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Discriminative Cluster Adaptive Training
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Abstract—Multiple-cluster schemes, such as cluster adaptive
training (CAT) or eigenvoice systems, are a popular approach
for rapid speaker and environment adaptation. Interpolation
weights are used to transform a multiple-cluster, canonical, model
to a standard hidden Markov model (HMM) set representative
of an individual speaker or acoustic environment. Maximum
likelihood training for CAT has previously been investigated.
However, in state-of-the-art large vocabulary continuous speech
recognition systems, discriminative training is commonly em-
ployed. This paper investigates applying discriminative training
to multiple-cluster systems. In particular, minimum phone error
(MPE) update formulae for CAT systems are derived. In order
to use MPE in this case, modifications to the standard MPE
smoothing function and the prior distribution associated with
MPE training are required. A more complex adaptive training
scheme combining both interpolation weights and linear trans-
forms, a structured transform (ST), is also discussed within the
MPE training framework. Discriminatively trained CAT and
ST systems were evaluated on a state-of-the-art conversational
telephone speech task. These multiple-cluster systems were found
to outperform both standard and adaptively trained systems.

Index Terms—Cluster adaptive training (CAT), discrimi-
native training, eigenvoices, minimum phone error (MPE),
multiple-cluster HMM.

1. INTRODUCTION

DAPTIVE training is a widely used technique to build

speech recognition systems on nonhomogeneous data.
This type of data occurs in many scenarios, for example,
broadcast news and conversational telephone speech. In adap-
tive training, a set of transformations is used to represent
the unwanted acoustic variabilities [1]. A canonical model
is constructed which only represents the underlying speech
variability. This canonical model is then adapted to a particular
test speaker or environment. There are two sets of parameters
to be estimated during training: the canonical model and the set
of transformations. To allow the standard decoding framework
to be used, the final adapted model is usually required to be a
standard hidden Markov models (HMMs). However, the form
of the canonical model can vary depending on the nature of the
transformation. One commonly used set of transformations is
based on linear transforms, such as maximum likelihood linear
regression (MLLR) [2] and constrained MLLR (CMLLR) [3].
In both cases, the canonical model is a set of standard HMMs.
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An alternative approach is based on a multiple-cluster canon-
ical model. Here, multiple sets of HMMs, one for each cluster,
are used. The adapted model is generated by interpolating the
cluster parameters to form a standard HMM. The transforma-
tion in these cases is a set of interpolation weights, a weight for
each cluster. Though this approach was originally motivated
for rapid speaker adaptation, it can be effectively extended for
generic adaptation in large vocabulary speech recognition [4].
To simplify training, these interpolation weights are usually
only applied to the cluster means to yield the final, adapted,
mean vector for each component. Cluster adaptive training
(CAT) [5] and eigenvoices [6] are two such approaches. More
discussions about adaptive training in multiple-cluster systems
can be found in [4]. These multiple-cluster schemes are the
approach investigated in this paper, in particular CAT is con-
sidered.

Maximum likelihood (ML) estimation of CAT systems has
previously been published [5]. However, in state-of-the-art
speech recognition systems, discriminative training is com-
monly employed to obtain the best performance. Discriminative
training criteria take into account competing, incorrect, hypoth-
esis in training. Unlike ML training, they make no assumption
of model correctness. Commonly used criteria are maximum
mutual information (MMI) [7], minimum classification error
(MCE) [8], and minimum phone error (MPE) [9]. Of these
criteria, MPE is currently popular for state-of-the-art speech
recognition as it has been found to yield good performance
[10]. One problem with using these discriminative criteria is
that parameter optimization becomes more complex. Stan-
dard auxiliary functions based on expectation maximization
(EM) cannot be directly used. To overcome this problem, the
extended Baum—Welch algorithm (EBW) [11], [22] has been
proposed. An alternative approach, which yields similar update
formulae and is highly flexible, uses a weak-sense auxiliary
function [10]. This is the approach adopted in this paper to
derive discriminative update formulae for multiple-cluster
systems. Discriminative training has previously been studied
within the linear transform-based adaptive training framework
[12]-[14].

In discriminative adaptive training, both model and transform
parameters should be updated using the discriminative criterion.
However, for some tasks, this is not necessarily the most appro-
priate approach. For example, in unsupervised test-set adapta-
tion, where the correct transcription is not known, using discrim-
inative techniques to directly estimate the test-set transform is
not possible. If, during adaptive training, the transforms have
been estimated using discriminative techniques, there will be
a mismatch between the training and test configurations. To
allow a consistent approach for transform estimation, a sim-
plified form of discriminative adaptive training is often used.
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Rather than discriminatively estimating both the model parame-
ters and the transformations during training, only the model pa-
rameters are discriminatively trained. The transformations are
estimated using the ML criterion and fixed for all subsequent
discriminative training iterations [14]. The ML criterion is then
used to find the transformation for the test set adaptation. For
details of the discriminative estimation of the CAT interpola-
tion weights, see [15].

In this paper, discriminative training for multiple-cluster
model is investigated. In particular, MPE training is applied to
state-of-the-art CAT systems. In order to successfully apply
MPE training to a large vocabulary system, it is necessary to
specify appropriate smoothing functions and prior, I-smoothing,
distributions [10]. For these multiple-cluster systems, the forms
of these functions must be modified so that they may be applied
to all canonical model parameters. In addition, a more complex
multiple-cluster model based discriminative adaptive training
technique is discussed, which uses a combination of interpo-
lation weights, as in CAT, and CMLLR to represent complex
nonspeech variabilities. This will be referred to as a structured
transform (ST) [16].

This paper is organized as follows. Section II introduces ML
estimation for CAT systems. Section III describes standard MPE
training and Section IV extends this to multiple-cluster systems.
Obtaining good prior distribution and smoothing constants is
discussed in Section V. Discriminative adaptive training with
STs is then described in Section VI. Section VII presents ex-
periments on a state-of-the-art conversational telephone speech
task.

II. CLUSTER ADAPTIVE TRAINING

CAT [17] is a multiple-cluster HMM training approach. The
basic idea is to build a target-domain-specific mean vector for
each component by using a weighted sum of multiple sets of
mean vectors. A weight vector is computed for each distinct
speaker! during training. The transform for test set adaptation
is then a weight vector for each test speaker. There are two sets
of model parameters that must be trained for the CAT system.
The first are the canonical model parameters. Each component,
m, of the canonical model consists of a prior, c(m), a covariance
matrix (usually diagonal), $(m) and a set of P means, one for
each of the P clusters, normally arranged into a matrix M (™)

M) = [ (™ (m)]

Up

The complete canonical model M consists of2

MDY (2® 72(M)}}

M:{{M(l),...7

I'The term speaker in this paper could be replaced by acoustic environment or
channel for example.

2In this paper, the Gaussian component priors and transition matrices are not
included as their estimation, both ML-based and MPE-based, are similar to the
standard estimation schemes. Refer to [18] for standard ML-based scheme and
[10] for MPE-based scheme.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

where M is the total number of components. The second set
of parameters are the interpolation weights for each speaker, s,

A

s S s T
AG = A A2 (1
where )\,()s) is the interpolation weight for cluster p. In some
systems a bias cluster is used where )\gf) = 1 for all speakers.
This bias cluster naturally occurs in an eigenvoice initialized
system [5]. The adapted mean for a particular speaker s can then

be written as
pm™ = MG, )

ML CAT training has previously been published [5]. As in
standard HMM training, an EM algorithm is employed. How-
ever, rather than simultaneously updating the transform param-
eters and the canonical model, the two updates are interleaved.
The canonical model is estimated given a set of transforms,
the transforms are then estimated for the new canonical model.
At each iteration, the likelihood of the training data is guaran-
teed not to decrease. The ML update formulae for the canonical
model are reproduced here as the discriminatively trained for-
mulae are closely related to them. If diagonal covariance ma-
trices are used,? then the ML-update formulae are given by

M(m G(m) 1K(m) 3)
Bm) = - o diag (Lo - MKE) @)
ml

where the sufficient statistics are

Zv(’”
Zv“"
Ly Zwm”z (t)o(t)o

v = Zw @®)

Gm = HADNET )

OM ©)

and fyr(ﬂ)(t) is the posterior probability of being in component
m at time ¢ given the current canonical model parameters and
transforms. For this work, the interpolation weights are only
estimated using ML as in [5], so they are not discussed in detail.

When training a model using the EM algorithm, initialization
is an important issue. For this work, the interpolation weights
are initialized, rather than the model parameters. This allows
the initialization of state-of-the-art speech recognition systems
to be simply done [5], [15]. Once the interpolation weights are
known, the component posterior ’yf:;') (t) can be obtained from
an appropriate large vocabulary standard system and (5)—(8)
are used to update the canonical model. Two kinds of weight
initialization are considered in this paper. The first is cluster-
based, where each distinct speaker is assigned to a single cluster.
This may either be done automatically, or using information
from the training data such as gender or corpus. The second

3This assumption is also applicable to discriminative CAT in later sections
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form of initialization is based on eigen-decomposition. Here,
simple models, such as monophones, are generated for each of
the acoustic factors and an appropriate dimension eigenvoice
system [6] is generated. The initial points for each speaker in
this eigenspace is then used to initialize the weights. See [5] for
more details.

Both CAT [17] and eigenvoices [19] are multiple cluster
schemes. It is interesting to briefly contrast the two. Both
systems use a set of distinct mean vectors. The “eigenvoices’
correspond to the cluster mean matrices in CAT model. An
eigenvoices system always employs an eigen-decomposition
initialization approach based on PCA or LDA, but CAT systems
may also employ prior knowledge for initialization. For some
eigenvoices systems, the initialized basis eigenvoices are not
further updated but directly used in adaptation and decoding
[6], while CAT systems always update the multiple-cluster
model [5]. If eigenvoices are updated using the maximum
likelihood eigenspace (MLES) approach [20], it is equivalent
to updating CAT cluster mean matrices and leaving covariance
matrices unchanged [5]. Due to this close relationship, the
discriminative training for CAT in this paper can also be used
in eigenvoice systems.

III. MINIMUM PHONE ERROR TRAINING

The ML criterion aims to construct a model that maximizes
the likelihood of the training data. However, in a classification
task, the aim is to train a model that minimizes the error rate.
Under various conditions, the ML criterion will also minimize
the error rate [7]. However, these conditions are not satisfied for
current speech recognition systems. This has led to an interest in
training criteria that are more closely related to word error rate.
These discriminative training criteria have become increasingly
popular for speech recognition [7]-[9]. They take into account
competing, incorrect hypothesis in training, rather than only the
correct hypothesis. Thus, in addition to minimizing how “close”
the model is to the correct hypothesis, it maximizes the “dis-
tance” from incorrect hypothesis. MPE has been found to yield
good performance on state-of-the-art speech recognition tasks
[9]. In this section, the MPE criterion is briefly described along
with how it is applied to train standard HMMs.

The MPE criterion R(M) may be expressed as below [9],
[10]

22 P(O[My)" P(w) A(w)

R =108 | 5 (0TM, ) Plw)

= log +log(p(M))

©))
where A(w) is a measure of the number of phones accurately
transcribed, M, is the composite model for word sequence w,
K 1s an acoustic deweighting factor commonly used in discrimi-
native training, and p(,M) is the prior for the model parameters
which is used to improve robustness of the estimates.

In MPE training, it is not possible to use EM to train the model
parameters. This leads to the introduction of the EBW algorithm
for MMI training [11], [22]. In this paper, a modified approach
based on a weak-sense auxiliary function is used [10]. A weak-
sense auxiliary function for R(M) around the current model

parameters M is a smoothing function Q™¢(M; M ) such that

0Qmre(M; M)

oM .
M=KM

= IR(M) . (10)

OM | i
Maximizing Q™¢(M; M) with respect to M does not guar-
antee to increase the objective function RQM) However, if
QP ( M; M) reaches a local maximum at M, i.e., the gradient
is 0 at that point, R(M) is guaranteed to also be at a local max-
imum. To increase the stability of the optimization, a smoothing
function is required.

An appropriate weak-sense auxiliary function for standard
HMMs is defined in [10]

QP (M; M) = Q" (M; M) — QUM M)
+F(M; M) +log(p(M))  (11)

where the numerator and denominator auxiliary functions,
Q™" (M; M) and Q4(M; M), respectively, have the same form
as the standard ML auxiliary function. The only difference
between the numerator, denominator, and the standard auxil-
iary functions is that the “posterior probability” for Gaussian
component m at time ¢, 75" (£) and 5™ (#), are not calculated
based on the correct transcription as the standard forward-back-
ward algorithm does [18]. Instead, the forward-backward
algorithm is first applied within each phone arc of the lattice.*
It is then applied at word-level within the lattice to figure out
the word arc posteriors. Phone accuracy is measured for each
phone arc. The arcs with higher accuracy than the average
are classified as numerator, and those with lower accuracy as
denominator. ’y,(q,m) (t) is then calculated based on the numerator
arcs by multiplying together the within arc component posterior
occupancy, the word posterior occupancy and the phone-accu-
racy difference between the phone arc and the average accuracy.
Similarly, fyc(lm)(t) is computed based on denominator arcs.
Details can be found in [10].

The smoothing function F (M,M) is required to ensure
a convex weak-sense auxiliary function and consequently
improve stability in optimization, this function must satisfy the
following constraint

9 )

=0
oM M

12)

to ensure that the resulting auxiliary function is still a valid
weak-sense auxiliary function for R(M). For the standard
HMM, a modified Gaussian centred on the current model
parameters is used [10].

To increase the robustness of the parameter estimates, a
prior is used in the criterion (9) and, consequently, appears in
the auxiliary function (11) [10]. The prior distribution over
the model parameters may also be viewed as an additional
smoothing function, referred to as “I-smoothing” [9]. Usually,

4In common with the majority of discriminative training schemes, lattices are
used to represent possible denominator paths. These lattices are phone-marked
before training. [9], [10]



a Normal-Wishart distribution is employed as in maximum a
posteriori (MAP) training [21]. The prior parameters of p(M)
can be either based on ML estimates, which is the standard form
[22], or based on MAP estimates, which is called MPE-MAP
[23].

Differentiating the weak-sense auxiliary function (11) with
respect to standard model parameters yields closed-form solu-
tion for standard MPE training [10]. The update formulae have
the same form as the EBW algorithm [11], [22].

IV. MPE TRAINING OF MULTIPLE-CLUSTER MODEL

The previous section has described the general form for the
MPE criterion and the functions used to train standard HMMs.
This section will discuss how MPE training can be applied to
multiple-cluster models. The general form of the weak-sense
auxiliary function in (11) can again be used. However, the form
of the individual functions will change to reflect the multiple-
cluster nature of the canonical model. For all estimates in this
section, the transform parameters for each speaker A(*) are as-
sumed to be known and fixed.

A. Numerator and Denominator Auxiliary Functions

The numerator and denominator functions for estimating the
standard HMM parameters have the same form as the auxiliary
function used for EM training. The same concept may be applied
to multiple-cluster systems. The standard ML auxiliary function
for CAT may be written as (ignoring terms independent of the
model parameters)

QM M;M) = —= Z Al {10g|2<m |

smt

T
+ (o(t) - M(’">,\<S>) n(m-1 <o(t) 4 M<m>,\<8>) } (13)

It is possible to re-express this auxiliary function in terms of a
set of ML sufficient statistics, ©,,,;, and a function over those
statistics, G(0,,,;) such that

Q™(M; M) = G(O1) (14)

where

1 m m m)a(m)—
G(Om) = — EZ{yfnl)logm( )| +tr<L§nl>z< ) 1)
— 2tr <K;ﬁ}>z<m>—1M<m>>

- tr<G§n’?}'>M<m>Tz<m>—1M<M>> }
(15)

and
0= {1 c k147

as defined in (5)—(8). To obtain the numerator and denominator
auxiliary functions, it is sufficient to replace the ML posterior,
'y?(:z)( t), in (5)—(8) with the appropriate numerator and denomi-

nator “posteriors” 7" (t) and mﬁ"‘) (t), respectively. This yields

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

numerator and denominator statistics ©,, and ©4. The numer-
ator auxiliary function can then be written in the general form
as (15)

Q" (M; M) = G(6,)

and similarly for the denominator auxiliary function.

(16)

B. Smoothing Function

As discussed in Section III, the smoothing function

F(M; M) must yield the current current model M parameters
as a maximum to satisfy (12). Since the current parameters
are dependent on the interpolation weights, one approach is to
define a per speaker smoothing function, that satisfies (12) for
each speaker. One suitable smoothing function is given by

D, v
= 2”

m,s

X {log =]+ tr <2(m)2(m)_1>

T
4 <M(m> A _ ﬂ(sm>>

o g(m)—1 <M(m> A _ ﬂ(sm>>}

a7)

F(M;M) =

where 4™ = M A®) and ﬁ}(m) are the current model pa-

rameters. The constant D,,, is a positive smoothing constant for
component m to control the impact of smoothing function and
make the optimization stable. This smoothing functlon is shown
to be a valid smoothing function for all values of 1/ [15] How-

ever, rather than using a constant value for all speakers, it is more
appropriate to use this value to reflect the proportions of data for
the particular component of a speaker.’ In this work, it is set as

Z%(zm)(t)
E v (t)

v = (18)

where the summation in the numerator only involves data asso-
ciated with a particular speaker s.

This definition of the smoothing function is close to the stan-
dard auxiliary function. By doing a little algebra, it can be ex-
pressed in the same general form as (15), i.e.,

FIM: A1) = G(8,) (19)
where
0. = {DmDmGgm),Dng’"),Dngm)}
and
G = ZVS)/\(S)'\(S)T (20)

5When using a constant value for {*), the WER of MPE-CAT was about
0.1% worse compared to using (18) (with dynamic multiple-cluster ML prior
and the same configurations as the 16 component development systems in Sec-
tion VII)
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K™ = GUmNg(mT
RCOIE SRS (CAPTCRLY (GOl

1)
(22)

For multiple-cluster MPE training, the selection of D,, is dif-
ferent from the single-cluster MPE training. This will be dis-
cussed in detail in Section V-B.

C. I-Smoothing Prior Distribution

The I-smoothing distribution used for a multiple-cluster
HMM is a speaker-level Normal-Wishart distribution. Using
the appropriate Normal-Wishart parameters, the general form
of the log prior for multiple-cluster model parameters may be
written as

I
T ~(Ss
logp(M) = — — >

X {log 12| 4 tr (i(m)ﬁ(mFl)

T
<M(m )\(s _ sm))

x £t <M<m>,\<s - ~<S’">>} (23)

where 71 is the parameter of the Normal-Wishart distribution

which controls the impact of the prior. z*™ and f)(m) are the
prior parameters for the mean and covariance matrix of the mth
component for speaker s. 177(,: )isa slightly modified version of
(18). Since in standard MPE training, ML estimates are often
used as the priors, the ML posterior occupancy 'yr(n";)(t) are,

therefore, used here to define 177(,? )

cupancy 7™ (1).
This form of I-smoothing prior is similar to the smoothing
function (17). The log prior may be expressed as

instead of the numerator oc-

log(p(M)) = G(8p) (24)
where G() is the general form defined in (15)
o, —{T TIG;,M,TIK;M,TIL;M}
and
G]()m) — Zﬁﬁ)k(s)/\(s)T (25)
K]()m) - iﬁ,(ﬁ)/\(s)ﬂ,(sm)T (26)
Lo = (Z 50 ) <¢m)T> o7

The global value 7/ shows the impact of the prior, which is
experimentally determined as in standard MPE training [9]. In
the experiments for this paper, the performance was found to be
insensitive to the precise value of 77 used (within a reasonable
range). All experiments were using 7/ = 50, the same value
used for standard MPE training in [10].

Though the log prior (23) and the smoothing term (17) have
similar forms, they are considered separately as they have dif-
ferent functions. The smoothing function F(M; M) is used to
stabilize the optimization and control the update rate of MPE
training. It is based on the current model parameters resulting in
a similar form to the EBW re-estimation formulae [11], [22]. On
the other hand, the prior distribution log(p(,M)) is used to avoid
over-training in a similar way to MAP training [21]. It ensures
that for parameters with little data, the estimates are robust;
hence, they are likely to have good generalization on unseen
data. A range of possible priors, naturally not the current model
parameters, can be used. Prior options for multiple-cluster MPE
training will be discussed in Section V-A. Though, in theory,
log(p(M)) with a large 71 can also lead to stable optimization
without the smoothing term F(M; M), it may lead to very slow
update and the updated parameters may be dominated by the
prior. Hence, in practice, the two smoothing functions (17) and
(23) are both needed to achieve efficient, stable and robust MPE
updates.

D. Update Formulae

All the elements of the MPE weak sense auxiliary function
have been expressed in terms of a single function over a set of
sufficient statistics

Q" (M; M) = G(8,,) — G(B4) + G(8,) + G(8,).(28)

Differentiating this expression and equating to zero yields the
following update formulae:

m)T __ m)—1 m
MO = GO K (29)
m 1 & . m m m
5 = ——diag (wap)e ~ M >K$np>8) (30)
Ympe
where

Vo = Y S H D + 7 (31)
G =Gl - G + DG £ TG (32)
K™ K™ - K™ + D, K™ + 7K™ (33)
L™ =L — LY 4 D, L + 711, (34)

These can be combined to form the set of sufficient statistics

Onpe = {%(np) G(m) KM 1(m) }

mpe’ “mpe

V. PRIOR DISTRIBUTION AND SMOOTHING CONSTANT

The update formulae in the previous section have assumed
that the form of the prior distribution and the smoothing constant
for each component D,,, are known. This section discusses the
various forms of prior that may be used and the estimation of
D,,, for multiple-cluster systems.

A. Choice of Prior

One key issue in obtaining a “good” I-smoothing distribution
is to choose an appropriate form for the prior distribution and



associated parameters ﬂ,(sm) and i(m). It is possible to use the
same form of prior as the standard MPE training. In this single-
cluster case, the prior for all speakers will be the same, normally
specified as the ML-estimate [10]

1
~(sm) _ ~(m) _ (m)
m =p" = —,y<";) (Et Youp (t)o(t)) . (35)

In terms of the description of priors in this paper this is a
single-cluster dynamic ML prior. However, more general forms
of prior are possible for multiple-cluster systems. The prior
does not have to be dynamic, namely the statistics accumulated
on-the-fly. Parameters of an existing HMM model, for example
a standard ML-SI model, can be used as the prior as well.
This prior is fixed from iteration to iteration, called a static
prior. Besides ML-SI model, a standard MPE-SI model can
also be a valid prior, called a single-cluster static MPE prior.
Similarly, accumulated MPE statistics for a standard HMM is
a single-cluster dynamic MPE prior [15].

An interesting alternative is to use a multiple-cluster prior.
Here, the speaker-specific mean prior ﬂ,(sm in (23) is obtained
by interpolating over a set of multiple-cluster priors for each
speaker

ﬂl(sm) — M(™) \(=) (36)
where M(™) s the multiple-cluster prior mean matrix, A®) is
the interpolation weights for speaker s. In this approach, an ex-
isting CAT model may be used as a static prior. Alternatively,

ML statistics for M (™) and i(m) can also be employed as dy-
namic (priors. For example, substituting ML estimates for M (™)
)

~\m

and ¥ °, the sufficient statistics (25)—(27) become
0 0 T gm T g T L
p ? (’m) ml ('m) ml (m) ml .
Ymi ml Yml

Comparing the above statistics with the ML statistics (5)—(7),
they have been normalized by fyr(:;') to yield “unit” counts, as
the “occupancy” of I-smoothing part is represented by 77. This
is a natural multiple-cluster extension from the standard single-
cluster MPE training.

Examining the MPE sufficient statistics (31)-(34), when
71— oo, sufficient statistics of I-smoothing distribution
O, will dominate ©,,,.. In this case, if a multiple-cluster
prior is used, the MPE-CAT estimates will degrade to the
multiple-cluster prior. In particular, if a multiple-cluster ML
dynamic prior is used, the MPE estimates will degrade to the
ML-CAT estimate (3) and (4).

B. Selection of the Smoothing Constant

The constant D, is a critical value in MPE training to make
the weak-sense auxiliary function convex and give rapid and
stable update. Large value of D,,, will guarantee that the MPE
training does not go too aggressively to get stable update, but
result in slow update. Small value may give fast update but af-
fect the convexity of the weak-sense auxiliary function. There
is no ideal approach for obtaining D,,, satisfying both purposes.
In common with the EBW updates, the value of D,,, for weak-
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sense auxiliary function is set using empirically derived heuris-
tics. As suggested in [10], in this work, D,, is determined by

D, = max <2Dm7 Ev((lm)> (37)

where D,, is the smallest value required to ensure the updated
covariance matrix (30) is positive-definite, £ is a user-speci-
fied constant, and 'y((im) is the total denominator posterior occu-
pancy for component m. To find an appropriate D,,, the equa-
tion (™) = 0 must be solved from (30). For a single-cluster
system, the equation for each dimension is a quadratic equation
and can be easily solved [10]. However, for a multiple-cluster
model, it can be shown that the order of the polynomial equation
is P + 1, where P is the number of clusters [15]. For some spe-
cial cases, suchas P = 2 or P = 3, 1i.e., cubic or quartic polyno-
mial equation, closed-form solutions exist, and the largest real
root can be found directly. For larger number of clusters, there
are no simple closed-form solutions. Numerical approaches may
be used to find the largest real root. Alternatively, as a rough ap-
proximation, Ev(gm) may be used directly as D,,, together with
an appropriate variance floors to ensure the updated covariance
matrices are positive definite.

VI. STRUCTURED TRANSFORMS

Adaptive training normally uses a single transform to repre-
sent all nonspeech variabilities. However, for found data, there
may be multiple acoustic factors affecting the speech signal.
This motivates the use of multiple forms of transformations, de-
noted here as STs, to represent complex nonspeech variabilities
in an adaptive training framework [16], [24]. In this paper, one
particular form of ST is investigated which is appropriate for
state-of-the-art speech recognition systems. Here, CAT interpo-
lation weights [5] and CMLLR transforms [3] are combined to-
gether to form the transformation used for both adaptive training
and test-set adaptation.

In the ST form, the canonical model is a multiple-cluster
model. However, in addition to CAT, a speaker specific trans-
formation of the feature space is also applied. Then, the models
are trained in a transformed features space, where

o (t) = A®o(t) + b)(38)

A®) and b®) are the CMLLR transform for speaker s and
the transformed mean is given by (2). Estimation of the mul-
tiple-cluster canonical model is a simple extension to the CAT
approach [16]. The only modification to both ML and MPE
training is that the model is estimated in the transformed fea-
ture-space, where the transformed feature vectors o(*)(t) are
used instead of standard feature vectors o(t).

The ML transformation estimation is implemented in a
simple iterative process, where given the interpolation weights,
the adapted mean, p(*™) is used instead of u(™) to estimate the
CMLLR transform as described in [3]. Then, the interpolation
weights, A*) are estimated using the transformed features

6This approximate form has been shown in experiments to give only marginal
difference from the exact form. In this work, the exact form is used for two-
cluster systems and approximate selection for systems with more clusters.
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o(*)(t). Since a simplified MPE training scheme is employed
here, discriminative re-estimation of transformation parameters
are not considered.

VII. EXPERIMENTS
A. Systems Description

Discriminative CAT was evaluated on a state-of-the-art
large vocabulary speech recognition system, conversational
telephone speech task. The training dataset consists of three
corpora recorded with slight different acoustic conditions
and collection framework. They are LDC Call-home Eng-
lish, Switchboard, Switchboard-Cellular, consisting of 5446
speakers (2747 female, 2699 male), about 295 h of data. The
performance was evaluated on two held out test sets. A smaller
development test set of half of the devO1 test data, consisting
of 59 speakers (30 female, 29 male), about 3 h, called the
devO1sub test data. The second, larger, evaluation test dataset
is the eval0O3 dataset consisting of 144 speakers (77 female,
67 male), about 6 h. All systems used a 12-dimensional PLP
front-end with log energy and its first, second and third deriva-
tives with Cepstral mean and variance normalization. An HLDA
transform was applied to reduce the feature dimension to 39.
VTLN was also used. The use of simple adaptation schemes,
mean, and variance normalization and VTLN, decreased the
possible gains that could be obtained using adaptive training,
but gave a more realistic baseline. A tri-gram language model
was used in decoding.

Two kinds of systems were built. Both systems were built
using the same state-clustered decision trees with 6189 distinct
states. 16 components-per-state systems with four MPE training
iterations were used for rapid development. 28 component-per-
state systems with eight MPE training iterations were built for
generating results of state-of-the-art systems. Unless otherwise
stated, the standard form of I-smoothing using a dynamic single-
cluster ML prior was used for all MPE training.

Gender-independent (GI) and gender-dependent (GD) MPE
systems were built using standard MPE training technique.
Due to insufficient training data, GD MPE system often gave
poor performance [23]. To obtain good GD performance, a
more complex I-smoothing taking into account the static prior
information was used [23]. This system is referred to as GD
MPE-MAP. It yielded the best possible performance of the
state-of-the-art GD MPE systems. In this paper, gender labels
were assumed to be known for both standard MPE GD and GD
MPE-MAP systems in decoding.

Several adaptive MPE systems were constructed using the
simplified MPE adaptive training. They include MPE-SAT,
MPE-CAT and MPE-ST which employed CAT weights and
CMLLR transforms as the STs. The MPE-SAT system em-
ployed standard MPE training technique and used CMLLR
as the transformation [3]. During adaptive training and test
adaptation, global interpolation weights were estimated for
CAT and separate speech and silence transforms were used
for CMLLR. To fully compare the adaptation performance,
CMLLR adaptation was also applied on top of MPE baseline
systems and MPE-CAT systems. For all systems, the test set
supervision was generated using the MPE-SI models.

In the following experiments, pairwise significance test was
done using NIST provided software sctk-1.2, where signifi-
cance tests were using a standard approach [25].

B. Development Results

This section describes the initial development using the 16
Gaussian component per state system with a reduced number of
MPE iterations.

Table I shows the baseline performance for ML and MPE
training of the 16 component GI system. As expected the per-
formance gain from MPE training is large, over 3% absolute for
both tasks. Results for a two-cluster gender-initialized ML-CAT
and GD systems are also given in Table I. The ML-CAT system
was significantly better, using the pairwise test, than the ML-GI
baseline for both test sets. It was slightly, not significantly, better
than the ML-GD system in devO1sub, while significantly better
in evalO3.

I-smoothing is essential for obtaining good test set per-
formance using MPE training [10]. The standard form
of I-smoothing for training HMMs is to use a dynamic,
single-cluster ML prior. As previously mentioned, the selection
of the prior parameters is of additional interest for MPE-CAT
systems as the number of model parameters to be estimated
is greater than that of the equivalent standard HMM system.
Thus, the form of prior used will have a greater influence
than for the standard HMM system. A range of priors may
be used, as described in Section IV-C. A single-cluster static
MPE prior may be obtained from the standard MPE-GI model.
Alternatively a dynamic MPE prior can be obtained from the
single-cluster MPE statistics generated during training. Finally,
a multiple-cluster dynamic ML prior can be obtained from
the multiple cluster ML statistics during training. These three
forms of prior, along with using a standard single-cluster ML
prior were investigated.

Table II shows the development system performance of
MPE-CAT using different I-smoothing prior distributions. All
systems were initialized using the gender information. The form
of the prior dramatically affects the error rate. For example, the
performance on devOlsub varied from 29.3% upto 29.7%. It
should be noted that all these values are better than the ML-CAT
number of 32.6% and the MPE GI performance of 30.4% shown
in Table I. The worst performance was obtained with standard
dynamic ML prior. The best performance was obtained using
either the static or dynamic single component MPE priors.
The performance of the MPE-CAT system using either of the
MPE-priors shown in Table II is significantly better, using the
pairwise significance test, than both the ML-CAT system and
the MPE-GI system. they were also significantly better than the
complex GD MPE-MAP system.

There was little difference in performance between the dy-
namic and static MPE single cluster prior systems. However,
since a dynamic MPE prior requires additional accumulates [15]
(unless a bias cluster is used), all the following experiments of
CAT and ST used the single-cluster static MPE prior.

A second interesting aspect for CAT systems is the number
of clusters and how they are initialized. Again, the 16 compo-
nent development system was used. Three forms of cluster ini-
tialization were investigated. The first two were cluster-based



TABLE 1
16-COMPONENT ML AND MPE GI PERFORMANCE AND ML BASELINE
PERFORMANCE FOR GD AND TWO-LUSTER CAT SYSTEMS

System dev0lsub evalO3
ML | MPE ML | MPE
GI 334 | 304 32.6 | 29.2
GD 32.7 | 303 322 | 293
GD (MPE-MAP) — 29.7 e 29.0
CAT 32.6 -— 31.9 —

schemes where, the interpolation weights were initialized using
either gender information, or the corpus information. The third
form of initialization used an eigen-decomposition, as described
in Section II. For the eigen-decomposition initialized systems,
the bias cluster interpolation weight was either constrained to
stay at one, called a bias cluster system or allowed to vary after
initialization, called a no bias cluster system.

Table III shows the performance with different numbers of
clusters and initialization. Initially examining the form of the
initialization with no bias, the use of a three-cluster eigen-de-
composition system was significantly better, using the pairwise
test, than the two-cluster gender initialized for both ML and
MPE training, though there was no significant difference be-
tween the eigen-initialized system and the corpus initialized
system. For the eigen-initialized scheme, various systems using
a bias were also constructed. For these systems, the use of three
or four clusters was better than the two-cluster system. However,
there was no significant difference in performance between any
of the three or four cluster systems.

It is interesting to contrast the forms of system used here,
where there are relatively few clusters, with the large number
of clusters used in many eigenvoice systems. Many eigenvoice
systems [6] use large numbers of clusters, but with relatively
simple acoustic models, for example, single Gaussian compo-
nent per-state models. These simple models are not appropriate
for LVCSR. More complex systems have been built using ML
eigenspaces [26]. However, on the same task, and starting from
a better baseline, greater gains were obtained using a simple
two-cluster CAT system [4].7 One reason for this is that CAT
updates all the model parameters in an adaptive framework,
whereas only the eigenvoices are updated in ML eigenspace
training [26]. The results from Table III indicate that on this
task, training all the canonical model parameters, the perfor-
mance has approximately saturated at about four clusters.8 The
use of a relatively small number of clusters is advantageous
when using MPE training. MPE, in common with other dis-
criminative training criteria, is more likely to overtrain than ML
training. Thus, the generalization with large numbers of clusters
would be expected to be poor.

TFew strict comparisons exist on large vocabulary systems. One close com-
parison is on the WSJ task where a 20-cluster eigenvoice system was built [26],
and a two-cluster CAT system [4] on the SI-284 training data. Despite starting
from a better baseline, the CAT system showed a greater relative reduction in
WER over the GI system than the equivalent eigenvoice system.

8This effect has also been observed for eigenvoices in [27]. where a large
number of eigenvoices did not help performance and in some cases degraded
the performance.
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TABLE 1I
16-COMPONENT TWO-CLUSTER MPE-CAT SYSTEMS WITH DIFFERENT
FORMS OF I-SMOOTHING PRIOR DISTRIBUTION

Baseline/Prior Test sets

Form | Type | Criterion || dev0lsub [ eval03

ML-CAT 32.6 31.9

MPE-GI 304 29.2

MPE-GD-MAP 29.7 29.0

multiple | dynamic [ ML 29.7 28.9

dynamic ML 29.7 29.1

single | ¢ MPE 29.3 28.4

static MPE 29.3 28.5

TABLE III

16-COMPONENT SYSTEM WITH DIFFERENT INITIALISATION
AND NUMBER OF CLUSTERS

TR . dev0lsub evalO3
Initialisation | Bias | #Clst ML MPE ML MPE
gender 2 32.6 29.3 31.9 28.5
corpus no 3 323 29.2 31.7 28.3
eigen 3 323 29.0 31.5 28.2
2 32.8 29.3 32.0 28.5
eigen yes 3 323 29.0 31.6 28.3
4 323 29.0 31.5 28.3

C. State-of-the-Art Results

From Table III, the -eigen-decomposition initialized
three-cluster system, without a bias cluster, yielded the best
result. However, due to memory limitation, it is only possible
to build a two-cluster system for the larger 28-component
state-of-the-art® configuration. Hence, the two-cluster gender
initialization scheme was used here. It should be noted that
systems with more clusters may be expected to yield greater
gains. For MPE-CAT and MPE-ST, the single-cluster static
MPE prior was used. MPE-GD-MAP used more complex prior
as indicated in the system description.

Table IV shows a comparison of ML and MPE training.
As expected, the use of MPE training to directly generate GD
models again gave poor generalization, hence the need for
MPE-MAP training of GD models [23]. The GD MPE-MAP
and CAT models out-performed the GI models on both test sets.
Significance test showed there was a slight gain from using the
CAT system over the GD MPE-MAP system for MPE training.
This lack of significant difference is not too surprising given
the complexity of the initial GI system and the use of a complex
scheme to generate a GD MPE-MAP system.

Table V shows the performance of the state-of-the-art systems
using unsupervised, transcription mode, test-set adaptation. All
adaptively trained systems, MPE-CAT, MPE-SAT, and MPE-ST
employed the simplified MPE training scheme. Pairwise signif-
icance test showed there was no significant difference between
the MPE-CAT system and the GD MPE-MAP system. However,
the use of the ST for both training and testing showed signifi-
cant gains over all the other systems.

9The GI model set was similar to the model-set used in the CUED RT03 eval-
uation, though trained on 290 h, rather than 370 h. Given the available training
data, this was felt to be best performing system available at CUED. In the eval-
uation, the complete CUED system achieved the lowest WER on this task.
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TABLE IV
28-COMPONENT GI, GD, AND CAT SYSTEM PERFORMANCE
USING ML AND MPE TRAINING ON eval03

System [ ML | MPE |
GI 31.5 28.3
GD 31.2 28.5
GD (MPE-MAP) — 28.0
CAT 31.2 27.8
TABLE V

28-COMPONENT MPE-TRAINED SYSTEMS PERFORMANCE
WITH TRAINING AND TEST SET ADAPTATION ON eval03

Adaptation
System Tram l Test WER(%)
GI — 26.1
GD (MPE-MAP) gender | CMLLR 25.8
SAT CMLLR 259
CAT CAT ST 25.7
ST ST 25.5

VIII. CONCLUSION

This paper has described the application of discriminative
training to model sets with multiple clusters. In particular, the
application of MPE training to a CAT system has been detailed.
However, the form of discriminative adaptive training is appli-
cable to other multiple-cluster systems such as eigenvoices. In
order to apply MPE training, modified versions of smoothing
functions and parameter priors, I-smoothing, were derived for
the multiple-cluster systems.This yielded a minor modification
to the statistics required to estimate the MPE CAT canonical
model. Practical issues such as the choice of prior and selection
of smoothing constant are also discussed. A simple extension
to the CAT system, STs, where a CMLLR transform was com-
bined with CAT weights, was also described. The performance
of the systems were evaluated on a state-of-the-art conversation
telephone speech recognition task. On this task, MPE trained
CAT systems significantly out-performed the ML-CAT systems
and were slightly better than a state-of-the-art GD MPE-MAP
system. Using the more complex STs showed significant gains
over standard adaptively trained systems as well as CAT sys-
tems. For the state-of-the-art system, it was only possible to
use two-clusters. It is hoped that the use of additional clusters
will yield greater gains, as illustrated in the smaller development
system.
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