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Abstract—Support Vector Machine-based speaker verification
(SV) has become a standard approach in recent years. These
systems typically use dynamic kernels to handle the dynamic
nature of the speech utterances. This paper shows that many
of these kernels fall into one of two general classes, derivative
and parametric kernels. The attributes of these classes are
contrasted and the conditions under which the two forms of
kernel are identical are described. By avoiding these conditions
gains may be obtained by combining derivative and parametric
kernels. One combination strategy is to combine at the kernel
level. This paper describes a maximum-margin based scheme for
learning kernel weights for the SV task. Various dynamic kernels
and combinations were evaluated on the NIST 2002 SRE task,
including derivative and parametric kernels based upon different
model structures. The best overall performance was 7.78% EER
achieved when combining five kernels.

Index Terms—Speaker Recognition, Dynamic Kernels, Support
Vector Machines, Classifier Combination.

I. I NTRODUCTION

SPEAKER Verification (SV) is a binary classification task.
The objective is to decide, given an utterance of speech

and an associated identity claim, whether the speech was
uttered by the claimed speaker or by an imposter. Traditional
approaches to text-independent SV have made use of gen-
erative models, normally Gaussian Mixture Models (GMMs)
to approximate the distribution of the speech associated with
each target speaker. The classification decision is then made
based upon the log-likelihood ratio between the target speaker
model and a Universal Background Model (UBM) trained to
represent all speakers.

Recent approaches have examined how to apply Support
Vector Machines (SVMs) to the SV task [1][2]. SVMs are
a form of discriminative classifier based upon a maximum-
margin training criterion that have been successfully applied
to many different applications. SVMs can only use input of a
fixed dimensionality. Hence, they can not be directly applied
to classification of speech, which is typically parameterised
as variable length sequences of observations. This has lead
to the development ofdynamic kernels that implicitly map
variable length speech utterances into a fixed dimensional rep-
resentation. A variety of dynamic kernels have been proposed
and applied to the SV task. Common examples include Fisher
Kernels [3], GMM-supervector kernels [4], MLLR kernels [5]
and CAT kernels [6]. SVMs have generally been found to
outperform traditional log-likelihood based approaches.
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This paper attempts to unify various forms of dynamic
kernel within a general framework. Many commonly used
kernels can be placed into one of two classes,parametric
kernels and derivative kernels. The two types of kernel are
closely related and under certain conditions, described inthis
paper, the features obtained will be identical. As well as estab-
lishing the conditions under which kernels are the same, the
framework may also be used to motivate new forms of kernel.
For each form of parametric kernel a corresponding derivative
kernel can be defined and inversely, for each derivative kernel
there exists a corresponding parametric kernel. In many cases
the derivative equivalents to many commonly used parametric
kernels have not previously been applied to SV.

In the second half of this paper a general scheme is de-
scribed for combining multiple complementary kernels for the
SV task. In many recent approaches such as [7], combination
is performed by fusing the output scores from multiple SVMs.
A scheme such as logistic regression can be used to train a
suitable weighting for each score [8]. For SVM-based systems,
an alternative approach is to combine classifiers at the kernel
level. Here a suitable set of kernel weights must be obtained.
This task is known as Multiple Kernel Learning (MKL).

One approach to MKL is to select the weighting that
minimises the cross-validation error by performing a grid
search over all possible weightings. Unfortunately this isonly
feasible when the number of kernels is small and is generally
unsuitable for anything other than pairwise combination. An
efficient alternative approach was proposed in [9] and extended
in [10]. Here kernel weights are obtained using a maximum
margin criterion. A standard SVM implementation can be used
to efficiently select suitable weights even when the number
of kernels is large. This approach also has several advantages
over score-fusion. Firstly, a consistent criterion is usedto train
both the SVM parameters and the kernel weights. A second
advantage is that unlike score-fusion this maximum-margin
MKL scheme does not require a separate development dataset.

This paper considers a number of refinements to this scheme
for the SV task. The standard scheme has a known tendency
to find sparse kernel weightings. For a given set of kernels
the optimal level of sparsity may vary depending on the task.
In this work a regularisation term is applied to the objective
function. This allows the user to select the desired level of
sparsity by adjusting a constant. Unlike grid-search based
MKL, this constant may be efficiently selected via cross-
validation even when the number of kernels is high. This
paper also considers cross-speaker tying of kernel weights.
By defining the objective function over all speakers a robust
estimate for the kernel weights may be obtained even when
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the amount of enrollment data available per speaker is limited.
This paper is organised as follows. The next section de-

scribes SVM-based speaker verification and the use of dy-
namic kernels. Two general categories of dynamic kernel,
derivative and parametric kernels, are introduced and the con-
ditions under which they will be complementary described. In
Section III, Multiple Kernel Learning is discussed. In Section
IV, experimental results on the NIST 2002 SRE dataset are
presented. Finally conclusions are drawn.

II. SVM-BASED SPEAKER VERIFICATION

The objective of the speaker verification (SV) task is to
determine, given an utteranceO and associated identity claim
s, whetherO was uttered by the target speakers or by an
imposter. If a functionS(O, s) is available to assign a score
to each utterance, decisions can be made by comparing each
score to a fixed threshold.

S(O, s)

target speaker
>

<

imposter

Threshold (1)

A standard approach to SV assigns a score to each utterance
based upon the log-likelihood ratio (LLR) between a Gaussian
Mixture Model (GMM) trained to represent speakers and a
Universal Background Model (UBM) GMM representing all
speakers [11]. As the amount of available enrollment speech
per speaker is usually limited, the parameters of the speaker-
dependent models are typically estimated by MAP-adapting
the mean parameters of the UBM [12].

Recently there has been interest in obtaining scores using
the output of a Support Vector Machine (SVM) classifier. The
SVM is a binary, discriminative classification scheme that has
been successfully applied to a wide variety of tasks. GivenN

training samples,X = {x1 . . . xN}, where each samplexi

has associated binary labelyi ∈ {−1, 1}, the SVM algorithm
will train a linear decision boundary with form

wTx + b = 0 (2)

SVMs use amaximum-margin training criterion. The optimal
decision boundary parameters{w, b} are those that both min-
imise the empirical risk and maximise the distance between
the decision boundary and the closest training example, known
as the margin. The optimal decision boundary is defined by

min
1

2
||w||

2
2 + C

N
∑

i=1

ξi (3)

w.r.t. w, b, ξ

s.t. yi

(

wTxi + b
)

≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

whereξi is the training error associated withxi andC is an
constant that controls the trade-off between maximising the
margin and reducing the empirical risk. The SVM optimisation

function can also be defined using an equivalent dual form.

max
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjx
T

ixj (4)

w.r.t. α

s.t. 0 ≤ αi ≤ C ∀i

where αi is the dual variable associated with samplexi.
The primal weight vector can then be reclaimed usingw =
∑N

i=1 αiyixi. The non-zero elements ofα correspond to
samples that lie on or within the margin. These samples are
termedsupport-vectors and entirely determine the position of
the decision boundary. An interesting property of this formis
that during training and inference all references to data are
in the form of inner-products between pairs of examples. It is
therefore possible to replace these inner products with akernel
function K(xi,xj) that implicitly calculates the inner-product
between two vectors in some, possibly very high dimensional,
feature-space.

SVMs cannot be directly applied to tasks involving speech
as they can only use input of some fixed dimensionality.
However, speech utterances are typically parameterised as
variable length sequences of observationsO = {o1, . . . ,oT }.
This has lead to the development ofdynamic kernels, also
referred to as sequence kernels [13]. These have the form

K(Oi,Oj) =< φ(Oi;λ),φ(Oj ,λ) > (5)

where φ(O;λ) is a function that maps a speech utterance
into a fixed dimensionalscore-space. The kernel also defines
a distance metric between two feature vectors. Since SVMs
are not invariant to feature scaling it is useful to use a metric
that is maximally non-committal. One such metric is given by

K(Oi,Oj) = φ(Oi;λ)TQ−1φ(Oj ;λ) (6)

whereQ is the Fisher information matrix defined as

Q = E
{

(φ(O;λ) − µφ)(φ(O;λ) − µφ)T
}

(7)

µΦ = E{φ(O;λ)} (8)

whereE{} is the expectation with respect toO. Q is often
approximated by the covariance matrix of the training data in
the feature space. Also it is often set to be diagonal.

Using a dataset of speech utterances{O1, . . . ,ON} from
a variety of speakers, a binary classifier that distinguishes
between the target speakers and all other, imposter, speakers
may be trained. A binary-labelled training dataset is required.
This may be constructed by assigning each utteranceOi label
yi = 1 if Oi was spoken by speakers, otherwiseyi = −1.
A speaker-dependent decision boundary can then be trained
using the kernel given in equation 6. Given this model, test
utteranceOv can be scored using:

S(Ov, s) =
N
∑

i=1

α
(s)
i yiK(Oi,O

v) + b(s) (9)

The nature of the dynamic kernelK(Oi,Oj) depends
upon the form ofφ(·). Dynamic kernels based upon vector-
averaging [14] or Dynamic Timewarping [15] have been de-
veloped but these have now been largely superseded bygener-
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ative kernels where the score-operator depends upon an associ-
ated generative model. A number of different dynamic kernels
of this form have been proposed for speaker verification, for
example the Fisher kernel [3], GMM-supervector kernel [4]
and MLLR-kernel [5]. These kernels can be characterised
into two broad classes depending upon the form ofφ(O;λ).
These will be referred to asparametric kernels andderivative
kernels.

A. Parametric Kernels

Parametric kernels are a form of dynamic kernel where the
feature-space consists of a set of parametersλ associated with
a generative model. A variable length utterance is mapped to
a fixed dimensional feature representation by training a gener-
ative model to represent the utterance and then concatenating
the model parameters into a feature vector. Hence the location
of an utterance within the feature space is determined by
maximum likelihood parameter estimates given the verification
utteranceOv. Thus

φλ(Ov;λ) =
[

λ̂
]

, λ̂ = arg max
λ

{log p(Ov;λ)} (10)

One property of this form of kernel is that the derivative with
respect to the parameters of the generative model is zero when
differentiated at the ML estimate, i.e.

∇λ log p(Ov;λ)
∣

∣

∣

λ̂

= 0 (11)

The precise nature of the parametric kernel is determined
by the generative model used to represent the speaker. One
parametric kernel that has been successfully used for speaker
verification is the GMM-supervector kernel [4]. In this kernel,
the feature-space is formed from the concatenated means
of an utterance-dependent GMM. As there are typically not
enough observations per component to robustly estimate the
parameters, MAP adaptation, using the UBM as a prior, is
used instead. Here

λ̂ = arg max
λ

{log p(Ov;λ) + log p(λ)} (12)

wherep(λ) is based on the UBM parameters. In this case the
property in equation 11 will not be satisfied. For a GMM the
ML or MAP estimate has no closed-form solution. Iterative
approaches based on EM are commonly used. For component
m the MAP-adapted mean at iterationk is given by

µ(k)
m =

∑T
t=1 γ

(k−1)
m (t)ov

t + τ µ̃m
∑T

t=1 γ
(k−1)
m (t) + τ

(13)

whereµ̃m is the UBM mean vector associated with component
m (which is also used as the initial parametersµ

(0)
m ), γ

(k)
m (t) =

P (m|ov

t ;λ
(k)), the posterior probability of componentm at

time t given observationov

t and λ(k), and τ is the standard
MAP adaptation constant that controls the influence of the
prior on the final model. Ifk iterations of mean-only MAP
adaptation are performed the feature-space for the GMM-
supervector kernel is

φλ(Ov;λ(k)) =
[

µ
(k)T
1 , . . . ,µ

(k)T
M

]T

(14)

In [4], a distance metric is defined such that the kernel function
is an upper bound on the KL divergence between the two
utterance-dependent models. This normalises each component
mean by the associated mixture weight and the inverse of the
covariance matrix. In this work the distance metric given in
equation 6 is used, which is consistent with the metrics used
for the other kernels.

Parametric Kernels may be based around alternative forms
of generative model. The MLLR kernel [5] and CMLLR
kernel [16] are examples of parametric kernels where the
generative model includes an utterance-dependent linear trans-
form. In both cases the feature space consists of the concate-
nated transform parameters only. Another parametric kernel
proposed for speaker verification is the Cluster-Adaptive-
Training (CAT) kernel used in [6]. Here the feature space
consists of the utterance-dependent cluster weights associated
with a trained CAT generative model [17].

B. Derivative Kernels

Derivative kernels provide an interesting contrast to para-
metric kernels. Rather than using model parameters as the
feature-space, the partial derivatives of the utterance log-
likelihood with respect to individual model parameters are
used instead. The set of partial derivatives form a sufficient
statistic for the utterance log-likelihood. They are therefore
a natural choice for an utterance-dependent fixed-dimensional
feature set. For a set of model parameters,λ, the derivative
feature-space generated from a verification utteranceOv has
the form

φ∇(Ov; λ̂) =
1

T

[

∇λ log p(Ov;λ)
∣

∣

∣

λ̂

]

(15)

whereλ̂ is the model parameter value at which the derivative is
evaluated. Equation 15 includes an optional term to normalise
by the number of framesT in Ov. This is important if the
utterances in the dataset vary greatly in duration. Derivative
kernels may also include higher-order derivative terms in the
feature-space. This is not possible for parametric kernels.
However, generally only first-order derivatives have been
found to contain useful discriminative information [18]. Some
derivative kernels, such as the log-likelihood ratio kernel [19],
also include a log-likelihood ratio term in the score-space. This
approach is closely related to kernel combination as described
in section III. In this paper, the forms of derivative kernel
considered contain only first-order derivatives.

When using derivative kernels it is necessary to define the
point around which the derivative kernel feature-space will
be evaluated. Various points are possible. The point may be
based on the UBM parameters, which is similar to using the
Fisher kernel [3]. Another possibility is to use speaker-specific
parameters associated with a speaker-dependent model. As a
GMM is typically used, iterative approaches are used to obtain
the speaker-specific parameters. To clearer specify the iteration
at which the derivative is evaluated,log p(Ov;λ(k)), will be
used for the feature-space evaluated at thekth iteration. This
approach resembles the log-likelihood ratio kernel.

The nature of derivative kernels is again determined by the
generative model used to represent a speaker. Derivatives with
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respect to the means of the GMM can be used [13]. Here
elements of the feature space have the form

∇µm
log p(Ov;λ)

∣

∣

∣

λ(k)
=

T
∑

t=1

γ(k)
m (t)Σ−1

m (ov

t − µ(k)
m ) (16)

Derivative kernels may also be defined using alternative
forms of generative model. If the generative model contains
a linear transform, derivatives with respect to this transform
may be used as features leading to derivative equivalents
of MLLR and CMLLR kernels. Transform-based derivative
kernels are discussed further in [20]. Given a generative model
and associated subset of model parameters both a parametric
kernel and derivative kernel can be simply defined. In fact
for each form of parametric kernel there is a directly related
derivative kernel. This can be used to motivate new kernels to
apply to the SV task.

C. Relationship between Parametric and Derivative Kernels

It is interesting to briefly contrast derivative kernels with
parametric kernels. From equation 11, the derivative of the
parametric kernel features at the ML-estimate of the model
parameters will be zero for the verification dataOv. In general
this will not be the case for the derivative kernel. Instead the
features of the derivative kernel will be zero for the enrollment
data if the ML-estimate is used as the point to specify the
derivative

λ̂e = arg max
λ

{log p(Oe;λ)}, φ∇(Oe; λ̂e) = 0 (17)

In addition derivative kernels commonly use a length normali-
sation term. This is not necessary for parametric kernels, where
there is an implicit normalisation for the lengths, for example
the normalisation term in equation 13. A consequence of thisis
that when a component is not observed ML-based parametric
kernels are undefined, whereas derivative kernels tend to zero.

Both parametric and derivative kernels have been used
successfully for speaker-verification. The respective feature-
spaces can express different types of speaker-discriminant
information and thus may be complementary. It is useful to
establish under what conditions the two forms of kernel are
the same, as this yields information as to how to make the
features complementary to one another. The parametric kernel
feature-space at thekth iteration of training can be expressed
in the form of a gradient ascent update.

φλ(Ov;λ(k+1)) =

[

λ(k) + η̃∇λ log p(Ov;λ)
∣

∣

∣

λ(k)

]

(18)

whereη̃ is the learning rate. This may then be expressed as a
function of a derivative feature-space evaluated atλ(k)

φλ(Ov;λ(k+1)) =
[

λ(k) + ηφ∇(Ov;λ(k))
]

(19)

whereη = T η̃ if duration normalisation is used, as in equation
15, otherwiseη = η̃. The two classes of dynamic kernel are
thus related to each other. Compared to the derivative kernel
feature-space, the parametric kernel features includes a term
λ(k) which introduces a translation of the feature space. If

a kernel that is invariant to translation is used, such as a
stationary kernel, this will have no effect. Note stationary
kernels, such as the Kullback-Leibler Divergence kernel [21],
have the general formK(Oi,Oj) = F (φ(Oi) − φ(Oj))
whereF() is the function that defines the kernel.

Even if a stationary kernel is used, it is not sufficient to
ensure that the two sets of features will be identical. Equation
19 contains a learning rate. Using an appropriate metric, the
kernels will not depend on the learning rate if the learning
rate is independent of the observation sequence since this
dependency is removed by the metric (the metric used in
equation 6 has this property but is not stationary). However
this is not generally the case. To illustrate this consider the
situation where the parametric kernel is obtained using an EM-
based ML-estimation of the mean. At iterationk+1 the mean
parametric feature-space for componentm can be expressed
as

µ(k+1)
m = µ(k)

m +

(

TΣm
∑T

t=1 γ
(k)
m (t)

)

[

1

T
∇µm

log p(Ov;λ)
∣

∣

∣

λ(k)

]

(20)
EM is thus equivalent to gradient ascent using the derivative
features with a learning rate that depends upon the total com-
ponent occupancy for that observation sequence as well as the
length of the observation sequence (when length normalisation
is being used). It is more common to use MAP adaptation to
successively update models. When the MAP priorµ̃ equals
µ(k), this update is equivalent to gradient ascent with the
following learning rate.

η =

(

TΣm
∑T

t=1 γ
(k)
m (t) + τ

)

(21)

If both parametric and derivative features are to be used, itis
important that the features differ. This can be achieved using a
non-stationary kernel, such as the kernel in equation 6, evalu-
ating the derivative terms at a different point to the parametric
features (effectively using a different number of iterations), or
simply using either EM updates or MAP adaptation with a
low value ofτ . Combinations of these may make the features
more complementary.

D. Generative Model Structure

For dynamic kernels that incorporate a generative model,
such as parametric or derivative kernels, an appropriate form
of model must be selected. If a GMM is used, the number
of Gaussian components must be chosen. This is a trade-off
between improving the ability of the model to approximate
the distribution over the acoustic space and ensuring that the
model parameters can be robustly estimated with the available
data. A suitable model size is typically chosen by selectinga
value that reduces the error rate on some development dataset.
As the trade-off is data-dependent this strategy may not be
optimal.

If a suitable scheme for combining classifiers is available,
then other strategies may be used. Rather than selecting
a single form of model, a series of dynamic kernels can
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instead be defined, each based on different model structures.
The associated classifiers can then be combined. Although
this approach is more computationally expensive it has two
advantages. Firstly, there is no need for prior knowledge about
the task in order to select a suitable model size. Secondly,
rather than making a single trade-off, the combined classifier
can make use of features extracted from a range of different
model structures, potentially leading to gains.

III. M ULTIPLE KERNEL LEARNING

In recent SV evaluations there has been a focus on com-
bining multiple classifiers to improve overall performance.
In [7], gains were obtained by combining SVM classifiers
based upon GMM-supervector kernels and MLLR kernels.
For SVM classifiers two general combination strategies are
available, score-fusion and kernel combination. In score-fusion
a combined score is obtained by taking a weighted linear
combination of the scores obtained from a set of individual
classifiers. Various criteria are available to train an appropriate
score-weighting. For example an additional SVM may be
trained using the individual classifier scores as input features.
Another criterion that is commonly used to optimise score
weights is logistic regression [8]. Both of these methods
require an auxiliary dataset in order to train the score weights.

An alternative approach to score-fusion is to to combine
systems at the kernel level. Given a set ofK kernels, a
combined kernel function may be defined as the weighted sum
of the individual kernels. The combined kernel has this form.

k(Oi,Oj) =
K
∑

k=1

βkkk(Oi,Oj) (22)

Functionkk(Oi,Oj), associated with kernelk, is defined by
equation 6 for some functionφk(O;λ) andβk is the associ-
ated kernel weight. The weights are generally constrained such
that βk > 0 ∀k and

∑K
k=1 βk = 1. Learning a suitable set of

kernel weights{β1, . . . , βK} is known as the Multiple Kernel
Learning (MKL) problem [22]. This paper mainly focuses on
kernel-based combination schemes.

A. Minimum-Equal Error Rate Criterion

One approach to solving the MKL problem is to select
kernel weights that reduce the cross-validation error on some
development dataset. This could be achieved by conducting
a grid search over all possible weightings and selecting the
weights that minimise the Equal Error Rate. In this work, this
criterion is termedminEER. Unfortunately this approach is
generally impractical for anything other than pairwise kernel
combination. In cases where calculating theminEER kernel
weights is feasible this metric can provide an upper bound for
the gains that can be achieved using other criteria to selectan
appropriate set of kernel weights.

B. Maximum-Margin Based Multiple Kernel Learning

An efficient approach to MKL was developed in [9] and
extended in [10]. Here the kernel weights are incorporated into

the standard SVM objective function. For a set of N utterances
{O1, . . . ,ON} each with associated labelyi ∈ {−1, 1}, the
optimal set of weights are those that maximise the margin.

min
1

2

K
∑

k=1

1

βk

||wk||
2
2 + C

N
∑

i=1

ξi (23)

w.r.t. β,wk, b, ξ

s.t. yi

(

K
∑

k=1

wT

kφk(Oi;λ) + b

)

≥ 1 − ξi ∀i

ξi ≥ 0 ∀i, βk ≥ 0 ∀k,

K
∑

k=1

βk = 1

wherewk are the primal SVM weights associated with kernel
k andb, ξ and C are the standard SVM bias, slack vector and
regularisation term. In this formulationβ is subsumed into the
definition of the primal weights and hence does not directly
appear in the marginal constraint. The primal weight vectoris
given by

wk =

N
∑

i=1

αiyiβkφk(Oi;λ) (24)

There are a number of issues to address when applying this
form of MKL directly to speaker verification.

1) Regularisation Term: In equation 23, anl1-norm con-
straint is applied to the kernel weights. A known consequence
of this is to introduce a tendency towards sparse solutions [10].
For a given set of kernels, there is no guarantee that the level
of sparsity will be optimal. One solution is to incorporate
a regularisation termR into the objective function to allow
the user to control the level of sparsity. A suitable form of
regularisation is

R = ϕ

K
∑

k=1

(βk−
1

K
)2 = ϕ

(

K
∑

k=1

β2
k −

1

K

)

(25)

due to thel1-norm constraint on the kernel weights. Since
the optimal solution is independent of any constant terms in
the objective function,R = ϕ

∑K
k=1 β2

k may be used instead.
This allows the same form of regularisation term irrespective
of K. Here ϕ is an empirically set constant. For positive
values ofϕ the effect of this form of regularisation is to drive
towards a uniform set of weights. Whenϕ is negative the
solution will tend to be sparse and the objective function will
perform kernel selection. Although an additional parameter
has been introduced, note that an appropriate value forϕ may
be obtained through cross-validation even when the number
of kernels is large.

2) Cross-Speaker Tying: In most SVM-based speaker ver-
ification systems, such as [7][23], a distinct set of SVM
parameters is trained for each speaker. However, the amount
of enrollment data available per speaker is typically limited.
Learning a set of speaker-dependent kernel weights in addition
to the SVM parameters may lead to over-training. One way
to obtain a more robust set of weights is to tieβ over all
enrolled speakers. This can be achieved by redefining the MKL
objective function to sum over all speakers, while maintaining



6 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

a separate set of marginal constraints for the enrollment data
associated with each speaker.

3) Dynamic Range Normalisation: The form of objective
function given in (23) is biased towards those kernels for
which the average magnitude of the associated feature vectors
is greatest. Under a maximally non-committal kernel metric,
this corresponds to the kernels for which the associated score-
space has the greatest dimensionality. It is therefore important
that the kernel function includes some form of dynamic range
normalisation. One option is Spherical Normalisation [13]
where each feature vector is mapped onto the surface of a unit
sphere. An alternative approach is to perform normalisation at
the kernel level. This may be achieved in a variety of ways,
for example by replacingkk(Oi,Oj) →

1
M

kk(Oi,Oj) where
M is the dimensionality ofφk(O;λ). Alternatively, the score-
space features of each kernel may simply be duplicated so all
kernels have the same dimensionality. This is the method used
in this work.

ThemaxMargin MKL criterion used in this work is defined
by the following objective function.

min
S
∑

s=1

(

1

2

K
∑

k=1

1

βk

||w
(s)
k ||

2
2 + C

N
∑

i=1

ξ
(s)
i

)

+ ϕ

K
∑

k=1

β2
k

(26)

w.r.t. β,wk, b, ξ

s.t. y
(s)
i

(

K
∑

k=1

w
(s)T
k φk(O

(s)
i ;λ) + b(s)

)

≥ 1 − ξ
(s)
i ∀i ∀s

ξ
(s)
i ≥ 0 ∀i ∀s, βk ≥ 0 ∀k,

K
∑

k=1

βk = 1

Where the speakers ranges from1 . . . S and samplesi range
from 1 . . . N (s), wk = {w

(1)
k , . . . ,w

(S)
k }, b = {b(1), . . . , b(S)}

andξ = {ξ(1), . . . , ξ(s)}.
Equation 26 may be efficiently optimised by a similar

approach to that used in [10]. First, an equivalent constrained
optimisation problem is defined.

min β

∑S
s=1 J(s,β) + ϕ

∑K
k=1 β2

k (27)

s.t. βk ≥ 0 ∀k,
∑K

k=1 βk = 1

whereJ(s,β) is the optimal value of the objective function
associated with an SVM with kernel (22) and fixed kernel
weightsβ after training on data associated with speakers.

J(s,β) = max
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjK(Oi,Oj ,β) (28)

w.r.t. α

s.t. 0 ≤ αi ≤ C ∀i

A projected-gradient scheme can then be used to optimise
(27). At each iterationJ(s,β) can be estimated using a
standard efficient SVM implementation such as [24]. An
expression for the derivatives ofJ(s,β) evaluated atβ follows
from the form in [10].

C. Relationship between kernel-combination and score-fusion

For SVM classifiers two general combination strategies are
available, score-fusion and kernel combination. It is interesting
to briefly compare these two approaches. During score-fusion
the final score is determined by combining the scores obtained
from K individual classifiers. For the unweighted case the final
scoreS(Ov, s) assigned to test utteranceOv is given by

S(Ov, s) =
K
∑

k=1

w
(s)T
k φk(Ov;λ) + b

(s)
k (29)

where w
(s)
k and b

(s)
k are the weights and bias associated

with SVM classifierk and φk(O;λ) defines the associated
feature space. The parameters of theK individual classifiers
are optimised independently. If all of the component classifiers
are SVMs then the combined optimisation can be expressed
as

min
K
∑

k=1

(

1

2
||w

(s)
k ||

2
2 + C

N
∑

i=1

ξ
(s)
ik

)

(30)

w.r.t. w
(s)
1 , . . . ,w

(s)
K , b

(s)
1 , . . . , b

(s)
K , ξ

(s)
1 , . . . , ξ

(s)
K

s.t. yi

(

w
(s)T
k φk(Oi;λ) + b

(s)
k

)

≥ 1 − ξ
(s)
ik ∀i ∀k

ξ
(s)
ik ≥ 0 ∀i ∀k

whereξ
(s)
k is the training error associated with classifierk.

An alternative approach to score-fusion is to to combine
systems at the kernel level. Again considering the unweighted
case, a combined kernel function may be defined as the sum
of K individual kernels.

k(xi,xj) =
K
∑

k=1

kk(xi,xj) (31)

where functionkk(xi,xj), associated with kernelk, is defined
by equation 6 for some functionφk(O;λ). The primal form
optimisation problem that corresponds to an SVM with this
kernel is given by

min
1

2

K
∑

k=1

||w
(s)
k ||

2
2 + C

N
∑

i=1

ξ
(s)
i (32)

w.r.t. w
(s)
1 , . . . ,w

(s)
K , b(s), ξ(s)

s.t. yi

K
∑

k=1

w
(s)T
k φk(Oi;λ) + b(s) ≥ 1 − ξ

(s)
i ∀i

ξ
(s)
i ≥ 0 ∀i

By introducing new variablesb(s)
k andξ

(s)
1k , . . . , ξ

(s)
Nk for each

kernelk such thatb(s) =
∑K

k=1 b
(s)
k andξ

(s)
i =

∑K

k=1 ξ
(s)
ik this
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optimisation can be expressed in a similar form to equation 30

min
K
∑

k=1

(

1

2
||w

(s)
k ||

2
2 + C

N
∑

i=1

ξ
(s)
ik

)

(33)

w.r.t. w
(s)
1 , . . . ,w

(s)
K , b

(s)
1 , . . . , b

(s)
K , ξ

(s)
1 , . . . , ξ

(s)
K

s.t. yi

K
∑

k=1

(

w
(s)T
k φk(Oi;λ) + b

(s)
k

)

≥ 1 −

K
∑

k=1

ξ
(s)
ik ∀i

K
∑

k=1

ξ
(s)
ik ≥ 0 ∀i

Kernel combination and score fusion are closely related and
the optimisation functions 30 and 33 differ only in the con-
straints. The constraints for score-fusion are more restrictive
since each example must satisfy a separate marginal constraint
for each kernel. For kernel combination, individual terms
associated with each kernel in the constraint may be violated
if on average the example lies outside the margin. One conse-
quence of this is that kernel combination may generalise more
effectively than score-fusion schemes when training errors are
made by individual classifiers.

IV. EXPERIMENTAL RESULTS

The performance of various dynamic kernels was evaluated
on the 2002 NIST SRE one-speaker detection task [25]1. This
task consists of classifying individual channels of conversa-
tional speech recorded over a cellular telephone channel. The
dataset consists of 330 target speakers (139 male and 191
female) each with a single utterance of enrollment data of upto
120 seconds in duration. Test utterances are scored against11
potential speaker identities of the same gender, one of which is
usually the true speaker. Each utterance was parameterisedinto
sequences of 31-dimensional observations using a bandwidth
of 0-3.8 Khz and a framerate of 10ms. Observations were com-
prised of 15 static and 15 delta mel-PLP coefficients and the
delta energy. Static energy coefficients were not included since
previous works [26] have shown that they contain no speaker-
discriminant information. To introduce additional robustness to
noise, Cepstral Mean Subtraction was performed followed by
Cepstral Feature Warping [27] using a three second window.

Systems were primarily evaluated using the EER metric.
In the 2002 SRE the detection cost function (DCF) was also
used to evaluate systems. To aid comparison with other work
some minDCF scores are also quoted. The normalised DCF
cost used in this paper takes the form

DCF = PMiss + 9.9PFalse Alarm. (34)

minDCF is the minimum DCF score obtained a posteriori by
adjusting the decision threshold.

Initially, gender-dependent UBMs were trained using ML
for all SRE 2002 enrollment data. Each UBM consisted
of a diagonal covariance GMM with a range of Gaussian
components. For each enrolled speaker, a speaker-dependent

1The 2002 SRE data was chosen as it is the most recent evaluationdataset
to be made generally available through the LDC. Later datasets are currently
only available to SRE participants. However the techniquesdiscussed in this
paper may be easily applied to more recent tasks.

GMM was constructed by MAP adapting the means of the
appropriate gender-dependent UBM. The UBM was chosen
using the provided gender information. Two iterations of
static prior MAP were used withτ set at 25. GMM training
and adaptation was implemented using the HTK toolkit [28].
An initial baseline classifier was formed by taking the log-
likelihood ratio between the target speaker model and the
UBM of the appropriate gender. 128 component models were
used for the baseline classifier. The speaker-dependent models
were also used as the generative models for a derivative kernel.
For this kernel the score-space defined in equation 15 was
used, equivalent to a standard Fisher kernell [3]. This consisted
of first-order derivatives with respect to the GMM means only.

Parametric kernels were also used. Here utterance-
dependent GMMs were obtained by adapting the appropriate
UBM means using two iterations of static-prior MAP. The
task does not permit cross-gender trials so the gender of the
utterance was known in all cases. For the parametric kernels
τ was set at 5. During preliminary experiments this yielded
gains compared to larger values. The discrepancy between the
optimal value ofτ for the parametric and derivative kernels is
a consequence of the mismatch between training and test utter-
ance duration present in the 2002 SRE data. Only the test data
is used to adapt the UBMs for the parametric kernel. Finally,
for each utterance a parametric feature-vector was constructed
by concatenating the GMM means to give the score-space
defined in equation 14. This implementation of a parametric
kernel is equivalent, under a maximally non-committal metric,
to the standard GMM-supervector kernel [4].

During preliminary experiments, this setup optimised in-
dividual performance of both parametric and derivative ker-
nels. It was also designed to avoid the conditions given in
section II-C under which derivative and parametric features
are identical. The setup used was not intended to be state-
of-the-art, but to demonstrate the potential gains that maybe
achieved by combining derivative and parametric SVM clas-
sifiers. For example, score-normalisation techniques suchas
T-Norm [29] and noise-robustness techniques such as NAP [4]
or WCCN [30] were not used, however they are expected to
provide additional gains in combination with the techniques
evaluated here. Kernel-level normalisation, as describedin
Section III, outperformed spherical normalisation and was
used in these experiments to normalise the magnitude of the
feature vectors. When combining kernels of different score-
space dimensionality, the features of the smaller kernels were
duplicated until the dimensionality of all kernels was the same.
This was not found to affect individual kernel performance.
Including covariance terms into the feature space was also
examined, but did not lead to to gains for either parametric or
derivative systems. SV M light [24] was used to train classifiers
for each enrolled speaker.

The SVM regularisation termC was left at the SV M light

default. Imposter examples were obtained from the enrollment
data associated with other speakers of the same gender2. To

2The setup used did not conform to the NIST SRE protocol, since
enrollment data was used for both UBM training and imposter modelling.
This was necessary due to the limited amount of development dataavailable
to the authors.
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reduce classifier bias each true utterance was duplicated until
the two training sets were equal. For each kernel, a diagonal
approximation to the maximally non-committal distance met-
ric shown in equation 6 was defined by normalising the global
variance of each feature calculated over all speakers.

System EER (%) minDCF

GMM-LLR 12.10 0.4915
∇128 8.62 0.3759
λ64 9.55 0.3830
λ128 8.61 0.3521
λ256 8.58 0.3498
λ512 8.83 0.3702

λ128 + ∇128 8.08 0.3440

TABLE I
COMPARISON OF EQUAL-WEIGHT KERNEL COMBINATION AGAINST

DERIVATIVE (∇), PARAMETRIC (λ), AND BASELINE GMM-LLR SYSTEMS

The performance of these initial systems is shown in Table I.
For 128-component models, derivative and parametric kernel
performance was similar and both yielded significant gains
compared to the GMM-LLR classifier. This is consistent with
previous work such as [4] and [13] and demonstrates the
powerful generalisation ability of the SVM classifier. For
parametric kernels, optimal performance was obtained using
256 components. This contrasts with [4] where further gains
were obtained using larger models. This is believed to be
related to the limited amount of training data used for UBM
training compared to other work.

Initially, pairwise combination of 128-component derivative
and parametric kernels was examined. Equal weights were
used for each kernel. The error associated with this classifier
was 8.08% representing a 5% relative gain compared to the
128-component parametric kernel3. Although different values
of τ were used to adapt the two forms of kernels, preliminary
experiments where this constant was identical for both kernels
also showed similar gains for combination, indicating thatthis
was not a significant factor affecting how complementary the
kernels were.

ϕ
Kernel Weights

EER (%) minDCF
∇128 λ128

0 1.00 0.00 8.62 0.3759
0.008 0.80 0.20 8.19 0.3651
0.064 0.55 0.45 8.11 0.3474
∞ 0.50 0.50 8.08 0.3440

minEER 0.62 0.38 8.04 0.3537

TABLE II
PERFORMANCE OFMAXMARGIN MKL COMBINATION AS ϕ VARIES

COMPARED TO OPTIMAL MINEER WEIGHTING

Experiments were performed to identify whether individ-
ually weighting each kernel could yield gains compared to
equal combination. Initially, combination using aminEER

3The results presented here differ from those previously reported in
[20] and [31]. Since publication a flaw was discovered in the evaluation
methodology that caused the reported gains from kernel combination to be
severely optimistic. Updated versions of these papers are available from
mi.eng.cam.ac.uk/∼cl336

criterion was evaluated. A line-search was performed and the
kernel weights selected that gave the lowest EER. Although
infeasible for larger number of kernels, this criterion forms
an upper bound on the gains obtainable using MKL. Next
system combination was performed using themaxMargin
criterion for MKL described in Section III.β was tied over
all speakers. Table II compares the performances obtained
using maxMargin for a range of values ofϕ against the
optimal minEER weighting. Whenϕ = 0 a sparse weighting
is obtained that performs poorly compared to the baseline.
This indicates that the standard level of sparsity associated
with MKL as defined in [10] is not appropriate for this task.
By increasingϕ gains are observed. The case whenϕ = ∞
is equivalent to an equal-weighted combination. If a value for
ϕ is selected that minimises the EER, MKL is guaranteed
to not perform worse than equal-weight combination. Unlike
using theminEER criterion this is feasible for large numbers
of kernels as in all cases only a single parameter must be
optimised.

System
EER (%)

Equal-Weight MKL

λ64+λ128 9.02 8.55
λ128+λ256 8.32 8.32
λ256+λ512 8.52 8.52

λ64+λ128+λ256 +λ512 8.42 8.22
λ128+∇128 8.08 8.04

λ64+λ128+λ256+λ512+∇128 7.99 7.78

TABLE III
COMPARISON OF EQUAL-WEIGHT COMBINATION AGAINST MAXMARGIN

MKL FOR VARIOUS COMBINATIONS OF KERNELS

The maxMargin MKL scheme was then applied to other
combinations of kernels whereminEER is not always pos-
sible. For the optimisation problem defined in equation 26,
the value of the objective function increases monotonically
with ϕ. This means that an appropriate regularisation factor
cannot be automatically selected by maximising the objective
function. Instead, for each combinationϕ was adjusted a
posteriori to reduce the EER4. Results are presented in Table
III. Combinations of parametric kernels based upon different
generative model structures were examined, using GMMs
ranging from 64 to 512 components. As discussed in section
II-D, using features extracted from a range of model structures
may improve performance. Combining kernels based on differ-
ent generative models also allows the user to avoid explicitly
choosing an appropriate model structure. Although no gains
were observed for equal-weight combination of 64 and 128
component models, combination of 128 and 256 component
models did yield small gains compared to the individual
kernels. By comparison the performance of a 512-component
system was 8.83% indicating that these gains were not simply
due to the increased complexity of the combined classifier.

4Selecting a value forϕ that optimises EER on the test set, rather than
development data, can introduce bias. However as only a single parameter
is tuned this bias is expected to be small. In preliminary experimentsϕ was
optimised independently over different subsets of speakers. The optimalϕ
was found to be independent of the subset chosen and the minimalEER was
achieved over a wide range ofϕ.
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For maxMargin MKL all examined pairwise combinations
gave gains. When all four parametric kernels were combined
a 0.22% reduction in EER was observed compared to equal-
weight combination. Similar gains were observed in minDCF
resulting in 0.3428 for four-way combination. The best overall
performance for kernel-level combination was 7.78% (0.3089
minDCF) achieved when all kernels were combined. This
represented a gain of 0.26% compared to an equal weight
combination and 35% relative gain compared to the GMM-
LLR system. From the DET curve in Figure 1 it can be
seen that this system performed best over the majority of the
operating range.
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Fig. 1. DET graph comparingmaxMargin MKL combination against
individual systems

Combination Criterion
EER (%)

∇128 + λ128

∇128 + λ64 + λ128

+λ256 + λ512

Score Equal 8.13 7.95
minEER 8.08 -

LR 8.15 7.85

Kernel Equal 8.08 7.99
minEER 8.04 -

maxMargin 8.04 7.78

TABLE IV
COMPARISON OF KERNEL-LEVEL AND SCORE-LEVEL APPROACHES FOR

CLASSIFIER COMBINATION

Finally, the kernel combination schemes were compared
against standard score-fusion approaches. Several approaches
were examined. Initially, combined scores were obtained by
either equally weighting scores (equal) or by selecting the
score a-posteriori that resulted in the lowest EER (minEER).
Logistic regression (LR) was also applied as in [23]. In the
absence of a suitable development dataset logistic regression
was applied directly to the test scores using the correct
label information. Like theminEER criterion, this breaks
experimental protocol, however it does provide an upper bound
on the gains that can be achieved using logistic regression.
Unlike LR andminEER score-fusion, where a weight for each
classifier was trained using the test data, formaxMargin

MKL only ϕ, a single parameter, was optimised on the test set.
This system is therefore likely be more robust to overtuning.
Results for these experiments are given in Table IV. For
pairwise combinationminEER performance was best under
kernel-combination indicating that this combination strategy is
able to generalise more effectively. This may be related to the
more relaxed marginal constraint associated with kernel com-
bination. When all five kernels were combinedmaxMargin
kernel combination outperformedLR score-fusion, despite the
“optimal” logistic-regression scheme used.

V. CONCLUSION

This paper has discussed combination of two general forms
of dynamic kernel to improve performance of an SVM-based
speaker verification system. Many existing dynamic kernels
can be placed into one of these two classes,parametric
kernels, where the feature-space consists of parameters from
the utterance-dependent model, andderivative kernels, where
the derivatives of the utterance log-likelihood with respect
to parameters of a generative model are used. The two sets
of features produced have different properties and may be
complementary. However, under certain conditions, discussed
in Section II-C, the feature-spaces produced may be shown
to be identical. Many systems combine multiple classifiers to
improve system performance. By avoiding these conditions a
complementary set of kernels may be obtained.

One option for system combination is to combine classifiers
at the kernel level. This paper examined a number of refine-
ments to a recently proposed maximum-margin based scheme
for learning a suitable kernel weighting. The scheme has a
known tendency towards sparse weightings, which may not
be optimal for speaker verification. A regularisation term was
proposed allowing the user to tune the sparsity by adjusting
a single parameter. Tying of kernel weights over all speakers
was also applied to increase the robustness of the parameter
estimates.

Various combinations of dynamic kernels were evaluated
using the NIST 2002 evaluation data. Both parametric and
derivative kernels individually provided gains compared to the
baseline GMM system. By combining multiple kernels based
upon different generative model structures further gains were
observed. The best performance achieved was 7.78% EER
when all kernels were combined. This represented a gain of
0.21% compared to an equal-weight pairwise baseline. The
focus of this paper has been to specifically examine combi-
nation of parametric and derivative kernels and to provide a
general scheme for their combination, rather than present a
state-of-the-art system. Incorporating score-normalisation and
introducing further noise-robustness techniques is expected
to provide additional gains. Combination using more diverse
forms of kernel, such as MLLR or CAT kernels, is also
expected to yield gains.
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