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Abstract
In recent years there has been significant interest in Automatic
Speech Recognition (ASR) and Key Word Spotting (KWS) sys-
tems for low resource languages. One of the driving forces for
this research direction is the IARPA Babel project. This paper
examines the performance gains that can be obtained by com-
bining two forms of deep neural network ASR systems, Tandem
and Hybrid, for both ASR and KWS using data released under
the Babel project. Baseline systems are described for the five
option period 1 languages: Assamese; Bengali; Haitian Creole;
Lao; and Zulu. All the ASR systems share common attributes,
for example deep neural network configurations, and decision
trees based on rich phonetic questions and state-position root
nodes. The baseline ASR and KWS performance of Hybrid
and Tandem systems are compared for both the “full”, approxi-
mately 80 hours of training data, and limited, approximately 10
hours of training data, language packs. By combining the two
systems together consistent performance gains can be obtained
for KWS in all configurations.
Index Terms: keyword spotting, deep neural network, Tandem,
Hybrid

1. Introduction
In recent years there has been an increasing interest in Au-
tomatic Speech Recognition (ASR) and Key Word Spotting
(KWS) for low resource languages. The task of KWS is to find
occurrences of a particular word or a phrase (a.k.a. query) in
audio recordings. The state-of-the-art KWS systems are based
on the word lattices generated by an ASR system for the query
search. One of the driving forces for this research direction is
the IARPA Babel project [1]. The objective of the project is
to develop robust KWS (the primary task) and underlying ASR
technologies for any human language utilising limited amount
of data for the ASR engine training.

In this paper two Deep Neural Network (DNN) based ASR
systems [2, 3] are investigated - Tandem [4, 5] and Hybrid [6]
for both ASR and KWS. In the Tandem configuration the DNN
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operates as a feature extractor that provides input to the back-
end HMM-GMM classifier. In contrast, in the Hybrid con-
figuration it plays the role of the acoustic model [2, 6] itself.
A stacked version of the Hybrid system is investigated in this
work. Here the features extracted from the Tandem system are
used as the input to the Hybrid system. This presents an inter-
esting contrast as the features for both the GMM-HMM system
and the Hybrid system are the same, it is only the form of clas-
sifier to obtain the observation likelihoods that differs.

The combination of these Tandem and stacked Hybrid sys-
tems for both ASR and KWS systems is also considered. This is
based on the assertion that the two systems have diverse opera-
tional mechanism and hence they likely to have complementary
advantages. The combination of ASR systems is well estab-
lished, using approaches such as ROVER combination [7] and
Confusion Network Combination (CNC) [8]. This concept has
also been applied to KWS. Some of the early work that com-
bine systems to improve the KWS performance are [9, 10, 11],
which combine KWS systems that use word and sub-word mod-
els. The recent works in this direction are [12, 13, 14, 15, 9].
[13] combines results from ASR systems with diverse compo-
nents, such as acoustic model, decoding strategy and audio seg-
mentation, to improve the KWS performance.

This paper examines the combination of Deep Neural Net-
work based ASR and KWS systems in a consistent frame-work
for five languages: Assamese, Bengali, Haitian Creole, Lao,
and Zulu. Performance is contrasted with each of the individual
systems, as well as examining the correlation between the ASR
performance and KWS performance. The next section discusses
the nature of Babel KWS task and the data. This is followed by
a brief description of the ASR and KWS systems used. Finally
the experimental results are presented.

2. Task Description
The work reported in this paper is based on the IARPA Ba-
bel [1] project, which aims to foster research on speech recog-
nition and keyword spotting for low resource languages. The
Babel speech corpus covers a range of diverse languages and is
distributed under two configurations for each language: a “full”
language pack (FLP) comprising of approximately 80 hours of
transcribed audio; and the “limited” language pack (LLP) com-
prising of about 10 hours of transcribed audio. The data is pri-
marily conversational telephone speech, recorded over a range
of acoustic conditions, such as mobile phone conversation made
from car. The FLP and LLP share the same development set of
10 hours of conversational speech. The phone set and phonetic
lexicon are supplied for every language and the lexicon contains
only those words occurring in the training data.



In the Option Period 1 (OP1) phase of the project, audio
from five languages have been released: Assamese; Bengali;
Haitian Creole; Lao; and Zulu. The ASR and KWS experiments
reported in this paper are conducted on the OP1 languages (both
FLP and LLP), and the performance is evaluated on the devel-
opment data defined for the evaluation 2014. The official metric
to measure the accuracy of the system performance has been de-
fined to be Maximum Term Weighted Value (MTWV), which is
the best term weighted value [16] (TWV) that can be achieved
over all choices of detection threshold. The TWV is defined as

TWV (θ) = 1− [Pmiss(θ) + βPfa(θ)] (1)

where Pmiss(θ) and Pfa(θ) denote the probabilities of miss
and false alarm, respectively, θ is the detection threshold, and β
decides the relative weight given to each type of errors.

Language Release
Assamese IARPA-babel102b-v0.5a
Bengali IARPA-babel103b-v0.4b
Haitian Creole IARPA-babel201b-v0.2b
Lao IARPA-babel203b-v3.1a
Zulu IARPA-babel206b-v0.1e

This work made use of the IARPA Babel Program language
collection releases shown above.

3. ASR System Description
The core ASR toolkit, used for parameterisation, clustering,
decoding and GMM-based acoustic model training, is an ex-
tended version of the HTK-3.4.1 [17] toolkit. The multi-layer
perceptron (MLP) training used an extended version of ICSI’s
QuickNet [18], which allows deeper network configurations to
be used, to train both Tandem and Hybrid systems.

The ASR acoustic models for both Tandem and Hybrid
systems shared the same underlying attributes for all language
packs. The underlying context-dependent states were specified
using state [19, 20, 21], rather than phone-state, roots of the
decision tree. Questions involving X-SAMPA attribute and po-
sition of the phone in the word were then used. This was found
to provide additional robustness to the rare phones, for example
the X-SAMPA phone /kx/ in Zulu. With no phone mappings
and phone-state roots these would be modelled as monophones.
To further improve the ability to model rare phones, diphthongs
were split into their constituent parts, with additional markers
added to indicate that the unit was derived from a diphthong.

In addition all systems were based on deep neural networks.
Two configurations were used. The Tandem configuration used
a single neural network with PLP and pitch features as the input.
The output of this network was then used in a Hybrid system
yielding a stacked configuration. This is illustrated in Figure 1.
Both the Tandem and stacked Hybrid MLPs were initialised us-
ing layer-by-layer discriminative pre-training. Further details of
the two acoustic models are given below.

The language models (LM) for all systems were built using
the vocabulary and training data from the audio transcriptions.
For all systems trigram class-based language models, interpo-
lated with the word-based language models, were used.

3.1. Tandem System

The development of Tandem system is based on [22]. An MLP
was trained using cross-entropy, and context dependent targets

Figure 1: Tandem and Stacked Hybrid systems

were defined by a phonetic decision tree. The input to the net-
work was 9 frames of PLP with pitch 1 appended, and delta,
delta-deltas and triples added. This yields a total input vector
size of 504. All systems had a bottleneck layer of 26 nodes.

The 26 dimensional bottleneck features were then trans-
formed using a global semi-tied covariance matrix [23] and then
appended to HLDA projected PLP features (39 dimensions) and
pitch with delta and delta-delta parameters. This yields a com-
plete feature of 68 dimensions. These are the baseline features
for the Tandem system below.

A speaker adaptive training (SAT) system using global con-
strained maximum likelihood linear regression (CMLLR) at
a speaker level [24] was then constructed, followed by both
Minimum Phone Error (MPE) [25] and feature-space MPE
(fMPE) [26] training. The CMLLR transforms were estimated
using maximum likelihood (ML) on the ML estimated acoustic
models. These were then fixed, and MPE and fMPE training
were applied using the CMLLR normalised features.

A multi-pass decoding and adaptation process was used:

1. speaker-independent (SI) decoding with a PLP-based
MPE system 2;

2. a global CMLLR transform was estimated for each
speaker using the Tandem ML-SAT model;

3. global CMLLR and MLLR transforms were estimated
using the Tandem-SAT fMPE+MPE acoustic model;

4. speaker adapted decoding using the Tandem-SAT
fMPE+MPE system and a bigram word-based LM;

5. lattice rescoring with a class-based language model and
confusion network (CN) generation.

The configurations of the two language packs were tuned
to the quantities of data available. The details are as follows:

Full Language Pack: the number of target states was set
at about 6000 for both the MLP and HMM systems. Five
hidden layers, including the bottleneck layer were used, and the
network configuration was (including input and target layers):

1Initial experiments showed that using pitch as an input to the MLP
significantly improved the performance of tonal languages such as Lao,
with smaller improvements for non-tonal languages.

2Though the performance was worse than a Tandem SI system, the
final adapted performance was better because of cross-system effects.



504x10004x26x6000.

Limited Language Pack: the number of target states was set
at about 1000 for both the MLP and HMM systems. Four
hidden layers, including the bottleneck layer were used. The
network configuration including input and target layers was:
504x1000x5002x26x1000. To moderate the impact of the
limited training data either Vocal Tract Length Perturbation
(VTLP) [27, 28] was used (Bengali, Haitian Creole, and Lao) or
semi-supervised approaches [29, 30, 31] (Assamese and Zulu)
were used to train the MLP. For VTLP 8 warp factors for each
of the training speakers were used, effectively increasing the
size of the training corpus to be the same as the FLP. For the
unsupervised data, all the untranscribed audio was recognised
and confidence based thresholds used to select 50% of the data.

3.2. Stacked Hybrid System

As shown in Figure 1, the hybrid system was trained in a stacked
fashion. First the bottleneck MLP for this Tandem system was
constructed. These features were speaker normalised using the
ML estimated CMLLR transforms from the ML Tandem-SAT
system. Again 9 vectors, each of 68-dimensions, were then
stacked together to yield a total input vector of 612 features.
Speaker adapted decoding with the Hybrid system used the CM-
LLR transforms generated at stage (2) of the Tandem decoding
process to speaker normalise the features. A bigram language
model was used for the Hybrid decoding, which was followed
by the lattice rescoring using the class-based language model
and CN generation as in step (5) of the Tandem decoding.

The configurations of the two language packs were tuned
to the quantities of data available. The details are as follows:

Full Language Pack: the number of target states was set at
about 6000 for the MLP. Five hidden layers were used, and the
network configuration including input and target layers was:
612x10005x6000.

Limited Language Pack: the default number of states was set
at about 1000 for the MLP. Four hidden layers were used, and
the default network configuration including input and target
layers was: 612x1000x5003x1000. Due to time constraints,
data augmentation was only applied to the Zulu Hybrid system.
Here semi-supervised training [29, 30, 31] was used in the
same fashion as it was in the case of the Tandem system, and
the number of target states was increased to 3000.

3.3. System Combination

Given the different forms of classifier being used for the Tan-
dem and Hybrid systems, they may be expected to be comple-
mentary to one another. To investigate this, the confusion net-
works generated by the Tandem and Hybrid systems are com-
bined to produce a merged CN [8]. Before combining the two
systems, the posterior probability associated with the CN of
each system, based on the arc posteriors from the lattice, were
mapped to remove any biases in the confidence measures.

4. KWS System Description
The KWS system is based on the weighted finite state trans-
ducer (WFST) [12]. First the ASR system is used to generate
word lattices. These lattices are then processed to generate the
word indices for the in-vocabulary (IV) search and phonetic in-

dices to accommodate out-of-vocabulary (OOV) search. The
timing information is pushed to the output labels of the arcs of
the resulting WFSTs. The arcs in the WFST after the push oper-
ation can be expressed as a 5-tuple (p, i, o, w, q), where p and q
indicate the start and end states, i denotes the input label, which
is a word in case of IV search or a phoneme in case of OOV
search, w indicates the posterior probability associated with the
input label, and finally o denotes the output label.

The IV queries are searched in the word index, whereas the
OOV queries are searched in the phonetic index. More specif-
ically, for the IV search, each query is converted to a word
weighted finite state acceptor (WFSA) and a composition op-
eration is carried out with the word index in order to retrieve the
hit list (a.k.a posting list) for the query. Each hit list is identified
by the name of the audio file, the starting time of the query, du-
ration and the score, which is the posterior probability derived
from the WFST. On the other hand, for the OOV search, each
query is first expanded to a reasonable phonetic representation
using a grapheme-to-phoneme converter, which may not give
accurate pronunciation for all queries. The resulting pronuncia-
tion is then represented as a phonetic WFSA, and a composition
with the phonetic WFST is carried out to retrieve the hit lists for
the OOV terms. To boost the OOV search performance a large
number of query expansion using a phone-to-phone (P2P) con-
fusion model (NBestP2P) [13] was incorporated. The values of
the NBestP2P were set in the range of 1000 to 50000. In addi-
tion, it was observed that the OOV performance can be further
improved by zeroing the language model score. The IV queries
that did not return hits were searched again in the phoneme in-
dex which is known as the cascaded search. Finally, the IV,
OOV and cascaded search hit lists are combined and sum-to-
one (STO) [12] score normalisation is applied to make sure that
sum of all normalised detection scores for each query is 1.0.

For some languages that are morphologically rich the num-
ber of OOV terms can become very large, adversely impacting
the performance. For example for the Zulu LLP 61% of the
query terms were OOV, compared to 31% for the Bengali LLP.
To address this problem a morphological KWS was used for
Zulu [32]. Here initially IV word terms are found. Then IV
morph terms are found, finally OOV morph terms are found.

KWS Process MTWV
IV OOV Total

Word 0.2649 0.1338 0.1851
Morphological 0.2615 0.2073 0.2287

Table 1: MTWV scores comparing morphological and word
KWS systems for Zulu LLP.

The impact of the morphological search on the Zulu LLP
is shown in Table 1. It is observed that the overall (cascaded
search) MTWV score increases, primarily due to the improve-
ment in the OOV search (this is the morph-level OOV search).
The slight degradation in IV word performance is due to a shift
in the MTWV operating point. In initial experiments, morpho-
logical search yielded a performance gain only for Zulu system.

In this work, a simple merging of the posting lists from the
Tandem and Hybrid systems, prior to STO normalisation, was
used in order to combine the two KWS systems together, rather
than a more complicated approach such as MTWV-weighted
CombMNZ method discussed in [12]. In initial experiments,
there was a slight degradation in performance by using this
merging, rather than CombMNZ, but it simplified the pipeline.



5. Experimental Results
For all experiments the development data audio and keyword
spotting list are associated with the sets shown in Section 2. For
each language the development set has approximately 10 hours
of audio, and 2000 terms to search for. In this paper Token Error
Rate (TER), rather than WER, is used when discussing ASR
results. For the broad range of languages investigated under the
Babel programme, some languages, for example Vietnamese,
do not have references at the word level. Thus TER removes
the concept of word (though measured in the same fashion).

It is worth emphasising that given the objective of the
project to be a KWS performance of greater than 0.3, wher-
ever choices of system configuration have been made, they were
based on the KWS performance, not on the ASR performance.

Language Id LP TER (%)
Tandem Hybrid CNC

Assamese 102 FLP 54.2 55.1 52.8
LLP 65.1 67.8 64.3

Bengali 103 FLP 54.9 56.6 54.3
LLP 67.0 69.5 66.8

Haitian 201 FLP 48.7 50.3 48.2
Creole LLP 60.5 63.4 60.4

Lao 203 FLP 48.5 51.9 48.9
LLP 61.2 65.8 61.3

Zulu 206 FLP 62.1 64.4 61.2
LLP 71.5 74.1 70.6

Table 2: %TER with CN decoding for Tandem and Hybrid and
CNC for Full (FLP) and Limited (LLP) Language Packs.

Table 2 shows the ASR system performance on each of
the languages, and each configuration. There are some general
trends. For these DNN systems, the Tandem system consis-
tently outperforms the Hybrid configuration. Part of this differ-
ence in performance may be because of the use of cross-entropy
for the training, rather than sequence training. The difference
in performance is also greater for the LLP than the FLP. This
can partly be attributed to the use of data augmentation for the
Tandem system, but not for the Hybrid system. In general the
combination of the Tandem and Hybrid ASR systems helped to
improve the performance. The outlier for this was Lao, where
the difference in the performance between the Tandem and Hy-
brid systems was the greatest among all languages.

Language Id LP MTWV
Tandem Hybrid Merge

Assamese 102 FLP 0.4660 0.4730 0.4946
LLP 0.2569 0.2360 0.2771

Bengali 103 FLP 0.5151 0.5121 0.5388
LLP 0.2992 0.2615 0.3100

Haitian 201 FLP 0.6387 0.6329 0.6602
Creole LLP 0.4648 0.4336 0.4867

Lao 203 FLP 0.5951 0.5881 0.6149
LLP 0.4262 0.3790 0.4439

Zulu 206 FLP 0.3770 0.3654 0.4084
LLP 0.2287 0.1924 0.2366

Table 3: MTWV for Tandem and Hybrid and their combination
for Full (FLP) and Limited (LLP) Language Packs.

Table 3 shows the performance of the KWS system on each
of the languages and language packs. For the FLPs the perfor-
mance of both the Tandem and Hybrid systems is very similar,
for Assamese the Hybrid system yielded the best performance.
For the LLPs there is still a gap in performance, with the Tan-
dem system outperforming the Hybrid. This was also true when
comparing the Tandem with no data augmentation to the Hybrid
system. In contrast to the ASR system combination, merging
posting lists improved the KWS performance in every config-
uration, even for Lao LLP where the difference in the KWS
performance is large. For the combined system, 8 out of the 10
configurations achieved the program goal of 0.3 TWV, although
there was a slight degradation when the threshold is automati-
cally determined rather than using the MTWV.
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Figure 2: MTWV against TER, ♦ indicates FLP,4 LLP

Given that the 10 configurations have been run in a con-
sistent framework, it is interesting to examine the correlation
between the ASR performance and the KWS performance. Fig-
ure 2 shows the plot of MTWV against TER (%) for all five
option period 1 languages for both LLP and FLP configura-
tions. Here the CNC TER% and the Merged MTWV scores
are given. From the plot it is observed that the correlation be-
tween the two is high (Pearson Correlation Coefficient -0.945,
R2 value 0.911). It is also clear that some languages, such as
Haitian Creole and Lao, are simpler than the others at least for
this task. Further, the KWS performance of Assamese on the
development Keyword List is lower for both FLP and LLP than
what is expected considering its ASR performance.

6. Conclusions
In this paper the use and combination of deep neural network
based Tandem and Hybrid systems were investigated for both
ASR and KWS on low resource languages. The systems were
evaluated on five languages from the Babel Program using both
the Full (FLP, about 80 hours) and Limited (LLP, about 10
hours) Language Pack configurations. The baseline Hybrid sys-
tems yielded comparable performance for KWS, the primary
task, as the Tandem systems for the FLP configuration. For the
LLP the Hybrid performance was poorer. However in combina-
tion, the two different forms of classifier yielded complemen-
tary KWS systems and gains in MTWV were observed for all
languages and both FLP and LLP configurations. Similar trends
were observed for the secondary ASR task. However for Lao,
where there was the greatest difference in ASR performance
between the Tandem and Hybrid systems, slight degradations
in the combined performance were observed.
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