, whereas CM-
LLR transforms must be estimated from adaptation data, the joint distribution and hence Joint

transforms may be predicted using prior models of the noise and clean speech. This implies the
quality of the Joint transforms is solely dependent on the accuracy of the noise model and not on
the number transforms/model classes. The noise model itself has relatively few parameters and
may be estimated on very little data; in [21] only a few frames of noisy data is necessary to train
an accurate model. With MLLR the amount of training data requires scales with the number of
transforms used. Furthermore, if the noise is stationary it may be estimated in advance, in the
background before the onset of speech, whereas CMLLR requires actual corrupted speech data.

3.3 Estimating Joint Compensation Parameters

In previous work with Joint uncertainty decoding [24, 25, 26], joint distributions were estimated
using stereo data. While this provides an idealised method to evaluate this compensation form
separate from the noise estimation process, this is not a requirement. A practical noise robust-
ness technique should handle unseen noise conditions by automatically estimating the necessary
compensation parameters given some un-transcribed data from the test environment. This sec-
tion describes how the Joint uncertainty decoding form parameters may be derived given a prior
model of the clean speech and a model of the corrupting noise.

The joint distribution, and hence Joint compensation parameters, may be estimated from the
clean speech and a model of the noise, in a “predictive fashion” [15] by using VTS compensation
to derive the necessary statistics of the joint distribution as mentioned in [24]. In the previous
section it was shown how given a distribution of the clean speech and a noise model, the corrupted
speech distribution can be estimated. For the Joint scheme, the cross-covariance is also necessary.
This is derived by determining the covariance between the clean speech and the first-order VTS
approximation, from equation 6, of the corrupted speech

Σ(rm)
xy = E {xy} − µxµy (35)

≈ E
{

xyT

vts

}

− µxµT

y (36)

assuming independence between the clean speech and noise allows only the terms from the trun-
cated series that affect the cross-covariance, i.e. are a function of the clean speech, to be considered

Σ(rm)
xy ≈ E

{

x

[

∂y

∂x

∣

∣

∣

µ0

(x − µ(rm)
x )

]T
}

− µ(rm)
x E

{

∂y

∂x

∣

∣

∣

µ0

(x − µ(rm)
x )

}T

(37)

= Σ(rm)
x

∂y

∂x

∣

∣

∣

T

µ0

(38)

Similarly, the delta and delta-delta cross-covariances are

Σ
(rm)
∆xy ≈ Σ

(rm)
∆x

∂y

∂x

∣

∣

∣

T

µ0

(39)

Σ
(rm)
∆2xy

≈ Σ
(rm)
∆2x

∂y

∂x

∣

∣

∣

T

µ0

(40)

Equations 38–40 provide the cross-covariance terms for equation 30. Hence the entire joint dis-
tribution may be computed from the clean speech parameters µrm

s and Σrm

s and a noise model,
using the derivations for the corrupted speech parameters from equations 9, 13, 20, 23, 24, and
25, and these cross-covariance terms. For example, the transform matrix in equation 29 is given
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by

A(rm) = Σ(rm)
s Σ(rm)-1

os (41)

=







Σ(rm)
x 0 0

0 Σ
(rm)
∆x 0

0 0 Σ
(rm)
∆2x













Σ(rm)
xy 0 0

0 Σ
(rm)
∆xy 0

0 0 Σ
(rm)
∆2xy







-T

(42)

≈







Σ(rm)
x 0 0

0 Σ
(rm)
∆x 0

0 0 Σ
(rm)
∆2x















Σ(rm)
x

∂y
∂x

∣

∣

T

µ0
0 0

0 Σ
(rm)
∆x

∂y
∂x

∣

∣

T

µ0
0

0 0 Σ
(rm)
∆2x

∂y
∂x

∣

∣

T

µ0









-T

(43)

This simplifies to

A(rm) =













∂y
∂x

∣

∣

∣

µ0

0 0

0
∂y
∂x

∣

∣

∣

µ0

0

0 0
∂y
∂x

∣

∣

∣

µ0













-1

(44)

Recall that
∂y
∂x

∣

∣

µ0
→ I when the noise level is low: In this case, the transform is also identity

indicating that no compensation is required. When the noise subsumes the speech
∂y
∂x

∣

∣

µ0
→ 0,

which implies A(rm) → ∞. Some of the theoretical implications of this result for uncertainty
decoding schemes are discussed in [27].
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Figure 4: Comparing Monte Carlo and VTS generated corrupted speech distributions and cross-
covariance.

The quality of using a VTS-based approximation for the corrupted speech may be investigated
through a simulation in the log-spectral domain. Figure 4 shows how the first-order VTS approx-
imation of the compensated mean and variances compare to a fitted distribution on the actual
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Monte Carlo corrupted speech data where y = log(exp(x) + exp(n)). The mean and standard
deviation of the clean speech were 10 and 6 respectively, the variance of the noise 1, and the mean
of the noise adjusted to achieve the SNR. The cross covariance between the clean and corrupted
speech is also shown along with the first-order VTS estimated values. The VTS compensated
mean appears quite accurate compared to the numerical result. The variance however is not as
well approximated; this is similar to previous results [30, 1]. The cross-covariance between the
clean and corrupted speech is also only roughly approximated.

Like CMLLR, Joint transforms compensate trained systems to more closely match the test
environment; but Joint transforms have the addition of the variance bias. By using a VTS
approximation to generate the joint distribution from models of the clean speech and noise, the
associated Joint transform compensates for noise. However, the joint distribution is a general
model of the clean s and observed o speech. Hence, the joint distribution may model other effects
as well if this is taken into account during the generation of the joint distribution. For example,
vocal tract length or a feature de-correlating transform could be incorporated in the mismatch
function to generate a Joint transform that handles multiple factors. The joint distribution may
also be thought of more generally as modeling training and test conditions jointly rather than
as clean and noisy data. Hence Joint transforms may also be applied to multistyle systems to
compensate for environmental mismatch.

3.3.1 The Clean Speech Class Model

The previous section demonstrated how the complete joint distribution for a model class rm may
be derived given a noise model and clean speech model; this clean speech model has not been

defined. An a priori model of the clean speech N
(

µ
(rm)
x ,Σ(rm)

x

)

is needed to determine the joint
distribution per class rm. There are three different approaches to deriving this Gaussian model.
Diagonal covariances can be assumed throughout, however this may be a poor approximation since

diag

{

∂y

∂x

∣

∣

∣

µ0

Σ(rm)
x

∂y

∂x

∣

∣

∣

T

µ0

}

6= diag

{

∂y

∂x

∣

∣

∣

µ0

Σ
(rm)
x,diag

∂y

∂x

∣

∣

∣

T

µ0

}

(45)

where recall the Jacobian matrix
∂y
∂x is full. Therefore, a full covariance form of the clean model

is examined. There are two ways to estimate it. The first is to estimate a full covariance version
of the acoustic model using the same alignments as the diagonal through single-pass re-training.

The mean µ
(rm)
x and full variance Σ(rm)

x representing class rm are then

L(m) =

T
∑

t=1

γ
(m)
t (46)

L(rm) =
∑

m∈r

L(m) (47)

µ(rm)
x =

1

L(rm)

∑

m∈r

L(m)µ(rm)
x (48)

Σ(rm)
x =

1

L(rm)

∑

m∈r

L(m)
(

Σ(m)
x + µ(m)

x µ(m)T

x

)

− µ(rm)
x µ(rm)T

x (49)

where µ
(m)
x is the acoustic component mean, Σ(m)

x the variance and γ
(m)
t the component pos-

terior/alignment probability at time frame t. An approximation to this is to use the diagonal

form of Σ(m)
x . For low numbers of classes R compared to the number of model components M in

the acoustic model, this should be a good approximation since the between class variance should
dominate over the within class variance.
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4 Noise Estimation Using EM

The previous section detailed two predictive forms of noise compensation: VTS-based and model-
based Joint; these require a model of the noise environment. One option is to train the noise
model from non-speech regions such as the first and last 10-30 frames of each utterance [35, 39].
This may provide a good model for short utterances, however some sentences may be sufficiently
long that the noise environment changes while speech continues to be spoken as was found even
on the AURORA2 [18] which is a short artificially corrupted digit string recognition task [35]. For
example, in [41] the noise model is updated every 100 frames, however only those frames that are
classified as non-speech are used; in this work, a noise estimation process which can estimate the
noise even during speech is presented.

Moreno [30] first provided an Expectation-Maximisation (EM) framework to determine the
means of the additive and convolutional noise in a ML fashion. Others have since successfully
used this approach to estimate both convolutional and additive noise models [21, 10, 6, 40]; a
similar approach is presented here, but in addition the additive noise variance is also concurrently
estimated. This allows for unsupervised noise estimation of the full noise model whilst the speaker
is still talking. Two forms are discussed that provide ML noise estimates for either VTS or Joint
compensation. This overall task is not trivial since the solution space is multi-dimensional, highly
complex and may have multiple local maxima. However, through iteration and assuring that
successive estimates of the noise improve the likelihood of the training data, a reasonable model of
the environment should be attained. Furthermore, noise models may be estimated for multistyle
trained acoustic models; with the result being convolutional and additive noise estimates that best
reduce the mismatch between the acoustic models and test conditions.

The objective of the noise estimation process is to estimate noise parameters Φ̂ = {µ̂n, µ̂h, Σ̂n},
that given the acoustic model parameters M, maximise the likelihood of the noisy observation
sequence given by

p
(

O|Whypo,M, Φ̂
)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t p(ot|Φ̂,M, m) (50)

where γ
(m)
t is the state/component alignment probability at frame t, for the sentence hypothesis

Whypo, given the acoustic model M and original noise model Φ. Hence, a single Gaussian model
of the additive noise is assumed; others have used a GMM to represent the additive noise such
as [10], but the gains seem minimal compared to the computation cost [38]. The auxiliary, or
Q-function, for the expectation step of the EM algorithm is given by

Q(Φ; Φ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t log

[

p(ot|Φ̂,M, m)
]

(51)

The form of output distribution p(ot|Φ̂, m) differs depending on whether the noise estimates are to
be optimised for VTS compensation or Joint uncertainty decoding. In either case, ML estimates
of the static additive and convolutional noise means, and the static and dynamic additive noise
variances should improve the auxiliary function given the same state alignment. That is find Φ̂

such that

Q(Φ; Φ̂) ≥ Q(Φ;Φ) (52)

This iterative EM-based ML formulation for estimating a model of the environment even during
speech is shown in figure 5. With an initial estimate of the additive and convolutional noise: µn,
Σn and µh, new estimates: µ̂n, Σ̂n and µ̂h, are computed. Either VTS or Joint compensation
may be used in the auxiliary function to give ML noise estimates tailored for either form. The
estimation may take place while speech is spoken, not only during non-speech regions allowing
for noise model adaption during long speech segments. A single GMM may be used, to model
the speech, for speed when computing the auxiliary function, such that decoding in the front-
end is not required. However, in this work sufficient statistics are gathered using the actual full
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Figure 5: Noise parameter estimation procedure.
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back-end acoustic models. The models may also be compensated with the initial noise parameters
calculated in step 1, but in this work these initial estimates are only used during the estimation
step. On successive EM iterations though, the updated noise parameters are used to compensate
the models used during alignment.

4.1 Noise Estimation for VTS Compensation

An iterative solution for updating the static means of the additive and convolutional noise was
given in [30]—this is modified to operate in the same domain many speech recognisers work in:
the cepstral domain. With these new estimates of the noise means, the additive noise variance
parameters are optimised using a simple gradient-based method. Together these give the updated
noise parameter set Φ̂.

For noise estimates to be optimised for VTS compensation, VTS compensation should be used
to update the output distributions. Hence the logarithm of the probability, in equation 51 of the
corrupted speech given the new model parameters, for a given state j and component m at time
t, is

log
[

p
(

ot|Φ̂,M, m
)]

= −
D

2
log(2π)

−
1

2
log
∣

∣Σ̂
(m)

y

∣

∣−
1

2

(

yt − µ̂
(m)
y

)T

Σ̂
(m)-1

y

(

yt − µ̂
(m)
y

)

−
1

2
log
∣

∣Σ̂
(m)

∆y

∣

∣−
1

2

(

∆yt − µ
(m)
∆y

)T

Σ̂
(m)-1

∆y

(

∆yt − µ
(m)
∆y

)

(53)

−
1

2
log
∣

∣Σ̂
(m)

∆2y

∣

∣−
1

2

(

∆2yt − µ
(m)
∆2y

)T

Σ̂
(m)-1

∆2y

(

∆2yt − µ
(m)
∆2y

)

where D is the dimensionality of the feature vector and here equal to 3Ds as the sum of the number
of static, velocity and acceleration coefficients. The corrupted speech parameters are derived from
the clean using the VTS compensation form outlined previously in section 3.1.

4.1.1 Noise Parameter Initialisation

The first step (1) in the noise estimation process shown in figure 5 is to estimate initial noise
parameters. Initialisation for the additive and convolutional noise means may be the minimum
energy frame and the difference between the observed corrupted speech and the clean

µn = min {Y } (54)

µh = E {Y } − µx (55)

as in [30], where µx is the global speech mean. For this work, the convolutional noise is instead
initialised to zero.

The additive noise variance can be estimated from using the background noise frames [9, 39].
The initial value here of Σn is set to the variance of the first five frames of the observed speech.
This is similar to the noise initialisation scheme in [20], where the first 3–4 frames are considered
silence and used to initialise the noise model parameters. This should provide a much better
estimate than using the global clean speech variance, which should be considered an upper bound,
but may be worse than initialising it to zero if there is very little environmental noise [29]. In
this work, if this first initialisation fails to provide a noise estimate that improves the auxiliary
function, then the additive noise is set to Cf0 and zero variance, where f0 is the log zero vector,
to represent a “no noise” condition.

4.1.2 Estimating the Static Noise Parameters

The maximisation of the static additive and convolutional noise means in step 3 is based on
the ML formulation introduced in [30], but in the cepstral domain. The first-order Taylor series
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approximation in equation 6 may be used to express the corrupted speech mean as a function of
initial and new estimates additive and convolutional noise means

µ̂
(m)
y,i = E{yi} (56)

≈ E
{

yi

∣

∣

µ0
+ ∇x yi

∣

∣

µ0
·
(

x − µ(m)
x

)

+ ∇n yi

∣

∣

µ0
·(n − µn) + ∇h yi

∣

∣

µ0
·(h − µh)

}

(57)

≈ µ
(m)
y,i + ∇n yi

∣

∣

µ0
·(µ̂n − µn) + ∇h yi

∣

∣

µ0
·(µ̂h − µh) (58)

assuming that the speech and noise are independent. This can also be written as

µ̂(m)
y = µ(m)

y +
∂y

∂n

∣

∣

∣

µ0

(µ̂n − µn) +
∂y

∂h

∣

∣

∣

µ0

(µ̂h − µh) (59)

recalling that
∣

∣

µ0
indicates the function is evaluated at the Taylor series expansion point about

the clean speech mean and the initial noise estimates. This form of the corrupted speech mean
can be used to maximise the auxiliary function in equation 51 with respect to new noise mean
estimates µn, µh and a fixed additive noise variance.

To find new estimates of the additive and convolutional noise, we maximise the expected value
of the auxiliary, differentiate it with respect to the delta parameters sought, equate to zero and
solve. The partial derivatives of the auxiliary with respect to these parameters are

∂

∂µ̂n

Q(Φ; Φ̂µ̂) =
T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂µ̂n

[

log p(ot|Φ̂µ̂,M, m)
]

(60)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y × (61)

(

yt−µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

µn+
∂y

∂h

∣

∣

∣

µ0

µh −
∂y

∂n

∣

∣

∣

µ0

µ̂n −
∂y

∂h

∣

∣

∣

µ0

µ̂h

)

= d − Eµ̂h − Fµ̂n (62)

and

∂

∂µ̂h

Q(Φ; Φ̂µ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂µ̂h

[

log p(ot|Φ̂µ̂,M, m)
]

(63)

=
T
∑

t=1

M
∑

m=1

γ
(m)
t

∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y × (64)

(

yt−µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

µn+
∂y

∂h

∣

∣

∣

µ0

µh −
∂y

∂n

∣

∣

∣

µ0

µ̂n −
∂y

∂h

∣

∣

∣

µ0

µ̂h

)

= g − Hµ̂h − Jµ̂n (65)

A full derivation can be found in appendix B. Also, Φ̂µ̂ = {µ̂n, µ̂h,Σn} which indicates that while
these noise means are being updated, the additive noise variance is unchanged. These derivatives
can be equated with zero to find the optimal points of the auxiliary function

g − Hµ̂h − Jµ̂n = 0 (66)

d − Eµ̂h − F µ̂n = 0 (67)

which can be written in matrix form as
[

E F

H J

] [

µ̂h

µ̂n

]

=

[

d

g

]

(68)
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where the accumulates d, g, E, F , H, and J are defined as

d =

M
∑

m=1

∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y

T
∑

t=1

γ
(m)
t

(

yt − µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

µn+
∂y

∂h

∣

∣

∣

µ0

µh

)

g =
M
∑

m=1

∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y

T
∑

t=1

γ
(m)
t

(

yt − µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

µn+
∂y

∂h

∣

∣

∣

µ0

µh

)

(69)

E =
M
∑

m=1

L(m) ∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y

∂y

∂h

∣

∣

∣

µ0

F =
M
∑

m=1

L(m) ∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y

∂y

∂n

∣

∣

∣

µ0

H =

M
∑

m=1

L(m) ∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y

∂y

∂h

∣

∣

∣

µ0

J =

M
∑

m=1

L(m) ∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y

∂y

∂n

∣

∣

∣

µ0

recalling L(m) =
∑T

t=1 γ
(m)
t . Note that E = JT. Solving the linear system in equation 68 gives

the following formulae for the parameters to be estimated

µ̂h = (H − JF -1E)-1(g − JF -1d) (70)

µ̂n = (J − HE-1F )-1(g − HE-1d)

= (F − EH-1J)-1(d − EH-1g) (71)

These can be used as the starting estimates for another iteration of EM, to determine new noise
estimates until the auxiliary function fails to increase indicating convergence.

4.1.3 Backing Off

An issue arises with this estimation procedure. Until the new noise mean estimates Φ̂µ̂ converge
and match the noise parameters used for the expansion point µ0, the compensation used for the
log likelihood calculation does not match the compensation used for the auxiliary function. That
is

µ(m)
y 6= µ̂(m)

y (72)

The estimation procedure described ensures

Q(Φ; µ0 = Φ, Φ̂µ̂) ≥ Q(Φ; µ0 = Φ,Φ) (73)

but not that

Q(Φ; µ0 = Φ̂µ̂, Φ̂µ̂) ≥ Q(Φ; µ0 = Φ,Φ) (74)

where the additional term µ0 = Φ indicates the noise parameters that are used in the expansion
point of the VTS approximation in the component output probability of equation 53. It is the
latter equation 74 that must be true for the overall EM algorithm to converge. Hence, the new
estimate needs to be backed off towards the old until this requirement is met.

The back-off strategy used increases the scalar parameter η from zero, such that for Φ̂µ̂backoff

Q(Φ; µ0 = Φ̂µ̂backoff, Φ̂µ̂backoff) ≥ Q(Φ; µ0 = Φ,Φ) (75)

where
Φ̂µ̂backoff = η · Φ + (1 − η) · Φ̂µ̂ (76)

If the auxiliary function again does not improve over Q(Φ; µ0 = Φ,Φ), then η = η2. This is
repeated until the auxiliary function is no longer worse than the original value, or a floor on η is
reached. Setting η to a half produced reasonable results. To speed up the backing off process, an
approximation may be made whereby only the static feature portion of the output probability in
equation 53 is considered when computing the auxiliary. In this work, this is used as a first step
for backing off, however after an increase in the auxiliary function for just the static features is
found, the full auxiliary function is subsequently tested for improvement.
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4.1.4 Estimating the Additive Noise Variance

A first-order gradient ascent method is used here to optimise the additive noise variance in the
next maximisation step

∂

∂Σ̂n

Q(Φ; Φ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂Σ̂n

[

log p
(

ot

∣

∣Φ̂,M, m
)]

(77)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂Σ̂n

[

−
1

2
log
∣

∣Σ̂
(m)

y

∣

∣−
1

2

(

yt−µ(m)
y

)T

Σ̂
(m)-1

y

(

yt−µ(m)
y

)

]

(78)

The gradient of the auxiliary function with respect to the static noise variances from equation 78
simplifies to

∂

∂σ̂2
n,i

Q(Φ; Φ̂) = −
1

2

M
∑

m=1

Ds
∑

d=1

(

∂y

∂n

∣

∣

∣

µ0

)2

d,i

1

σ̂
(m)2
y,d

{(

1−
µ

(m)2
y,d

σ̂
(m)2
y,d

)

L(m)−
p
(m)
d −2q

(m)
d µ
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where the sufficient statistics p(m) and q(m) are defined as

p
(m)
d =

T
∑

t=1

γ
(m)
t y2

t,d q
(m)
d =

T
∑

t=1

γ
(m)
t yt,d (80)

Refer to appendix C for a full derivation. There is no closed-form solution to find σ̂2
n,i that

zeros equation 79; there is no obvious way to re-express these gradients such that the noise
variance can be factored out of the triple summation. Hence, to evaluate the gradient for different
noise variances, the summation must always be performed, slowing any possible gradient ascent
techniques. Contrast this with the auxiliary gradients with respect to the noise means; these can
be computed directly from the accumulates d, E, F , g, H, and J . The additive noise variance
update formula for the static noise variance is then

Σ̂n = Σn + ν
∂

∂Σ̂n

Q(Φ; Φ̂) (81)

where ν is a scalar learning rate and in this work set to unity.
There is no guarantee that the step taken will improve the auxiliary—the step may be too

large and significantly overshoot it. Hence, it is important to also back off the new variance
estimate towards the old, as with the means in section 4.1.3. Also, as this is a gradient based
maximisation process, the estimate of the variance may be refined with multiple iterations until
a certain number of iterations has passed, or the auxiliary function fails to increase beyond a
threshold. In this work, a maximum number of iterations is set, 10 was sufficient. The iterative
nature of this maximisation step is not reflected in figure 5.

4.1.5 Additive Noise Dynamic Variances Estimation

If the noise is assumed to be fairly stationary, then the additive noise dynamic variances may be
computed or predicted directly from the static noise variance. The delta coefficients are calculated
in the following manner

∆yt =

∑∆
δ=1 δ(yt+δ − yt−δ)

2
∑∆

δ=1 δ2
(82)

Hence for the delta variance of the noise

Σ∆n = Var

{

∑∆
δ=1 δ(nt+δ − nt−δ)

2
∑∆

δ=1 δ2

}

(83)

=

∆
∑

δ=1

2

(

δ

2
∑∆

δ=1 δ2

)2

Var {nt} (84)
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assuming independence between nt+δ and nt−δ. For the window size used in this work of ∆ = 2,
this simplifies to

Σ∆n =
1

10
Σn (85)

The delta-delta parameters can be similarly derived such that

Σ∆2n =
1

10
Σ∆n =

1

100
Σn (86)

for the same window size.
Using these forms for the dynamic additive noise variance tended to underestimate the ML

value especially for the acceleration terms. Therefore, a gradient-based optimisation routine was
used to find the ML estimates of the dynamic noise variances. The auxiliary gradients for dynamic
coefficients of the noise variance are given by
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∂Q(Φ; Φ̂)
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which are similar to the static variance gradient since the dynamic variances are treated in a
completely parallel manner. That is the derivatives of the determinant and main probabilities
term are simplified in the same way, to the statics and

∂Σ̂
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as can be observed from equation 173 found in appendix C. These terms are then used in the full
static noise variance update formula
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Like the noise means update, the auxiliary function should be evaluated with the new additive
noise variance estimate, and if there in no improvement, the estimate should be backed off until
there is, the previous auxiliary value is reached, or η reaches some minimum value.

4.1.6 Iterative Noise Estimation

There are many loops that can occur during this noise estimation process. The first, mentioned
in the previous section and not shown in figure 5 is the iterative gradient ascent procedure in
the second maximisation step. The next may be a complete iteration over the maximisation step
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of both the noise means and variances, labeled step 5. This updates the VTS expansion point,
recomputing the necessary terms for updating the noise parameters with the new set of noise
parameters, using the sufficient statistics already accumulated, all crucially without going over

the entire dataset again. That is γ
(m)
t , L(m), pm and qm remain unchanged over this loop. With

the EM loop, labeled step 6, the expectation step is taken again, the acoustic model is compensated
with the new noise parameter estimates, and these sufficient statistics are re-accumulated. Hence
step 5 can be conducted theoretically far faster than step 6. The last loop updates the sentence
hypothesis, using the updated noise parameters to compensate the acoustic models when re-
decoding the test sentence; this of course is a rather expensive step compared to the previous two.
In this work, it was found that iterating over the maximisation step with a successively improving
VTS expansion point and noise variance, and only one EM step and the initial noise hypothesis
was an effective strategy. Conducting another EM step, and improving the hypothesis, however
do improve the noise estimates.

4.2 Noise Estimation for Joint Compensation

The previous section described a noise estimation procedure directed at obtaining an ML noise
model presuming a VTS compensation scheme. While the Joint form may perform sufficiently
well with such noise parameters, they are not optimal in an ML sense. Although the Joint form
converges to VTS compensation when the number of classes equals the number of model compo-
nents, when this is not the case the auxiliary functions are different. Hence, if the noise estimates
are to be used in Joint uncertainty compensation, then an alternate auxiliary function during
noise estimation should be used. This section outlines differences between the VTS compensation
described previously, and Joint noise parameter estimation.

The same form of auxiliary from equation 51 is used for Joint noise estimation

QJ(Φ; Φ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t log

[

pJ(ot|Φ̂,M, m)
]

(92)

except the log probability for the output distribution is now given by

log pJ (ot|Φ̂,M, m) = log
[

|Â
(rm)

|N
(

Â
(rm)

ot + b̂
(rm)

; µ(m)
s ,Σ(m)

s + Σ̂
(rm)

b

)]

(93)

The full set of Joint transforms T =
[

T (1), T (rm), . . . , T (R)
]

may be derived from the joint
distribution that is estimated from the clean speech class model and the estimated noise parameters
Φ̂.

4.2.1 Noise Parameter Initialisation

The various initialisation possibilities described for VTS based noise estimation could be applied
here. However, it would be advantageous to first estimate the noise environment using the VTS
form described earlier, and then refine the estimates for Joint compensation using the method
described in this section. In practice, this was found to yield better results than using noise
parameter initialisation as described in 4.1.1. However, it is necessary to check if the resulting
noise model improves the auxiliary as in some cases, with low amounts of noise, it was better to
start from a “no noise” parameter initialisation.

4.2.2 Estimating Noise Parameters for Joint Compensation

Given the acoustic model M, from which the clean speech class model may be derived, an estimate
of the noise parameters Φ̂ that maximises the auxiliary function QJ is required. That is find

Φ̂ =
{

µ̂n, Σ̂n, µ̂h

}

= arg max
ˆΦ

QJ

(

M, T ;M, T̂
)

(94)
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where T̂ is computed directly from clean speech class model and Φ̂. Given a suitable initial
starting point, the noise parameters may be iteratively updated using a simple gradient-based
optimisation scheme

µ̂n,i = µn,i − ζ

∂QJ

∂µn,i

∂2QJ

∂µ2
n,i

(95)

σ̂2
n,i = σ2

n,i − ζ

∂QJ

∂σ2
n,i

∂2QJ

∂(σ2
n,i

)2

(96)

µ̂h,i = µh,i − ζ

∂QJ

∂µh,i

∂2QJ

∂µ2
h,i

(97)

where ζ is the learning rate.The second derivatives need to be conditioned such that they remain
negative to ensure the updates converges to a local maximum; in case they are not negative, a
simple back-off strategy is to use a fixed step size with the first-order gradient. It is also important
to ensure that each step in the iteration improves the auxiliary and hence a multi-tiered back-off
of the estimates generated is used similar to the VTS noise mean back-off strategy outlined in
section 4.1.3. First the statics are interpolated between the new and old until the auxiliary function
has increased, then the velocity coefficients and finally accelerations; the means and variances are
estimated separately. For this work, numerical derivatives of the Joint auxiliary function are
used.
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5 Joint Adaptive Training

Adaptation has been shown to be a powerful technique to reduce the acoustic mismatch between
training and test conditions [14, 23, 31]. When there is insufficient data to retrain models to match
the testing condition, adaptation provides a efficient way to include data, if any, from the test
condition. While adaptation of well trained models has shown to be quite effective, even more
powerful is the adaptive training technique first described in [2]. Here, transforms per speaker are
applied during training to yield a canonical speaker independent acoustic model. During testing,
another transform trained on minimal test data, applied to the canonical model, factors in the
speaker. In this case, adaptive training is described for speaker adaptation, but it can be more
generally applied to reduce the acoustic mismatch from many factors such as the speaker, channel
and environmental variability [16]. Using adaptive training yields a “purer” acoustic model than
multi-style techniques that need to incorporate all the extraneous variability due to non-speech
factors in the models. Moreover, the resulting canonical model may be a better “clean” acoustic
model that all predictive noise compensation techniques require.

Linear transforms like MLLR [2] and CMLLR [14] have been successfully used in adaptive
training. In this work, the use of Joint uncertainty transforms in an adaptive training framework
is explored. Rather than separately modeling the speaker and noise condition with a MLLR
transform and cluster adaptive training respectively as in [16], a Joint transform will model both
for each speaker/noise condition. Applying Joint transforms in an adaptive training framework
should better remove the noise in the data as they more effectively model the effects of noise on
speech than CMLLR or a simple cepstral mean bias term. The uncertainty variance bias term
allows JAT to train a “cleaner” canonical acoustic model by de-weighting noisy observations.

5.1 The Adaptive Training Framework

Adaptive training factors out non-linguistic speech variability such as different speakers and acous-
tic environments through the application of transforms during training and testing to a pure
canonical model. Thus there are two distinct sets of parameters that must be estimated in a
adaptive training framework:

• Canonical model

This represents only the variability of the speech due to the different realisation of different
sounds required to distinguish one phone from another. Typically this is an HMM, and
represented by M. Cluster based adaptive training with sets of HMMs forming the canonical
model is not be considered here.

• Transforms

These represent the non-linguistic speech acoustic variability due to different speakers or
environments and are applied to the features or canonical model parameters to adapt the
system to each specific homogeneous condition. The entire set of transforms is denoted by
T .

The parameter sets M and T are estimated such that they maximise the likelihood of the
training data

p (O|Wtrans,M, T ) =

H
∑

h=1

T
∑

t=1

M
∑

m=1

γ
(m)
t p(ot|M, T , m) (98)

where γ
(m)
t is now the posterior probability that the observation ot is generated by component

m, transformed by Joint transform T (rmh), on heterogeneous training data segmented into H

homogeneous blocks. The posterior probabilities should be computed over all possible sequences

for each block h of length T (h), given the transcription W
(h)
trans, and model set M. The class

index rm, which associates the transform to the model component, was described previously in
section 3.2. Again, EM is used to iteratively find suitable canonical model parameters and the noise
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Figure 6: JAT—updating the clean speech class model.

parameters to generate the Joint transforms. The Joint auxiliary function, from equation 92
and used to give ML estimates of the noise for Joint compensation, may be extended to
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=
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+Σ̂
(rmh)

y

)

In adaptive training, both a set of transforms, and the acoustic model parameters are iteratively
estimated in a generalised EM framework. Figure 6 shows one and a half iterations of Joint

interleaved Joint adaptive training. The symbol Φ, for example, represents the noise parameters
for iteration 1 that are associated with transform T . First, given the current acoustic models M
a new set of transform T is estimated. Subsequently, the canonical model parameters are updated
to M̂ given this new set of transforms. Multiple iterations of this interleaved training may be
performed to optimise the auxiliary function. The overall training regime may be summarised as

1. Initialise canonical model and transform parameters. These can be a well trained HMM and
identity values respectively.

2. Estimate Joint transforms T̂ , given T and M.

3. Estimate the canonical model parameters M̂, given T̂ and M.

4. Continue back to 2 until convergence.

By applying each new estimate is used in the maximisation of the next set of parameters, this
ensures that the likelihood of the training data will increase by using the new set of all parameters.

5.2 Estimating the Joint Transform

In section 4.2, noise estimation based on finding a ML noise model given a Joint compensation
auxiliary function was discussed; in the Joint adaptive training framework, transforms are esti-
mated from this noise model and the clean speech class model. This clean speech class model,
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described in 3.3.1, needs to be re-computed every time the canonical model is updated. A dis-
connect may arise when during the estimation of a new set of transforms, the initial ML noise
parameters may have been estimated using a different clean speech class model. This problem can
be clearly understood by following the adaptive training process in figure 6. The set of optimal
transforms T̂ for the training data is computed from Φ̂ and the clean speech class model derived
from M and used in step 2, where a new set of canonical model parameters M̂ are estimated.
But when step 3 starts, during the expectation step, the set of transforms generated from Φ̂ and
clean speech class model from M̂ is not the same as T̂ , which is the set of transforms that EM
requires to be the initial starting point.

Nevertheless, it may be possible to begin with the Joint transform produced from Φ̂ and M̂.
However, not only is it now necessary to verify the newly estimated Joint transform yields a
higher auxiliary function value than the initial parameters, but that it also exceeds the auxiliary
function value using the input joint transforms, in this example T1, which were computed from the
previous clean speech class model and the initial noise parameters. It may be the case that due
to the change in clean speech class model, that the newly estimated parameters may not improve
the auxiliary function over the input transform, which was computed from a different clean speech
class model. Currently, there is no convenient way to address this issue.

5.3 Estimating the Canonical Model Parameters

After a new set of transforms are estimated, the model parameters must be retrained. The auxiliary
function where only terms dependent on the model parameters are shown is
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(101)

where diagonal covariance matrices assumed. Because the joint transform parameters affect the
model parameters and are shared over many homogeneous blocks, there is no closed form solution
for the model parameters that maximise this auxiliary function. Hence a generalised EM approach
is taken, where Newton’s method is applied to optimise the model parameters in the maximisation
step. This requires both first and second derivatives of the auxiliary function with respect to the
model mean and variance.

The first derivative of the auxiliary in equation 101 with respect to the mean of component m,
dimension i is
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and with respect to the model variance
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(103)

From these derivatives it can be seen that when the noise is high, the uncertainty bias term σ̂
(rmh)2
b,i ,

which increases in noise, will de-weight the contribution of that observation. In areas where the
noise completely subsumes the speech, the uncertainty will ensure that these observations do not
contribute to the estimate of the model parameters at all. This allows the model parameters to
be a better representation of “clean” speech.
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The Hessian matrix is also required and is comprised of the following terms
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This gives the following update formula
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In practice, the stabilising learning rate ζ may be less than one, but in this work a value of unity is
typically used. It was found that during this optimisation process, the variance may sometimes be
driven to infinity. Hence another measure was introduced to stabilise the variance estimation—the
variance was limited to only increase or decrease by a factor υ. Specifically
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In practice, υ was set at 2. To compute the terms of the Hessian matrix, the following statistics
may be gathered per recognition component
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while the first order partial derivatives may be directly accumulated. The second order derivative
with respect to the model variance is then given by
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2
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2,i (113)

When using this form of optimisation for maximising the auxiliary function, it is important
to ensure that the iterations are approaching a global maximum rather than the minimum. This
implies that the Hessian matrix must be negative definite and necessitates checking the second
derivatives, given by equations 104 and 105, are negative; the former is guaranteed to always
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be, however the latter is not so well conditioned. This may be simply done by re-expressing
equation 113 as
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where
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This parameter ϑ should remain greater than a half to ensure stability of the optimisation. It

may be observed that the ratio of w
(m)
4,i to w

(m)
2,i should converge to unity as the model parameters

better approximate the training data, given the set of Joint transforms.
Instead of directly optimising the variance, the log of the variance may be estimated to ensure

that the converged value remains positive. Thus, make the change of variable

ς(m)
s = logΣ(m)

s (117)

which changes the parameter update formula, stated in equation 107, to
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The partial derivatives with respect to ς
(m)
s,i may be expressed as a function of the previously given
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6 Experiments

The compensation techniques discussed here are evaluated on two corpora: an artificially corrupted
1000 word Resource Management (RM) task, and the large vocabulary Broadcast News (BN)
database of found audio. The effectiveness of VTS compensation, model-based Joint uncertainty
decoding, their respective noise estimation methods, Joint adaptive training, and comparing clean
and multistyle acoustic model training was first investigated on RM. The smaller vocabulary size
and artificial nature makes RM an ideal corpus for conducting controlled experiments at a variety
of noise levels and on clean and multistyle acoustic models. RM is however an artificial task,
and it is important to apply these techniques to real found data. Hence, experiments were also
conducted on the Broadcast News corpus.

All the systems evaluated used MFCC parameters with the 0th cepstra, computed from the
log magnitude spectrum, and associated first- and second-order dynamic features computed using
linear regression producing a 39-dimensional feature vector. Experiments were conducted using
an internal version of HTK 3.3 [44] with additional routines to support Joint and VTS noise pa-
rameter estimation, compensation within the adaptation framework, and Joint adaptive training.
Systems referred to as “matched” are estimated using single-pass re-training (SPR) [12, 44]. This
gives a suitable upper limit for the performance of model-based noise compensation schemes where
it is assumed only the output distributions need to be updated to reflect the environmental noise,
and the state transitions or component weights need not be re-estimated. Performance figures
reported are % word error rates (WER).

6.1 Resource Management

The noise robustness techniques discussed were first evaluated on a simple task to gauge their
effectiveness before attempting a more challenging task. The Resource Management database is
a balanced 1000 word vocabulary command and control task [34]. To create different noise con-
ditions, the RM task was corrupted with Operations Room noise from the NOISEX-92 database
at the waveform level; this noise has a dominant low frequency background hum, and some inter-
mittent speech and machine noise. For testing, results are averaged across the Feb’89, Oct’89
and Feb’91 test sets totaling an hour of speech, 30 speakers and 900 test utterances. Results are
mostly reported on the 20 and 14 dB SNR conditions as they provided a balance between difficulty
and reasonable performance. For all the RM experiments using Joint uncertainty decoding, 16
diagonal transforms was the default configuration. No cepstral mean normalisation was performed.

The acoustic models are state-clustered, cross-word triphone models yielding 1582 states, each
with 6 components, giving a total of 9492 system Gaussians. The language model provides simple
bigram word-pair probabilities. This corresponds closely to the RM recipe provided with HTK.
Three forms of acoustic models were evaluated. Clean models were trained on the original RM data
which was recorded at 47 dB SNR, encompassing 3990 sentences from 109 speakers. Multistyle
trained models trained on the same amount of data however at five levels of SNR from 32 dB
to 8 dB, randomly changing from speaker to speaker; no actual clean data was included since
such high SNR audio rarely exists in practice. A JAT acoustic model was trained using four full
interleaved steps starting from the multistyle acoustic model: one step involved first training the
Joint transforms, and then four iterations of acoustic model parameter updates with the variance
Hessian floor parameter ϑ diminishing from 2.5 to 1.0 in 0.5 increments. When test transforms
are needed, these are estimated for each iteration of models, and used as input transforms for the
next, until transforms are estimated for the test conditions for the final canonical model.

6.1.1 Compensation Baselines

First, some baseline performance of the predictive noise compensation schemes discussed in this
report are presented. Table 1 summarises the performance of these schemes, using both clean
and multistyle trained acoustic models, and different forms of noise estimation. As expected, an
uncompensated ASR system clearly performs poorly when noise is present as demonstrated by
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Acoustic Noise Est. Test Set SNR
Model Compensation Type Clean 20 dB 14 dB

Clean

— — 3.1 38.0 83.7

Joint
VTS 3.1 10.1 35.3
Joint 3.1 9.2 22.6

VTS VTS 3.0 8.4 23.6

Multistyle

— — 11.7 7.0 15.5

Joint
VTS 9.0 8.6 15.9
Joint 8.6 6.7 12.3

VTS VTS 8.8 6.5 12.0

Matched — — 3.1 7.4 14.3

Table 1: RM Compensation, clean and multistyle models, varying noise estimation scheme.

large error rates of 38.0% at 20 dB and 83.7% at 14 dB. Noise models were estimated using only
one complete iteration over the complete data set with the initial supervision hypothesis. Despite
the poor performance of the clean acoustic models, using these results to supervise the noise model
estimation still gave good results. At 20 dB, the 38.0% was reduced to a 9.2% error rate for Joint
and 8.4% for VTS; this compares well to the 7.4% for the matched system. In the clean test
condition, these compensation forms simply provide an ML estimate of the channel noise which
may also capture some speaker differences; this provides a negligible improvement on the clean
system with the WER unchanging at 3.1%.

Multistyle trained models, even without compensation, give better results than compensated
clean acoustic models, and perform comparably to the matched systems: 7.0% compared to 7.4%
at 20 dB and 15.5% to 14.3% at 14 dB. On clean test data, the multistyle acoustic models
exhibit significant degradation, and even with noise compensation, is still far from clean on clean
performance of 3.1%. This is due to the multistyle training data not including actual “clean”
speech, and thus this condition is completely unseen. Applying VTS or Joint compensation on
the noisier tests gave even further improvements exceeding matched performance. These results
show that such predictive noise compensation schemes can be effectively applied to multistyle
trained acoustic models.

Two other points are demonstrated in table 1. The first, is that model-based Joint compensa-
tion performance is similar to VTS compensation with both clean and multistyle acoustic models.
At 14 dB SNR, the WER% of 22.6 is likely a noisy figure as it should not be better than the
VTS at 23.6. Comparing the multistyle systems, the Joint and VTS systems are very similar: 6.7
compared to 6.5% at 20 dB and 12.3 to 12.0% at 14 dB. The second aspect shown is that, for Joint
uncertainty decoding, Joint noise estimation gives better results than using the noise estimates
provided by VTS-based noise estimation. This result is exaggerated on the multistyle systems, for
example at 14 dB, the Joint performance degrades using the VTS noise estimates (15.9%) over
no compensation (15.5%), but significantly improves the result when Joint noise estimates are
used (12.3%). Thus it is clear, for all conditions tested, that the type of noise estimation should
match the compensation form for best results.

6.1.2 Estimation of Noise Parameters

There is a significant difference in accuracy of the supervision hypothesis between the clean and
multistyle systems: an error rate of 38.0% at 20 dB for example compared to 7.0% for the equivalent
multistyle. Hence the comparison between noise compensation techniques using different model
training methods may be considered unfair. Since the full back-end acoustic model is used in the
noise estimation process, using compensated models to compute the state alignments may give
improvements. The accuracy of the supervision hypothesis may also be a factor in the quality
of the noise estimates. Hence two approaches are examined to refine the noise estimates for the
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clean systems. The first conducts a second EM iteration over the complete dataset, but without
updating the hypothesis; this gives an indication of the importance of having models that better
match the noisy condition when estimating noise parameters. The second updates the hypothesis
and performs an EM step; this is more expensive than the first as decoding must also be performed
to obtain the updated supervision in addition to re-aligning the models to the data. Comparing
the outcome of these two approaches can give insight of the sensitivity of the noise estimation
process to the accuracy of the hypothesis.
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Figure 7: Auxiliary function value during noise estimation.

Figure 7 plots the auxiliary function value for the estimation of the noise at 20 dB for a
speaker. There are three series: the first is the first EM iteration to estimate the noise, where the
models are uncompensated, the hypothesis from this uncompensated system is used to produce
the alignments, and the initial noise parameters are set to the minimum energy vector for the
additive noise mean, the variance to the first five frames of speech, and channel noise to zero.
There are large gains in the auxiliary with the first few iterations updating the VTS expansion
point; this is step 5 in figure 5, which does not go over the complete dataset again. The VTS
noise estimation is considered to have converged after 17 iterations, and another 8 iterations of
Joint noise estimation is conducted. There is a drop in the auxiliary function as we shift from
using a ML VTS noise estimation and VTS compensation for the auxiliary to using this noise
estimate and Joint compensation. Then sufficient statistics are gathered again over the entire
dataset using this new noise estimate to produce Joint transforms to compensate the models used
to align the data. This can be done without updating the hypothesis (step 6 from figure 5, shown
in red, and with an update, shown in blue (step 7). Here the preceding VTS noise estimation
changes the auxiliary value very little, and now that the noise estimation is tuned to the Joint

auxiliary function there is an improvement of the auxiliary function over the VTS auxiliary value.
Subsequent Joint noise estimation iterations increase the auxiliary slightly.

Table 2 demonstrates how only slight gains are attained when the hypothesis is updated and
that the second EM iteration provides most of the improvement over a single EM iteration. This
is the case for both VTS and Joint compensation on clean acoustic models. The results were
similar at an SNR of 14 dB. Note that at this level of noise the first hypothesis has an error rate
of 38%, yet relatively accurate noise estimates were still attained since the performance of VTS
or Joint compensation using these estimates is still good; this indicates a lack of sensitivity to
the hypothesis. But by updating the hypothesis, at this noise level, the VTS performance reaches
the matched. This is not the case at a noise level of 14 dB; the VTS performance, with a second
iteration and updated hypothesis gives an error rate of 21.2% which is far from the matched level
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Acoustic Iteration
Model Compensation Hypo 1 2

Clean

— 38.0

Joint
1 9.2 8.6
2 8.4 —

VTS
1 8.4 7.7
2 7.4 —

Matched — 7.4

Table 2: RM compensation, clean trained acoustic models tested at 20 dB SNR.

of 14.3%.

6.1.3 Amount of Estimation Data

In the previous experiments, a noise model was estimated for each speaker, which totals approxi-
mately ten thousand frames per speaker. It is interesting to investigate how the noise estimation
process performs when less data is available and compare this to the estimation of CMLLR trans-
forms. There are significantly more free parameters to train 16 diagonal CMLLR transforms, each
transform having 2×39 parameters, compared to just estimating the noise parameters, which has
13 + 13 + 39 parameters, as shown in table 3. When the amount of data for estimation is reduced

Number of Amount of data
System Parameters 1 Utt 30 Utts

CMLLR 1248 14.7 13.1
Joint

65
13.3 12.3

VTS 13.3 12.0

Table 3: RM compensation, multistyle acoustic models varying amount of adaptation data at 14
dB SNR.

to one utterance, about 300 frames, all systems degrade similarly. The relative reduction in error
is 11% for the 16 diagonal transform CMLLR, when the amount of data is increased, and 8% and
10% for the 16 transform Joint system and VTS compensation respectively. While 16 diagonal
CMLLR transforms may still be estimated robustly with just an utterance, it is can be seen that
regardless of the amount of data, the addition of the variance bias term gives a definite gain in
accuracy.

6.1.4 Joint Adaptive Training

A Joint adaptive training framework was presented in section 5 as an alternative form of training
to yield the “clean” acoustic models necessary for the noise compensation schemes discussed.
Table 4 compares JAT with multistyle and matched training. It is clear that JAT is superior
to multistyle systems compensated with Joint transforms; for the clean environment, there is a
gain from 8.6% error to 5.7%, at 20 dB from 6.7% to 6.2% and at 14 dB a 0.8% improvement.
This table also shows how Joint transforms can complement CMLLR transforms; here two full
matrix CMLLR transforms are used to compensate the multistyle system, or in conjunction with
Joint parent transforms. Adding CMLLR reduces the remaining mismatch between testing and
training conditions and models correlations between different dimensions. This complements the
Joint transforms which account for the environmental noise yielding the best systems for the noisy
conditions at 5.7% WER at 20 dB and 10.9% at 14 dB. This exceeds the matched performance.
Despite having no clean data in the training data, clean performance is also significantly improved
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Acoustic Compensation Test Set SNR
Model Joint CMLLR Clean 20 dB 14 dB

Multistyle

11.7 7.0 15.5
X 5.0 5.7 13.8

X 8.6 6.7 12.3
X X 5.4 5.8 11.7

JAT
X 5.7 6.2 11.4
X X 4.7 5.7 10.9

Matched 3.1 7.4 14.3

Table 4: RM compensation, multistyle trained versus JAT acoustic models with 256 diagonal
Joint and 2 full CMLLR transforms.

to 4.7%, compared to a best of 5.4% for the multistyle system, however is still far from the 3.1%
for matched. These results show that Joint adaptive training is superior to multistyle training.

Interestingly enough, the CMLLR compensation is able to bring down the multistyle WER
significantly, for example from 11.7% to 5.0% on clean test data; this indicates the multistyle
training yields models that deviate significantly from representing clean speech, but may be simply
compensated by two full linear transforms. However more significant is the performance of the
JAT acoustic models. The JAT acoustic model showed improvements over using just a multistyle
acoustic model from 6.7% to 6.2% at 20dB and 12.3% to 11.4% at 14dB. Adding two full CMLLR
transforms, using the Joint transforms as parent transforms on the JAT acoustic model, gave the
best overall system performance, on noisy data, at 5.7% and 10.9%, exceeding the performance of
both matched and the most powerfully compensated multistyle systems.

6.2 Broadcast News

These positive results on RM motivate testing on more challenging task such as Broadcast News.
The BN system used here is based on a simplified version of the CU-HTK RT-03 BN-E system [19].
The acoustic model is trained in an ML fashion, as opposed to MPE, on approximately 143 hours
of found data from recorded English Broadcast News released by the LDC in 1997 and 1998.
State-tied cross-word tri-phone models were defined using decision tree clustering. This gave
approximately 7000 states, with each state modeled by 16 Gaussians, yielding about 110k acoustic
model components. Testing was conducted on the dev-03 test set totaling 3 hours of shows from
six different news sources aired in January, 2001. The same segmentation and clustering routines
from the RT-03 system were used to provide homogeneous blocks of training and test data. MFCC
parameters were chosen over PLP, without CMN. Decoding was done without adaptation, using
a 59k-word dictionary and a bigram language model to generate lattices. A trigram language
model is then used to re-score the lattices and find the 1-best transcription. Only recognition on
wide-band data was compensated using the techniques discussed; the same narrow-band results,
from an uncompensated system, were used during scoring for all the systems described. A more
complex system would typically use some form feature projection scheme such as HLDA [22] or
fMPE [32], advanced covariance modeling such as STC [11], and MMI [42] or MPE [33] training
of model parameters; the use of such techniques were not investigated in these experiments.

Results for a noise compensated Broadcast News system are presented in table 5. The test
set itself is not very noisy, with large amounts of studio audio. The baseline WER for the un-
compensated multistyle BN system is 20.8%. Conducting adaptive training using CMN reduces
this to 19.4%. Using only 16 Joint transforms, estimated using Joint noise estimation as in the
RM system, does not give gains over this, however increasing the number to 256, to reflect the
magnitude increase in acoustic model components, does. With 256 Joint transforms, the WER of
18.8% is equivalent to the more computationally demanding VTS-style compensation; using ML
VTS noise estimates degrades this to 19.1% emphasising the need to tailor the noise estimation
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Number of
Test Set Compensation Transforms %WER

dev-03

— — 20.8

Joint
16 19.4
256 18.8

VTS — 18.8

Table 5: Noise compensation on Broadcast News.

form to the compensation. As seen on the RM task, these predictive noise compensation schemes
complement linear transforms. Adapting with two full CMLLR transforms yields an error rate
of 18.1%, but combined with VTS compensation or 256 Jointtransforms gives an overall WER
of 17.7%. This reinforces findings on the RM database that suggest applying predictive noise
compensation schemes, such as VTS or Joint uncertainty decoding, to large multistyle trained
acoustic models is beneficial. Initial experiments with JAT on BN data did not show any gains;
this was felt to be due to the low amount of noise present in the training data.
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7 Conclusions

This report has investigated the use of model-based VTS compensation and Joint uncertainty
decoding with clean and multistyle trained acoustic models, in unseen noise conditions, and with
artificially corrupted and real noisy data. A straightforward noise estimation scheme is presented to
estimate ML cepstral models of the additive and convolutional noise based on an EM framework
for either VTS or Joint compensation. Not only are the static features of the additive noise
variance estimated, the dynamic ones are as well; this allows the dynamic features and variances
of the acoustic model to be compensated. Furthermore, this scheme permits the noise model to be
continuously updated, even during long segments of speech, while simpler methods of estimating
noise from background regions cannot. On an artificially corrupted, medium vocabulary RM
task, this noise estimation scheme gave results close to matched performance with either VTS or
Joint transforms compensating clean acoustic models. However, this scheme may also be thought
of as estimating a ML noise model that produces transforms which best reduce the mismatch
between training and test conditions; hence it may also be applied with multistyle trained models.
Experiments showed that using these predictive techniques on such a model was more effective
than on a clean trained one, and exceeded matched system performance.

It was also demonstrated that model-based Joint uncertainty decoding may be viewed as an
approximation to VTS compensation. Instead of computing the VTS approximation for every
acoustic model component, the Joint form allows the approximation to be shared over a class
or cluster of similar components. This improves efficiency with only a small loss in accuracy and
allows the Joint form to scale performance to the available compuatation resources. Also, these
predictive techniques, while better than linear transforms in compensating for noise, were also
complementary to CMLLR and can be effectively combined. A linear transform of features can
only address low levels of noise, whereas the predictive techniques discussed also update model
variances such that they can cope with the mismatch of higher levels of noise. However, since the
VTS and Joint compensation forms used only noise mismatch functions, the remaining mismatch
due to other factors can be addressed by CMLLR. These results were clearly shown on both clean
and multistyle RM systems and on the large vocabulary BN multistyle system.

The report also introduced a Joint adaptive training framework as a more effective approach
to handling noise in the training data compared to multistyle training. This form of adaptive
training explicitly normalises out noise to yield a “clean” acoustic model whereas multistyle train-
ing includes the variation due to noise in the models. A generalised EM method and update
formula for estimating the Joint transforms and canonical model mean and variance parameters
was provided. There were no closed form solutions for the latter, hence a generic iterative opti-
misation was given along with several mechanisms to stabilise the process. A feature of JAT is
that the uncertainty bias added to the model variances effectively de-weights observations that
are noisy. This allows JAT to handle a wide range of SNR in the training data, while maintaining
a noise-free acoustic model. Results for JAT were reported on the RM task. Adapted from a
multistyle acoustic model, the JAT system consistently gave a small gain in performance over
applying compensation techniques directly to the multistyle system. While the multistyle systems
performed quite poorly on clean data, which was not present in the model training data, the JAT
acoustic model was far better at handling this unseen condition. Hence, it may be concluded that
JAT is superior to multistyle training on noisy training data.
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A Compensating Dynamic Coefficients using VTS

In state of the art recognition systems, time derivatives improve performance by addressing the
continuous nature of speech. The Continuous-Time approximation has been used to give an
analytic approximation of the first- and second-order dynamic features. Applying the chain rule
to the first time derivative of the corrupted speech yields the following

∂yi

∂t
= ∇x yi ·

∂x

∂t
+ ∇n yi ·

∂n

∂t
+ ∇h yi ·

∂h

∂t
(127)

Substituting the first-order VTS approximation in equation 6 with respect to time for the actual
corrupted speech, gives the following

∂yi

∂t
≈

∂yvts,i

∂t
(128)

= ∇x

{

yi

∣

∣

µ0
+ ∇x yi

∣

∣

µ0
·
(

x − µ(m)
x

)

+ ∇n yi

∣

∣

µ0
·(n − µn) + ∇h yi

∣

∣

µ0
·(h − µh)

}

·
∂x

∂t
+ (129)

∇n

{

yi

∣

∣

µ0
+ ∇x yi

∣

∣

µ0
·
(

x − µ(m)
x

)

+ ∇n yi

∣

∣

µ0
·(n − µn) + ∇h yi

∣

∣

µ0
·(h − µh)

}

·
∂n

∂t
+

∇h

{

yi

∣

∣

µ0
+ ∇x yi

∣

∣

µ0
·
(

x − µ(m)
x

)

+ ∇n yi

∣

∣

µ0
·(n − µn) + ∇h yi

∣

∣

µ0
·(h − µh)

}

·
∂h

∂t

= ∇x

{

∇x yi

∣

∣

µ0
·x
}

·
∂x

∂t
+ ∇n

{

∇n yi

∣

∣

µ0
·n
}

·
∂n

∂t
+ ∇h

{

∇h yi

∣

∣

µ0
·h
}

·
∂h

∂t
(130)

Recall that the vector gradient quantity in the dot products, such as ∇x yi

∣

∣

µ0
, is the gradient of

the corrupted speech, with respect to x, but with variables evaluated at µ0 and hence is no longer
a function of any of the random variables. Thus

∂yi

∂t
≈ ∇x yi

∣

∣

µ0
·
∂x

∂t
+ ∇n yi

∣

∣

µ0
·
∂n

∂t
+ ∇h yi

∣

∣

µ0
·
∂h

∂t
(131)

This can be re-expressed as

∂y

∂t
≈

∂y

∂x

∣

∣

∣

µ0

∂x

∂t
+

∂y

∂n

∣

∣

∣

µ0

∂n

∂t
+

∂y

∂h

∣

∣

∣

µ0

∂h

∂t
(132)

The expected value of equation 132, across the clean speech and additive noise variables, gives the
corrupted speech delta parameters

µ
(m)
∆y ≈ E

{

∂y

∂t

}

(133)

≈
∂y

∂x

∣

∣

∣

µ0

µ
(m)
∆x +

∂y

∂n

∣

∣

∣

µ0

µ∆n +
∂y

∂h

∣

∣

∣

µ0

µ∆h (134)

If it is assumed that the additive noise is stationary, hence µ∆n = 0, and the convolutional noise
invariant, implying µ∆h = 0, then

µ
(m)
∆y ≈

∂y

∂x

∣

∣

∣

µ0

µ
(m)
∆x (135)

The variance of equation 132 about the expansion point µ0 is

Σ
(m)
∆y ≈ E

{

∂y

∂t

∂y

∂t

T
}

− µ
(m)
∆y µ

(m)T
∆y (136)

≈
∂y

∂x

∣

∣

∣

µ0

Σ
(m)
∆x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σ∆n

∂y

∂n

∣

∣

∣

T

µ0

+
∂y

∂h

∣

∣

∣

µ0

Σ∆h

∂y

∂h

∣

∣

∣

T

µ0

(137)

The assumption of channel invariance translates to zero channel variance, hence

Σ
(m)
∆y ≈

∂y

∂x

∣

∣

∣

µ0

Σ
(m)
∆x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σ∆n

∂y

∂n

∣

∣

∣

T

µ0

(138)
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A.1 Acceleration Coefficients

The second time derivatives are also typically used in standard recognisers. Differentiating equa-
tion 132 with respect to time, gives the equivalent form found in [1], however embeds the VTS
approximation in the partial derivative. If we start from equation 127, while again assuming
invariant convolutional noise, then

∂2yi

∂t2
=

∂

∂t

{

∂yi

∂t

}

(139)

=
∂

∂t

{

∇x yi ·
∂x

∂t
+ ∇n yi ·

∂n

∂t

}

(140)

=
∂∇x yi

∂t
·
∂x

∂t
+ ∇x yi ·

∂2x

∂t2
+

∂∇n yi

∂t
·
∂n

∂t
+ ∇n yi ·

∂2n

∂t2
(141)

=

{

∂2yi

∂x∂x

∂x

∂t
+

∂2yi

∂n∂x

∂n

∂t

}

·
∂x

∂t
+∇x yi ·

∂2x

∂t2
+

{

∂2yi

∂x∂n

∂x

∂t
+

∂2yi

∂n∂n

∂n

∂t

}

·
∂n

∂t
+∇n yi ·

∂2n

∂t2

(142)

Since there are no cross terms in a VTS approximation of the clean speech, the cross partial
derivatives are null, simplifying equation 142 to

∂2yi

∂t2
≈

∂2yi

∂x∂x

∂x

∂t
·
∂x

∂t
+∇x yi ·

∂2x

∂t2
+

∂2yi

∂n∂n

∂n

∂t
·
∂n

∂t
+∇n yi ·

∂2n

∂t2
(143)

Substituting a first-order VTS approximation of the corrupted speech yi will also result in the
second-order partial derivatives being null

∂2yi

∂t2
≈

∂2yvts,i

∂t2
= ∇x yi

∣

∣

µ0
·
∂2x

∂t2
+ ∇n yi

∣

∣

µ0
·
∂2n

∂t2
+ (144)

which may also be written as

∂2yi

∂t2
≈

∂y

∂x

∣

∣

∣

µ0

∂2x

∂t2
+

∂y

∂n

∣

∣

∣

µ0

∂2n

∂t2
+

∂y

∂h

∣

∣

∣

µ0

∂2h

∂t2
(145)

Since equation 145 is similar in form to equation 132, thus it is obvious the first and second
moments of the acceleration coefficients of the corrupted speech distribution are also similar

µ
(m)
∆2y

≈
∂y

∂x

∣

∣

∣

µ0

µ
(m)
∆2x

(146)

Σ
(m)
∆2y

≈
∂y

∂x

∣

∣

∣

µ0

Σ
(m)
∆2x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σ∆2n

∂y

∂n

∣

∣

∣

T

µ0

(147)

This is the same result as found in [1], however investigating higher order VTS approximations
for the acceleration coefficients may be fruitful.

Alternatively, a second order VTS approximation of the corrupted speech may be made to give
a better estimation of the acceleration coefficients. This is

y2vts,i = yi

∣

∣

µ0
+ ∇x yi

∣

∣

µ0
·
(

x − µ(m)
x

)

+ ∇n yi

∣

∣

µ0
·(n − µn) + ∇h yi

∣

∣

µ0
·(h − µh)+ (148)

1

2

∂2yi

∂x∂x
·
(

x−µ(m)
x

)

·
(

x−µ(m)
x

)

+
1

2

∂2yi

∂n∂n
·(n−µn)·(n−µn)+

1

2

∂2yi

∂h∂h
·(h−µh)·(h−µh)

The second order partial derivative matrices have elements

∂2yi

∂xj∂xk

=
∂2yi

∂nj∂nk

=
∂2yi

∂hj∂hk

(149)

=

Ds
∑

i=1

cid

(

exp(c-1

d (µn − µ
(m)
x − µh))

1 + exp(c-1

d (µn − µ
(m)
x − µh))

)(

1

1 + exp(c-1

d (µn − µ
(m)
x − µh))

)

c-1djc
-1

dk

(150)

for row j and column k.
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B Derivative of Auxiliary wrt Static Noise Means

To find new estimates of the additive and convolutional noise, the partial derivatives of the aux-
iliary function in equation 51 with respect to these two vectors is necessary. Differentiating the
auxiliary function

∂

∂µ̂n

Q(Φ; Φ̂µ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂µ̂n

[

log p(ot|Φ̂µ̂,M, m)
]

(151)

By using the first-order VTS approximation for compensation, only the static portion of the
auxiliary function is dependent on the static additive and convolutional noise

∂

∂µ̂n

Q(Φ; Φ̂µ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂µ̂n

[

−
1

2

(

yt − µ̂
(m)
y

)T

Σ(m)-1
y

(

yt − µ̂
(m)
y

)

]

(152)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂µ̂n

[

−
1

2

(

yT

t Σ(m)-1
y yt − 2µ̂(m)T

y Σ(m)-1
y yt + µ̂(m)T

y Σ(m)-1
y µ̂(m)

y

)

]

(153)

The derivatives of the three terms, whilst using the mean of the first-order approximation of the
corrupted speech from equation 59, are

∂

∂µ̂n

yT

t Σ(m)-1
y yt = 0 (154)

∂

∂µ̂n

µ̂
(m)T
y Σ(m)-1

y yt =
∂

∂µ̂n

[(

µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

(µ̂n − µn) +
∂y

∂h

∣

∣

∣

µ0

(µ̂h − µh)

)T

Σ(m)-1
y yt

]

(155)

=
∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y yt (156)

∂

∂µ̂n

µ̂(m)T
y Σ(m)-1

y µ̂(m)
y =

∂

∂µ̂n

[(

µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

(µ̂n − µn) +
∂y

∂h

∣

∣

∣

µ0

(µ̂h − µh)

)T

Σ(m)-1
y × (157)

(

µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

(µ̂n − µn) +
∂y

∂h

∣

∣

∣

µ0

(µ̂h − µh)

)]

= 2
∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y µ̂

(m)
y (158)

Substituting these results gives

∂

∂µ̂n

Q(Φ; Φ̂µ̂) =
T
∑

t=1

M
∑

m=1

γ
(m)
t

[

0 +
∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y yt −

∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y µ̂(m)

y

]

(159)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t

[

∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y (yt − µ̂

(m)
y )

]

(160)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t × (161)

∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y

(

yt−

(

µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

(µ̂n − µn) +
∂y

∂h

∣

∣

∣

µ0

(µ̂h − µh)

))

=0
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and similarly it can be shown that

∂

∂µ̂h

Q(Φ; Φ̂µ̂) =
T
∑

t=1

M
∑

m=1

γ
(m)
t

[

∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y (yt − µ̂(m)

y )

]

(162)

=

T
∑

t=1

M
∑

m=1

γ
(m)
t × (163)

∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y

(

yt−

(

µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

(µ̂n − µn) +
∂y

∂h

∣

∣

∣

µ0

(µ̂h − µh)

))

=0

To solve for µ̂n and µ̂h, the system of equations (161, 163) can be expressed as

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂y

∂n

∣

∣

∣

T

µ0

Σ(m)-1
y

(

yt−µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

µn+
∂y

∂h

∣

∣

∣

µ0

µh −
∂y

∂n

∣

∣

∣

µ0

µ̂n −
∂y

∂h

∣

∣

∣

µ0

µ̂h

)

=

d − Eµ̂h − Fµ̂n = 0 (164)

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂y

∂h

∣

∣

∣

T

µ0

Σ(m)-1
y

(

yt−µ(m)
y +

∂y

∂n

∣

∣

∣

µ0

µn+
∂y

∂h

∣

∣

∣

µ0

µh −
∂y

∂n

∣

∣

∣

µ0

µ̂n −
∂y

∂h

∣

∣

∣

µ0

µ̂h

)

=

g − Hµ̂h − Jµ̂n = 0 (165)

C Estimating the Additive Noise Variance

The gradient of the auxiliary function is useful for determining the optimal additive noise variance
in a ML fashion. For the static additive noise variance this is

∂

∂Σ̂n

Q(Φ; Φ̂) =

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂Σ̂n

[

log p
(

ot

∣

∣Φ̂,M, m
)]

(166)

=
T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂Σ̂n

[

−
1

2
log
∣

∣Σ̂
(m)

y

∣

∣−
1

2

(

yt−µ(m)
y

)T

Σ̂
(m)-1

y

(

yt−µ(m)
y

)

]

= −
1

2

T
∑

t=1

M
∑

m=1

γ
(m)
t

∂

∂Σ̂n

[

log
∣

∣Σ̂
(m)

y

∣

∣+
(

yt−µ(m)
y

)T

Σ̂
(m)-1

y

(

yt−µ(m)
y

)

]

(167)

Here the gradient with the respect to the static additive noise variance is only a function of the
static parameters. The two terms that are being differentiated can be examined separately and
on a per dimension basis. First determine the derivative of the normalising determinant

∂

∂σ̂2
n,i

log
∣

∣Σ̂
(m)

y

∣

∣ =
1

∣

∣Σ̂
(m)

y

∣

∣

∂
∣

∣Σ̂
(m)

y

∣

∣

∂σ̂2
n,i

(168)

=
1

∣

∣Σ̂
(m)

y

∣

∣

∣

∣Σ̂
(m)

y

∣

∣Tr



Σ̂
(m)-1

y

∂Σ̂
(m)

y

∂σ̂2
n,i



 (169)

after using the fact that ∂|A|
∂x

=
∣

∣A
∣

∣Tr
[

A-1 ∂A

∂x

]

. Tr indicates the trace function. The partial
derivative of the variance of the corrupted speech with respect to the variance of the additive
noise is needed. The variance of the first-order VTS approximation of the corrupted speech in
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equation 13 provides the relationship. Hence,

∂Σ̂
(m)

y

∂σ̂2
n,i

=
∂

∂σ̂2
n,i

{

∂y

∂x

∣

∣

∣

µ0

Σ(m)
x

∂y

∂x

∣

∣

∣

T

µ0

+
∂y

∂n

∣

∣

∣

µ0

Σ̂n

∂y

∂n

∣

∣

∣

T

µ0

}

(170)

= 0 +
∂y

∂n

∣

∣

∣

µ0

∂Σ̂n

∂σ̂2
n,i

∂y

∂n

∣

∣

∣

T

µ0

(171)

=
∂y

∂n

∣

∣

∣

µ0

∆ii

∂y

∂n

∣

∣

∣

T

µ0

(172)

=

(

∂y

∂n

∣

∣

∣

T

µ0

)

i

(

∂y

∂n

∣

∣

∣

µ0

)

i

(173)

Here the Ds-square matrix ∆m,n is an all zero matrix save for a single entry of 1 at row m, column

n. The notation
(

∂y
∂n

∣

∣

T

µ0

)

i
gives the ith column of the Jacobian matrix ∂y

∂n

∣

∣

µ0
. Substituting this

result into equation 169 gives

∂

∂σ̂2
n,i

log
∣

∣Σ̂
(m)

y

∣

∣ = Tr

[

Σ̂
(m)-1

y

(

∂y

∂n

∣

∣

∣

T

µ0

)

i

(

∂y

∂n

∣

∣

∣

µ0

)

i

]

(174)

If it is assumed the inverse corrupted speech variance is diagonal, and since the trace function
only takes into account the diagonal terms, then this can be written as
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=
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Next, the derivative of the main probability term is
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after again applying the identity ∂A
-1

∂x
= −A-1 ∂A

∂x
A-1. Substituting the result from equation 172

yields
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This is the square of the ith element of the row vector, and when Σ̂
(m)

y is diagonalised, can also
be written as
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and ignoring the cross terms, as is the case when the covariance matrix is diagonalised
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Hence, the gradient of the auxiliary function with respect to the static noise variances from equa-
tion 78 simplifies to
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where the sufficient statistics p(m) and q(m) are defined as
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