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ABSTRACT done maximising an auxiliary function using either second-

VTS model based compensation is a powerful approach fgprder, [2, 5, 3], or EM-based approaches [4, 6]. o
noise robust speech recognition. An important extension to 1 hese EM-based approaches can be formulated within the

this approach is VTS adaptive training (VAT), which allows Factor Analysis (FA) framework, where a generative process

canonical models to be estimated on diverse noise-degradsyused to model the relationship between the clean and the

training data. These canonical model can be estimated usiff§"UPted speech features. This allows EM-based update for

EM-based approaches, allowing simple extensions to didnulae for both the canonical model parameters and the noise
criminative VAT. However to ensure a diagonal corruptedtranSformS asin [7], to be obtained. Using this FA framework

speech covariance matrix the Jacobian (loading matrigjrel 2/SC enables asimple extension of ML-based adaptive migini

ing the noise and clean speech is diagonalised. In this worl@ discriminative adaptive training [6]. However, one gesh
an approach for yielding optimal diagonal loading matriceé"”’[h the_ above EM-style approaches is that to_ obtalr_1 a valid
based on minimising the expected KL-divergence betweeHenerative model and related upda_ted expressions, cimtstra
the diagonal loading matrix and “correct” distributionsher ”eefj to be placed_ on the _generatwe process parameters._ In
performance of discriminative VAT using the standard andP@rticular the loading matrix needs to be diagonal so that di

optimal diagionalisation was evaluated on both in-car col290nal compensated covariances are obtained [7].
lected data and the Aurora4 task. In previous work the loading matrix (the Jacobian) was

N ) simply diagonalised to satisfy the constraints [6]. In thark
Index Terms— Speech recognition, noise robustnessan optimal diagonal loading matrix is found by minimising

adaptive training, generative processes. the KL divergence between the distributions that resulinfro
the diagonal loading matrix and the “correct” distribution
1. INTRODUCTION This optimal loading matrix can be applied for both ML and

There has been a large amount of interest in model compefiscriminative adaptive training.

sation schemes for noise robust speech recognition. Seheme [N the next section VTS adaptive training is described.
such as Vector Taylor Series (VTS) [1] and JUD compensaBOth the second-order approach based on the mismatch func-
tion [2]. These approaches have been found to yield googon and the EM-based approach based on the FA generative
recognition performance, particularly in low signal-toise ~ Process are described. The latter is then extended to grovid
ration (SNR) conditions. In these schemes a “clean” acoustiPVAT and a KL divergence-based method is proposed to op-
model to a particular target noise condition. A noise moslel i fimise the generative model parameters. The performance of
used, and its impact on the clean speech models is describ8dch method is evaluated using both TREL data with real

by amismatch function. noisy data in-car collected and tharorad database.
These model-based compensation forms have been suc-
cessfully extended to adaptive training where the canénica 2. VTS ADAPTIVE TRAINING

model is estimated based on a set of training noise trans/Ts compensation bases on the following mismatch function
forms. Experiments using training data with a wide range ofignoring convolutional noise for simplicity)

noise conditions confirmed the advantages of such appreache

compared to both multi-style and clean systems [2, 3, 4]. The y = x + Clog (1 + exp(Cl(z — :c))) = f(z,z) (1)
noise and canonical model parameters are generally trained

using Maximum Likelihood (ML) estimation. This can be Wherex andy are the clean and corrupted speech static fea-
tures,C is the DCT matrix, anc is the additive noise vector.
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assuming clean speech and additive noise are Gaussian didie above generative model can be directly related to Eq. 2
tributed with parameterst = {p{™, (™1}, and{p,,S,},  whenA(™ =J{™,
respectively.Jim) andJ{™ are the Jacobians af with re- To obtain the FA style auxiliary function the following
spect to vectoi, andz, respectively. Taking the expectation inequality can be used for the probability in Eq. 5
of Eq. 2 provides the following VTS compensated model pa-
rameters for component log p(y|M) = log/ p(y, x| M)dz >

Zr

™ = (™, p,) ©)

=) = dg(I B IEIT 4 38, 30T) (4) /wp(m|M)10gp(y,m|M)dm + H(p(z|M)) (7)

Wh_ere thedg() operator diagonalises the _matrix. This is ré-whereH (p(z|M)) is the entropy of clean speech distribution
quired so that diagonal covariance matrices can be used yhq is independent of1. Substituting the above expression

decoding. into Eq. 5 provides an alternative auxiliary function which

Though VTS has proved to be a powerful method foryje|qs the following EM-based solution (a similar expressi
compensating clean models, in many practical situatiohs on - (m))

corrupted data is available for training the underlyingaole can be found fob,

models. In this case VTS adaptive training (VAT) can be used 5 (m)E{w| m)

to handle the environment mismatch. Thus, the canonical i) — Etm Tt Ye> )

model parameters\{ are obtained given a set of training Yoim ~lm)

VTS transforms for each homogeneous block. Then, given '

M, the transforms can be refined and the process iterated ufihe expectation above is obtained from thg y) joint dis-

til convergence. Two VAT forms are described in this sectioriribution parameters provided by the FA generative model in

based on ML training: a second-order based scheme [2, 3kd. 6.

and an EM-based approach [6, 4], which also allows to easily For the EM-based approach, it is possible in principle to

extend VAT to VTS discriminative adaptive training (DVAT). use the full Jacobian form fok ™). Unfortunately this will
yield full compensated covariances. Although it could bg-po

2.1. Maximum Likelihood training sible to diagonalise the final estimates, the likelihoods va
To estimate the new VAT canonical model parametetgshe ~ UES obtained using full covariance statistics during tngn
following auxiliary function can be used will differ considerably from those obtained after diagtina

. sm $) ~(m m sation. Applying a back-off procedure as in the second+orde

QM M) = Z 7™ log {N(y§ ; “5 g 25 ))} (3)  approach is not feasible as it would cancel out the computa-

§bym tional benefits of the EM-based approach.
where it is assumed that a noise transform was estimated for The simplest approach to deal with this is to diagonalise
each homogeneous block of datand the compensated pa- the Jacobian
rameters are obtained from Eq. 3 and 4 basedfin
To estimate the new canonical model parameterstan- A = dg(Im) (9)

dard second-order optimisation schemes can be used to max-
imise a quadratic approximation of the above auxiliary func Which, though discarding important information provided b
tion. Additionally approximations are made to simplify the the Jacobian off-diagonal terms, proved to be effective for
estimation of the first and second order derivatives [2, 8 T Poth ML and discriminative training [6]. Unfortunately ¢hi
effect of these approximations is that the estimated moddftroduces a mismatch between the resulting distributas
parameters are not guarantee that the “real” auxiliary functhe mismatch functionin Eq. 2.
tion, which is obtained using Eg. 3 and 4, is maximised, and

a back-off procedure on the new estimates is generally ag-2 DiScriminative training

plied [2]. Minimum Phoneme Error (MPE) based discriminative train-
An alternative EM-based VAT scheme can be obtained ugng aims to minimise the following function

ing the FA framework. It is first necessary to express the mis- s

match function in Eq. 2 as a FA-style generative model Fupe (M) = Z Z PHIY®, M)L(H, Hiz)f) (10)
ylm = A™g + ™ (6) s=hH

whereA (™ is the loading matrix and the following distribu- whereL(#, .2} is the “loss” measured at the phone-level

tions are defined between the hypothesis and referem{éé.

N ~(m) (™) (m) _ (m) 52 (m) To optimise this expression a weak-sense auxiliary func-
x N (™ 277, € N(p™B™) tion is generally used. An important stage in this is the set-
pl™ =™ A s = sfm) - A BmA T ting of the component-specific constddt™ that weights the



smoothing with the previous iteration model-parametees. F The above expression shows that the optimal valueAfas

standard discriminative trainingthis is usually set as dependent on the second-order moment ofpihe) distribu-
tion. Two forms can be considered:
D™ — max {E 3OS aime) 2D } (11)
s=1 t=1 1. Diagonal E{uu"}: no specific information is provided

on the correlation between dimensions, and all directions
of the search space are considered independently. Using
this distribution in Eq. 14 naturally provides the diagonal
approximation in Eq. 9, irrespective of the diagonal matrix
values.

Full £{pu™}: in this case the optimak depends on the
exact form of€ {pupu'}.

WhereDr(nmrf is the minimum value to ensure that the covari-
ance matrix of componemt is semi-positive definite anfl
is an empirically set constant [8].

In theory both of the ML VAT estimation schemes in the
previous section could be extended to DVAT. However, it |s
not possible to use Eqg. 11 if the second-order approach de
scribed in the previous section is used for the optimisation
this case the estimation @) is more problematic, further The structure o€ {uu} is unknown and must be approx-
complicating the selection of an appropriate smoothingiter imated. The approach used in this work is to consider
In contrast, using the FA based approach of Sec. 2.1 allowas a random variablg in the direction of the gradlent of
to use the same results obtained for MPE training and the fothe auxiliary function in Eq. 5. This, assuming trﬁg

lowing EM updates, similar to Eq. 8, are obtained [ELT) is a scaled version of the residual outer product. This gield

m)T m)- m
has a similar form) E{NNT}zg_{BQ} 3¢ _) x{ )L y(m) | o
(ms) () (m) (m) When this form is used, the following expression is ob-
oy s Elelyy” m+ DU ™+ Topg 12) tained
x (ms) m
Y DM AT =dg(IM IR I dg (T TR I™) T (15)

where {,u(m) Z(m } and 7, are the parameters of a prior The off-diagonal Jacobian terms are involved in the calcula
which is used to reduce the risk of of over-training [8]. It tion before diagonalisation is applied, so will yield diiéat
should be emphasised that this form still requires the diagdoading matrices to the diagonal case.

nalisation in Eq. 9. One side-effect of using this approach is that the covari-
ance of the generative model error term in Eq. 6 may become
3. KL DIVERGENCE-BASED OPTIMISATION negative. As this would then yield an invalid generative-pro

cess, none of the standard update formulae could be used. To
avoid this issue, the result of Eq. 15 is smoothed as follows

A (m)

Itis unclear if Eq. 9 provides an optimal loading matrix form
The aim of this section is to derive a form which minimises
the KL divergence between linearised estimates of theidistr

butions using either the full Jacobian, or a diagonalisedio A= O‘(m)dg(']im)) +(1- O‘(m)) AT (16)
ing matrix. To simplify this problem fixed compensated co-yyith
variances are used. Thus only the mean will shift based on / (m)/a(m)
A0 = W) 4 AL () — ) o™ = max o (17)
= py™ A (" — ™) (13) i=1d I
Thus two distributions will be obtained, one based\dfi! = \hered is the size of the feature vector and lower case sym-

3{™) and the second based on the unknown diagonal loadingols, i.e.o(™, are use to indicate values of the diagonal ma-
matrix, A, to be estimated. As the new estimate of the mearﬂnces Whlle.](m)

K distrib he ch h «i selects thé-th Jacobian diagonal element.
'As(gg nO\(Nn) a distribution over the changes in the mean, In the next section DVAT based on the proposed Eqg. 16 is

N » must be used. The aim is thus to minimise thecompared with standard DVAT based on Eq. 9.
expected KL divergence over this mean distribution. This ca
be written as 4. EXPERIMENTS AND RESULTS

ERLN (™ +30 g, 5™ IV (d™ + Ap, B0))} To evaluate the proposed approaches two different taskes wer
] (m) ) used in this work: theAurora4 and theTREL [6] configu-
The optimal value foA;™’ can be obtained from rations. For both tasks ML and discriminatively adaptively

~(m) ) (m)-1/ 7(m) Ty q(m) T trained systems were trained. The tasks are briefly destribe
Ax 7argf{nn{Tr ("I =M {pn H I -A) below. For further details and contrasts with multi-styje-s
. . : , tems see the references.
which, differentiated and equated to zero, yields The TREL training data (486 hours), [6], includes arti-
(m) _ ) _ ficially corrupted clean speech data with car noise and in-
dg <(JX A)e{pp }) 0 (14) car collected data. The recognition tasks consist of in-car



recorded data using a microphone mounted on the rear-vielevel accuracy and WERSs trends were observed\wora4.
mirror, with either the engine-on (ENON, 35dB) or driving The final comparison between VAT and DVAT in this case is
along a highway (HWAY, 18dB). shown in Table 1 for each noise/channel conditions. There
The multi-condition and multichannel (Micl and Mic2) is little difference in WER performance between the two ap-
data of theAurora4 database (16kHz, 12 hours, 7138 utter-proaches, though again for all iterations the MPE criterion
ances) was used. The recognition task is a 5K-word dictatiowas higher for the optimal loading matrix.
task with 14 test sets, 330 utterances each. Sets 01-07 were
recorded with Micl adding to sets 02-07 different noisefiwit 5. CONCLUSIONS
random SNR from 5 to 15 dB. The same approach was uselin extension of the previous work on canonical model param-
to obtain sets 08-14 but Mic2 was used instead. In the followeter estimation for DVAT was presented. Rather than using a
ing, letters A, B, C, and D will be used to indicate test sets 01diagonal loading matrix in the FA generative process used to
02-07, 08, 09-14, respectively. obtain EM-based model updates, an optimal value was de-
For both systems 12 MFCCs plus zeroth cepstrum, deltdved basing on the KL divergence criterion. This provided
and delta-delta and the systems were built using the same com higher training phone-level accuracy which also gave im-
figuration in [6]. The number of components in the TREL proved WERSs at each iteration of model re-estimation. How-
task was about 7800 (to mimic a compact in-car system) anelver, after several iterations, both approaches provideiths
for the Aurora4 task 50,000. WERs. Though the current implementation has not yielded
For each training configuration, a VAT system was trainedperformance gains, it provides a framework for obtaining op
using the second-order approach described in Sec. 2.1 andimal loading matrices. Applying this approach to more com-
was then used as initial system to train two DVAT systemsplex tasks with larger amounts of data, or alternative ithigtr
one based on Eq. 9, DVAL, the other on Eq. 15, DVAJ:. tion for the mean shift, may yield performance gains.

D\/Ang
oorl] ~@-DVAT,,
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