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Abstract—Broadcast News (BN) transcription has been a at Cambridge University (CU) in improving BN transcription
challenging research area for many years. In the last couple making use of this additional lightly supervised training data
of years the availability of large amounts of roughly transcribed 5, state-of-the-art modelling techniques. Rather than concen-

acoustic training data and advanced model training techniques . . . .
has offered the opportunity to greatly reduce the error rate on trating on the detailed technical aspects of the techniques,

this task. This paper describes the design and performance of Which have previously been published in a range of papers
BN transcription systems which make use of these developments.(see for example [2], [3], [4], [5], [6]), this paper gives an

First the effects of using lightly-supervised training data and gverview of the approaches that were examined and how they
advanced acoustic modelling techniques are discussed. The deSig'bffected performance. In particular, it describes ways in which

of a real-time broadcast news recognition system is then detailed dditi | training dat b d and ible f K
using these new models. As system combination has been foundtdditional fraining data can be used and possible Trameworks

to yield large gains in performance, a range of frameworks for system combination. The starting point for this paper is
that allow multiple recognition outputs to be combined are next considered to be the CU-HTK 2003 BN system [3].
described. These include the use of multiple types of acoustic For BN transcription, the first stage in any recognition
models and multiple segmentations. As a contrast a system5cegs s to segment the audio stream into homogeneous
developed by multiple sites allowing cross-site combination, the blocks, i.e. blocks associated with the same speaker and
“SuperEARS” system, is also described. The various models and o . .
recognition configurations are evaluated using several recent BN POSsibly acoustic environment. These blocks are then clustered
development and evaluation test sets. These new BN transcription together to, for example, give all the data associated with a
systems can give gains of over 25% relative to the CU-HTK 2003 particular speaker. This taskjarisation [7], has been evalu-
BN system. ated as a separate problem within the EARS programme [8],
Index Terms— Automatic speech recognition, Broadcast News but is also essential for adaptation and normalisation in the
transcription, diarisation. speech-to-text (STT) task. This paper considers a number of
) segmentations and clusterings developed both at CU [9] and
EDICS Category: SPE-GASR at other sites, BBN [10] and LIMSI [11]. In section Il these
segmentations and clusterings are characterised in terms of
the average segment length produced, number of clusters and
HE accurate automatic transcription of broadcast materiae diarisation error rates [7]. The performance of individual
remains a challenging problem. Broadcast News (BNystems for speech recognition and their potential as sources
transcription is difficult as a range of acoustic conditionsf diversity for system combination is discussed in section VI.
and speaking styles must be considered. Over recent yearssection Il describes the acoustic model development. Tech-
the performance of BN transcription systems has gradualjcal advances in acoustic model building, in particular those
improved to the stage where, on some “simple” test setfvolved with discriminative training, such as discriminative
average word error rates (WERs) of less than 10% can RP [4] and modified I-smoothing [12], should improve
achieved. In the last couple of years there has been an eftgfstem performance compared to the models used in the
to further dramatically reduce the error on BN transcriptionSU-HTK 2003 BN system. Performance gains from these
funded by the DARPA Effective Affordable Reusable Speeclmore advanced modelling techniques are briefly described.
to-text (EARS) programme. As part of this programme largé addition, significant gains should be possible by making
amounts of additional training data were made available fage of thousands of hours of data using “lightly-supervised”
acoustic model training. This paper details the progress madehniques. In contrast to the relatively small amounts of
. carefully transcribed data used to build the CU-HTK 2003
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is given in [1]. The authors would like to thank all the members of the HTIby the work in [15] the approach adopted in this paper is
EARS project team, in particular Gunnar Evermann, Xunying Liu, Khe Chali ’

Sim, Lan Wang and Kai Yu, for their contributions to the development of th?é) use .a' “biased” Ianguage model durlng the rechgnmon .Of
systems described in this paper. the training data to generate a set of transcriptions, which

All the authors are at the Cambridge University Engineering Dept., Trumgye then directly used for training. Section llI-A describes
ington Street, Cambridge, CB2 1PZ. e-maflmjfg, dyk21, pcw, hyc27, ilabl . del L d th ff h
dm312, rs460, sej2@eng.cam.ac.uk, phone: +44 1223 332733, fax +44 1238€ available acoustic model training sets and the effects that

332662 they have on the system performance are given in section llI-

I. INTRODUCTION



2 IEEE TRANS. ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007

C. Additional training data, both audio and text, were alsacoustic ‘change-points’; agglomerative clustering using the
available for language model construction. The effect of thigelihood ratio with a penalised likelihood (BIC) stopping
additional data is assessed both in terms of perplexity aadterion; and a final additional gender-dependent clustering
WERSs in section IV. based on speaker identification (SID) techniques [20].

The paper then considers various forms of evaluationWhen performing segmentation and clustering it is impor-
framework. Two styles of system with different constrainttant to consider the task being addressed. If the task is to
are considered. The first is based on real-time transcriptidabel “who spoke when”, referred to akarisation [7], then
Though this limits the forms of model that can be usedhe diarisation error rate (DER) is commonly used to measure
it is interesting to describe the type of system that can Iperformance. This is the time-weighted sum of the missed
run in real-time. A two-stage strategy is adopted. The firgpeech (MS), false alarm (FA) and speaker error rates. The
very rapid transcription stage, is used to supply an adaptatibiR is very sensitive to splitting the data from one frequently
hypothesis for the second, more precise, recognition stage. Dioeurring speaker into two clusters. In contrast if the segmen-
output from this second stage is a set of lattices, to whichtation and clustering is to be used for a STT task, then the final
more complex 4-gram language model is applied. This will B&ER is of interest. For STT systems the degradation in WER
referred to as a P1-P2 decoding framework in this paper. THiem splitting data from a single speaker into multiple separate
form of system is further discussed in section V. clusters is minimal (provided that clusters are homogeneous

If the real-time constraint is relaxed, then more compleand sufficiently large for robust acoustic model adaptation).
decoding frameworks may be used. In recent years there Rasthermore, for speech recognition it may be preferable to
been significant interest in combining multiple acoustic modsplit data from the same speaker into different clusters if there
hypotheses together to reduce the error rate. This combinatése multiple acoustic environments present. Not surprisingly
is usually performed using ROVER [16] or confusion networkhere is little correlation between DER and WER [21].
combination [17]. This form of system combination is possible For the experiments presented in this paper a range of
in the 10x real-time constraints considered in this paper (arsmkgmentations and clusterings were considered:
for the RTO4f evaluations). An interesting aspect of such
frameworks is how to get diversity into the system so thatMSI [22], [11]*: This was the segmentation and clustering
when the recognition outputs are combined there is a reductiased by LIMSI for the NIST RT04f STT evaluations.
in the WER, i.e. errors in one set of hypotheses do not ocdBBN [23]?: This was the segmentation and clustering used by
in the other sets of hypotheses. A range of approachesBBN for the NIST RT04f STT evaluations.
incorporating diversity are considered. The first, based on to®) [3], [21]: This was the segmentation and clustering used
CU-HTK 2003 BN framework [3], is to use multiple types offor the CU-HTK 2003 BN evaluation system, and for the
acoustic models to rescore lattices generated by a P1-P2 shdeeline acoustic model development results in section IIl.
system. The hypotheses from these multiple branches are tffée segmentation and clustering was different to the other CU
combined. Two other forms of framework are also describegystems discussed below. A gender-dependent top-down clus-
One is based on acoustic model diversity in the P1-P2 stag&ing scheme with an arithmetic harmonic sphericity distance
This yields differences in the 1-best adaptation supervisigmetric and occupancy-based stopping criterion was used. No
and lattices for subsequent rescoring. The second is based:Range-point detection or SID clustering were implemented.
diversity in the segmentation and clustering. These frameworkg)1 [9]: This segmentation and clustering was tuned to
are discussed in section VI. As a further contrast, section Hinimise the DER and used both the BIC and SID clustering
describes a cross-site system combination framework builtdtages. It ran significantly slower than the other CU schemes,
collaboration with BBN, LIMSI and SRI [1]. This framework meaning results based on this segmentation/clustering did not
makes use of systems developed at BBN and LIMSI [10], ar@tisfy the time constraints in section VI.

SRI [18], in addition to systems built at CU. Results from [1EyU2: This segmentation and clustering was taken from the
are quoted to show the effects of this cross-site diversity @utput of the BIC clustering stage of @UZLstyle system.
performance. An increased penalty term was used to reduce the number
of clusters to compensate for the omission of the final
Il. SEGMENTATION AND CLUSTERING SID clustering stage. In addition a minimum cluster size
was enforced to ensure that there was sufficient data for

For Broadcast News transcription, the first stage of prgyaptation. Parameters for this system were tuned for STT
cessing is to partition the incoming audio data stream infRxrformance.

homogeneous segments (the segmentation) and to group these
segments into homogenous clusters which can then be used
for un_superwsed acoustic model adaptatllon. This is generaIIyThough the primary interest of this paper is STT, it is
done in two separate stages, although it is possible to have
more integrated schemes which alter the segmentation duringrhe segmentation and clustering used for these experiments were designed
the clustering process [19], [20]. In the segmentation afi@ speech recognition. TheIMSI system for diarisation [20], different to
clustering procedure described in [9], referred to Gi91, that used for STT, achieved a DER of 8.5%, similar to that of @igl

. i . segmentation and clustering [9].
the basic stages are: removal of music and long periods

) v > : ) The segmentation and clustering used for these experiments were not
silence; initial over-segmentation of the data by detection offtimised for diarisation performance.
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Segmentation / Avg. Seg.
Clustering #Segments| #Clusters Length (sec) I11. AcousTICMODEL DEVELOPMENT
LIMSI 1284 313 13.61 . . . .
BBN 2963 273 5.98 This section describes the data sources and models built
cuU 1712 273 10.23 during the development of the BN system.
cul 1316 401 12.69
cu2 1173 558 14.23
TABLE | A. Training and Test Data Sets
THE NUMBER OF SEGMENTS CLUSTERS AND THE AVERAGE SEGMENT . . L
LENGTH FORLIMSI , BBNAND CUSEGMENTATION FORevalod . Earlier work on English broadcast news transcription has

relied on the use of acoustic model training data released

before 1998 by the LDC, which is known as the Hub4 acoustic

training data. There is a total of 144 hours of transcribed

) ) Hub4 acoustic training datafor which the LDC supplied

useful to characterise each of the segmentation and clusterigas| manual annotations. This data was used for acoustic
schemes, as this gives an indication of the diversity of thg,qe| training in the older CU broadcast news evaluation sys-
segmentations and clusterings being used. Table | shows the s [24] and the more recent CU-HTK 2003 BN system[3].
number of segments, c'Iusters anc_i average segment Iengths,_f&;vever’ for the system developed for the RT04 evalua-
each of the segmentation/clustering schemes ore#a04 (o [25] a range of additional broadcast data sources with
test set (described in detail in section III-A)._It_ is mterestmgmy closed-caption type transcriptions (of varying quality)
to note that, though both were tuned for minimising WERyere also potentially available for acoustic model training.
the average segment lengths for BN and LIMSI were  1heqe new sources consist of two major groups: data prepared
very different. The various CU approaches varied in both tRgiginally for the various phases of the Topic Detection and
number of segments and the number of “speaker” clustersyyacking task (TDT data), and data that the LDC collected in
2003 BNO0O3 data) for the EARS programme.

Segmentation/ DER (%)

Clustering || Auto | Ideal [MS(%)/FA(%)] The TDT dat.a consists of severgl phases. The first set of
CIVSI 3863 3.76 [0.27L.8] TDT data used in the work reported in this paper is ffobBIT 4
BBN 24.67 | 4.10 [0.2/2.3] which includes six different broadcast sources (both radio and
581 5835185 g-% %-éﬁ-iﬂ television) and covers the period October 2000 until January
cu2 3115 | 2.82 {03,1:1} 2001. This contains 235 hours of usable audio. In addition

further TDT4 data, from just the four television sources and
covering the period March-July 2001, was also made available
by the LDC. This second portion of TDT data, which is
denoted ag DT4a, contains 375 hours of audio. Experiments
were also conducted using the older TDT2 data (broadcast
between January and June 1998) which contains about 420
hours of usable data.

The DER and percentages of missed and false alarm speecin addition to the TDT data, the LDC supplied to the EARS
on theevalO4 test set are given in Table Il. Other than thgrogramme participants about 7080 hours of raw BN data
CU1 segmentation/clustering, all the schemes were designgsllected during March-November 2003, tB&O03 data. To
for WER minimisation. This is reflected in the higher autohelp other sites to make use of this large quantity of data, BBN
matic DER for those schemes comparedidl In addition made automatic transcriptions available which were generated
to the DER obtained using the automatic clustering schemesing a lightly-supervised recognition/filtering approach. For
an ideal clustering DER score (Ideal) is also shown. This fgrther details of the method used see [14]. From BNO3
the lowest possible DER score for a given segmentation, agigta, three subsets were selected for addition to the acoustic
gives an indication of the homogeneity of the segménts. model training pool. The first two subsets each contained about

The CU scheme has the poorest ideal DER and @¢1 300 hours of audio and the third around 440 hours. BN®3
scheme the best ideal DER. If only the speaker error comata contained a total of 19 separate broadcast sources, some
ponent of the ideal DER is considered (missed speech asfdwhich were felt to be more applicable to the task being
false alarm errors are ignored), théMSI , BBN and CU2 considered than others. The data for the first set was sampled
schemes all perform about the same. As expectedCidé from six major sources: ABC, CNBC, CNN, CNNHL, CSPAN
scheme performs considerably better than@éscheme. All and PBS. The second set comes from CNN and six other
these numbers are not expected to correlate directly with theurces (CBS, FOX, MSN, MSNBC, NBC, NWI) which were
speech recognition performance, but they give some indicatinat included in the first set. Finally the third selection was
of the diversity of the segmentation and clustering schemesmde from the same sources as the first and second along
being considered. with one new source, WBN.

TABLE I
AUTOMATIC (AUTO) AND “IDEAL” DIARISATION ERROR RATES(DERS)
FOR POSSIBLE SEGMENTATION SEGMENTATION AND CLUSTERINGS ON
evalo4

SIt is hard to directly compare these numbers to one another as over?All training data quantities given in this paper refer to the quantities of
segmenting the data, relying on the clustering to correctly group segmeatslio actually used for training, after removal of commercials, music, and
together, can bias results. other non-transcribed material.
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| Zgnﬁisa [ EEZZ”E;;?” — I Hi‘ﬁ‘ 1) Construct a language model (LM) using only the CC
bntr-375h +TDT4 g 375 data. This_CC_ LM was interpolated wit_h a general
bntr-750h +TDT4a 752 BN LM using interpolation weights heavily weighted
Egg‘}gggﬂ :érS\tdSse(l,(la:ct:It(i)(?no(%NNooz 1228 towards the CC LM. For the work presented here the
bntr-1790h + 3rd selection oBNO3 || 1790 mterpolatlon_wglghts were 0.9 and 0.1 for the general
bntr-2210h + TDT2 2210 BN LM®. This yielded a “biased” language model.
TABLE III 2) Recognise the E_;\udio data u_sing_an existing _acoustic
SELECTED ENGLISH BN ACOUSTIC TRAINING DATA SETS AND SIZES model and the biased LM trained in (1). For this work

the P1-P2 stages of the evaluation system (including 4-
gram expansion) in section VI-A was used. This ran in
approximately 5 times real-time {RT)’.

Optionally post-process the data. For example only use
segments from the training data where the recognition
output from (2) is consistent, to some level, with the
CCs, or only use segments with high confidence in the
recognition output.

4) Use the selected segments for acoustic model training

Table Il lists the training data subsets used in this Work 3)
The order of adding the various sources was determined by
running preliminary recognition experiments to determine how
“close”, in terms of WER, each block of data was to the
development data available.

[ Test set || # Shows| Hours ][ Period | with the hypothesised transcriptions from (2).

dev03 6 3 Jan. 2001 A range of options were investigated for post-processing the

eval03 6 3 Feb. 2001 data, including propagating the confidence scores into the

dev04 6 3 || Jan. 2001 ata, including propagating

devo4f 6 3 Nov. 2003 discriminative training stage [15]. However none of these were

evalo4 12 6 Dec. 2003 found to yield significant gains over using all the data so no
TABLE IV post processing was performed in the work reported in this

SELECTED ENGLISH BN TEST SET SIZES paper.

C. Model Training and Evaluation

In order to assess the performance of the various Systemg ) the acoustic models developed in this paper, the same
developed, a range of development and evaluation data $f{$.end processing as the CU-HTK 2003 BN system [3]
were used.'The size and epoch of each of these blocks qf ARt used. Each frame of speech was represented by 13 PLP
are shown in Table IVeval04 was treated as the evaluation.jaficients based on a linear prediction order of 12 with
data. All the other sets were treated as development data ﬁp&’ second and third derivatives appended and then projected
were used to help tune model parameters and language moglgly, 14 39 dimensions using HLDA [26] optimised using the
interpolation weights. Theev04f development data is rathereficient jterative approach described in [27]. For initial models

different in nature to the other development sets as it contaijfiere HLDA was not used. the front-end consisted of 13 PLP
data from a different set of broadcast sources and typicallycfricients with first and s,econd derivatives.

includes more challenging data with high levels of background 5| models were built using the HTK toolkit [28]. State-

noise/music and non-native speakers. 8aal04 set Consists o stered cross word triphone models [29] were constructed

of two halves: one of which is broadly similar to previousii 4 total of about 7000 distinct states for the smaller training
evaluation sets and the 2004 development s&tal03 and ¢ots or 9000 states. fdsntr-1050h  and larger. Gaus-

dev04 ), and one which is more similar to the data found i3, mixture models with an average of 16n{r-375h

the dev04f - set. bntr-750h ), or 32 pntr-750h  and larger) components
were used. The distribution of components over the states
B. Lightly Supervised Training was determined based on the state occupancy count, referred

Detailed transcriptions of the audio data were only available in this paper as th&armix process. Models were built
for the bntr-144h  training data. All the other data, i.e.initially using maximum likelihood (ML) training and then
the TDT data and the 2003 BN data collection, had onBiscriminatively trained using minimum phone error (MPE)
closed-captions (CCs), or similar rough transcripts. These trdfaining [2], [30]. As some BN data, for example telephone
scriptions are known to be error-full and thus not appropriatéterviews, are transmitted over bandwidth-limited channels,
for direct use when training detailed acoustic models. Rth wide-band and narrow-band spectral analysis variants of
overcome this problem there has been a range of work 8ach model set were trained.

“lightly-supervised” training techniques [13], [5], [14]. The For all the experiments in this section the segmentation

procedure used in this work consists of the following generédenotedCU in section ) and tri-gram LM from the CU-
stages. HTK 2003 BN evaluation system [3] was used. Possible

5No data between 16th January 2001 to the end of February 2001, nofThese interpolation weights were chosen to minimise the perplexity of
any later than 14th November 2003, was included in training to avoid aagcurately transcribed data from the same source. They were found to be
time epoch overlap with development test and evaluation test data sets antelatively insensitive to the type of source data.
respect the epoch restrictions for the RT04f evaluation. “For this work 5<RT means that the system rax Slowerthan real-time.
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. . . Training set #States/Avg eval03 dev04f
glternapve segmentations and language models are discussed Components|[ ML | MPE || ML | MPE
in sections Il and IV respectively. bi375h “K/16 A8 251 = =
bntr-750h 7K/16 148 | 12.1 — —
Training set | Acoustic Training %WER bntr-750h 7K/32 142 | 11.8 || 26.0 | 21.6
dev03 [ eval03 bntr-1050h 9K/32 13.8 | 114 || 25.0 | 20.3
ML 19.7 = bntr-1350h 9K/32 13.9 | 11.2 || 24.8 | 19.6
+HLDA 17.9 _ bntr-1790h 9K/32 13.7 11.0 244 | 19.3
bntr-144h +Varmix 178 16.0 bntr-2210h 9K/32 136 | 11.1 || 245 | 19.1
ML 19.1 17.2 0
+HLDA 168 151 %WERS WITH THE G| ML/MPE MODELS WITH DIFFERENT TRAINING
btr-375h +\Varmix 16.7 14.8 DATA SIZE. SINGLE PASS DECODING OFWB SEGMENTS WITH THERT03
ntr- MPE (ML prior) 13.9 12.6 TRIGRAM LM. NB HYPOTHESIS USING THERTO3 NB MODELS.
MPE (MMI prior) 13.6 125
+GD (Gl prior) 135 12.3
TABLE V

%WERs FOrRdev03 & eval03 wITH THE ML AND MPE TRAINED h | i . h
ACOUSTIC MODELS SINGLE PASS DECODING WITH THERTO3 TRIGRAM the narrow-band (NB) models built using thoeatr-144

LM. data were used for all NB segments, requiring that only wide-
band (WB) models were trained. To investigate the effects of
the additional data on system performance a range of models

] ~were built using the training data-sets described in Table .
Table V shows the performance without any adaptatiofhese models were evaluated on tal03  and devo4f
of the Gender-Independent (GI) models built for the ClUgg; sets as these represented different time epochs and degree
HTK 2003 BN system [3], which are considered the baseling gjtficulty. Table VI shows the performance of the various
models for this paper. These were built using tinér-144h acoustic models for both ML and MPE (with an MMI-prior

training set. As previously observed the use of HLDA angh |_smqothing) training.
discriminative training gave large gains over the baseline 5 couple of general trends can be observed. For the
system. The final performance of these models orett@03  o\5103 test set, consistent gains were obtained for both ML

test data was 13.7% using MPE training and an ML-prior fQf,q \pE training as the amount of data, and also the model
I-smoothing as descrlped In [_2]' complexity, was increased as far as bmr-1050h  training

To assess the relative gains of each of the stages uslig peyond this size the gains, expecially for ML training,
additional lightly supervised training data, a system Withyere significantly less. This may be attributed to the nature
approximately the same number of states (around 7000) afidne aqditional data being added, maiB03 data which
Gaussian components per state (16), was built with the larger ot expected to be closely related to twl03  test data.
bntr-375h  training data. As expected similar gains fromkqr the devoaf test set the performance of the system was
each stage were observed. It is interesting that the perfgfgnificantly worse than that on theval03 test data. This
mance gains from using MPE training, about 2-3% absoluigas again expected as “harder” data were included for this test
were maintained even though lightly-supervised training Wag; | contrast to theval03 test set, performance on the
required for the additionalDT4 training data. Overall the yo\04f test data improved as the amount of data increased
addltlo_nal 'tralnlng data gave gains of over 1.0% ‘,"‘bSOIUfSr all training sets. Again this can be attributed to the nature of
reduction in WER compared to thbntr-144h  trained 6 N3 data which is more closely matched to thev04f

system. Recently the use of an MMI-prior for I-SmoothinGy, 5 theeval03 test set, both in terms of the epoch and data
rather than the ML-prior, has been proposed [12]. Using thig) ;ces.

more complex I-smoothing process gave a small improvementA further issue to consider, as the amount of training

n perf_ormance and was therefore used in all SUbsequWreases, is how to efficiently build NB models. As less than
acoustic rr}odel gengrgtlon. 10% of the data is usually classified as NB data in the CU
In addition to training Gl models for BN systems th& siam it is not desirable to rebuild systems from scfatch
use of Gender Dependent (GD) models has been found{9  ercome this problem a two pass approach was adopted.
be advantageous [24]. Standard MAP training [31] iS N@qt 4|l the data, including the WB data, was parameterised
appropriate for adapting discriminatively trained models. {ying the NB configuration where the data was band-limited to
modified, discriminative, version, MPE-MAP [4] was thereforg, range 125-3800 Hz. Then standard single pass retraining
used to train GD models. The results for GD models bUiéEPR) [28] was used from the non-HLDA ML WB model-set
using MPE-MAP with the GI-MPE system are also showf, generate a NB ML model-set on this data. This model was
in Table V. The prior for the MPE-MAP training was théy,o seqd to estimate the NB HLDA transform. Using this
Gl system with an MMI-prior for I-smoothing. Again small\g 1) pA transform, MPE-SPR [25] was used to generate an

gains using GD models were observed. This is the form f?'fitial MPE NB model. Two iterations of MPE training were

G% T/:)delling that was used in the experiments in section then used to refine this model set. This procedure dramatically
an .

As d_'s_cussed in section 1I-A, Ilarge amour.1t_s. of addmopal 8For all the systems the WB models were trained on all the available data,
BN training data were made available. For initial evaluaticincluding the NB data, parameterised using the WB configuration.
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reduced the time to train the NB models and gave similar| roooa®9®l | dZ‘igi{ex”[y [E’SV‘{;Z‘}] evalo
performance to rebuilding the NB models from scratch. This —&753 133 [0.66] | 124 [0.57] | 153 [0.54] | 158 [0.81]
approach was used to build all the NB models for theRT RT04 120 [0.45] | 118 [0.49] | 132 [0.42] | 133 [0.62]
and 10<RT systems. TABLE VIII

The test data for the RTO4f BN evaluation was KnOWN pegp ey ry vaLUES FOR THERTO3AND RT04 4-GRAM LANGUAGE
to comprise data related to both te®al03 and dev04f MODELS

epochs and shows. To balance both training time and per-
formance thebntr-1350 training data was selected as the

primary training data set for use in the RTO4f evaluation

systems. Unless otherwise stated this will be the training dataTable VI

for all subsequent acoustic models built and evaluated. shows the perplexity scores and out-of-

vocabulary (OQV) rates for the RT03 and RT04 LMs for four
IV. LANGUAGE MODEL DEVELOPMENT of the test sets. The OQV rates for the word-list associated with

Additional training data to that used for the RT03 LM [3]the RTO4 .LM are gonsjstently lower than those of the RT03
P(I. The difference is slightly larger falev04f andeval04

was also available for training language models. This sectib

briefly details the additional sources available and discus$&s the_ time epoch for thfa_se test sets, November/December
the performance gains obtained. 2003, is closer to the additional data only used for the RT04

LM. It is not possible to directly compare the perplexities

Source _ Size(MW) between the two LMs as the word-lists are different. However,
(additional RT04 sources in bold) RTO3 | RTO4 looking at the trends over the test sets, the difference between
PSM'’s BN transcripts 92-99 it ;
TDT22TDT3 captions,BNO3 captions 275 | 334 the perplexities for the tes_t sets with harder daiav04f_
Transcripts from CNN's website 99-001-03 66 | 147 and eval04 , than the easier seteyval03 and glev04_, is
TDT4 captions, TDT4a captions 2 5 larger for the RTO3 LM than the RT04 LM. This again may
NIST's BN training data from 97/98 2 2 be attributed to the later epoch data included in the RT04 LM
Marketplace show transcripts traini
Newswire LAT and WP 95-98, NYT 97-00 || -2 | os8 raining corpora.
& 01-02 Associated Press 97-00 81-02

Segmentation/| LM %WER

TABLE VI Clustering eval03 [ dev04 | devO4f
LANGUAGE MODEL TRAINING TEXTS AND THEIR SIZES RTO3 9.7 12.2 —
cU RTO04 9.2 11.9 16.2
[ LIMSI [RT04 ] 88 | 114 | 158 |
The initial experiments in this paper were carried out TABLE IX

using the RT03 LM from the CU-HTK 2003 BN evaluation %WERUSING A P1-P2FRAMEWORK AND THE bntr-1050  MODELS
system [3]. The sources and text sizes used to generate thi® EITHER THE RTO30R RT04 LANGUAGE MODELS AND EITHER THE
language model are shown in Table VII. For the RTO3 LM a CURTO30RLIMSI SEGMENTER

59K vocabulary, chosen based on word frequency counts was

used. Five separate language models were built and interpo-

lated, the partition of sources is indicated in the table. For the,g recognition performance of the RT03 and RT04 LMs
2004 RTOA4f evaluation, additional sources for constructing th&.re then compared on thevalo3 , dev04 and devO4f
language model were available. The additional sources apd; sets. For these experiments only the P1-P2 stages of
combined sizes for the 2004 RT04 LM are also shown e 10<RT framework were run [3]. These stages run in
Table VI, indicated in bold. This gave a total text size of abouy proximately5x RT. The results using th€U segmentation
1.4 billion word tokens. Again a 59k word list was used basegq clustering are shown in Table IX. For both test sets the
on frequency counts from the RTO4 LM text corpora. In &7104 LM outperformed the RT03 LM by between 0.3-0.5%
similar fashion to the training of the RTO3 LM, the text sourcegpsolute. In addition Table I1X compares the performance of
were split into five subsets, as shown in Table VII, and 4-grafle cuand LIMSI  segmentation and clustering discussed in
models were built for each subset. Small to mid-size mod&lgcjon 11. The use of theIMSI segmentation and clustering
were smoothed using modified Kneser-Ney discounting [3ghye an additional error rate reduction of between 0.4-0.5%
and components trained on large data sets used Good-Tullipgo|ute. ThelIMSI segmentation and clustering was used

discounting [28]. The interpolation weights were optimiseds ihe baseline for all subsequent experiments.
on text comprisingeval03 , dev04 , and dev04f °. After

interpolation, the component models were merged and the
final 4-gram language model was pruned with entropy-based . o
pruning [33]. The RT04 LM had about 17 million bigrams, For the 2004 RTO4f evaluation, a system running in less

28 million trigrams and 23 million 4-grams compared to théhan real-time (kRT)'° was developed. The approach adopted
9 million bigrams, 13 million trigrams and 7 million 4-gramswas to extend and update the architecture that was first used in

for the RTO3 LM. _ _
10AIl run-times for RT04 systems were run on a single Intel Xeon
9By tuning the interpolation weights on all the available development se2s2GHz/2MB L3 cache processor with hyperthreading enabled. Note that the
only a minimal bias in the WER% is expected for these sets. compute times refer to data throughput, with no constraints on latency.

V. 1XRT EXPERIMENTS
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developing the Cambridge XRT broadcast news system in

1998 [241*. Due to the increase in processing power of com- 24 Foo | o Passl
modity PCs over the intervening six years, along with the use * P2

of improved modelling and tuned decoding, it was feasible to 2 °0 o,

use the same two pass recognition approach when developing 20 ° o

the 2004 kRT system. Hence an initial fast decoding pass = Co o
. . . L N18r 1
is used for unsupervised adaptation, and this is followed by ©

lattice generation, and rescoring. Since it is known that lattice 16}

quality is much improved by incorporating an initial adaptation

stage [34], and due to the success of the earlier “fast” broadcast B [EPUPRE N L I
news systems, an architecture including two full decoding 12 E eE s om0 o

passes with intermediate adaptation is also generally favoured Passl running time (xRT)
by other recently-developed<RT systems for both broadcast

news and conversational speech transcription [35], [36]. F'9- 2. %WER ofdev04 in P1 (with the trigram LM) and P2 (with 4-
gram expansion and applying confusion network decoding) with different P1

decoding times for the 2RT system. The vertical dotted line shows the
operating point chosen for the evaluation system.

Segmentation

I P1: Initial Transcription I

— ! - bntr-1350 . Decoding used a more lightly pruned version of
| P LattieGeneraion | the RTO4 trigram LM (10.7 million bigrams and 13.8 million

<|> trigrams) to produce lattices, which were then expanded with
Lattices the full RTO4 4-gram LM. This was followed by confusion

—  Lattice network decoding, estimation of confidence scores [37], and
cN word level alignment. All of the steps involved in adaptation
J e and subsequent P2 decoding required a total of less than
0.7xRT on the eval04 data. As an additional post-processing
Fig. 1. The 1xRT System Architecture for BN Transcription stage, word tokens with low confidence scores were removed

from the recognised results. Note that this final post-processing
1. Stage was not found to be beneficial for any systems with less-

The two pass architecture of theRT is shown in Figure : s
constrained run-times.

Each of the two recognition passes in the RT system is
similar to the P1-P2 portion of a single branch<IRT frame-

work as used in the CU-HTK 2003 BN evaluation system [3], Pass 03 04%W§R - 03
as well as the older “fast” versions of more complex BN cva [ devod | dev | eva
. P1 17.2 21.7 27.8 25.6
evaluation systems developed at CU [24]. P2-cn 9.9 127 17.4 154
The LIMSI segmenter/clustering was used (which ran in [P2cd || 98 | 125 | 173 | 153 |
about 0.XxRT), followed by a very rapid first recognition TABLE X

Easstﬁpl?' Thhe. (;]utput of PC:IL tprovclide(ti ttf?e Il-r|1ll\2|\a/: transgrl_ptli)hn %WEROF THERTO04F 1xRT SYSTEM, P2USED THEbNtr-1350
ypothesis which was used 1o adap N S used in eMODELS AND PRUNEDRTO04 LMs AND THE LIMSI SEGMENTER. T

P2 stage. The P1 stage used smaller acoustic and language

. NDICATES THAT POSTPROCESSING REMOVAL OF LOWCONFIDENCE
models than the P2-stage to reduce computation as well as
tighter pruning beam-widths. It was found that the final error
rate was relatively independent of that from the P1 stage as
shown in Figure 2, and hence the P1 stage search parameters
were set at a level which, on theval04 data, took only
about 0.1%RT.

WORDS WAS PERFORMED

Table X shows the performance of the<RT system.
Toreduce e computaion i he 1 sage he P wETEATY e P2eh bt win it g o e S
were 16 component per state MBERtr-750 -trained models . guage . clup '
. . |E can be seen that the increase in error rate is between 1.3% for
and a single set of acoustic models were used for all data . , .
) . . eval03 and 1.8% foreval04 without final post-processing,
segments independent of bandwidth (and also Gl as is usual . :
. : aréd that the post-processing reduced this gap to 1.2% and 1.7%
for P1 models). In addition, the P1 stage used a heavily pruneéd  ivel
trigram version of the RT04 LM (3.3 million bigrams and 2.6 p. y.. )
million trigrams). It is also interesting to compare the performance of the
The second stage (P2) used the P1 hypothesis to perRT system with the CU-HTK 2003 BN TORT system [3].
form least squares linear regression and diagonal variandeat System gave an error rate of 10.6% onelel03  data.

adaptation on bandwidth and GD MPE models trained dif'us using the updated acoustic and language models in this
1xRT configuration reduced the error rate by 0.8% absolute

11The 1998 1&RT system ran on a 450MHz Intel Pentium Il processorwhile greatly reducing the run-time.
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VI. 10xRT EXPERIMENTS adaptive training (SAT) employing global constrained MLLR

The previous section described a system that was requifédMLLR) [39] transforms. The second branch (P3c) system
to run in less than €£RT, restricting the recognition frame-Was & GD system built using a single pronunciation (SPron)
work that could be used. This section examines the forfiictionary derived from the standard multiple pronunciation
of recognition framework that can be used within axFr dictionary [41]. Possible alternative acoustic model configu-
constraint?. Within this time constraint it is possible torations examined included structured precision matrices [42],
perform multiple recognition runs and combine the output§luster adaptive training [43] and a Gaussianised front-end us-
Depending on the framework used, different levels of systeifd the scheme described in [44]. These models were initially
diversity can be incorporated, including multiple segmentatidf@inéd using thebntr-375h  training set and the perfor-
and clusterings, acoustic models, adaptation supervision dRance evaluated within the multi-branch system combination

lattices. All acoustic models evaluated in this section weff@mework shown in Figure 3 [6]. Though some gains over
trained usingontr-1350h . the standard SPron/SAT combination were obtained, it was

found that no significant gains over the baseline configuration
were obtained with the larger acoustic models and the full
bntr-1350 training data. Hence the same models as those
The first multiple-pass system combination set-up investyp in the 2003 system, SPron and SAT, were used. In addition
gated was based on the 2003 CU-HTK BN evaluation systqf) these standard branches, the performance of a GD model
framework. For these experiments th&VISI segmentation ysing the multiple pronunciation dictionary (MPron), the same

A. Multiple Rescoring (P3) Branch Configuration

and clustering was used along with the RT04 LM. model as used in the P2 stage, was also evaluated in the P3
stage (P3b). For all the P3 systems the numbers quoted are
Segmentation after confusion network (CN) decoding [45]. This allows the

gains from system combination to be clearly seen. Each of
the stages P2, P3a and P3c produce word lattices and these

| P1: Initial Transcription |

were converted to confusion networks and then combined with
‘ CNC. Finally, a forced alignment of the final word-level output
P2: Lattice Generation was used to obtain accurate word times before scoring.

The recognition framework shown in Figure 3 was also
(7—La't—ﬁ§% used for the CU-HTK 2003 BN evaluation system [3]. Using
7, this structurebntr-144h  trained acoustic models and the
RTO3 LM gave an error rate of 10.6% aval0o3 3. It is
Adapt . Adapt interesting to note that for these models a 0.4% absolute gain

P33 P3x in performance was obtained using the CNC over the best
single branch performance with CN decoding (P3a-cn).

i CNC

CN eval03~ [ dev04 [ dev04f | eval04
—— 1-best ‘ [P2-cn MPron][ 86 | 111 | 159 | 136 |

P3a-cn  SAT 8.2 10.6 153 133

Fig. 3. Multiple Rescoring Branch Framework for BN Transcription. P3b-cn  MPron 8.2 10.6 15.4 134

P3c-cn  SPron 8.1 10.4 15.2 13.0

P2+P3b 8.3 10.8 153 133

The overall multiple rescoring branch configuration is | P2+P3a CNC 8.0 10.5 15.2 132

shown in Figure 3. As in theXRT system, a P1-P2 framework P2+P3c 8.1 10.3 14.8 12.8
is used to generate lattices and 1-best hypotheses. Howevér,':z)"a%‘“33c CNG] 80 [ 104 | 149 | 129 |

more complex acoustic models and LMs are normally used at TABLE XI

the P1 stage compared to those in theRT architecture. For %WERS IN P2,VARIOUS P3BRANCHES IN THE MULTIPLE RESCORING

the experiments in this paper 32 component per state aCOUSBRANCH FRAMEWORK USING THELIMSI SEGMENTATION/CLUSTERING

models and the standard RT04 LMs were used. In addition AND THE RT04 LMs.

to the P1-P2 stages multiple P3 lattice rescoring branches are

run. These branches use the P2 1-best output and lattices for

MLLR mean [38] and variance adaptation [39], and lattice- Taple XI shows the performance of tHentr-1350h

based adaptation [40]. _ trained acoustic models using this multiple rescoring branch
A range of acoustic models were considered for use flymework and the RT04 LM. For this configuration the best

the P3 rescoring branches. The baseline P3 acoustic modgigle branch performance was obtained with the SPron model

were the ones used for the CU-HTK 2003 BN evaluatiofp3c-cn). After confusion network decoding, this gave an

system. The first branch (P3a) system was built using speakgior rate of 8.1% oreval03 , a 2.5% absolute reduction
12The actual run-times for these systems were not measured. Howeverl{ﬁeerror rate over the CU-HTK 2003 BN system. Combmmg

settings that were used for all configurations were consistent with those used
in the RT04 evaluations, which ran in less that<HI. 13This was the lowest error rate reported for the RT03 evaluation.
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the rescoring P3 branches with the initial P2 branch showsmework in approximately T0ORT it was necessary to run a
slight gains for all systems other than the MPron (P3b) brandtlighter faster P1-P2 and P3 rescoring set-up than the multiple
This shows that some acoustic diversity is necessary to obta@iscoring branch system in section VI-A.

combination gains, even if more adaptation and improved su-

pervision is being used. Though the final output (P2+P3a+P3g) P2 System Y%WER
. . . .| Models dev04 [ dev04f | eval04
gave about a 25% relative reduction in WER compared wit S PTon T 50 3
the 2003 1&RT system oreval03 , it performed no better P P3bch MPron 107 W 134
than the best two-way combination (P2+P3c) and little bettef (pzrg)n P3c-cn SPron 10.4 15.2 13.0
i P2b+P3b 10.7 154 134
than the best individual branch (P3c). pob+pac  CNC 10.3 14.9 128
P2c-cn SPron 11.3 15.8 13.7
B. Dual Acoustic Model Configuration SPron | P3b-Cn MPron || 10.8 15.3 133
o . . ) . (P2c) P3c-cn SPron 10.5 15.3 13.2
The system combination gains shown in the previous section P2c+P3b o 10.6 150 130
were small. To attempt to improve the gains from combinatio P2c+P3c 10.7 15.2 13.2
it 3 i i | P2b+P3b3 P2b+P3c 10.4 15.1 13.0
a dual _re_cognltlon system c_onﬁgurathn was examined. On“P2b+P3b@ PocsP3c ROVER | 104 179 129
pf the limitations of the mult|ple.r§scor|ng bra}nch framework| pop+p3as P2c+P3b 10.3 14.8 128

is that the same 1-best supervision and lattices are used for TABLE XII

all branches. The dual recognition system considered in this

. R L %WER OF THE DUAL CONFIGURATION SYSTEM USINGMPRON AND
section removes this restriction.

SPRON ACOUSTIC MODELS AND THELIMSI SEGMENTATION/CLUSTERING

Sub-System A i i Sub-System B
Segmentation | Segmentation | Table Xl shows the recognition performance of the
et Vo . dual recognition configuration. Comparing the MPron/SPron
P1 | o1 | branch (P2b+P3c) with the equivalent branch of the rescoring
Initial Transcription ! ! Initial Transcription ! branch configuration (P2+P3c) in Table XI shows that almost
1 | no degradation in performance resulted from the faster P1-
P2 ! | P2 ! P2 and P3 stages in the dual configuration. Not surprisingly
Lattice generation | | Lattice generation ! when using the MPron or SPron models in the P2 stage best
i performance was obtained by using the other of model type
» ! | » ! in the P3 stage. However the combination of any two of the
b4 . { individual branches using ROVER [16] (indicated usiag
Adept . Adapt ] yielded almost no gain over the best single branch. Thus for
P3 ! | P3 ! this configuration incorporating diversity in the form of the

1-best supervision and lattices for the P3 stage gave almost
no improvement in performance.

Alignment Alignment

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

C. Dual Segmentation/Clustering Configuration

Lattice Using the dual recognition framework of section VI-B it is
CN possible to add further diversity by using different segmen-
’ — L-best tation and clusterings in each of the individual branches of
the system. The use of multiple segmentations has a number
Fig. 4. The Dual System Framework for BN Transcription. of possible advantages. As shown in Table II, all the seg-

mentations available yield some level of missed speech (MS).

Figure 4 shows the dual system architecture. The structdi@’ those regions it is not possible to hypothesise outputs.
consists of two completely separate branches where indsing multiple segmentations reduces the chance of speech
pendent P1-P2 stages are used to allow different acou§ﬁ!”9 missed. Exploiting different segmentations should also
models to generate different lattices and 1-best supervisigfProve the robustness of the systemetnd effectsit has
for P3 rescoring. The output from these individual branch&€en observed that the numbers of errors is greater at the_ start
are then combined using ROVER [16] Note, confidence and end o_f segments compqred to the middle [46]. Mult|plq
scores, derived as described in [37], were used in the ROVERIMeNtations may lessen this problem as segment boundaries
combination in this work. This structure should allow a level dfY ON€ segmentation may occur in the middle of segments in
cross-acoustic-model adaptation and combination that was ABPther: _ _ _
possible within the previous framework. For these experimentsEach of the segmentations and clusterings from section |l
either the SPron or MPron acoustic models were used in tygre evaluated within this dual segmentation configuration.

P2 stage. In order to run the dual recognition configuratiof'® results are shown in Table Xill. For these experiments no
diversity in the acoustic processing was used, MPron models

L4CNC could have be used here as the segmentation was consistent. were used for the P2 stage and SPron models for the P3 stage.
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System Segmentation/ %WER - ”
Clustering || dev04 [ devO4f | evalod VII. CROSSSITE COMBINATION: “SUPEREARS
'(-3253330) LIMSI 10.3 14.9 12.8 To further illustrate anq explo_re the performance improvg-
B0+P3c | BBN 107 50 30 ments that can be obtained with a multi-branch system in
CO+P3c | CU 10.8 15.5 13.3 a combination framework, this section briefly describes the
ngEgC 88; ig-i igg g-g “SuperEARS” system [1]. It provides a contrast to the systems
+P3C . . . . . . . . .
[1iP3c | LIMST/CU 105 151 130 described in previous sections where the various acoustic
[0TP3cs CO+P3C T0.0 77 56 models, language models and decoders were all implemented
LO+P3cd BO+P3c 10.0 14.4 12.4 at CU.
tg:g‘g Cipde ROVER| 98 | 118 128 The SuperEARS system was the result of a cross-site
C C . . . .
LO+P3ca C2+P3c 08 147 124 colla}borat|on between research teams at BBN, LIMSI, SRI and
BO+P3cd CO+P3c 10.1 14.8 12.6 CU in the context of the DARPA EARS programme and was
gg:’;g@ ggiggc 19691 ij-g g? designed to still respect the *®T constraint for the complete
o ¢ ' ' ' system. It exploits the benefits of both explicit combination
TABLE Xil via ROVER and implicit combination by using i) hypotheses
%WEROF THE DUAL SEGMENTATION SYSTEM USINGDNtr-1350 from one sub-system to adapt another; and ii) using models
TRAINED MODELS (MPRON MODELS INP2, SRON IN P3 (PE)). from one-system to rescore lattices produced by another. As is

well-known, in all cases the potential gain from combination
is greatest when there are multiple sub-systems with similar
average WER but large differences in detailed error patterns.

The baselineLIMSI segmentation and clustering (LO+P3c)  eatom)
is thus the same as the P2b+P3c system of Table XII and segmentation Lattices
was the best single individual branch. The performance of
all the other single branch systems, other than the original
CU segmentation and clustering, were about the same. As
previously reported [21], there is little correlation between the {
DER quoted in Table Il and the WER ranking in Table XIII
for the individual systems.
ROVER was used to combine the 1-best results from the two _ _ ' l .

. . BBN adaptation LIMSI adaptation SRI adaptation
branches. For all systems where the segmentation was vanexJI redecoding | redecoding | lat-rescoring
improvement in performance was obtained from combining ]
branches. Three systems all gave similar resuli$SlI T s
(LO+P3c) combined with eithé8BN(BO+P3c),CU1(C1+P3c) combination -4
or CU2(C2+P3c). These segmentations and clusterings show a I
range of characteristics as described in section Il. This system
combination yielded gains of between 0.3-0.5% absolute over lat-rescoring
the best individual branch error rate. f

final Rover | <——
As an additional contrast the effects of using a fixed

segmentation and different clustering schemes was also inves-

tigated. This experiment used théMSI segmentation with

the CU top-down clustering (L1+,P30,)' For each of the_ te%g. 5. Cross-Site “SuperEARS” Architecture for BN Transcription.
sets there was a small degradation in performance using the

CU clustering compared to the LO+P3 system. However in Figure 5 shows the overall structure of the “SuperEARS”

contrast to the multiple segmentation results, there was almg Ltem. The initial stages of the process, includingLihéS|
no gain in performance when using the systems in COmbina’[igggmentation, and P1-P2 decoding were identical to the cor-

(LO+P3co L%;'P"’.)C)' ]:l'hIS indicates that';_the_ pnmary;ause (a%?ponding stages of lattice generation in section VI-A, for
error rate reduction from system combination was due 0 W ien the results with multiple rescoring branches are given

use of multiple segmentations rather than any diversity in the Taple XI.

clustering schemes (though these may dramatically affect t rhe hypotheses, lattices and segmentations were used in
DER). different ways by the various teams at BBN, LIMSI and
Comparing the best performance of this dual segmentatiSRl. BBN took only the 1-best hypothesis from the P2-
framework oneval04 , 12.4%, with that of the final multiple cn stage and used it as adaptation supervision. BBN used
rescoring branch combination in Table Xl shows a 0.5%e BBN segmentation and clustering described in section Il,
absolute, 4% relative, reduction in WER. This representedaad then performed a full adapted decoding pass using the
significant difference using the matched-pair sentence-segmBBiIN acoustic models, language models and decoding system
word error significance test test [47]. described in [10]. This output is labelled P3B. Similarly LIMSI
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used the 1-best output from P2-cn and again performed a fBBN sub-system on that data. Combining the final P4 CU
adapted decoding pass with the LIMSI acoustic and languagjestem with the P3B, P3L and P3S branches gave an additional
models, with theLIMSI segmentation/clustering to give thereduction in WER of around 0.5% over combination with the
P3L output. It is interesting to note that while a full decod®2 stage output. This final output is between 0.6% and 1.7%
pass gave a higher WER at the P3L stage than if lattitmver than the dual segmentation system using LtHdSI
rescoring was performed, it resulted in a lower overall WEBRnd BBN segmentations with only CU acoustic and language
after final combination. While the BBN and LIMSI systemsnodels throughout (LO+P3@ BO+P3c in Table XIlI).
performed full decoding, the SRI sub-system [18] used the The use of the various sub-systems and combination strate-
lattices from the P2 stage (with the SRI language modegies within the final SuperEARS framework produced a sys-
applied) to constrain the recognition search with the adaptan which was robust to sub-system performance differences
SRI acoustic models to give the P3S output. across test sets. The final system gave low error rates as

The output from all the P3 stages, which included confshown in Table XIV, with additionally a WER of 6.7% on
dence scores, as well as the P2-cn output were then combitiegleval03 data set, a 38% relative reduction in WER over
using ROVER. The 1-best output from this was used fahe CU-HTK 2003 BN system. Finally it is interesting to note
adaptation supervision with an increased number of adaptatibat the SuperEARS system gives essentially identical WERs
transforms for the final CU sub-system which used the SPrtmtaking the individual best RTO4 XRT BBN/LIMSI [10],
models in lattice rescoring mode. SRI [18] and CU [25] systems (overall run-time of 33BT)

The speed of the SuperEARS system was tuned so that #mel combining those with ROVER.
additional P4 pass of adaptation/rescoring with the CU system
was possible while still keeping the overall computation within VIIl. CONCLUSIONS
10xRT. The final output was obtained by combining the This paper has described a series of developments associated
output from the P3 and P4 stages together. This configuratigfih the design of a state-of-the-art Broadcast News transcrip-
combines diversity in terms of segmentation and clusteringPn system. The use of large amounts of lightly supervised

front-ends, acoustic models and language models, as welldggustic training data for constructing discriminatively trained
including both implicit and explicit combination. acoustic models is discussed, along with the performance on a

range of standard test sets. The use of these updated acoustic

System %WER models, along with updated language models, within both a
devod | dev0ar | evalod real-time framework and an approximately>IRT framework
[P2cn CU MPron [ 111 | 159 | 136 . . X
is also described. For the real-time system the performance
P3B  BBN decode 9.8 14.3 12.8 . oo
P3L  LIMSI decode || 105 15.9 14.0 on the 2003 evaluation data was significantly better than that
P3S SRI rescore|| 9.7 16.5 14.6 of the 10<RT 2003 CU-HTK BN evaluation system. For the
[ P2pP3BP3LEP3S  ROVER] 8.9 [ 139 | 122 10xRT systems a number of possible decoding frameworks
[P4 CU SPron [ 96 [ 143 [ 128 were described, which allow the hypotheses from multiple
[ P3BOP3LOP3SHP4  ROVER] 83 | 134 | 116 systems to be combined. Using the same multiple-rescoring-
TABLE XIV branch combination-framework as the CU-HTK 2003 BN

evaluation system, the new acoustic and language models
gave gains of about 25% relative over the 2003 system.
However, only small gains in performance over the best

Table XIV shows the performance of the SuperEARS sy8ingle branch system were pbtained. Two modificatiqns to this
tem. There are a number of interesting contrasts that canf@mework were then considered to increase the diversity of
drawn. The best single P3 branch performance was generdll§ hypotheses to combine. The first used multiple adaptation
obtained by the BBN system (P3B). This is the only systefyPotheses and rescoring lattices, but again little improvement
that used a different segmentation. However it made use Q¥ combination were obtained. The best combination results
supervision hypotheses from the CU system. This again m#§re obtained by using multiple segmentations. This multi-
indicate the advantage of using multiple segmentations whel§ Segmentation system gave additional gains of about 4%
combining/cross-adapting systems. The performance of thgdative over the multiple rescoring branch framework. As a
single branch on theval04 test set is almost as good a£ONtrast a cross-site, combining systems from BBN, LIMSI

the combined BBN/LIMSI system which gave an error rate &"d SRI, was also described. Using this combination of both
12.7% [10]. the diverse segmentations, and acoustic and language models,

It is interesting to compare the output from the initiapave a 6% relative gain over the best CU acoustic and language

ROVER stage (prior to P4) with the output of the duaModel system.
segmentation system using tBBN and LIMSI segmenta-
tion/clusterings (LO+P3cp BO+P3c in Table XIll). For the
04 test data the performance of the dual se mentatio[l%] R. C. Woodland, H. Y. Chan, G. Evermann, M. J. F. Gales, D. V.

eva p . g Kim, X. A. Liu, D. Mrva, K. C. Sim, L. Wang, K. Yu, J. Makhoul,
system, 12.4%, was only marginally worse than this stage of R. Schwartz, L. Nguyen, S. Matsoukas, B. Xiang, M. Afify, S. Abdou,
the SuperEARS system, 12.2%. However for the other two test J-:L. Gauvain, L. Lamel, H. Schwenk, G. Adda, F. Lefevre, D. Vergyri,

. . . . W. Wang, J. Zheng, A. Venkataraman, R. R. Gadde, and A. Stolcke,
sets the performance difference is rather larger, in particular

“SuperEARS: Multi-site broadcast news system,”Rmoc. Fall 2004
on thedev04 set due to the very good performance of the Rich Transcription Workshop (RT-Q4palisades, NY, November 2004.

%WEROF THE SUPEREARS CROSSSITE COMBINATION SYSTEM.
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