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Abstract—Support Vector Machine-based speaker verificaton ~ This paper attempts to unify various forms of dynamic
(SV) has become a standard approach in recent years. Thesekernel within a general framework. Many commonly used
systems typically use dynamic kernels to handle the dynamic kernels can be placed into one of two classasametric
nature of the speech utterances. This paper shows that many kernel d derivative kerndls. The t ¢ f k' |
of these kernels fall into one of two general classes, derivative Erneis and derivative kKernels. -e Wo“ypes 0 erne iare
and parametric kernels. The attributes of these classes are Closely related and under certain conditions, describettiit
contrasted and the conditions under which the two forms of paper, the features obtained will be identical. As well dakes
kernel are identical are described. By avoiding these conditions lishing the conditions under which kernels are the same, the
gains may be obtained by combining derivative and parametric 4 mework may also be used to motivate new forms of kernel.
kernels. One combination strategy is to combine at the kernel = h f f tric Kk | ding devigati
level. This paper describes a maximum-margin based scheme for or €ach form o parame ”_C ernel a correspon |_ng - emvatl
learning kernel weights for the SV task. Various dynamic kernels kernel can be defined and inversely, for each derivativeetern
and combinations were evaluated on the NIST 2002 SRE task, there exists a corresponding parametric kernel. In mangscas
including derivative and parametric kernels based upon different the derivative equivalents to many commonly used parametri
model structures. The best overall performance was 7.78% EER kernels have not previously been applied to SV.
achieved when combining five kernels. . ) .

In the second half of this paper a general scheme is de-

Index Terms—Speaker Recognition, Dynamic Kernels, Support  scribed for combining multiple complementary kernels foe t
Vector Machines, Classifier Combination. SV task. In many recent approaches such as [7], combination

is performed by fusing the output scores from multiple SVMs.
I. INTRODUCTION A scheme such as logistic regression can be used to train a
o ) ) o suitable weighting for each score [8]. For SVM-based system
PEAKER Verification (SV) is a binary classification taskap aiternative approach is to combine classifiers at theekern
The objective is to decide, given an utterance of speeglye| Here a suitable set of kernel weights must be obtained

and an associated identity claim, whether the speech Wa§s task is known as Multiple Kernel Learning (MKL).
uttered by the claimed speaker or by an imposter. Traditiona o approach to MKL is to select the weighting that

approaches to text-independent SV have made use of 9ffinimises the cross-validation error by performing a grid
erative models, normally Gaussian Mixture Models (GMMS3garch over all possible weightings. Unfortunately thierigy
to approximate the distribution of the speech associatél Wigasible when the number of kernels is small and is generally
each target speaker. The classification decision is there Mg sitable for anything other than pairwise combination. A
based upon the log-likelihood ratio between the targetk®veaqficient alternative approach was proposed in [9] and edn
model and a Universal Background Model (UBM) trained tg, [10]. Here kernel weights are obtained using a maximum
represent all speakers. . margin criterion. A standard SVM implementation can be used
Recent approaches have examined how to apply Suppgftefficiently select suitable weights even when the number
Vector Machines (SVMs) to the SV task [1][2]. SVMs aréf ernels is large. This approach also has several advesitag
a form of discriminative classifier based upon a maximungyer score-fusion. Firstly, a consistent criterion is usettain
margin training criterion that have been successfully i@dpl poth the SVM parameters and the kernel weights. A second
to many different applications. SVMs can only use input of gqyantage is that unlike score-fusion this maximum-margin
fixed dimensionality. Hence, they can not be directly agpliyik| scheme does not require a separate development dataset.
to classification of speech, which is typically parametstis  This paper considers a number of refinements to this scheme
as variable length sequences of observations. This has legdine SV task. The standard scheme has a known tendency
to the development otlynamic kernels that implicitly map g find sparse kernel weightings. For a given set of kernels
variable _Iength sp_eech utteranc_es into a fixed dimensiepal r e optimal level of sparsity may vary depending on the task.
resentation. A variety of dynamic kernels have been praposg, this work a regularisation term is applied to the objeztiv
and applied to the SV task. Common examples include Fishghction. This allows the user to select the desired level of
Kernels [3], GMM-supervector kernels [4], MLLR kernels [Slsparsity by adjusting a constant. Unlike grid-search based
and CAT kernels [6]. SVMs have generally been found tQk|  this constant may be efficiently selected via cross-
outperform traditional log-likelihood based approaches. validation even when the number of kernels is high. This

_ o paper also considers cross-speaker tying of kernel weights
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the amount of enroliment data available per speaker isduit function can also be defined using an equivalent dual form.
This paper is organised as follows. The next section de-

N N
scribes SVM-based speaker verification and the use of dy- max ZO" 1 Z LYY T (4)
. . . ? 2 LA had At
namic kernels. Two general categories of dynamic kernel, =1 =1
derivative and parametric kernels, are introduced and dhne c W.I.L. o
ditions under which they will be complementary described. | st 0< o <C Vi
L. <o < ]

Section 11, Multiple Kernel Learning is discussed. In Sent

IV, experimental results on the NIST 2002 SRE dataset atere «; is the dual variable associated with sampig
presented. Finally conclusions are drawn. The primal weight vector can then be reclaimed using=
Zf;l o;y;xz;. The non-zero elements af correspond to
samples that lie on or within the margin. These samples are
termedsupport-vectors and entirely determine the position of

The objective of the speaker verification (SV) task is tf'€ decision boundary. An interesting property of this fasm
determine, given an utteranc2 and associated identity claimthat during training and inference all references to data ar
s, whetherO was uttered by the target speakeor by an in the form of inner-products between pairs of exampless It i
imposter. If a functionS(0, s) is available to assign a scoretherefore possible to replace these inner products vkt el
to each utterance, decisions can be made by comparing effgtion K'(zi, z;) that implicitly calculates the inner-product

II. SVM-BASED SPEAKER VERIFICATION

score to a fixed threshold. between two vectors in some, possibly very high dimensjonal
feature-space.
SVMs cannot be directly applied to tasks involving speech
target speaker as they can only use input of some fixed dimensionality.
S(0, s) > Threshold ) HOYVE'VGI‘, speech utterances are typ.ically parameterised as
variable length sequences of observatiéhs- {o1,...,0r}.
imposter This has lead to the development dynamic kernels, also

) referred to as sequence kernels [13]. These have the form
A standard approach to SV assigns a score to each utterance

based upon the log-likelihood ratio (LLR) between a Gaumssia K(0;,0;) =< ¢(Oi;A), (0, X) > (5)

Mixture Model (GMM) trained to represent speakeand a where ¢(O; A) is a function that maps a speech utterance

Universal Background Model (UBM) GMM representing all . . . :
: into a fixed dimensionadcore-space. The kernel also defines
speakers [11]. As the amount of available enrollment speech;. ; .
: . a distance metric between two feature vectors. Since SVMs
per speaker is usually limited, the parameters of the speake

) . .are not invariant to feature scaling it is useful to use a imetr
dependent models are typically estimated by MAP'adapt"f'lgat is maximally non-committal. One such metric is given by
the mean parameters of the UBM [12]. '

Recently there has been interest in obtaining scores using K(0;,0;) = ¢(0;50)"Q ' p(0;; \) (6)
the output of a Support Vector Machine (SVM) classifier. The

SVM is a binary, discriminative classification scheme thag h where@ is the Fisher information matrix defined as

been successfully applied to a wide variety of tasks. Given Q = ¢ {(QS(O; A) — 1) (P05 X) — u¢)T} )
training sgmples,X = {z;...xn}, Where each samplei pe = E{GO:N)} @)
has associated binary labgl € {—1,1}, the SVM algorithm
will train a linear decision boundary with form where £{} is the expectation with respect @. @Q is often
approximated by the covariance matrix of the training data i
w'z+b=0 (2) the feature space. Also it is often set to be diagonal.
Using a dataset of speech utterand€y;,..., Oy} from

SVMs use amaximum-margin training criterion. The optimal 5 variety of speakers, a binary classifier that distingsishe
decision boundary parametefa, b} are those that both min- petween the target speakeand all other, imposter, speakers
imise the empirical risk and maximise the distance betwegihy pe trained. A binary-labelled training dataset is resgi

as the margin. The optimal decision boundary is defined by, — 1 if O, was spoken by speaker otherwisey; = —1.
N A speaker-dependent decision boundary can then be trained
min %Hng + CZ& A3) using the kernel given in equ:.atio.n 6. Given this model, test
Py utteranceO" can be scored using:
W.I.L. w, b, & N
s.t. yi (w'e; +b) >1-& Vi 5(07,s) = Zaﬁs)yiK(Oi, oY) + b 9
& >0 Vi =

The nature of the dynamic kerngk(O;,O;) depends
where¢; is the training error associated witky and C' is an upon the form of¢(-). Dynamic kernels based upon vector-
constant that controls the trade-off between maximisirg tlaveraging [14] or Dynamic Timewarping [15] have been de-
margin and reducing the empirical risk. The SVM optimisatioveloped but these have now been largely supersedegrizy-
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ative kernelswhere the score-operator depends upon an assdoi{4], a distance metric is defined such that the kernel fonct
ated generative model. A number of different dynamic kexnels an upper bound on the KL divergence between the two
of this form have been proposed for speaker verification, fatterance-dependent models. This normalises each comipone
example the Fisher kernel [3], GMM-supervector kernel [4hean by the associated mixture weight and the inverse of the
and MLLR-kernel [5]. These kernels can be characterisedvariance matrix. In this work the distance metric given in
into two broad classes depending upon the form6®; A). equation 6 is used, which is consistent with the metrics used
These will be referred to gsarametric kernels andderivative for the other kernels.
kernels. Parametric Kernels may be based around alternative forms
of generative model. The MLLR kernel [5] and CMLLR
A Parametric Kernels kernel [16] are gxamples of parametric kernels vyhere the
generative model includes an utterance-dependent lireas-t
Parametric kernels are a form of dynamic kernel where thgym. In both cases the feature space consists of the concate
feature-space consists of a set of parameXesssociated with nated transform parameters only. Another parametric kerne
a generative model. A variable length utterance is mappedg@yposed for speaker verification is the Cluster-Adaptive-
a fixed dimensional feature representation by training ®0eNTraining (CAT) kernel used in [6]. Here the feature space

ative model to represent the utterance and then concaignafionsists of the utterance-dependent cluster weights iassdc
the model parameters into a feature vector. Hence the ttatiyith a trained CAT generative model [17].

of an utterance within the feature space is determined by
maximum likelihood parameter estimates given the verifitat g perivative Kernels

v
utteranceO”. Thus Derivative kernels provide an interesting contrast to para

IIN(ONE [A] D - arg max{logp(O";\)}  (10) metric kernels. Rather than using model parameters as the
A feature-space, the partial derivatives of the utterange lo

One property of this form of kernel is that the derivativetwit likelihood with respect to individual model parameters are
respect to the parameters of the generative model is zern winged instead. The set of partial derivatives form a sufftcien
differentiated at the ML estimate, i.e. statistic for the utterance log-likelihood. They are tliere

a natural choice for an utterance-dependent fixed-dimeakio
feature set. For a set of model parametexsthe derivative
Efzture-space generated from a verification utteraBtehas

n

Valogp(O";A)| =0 (11)
A
The precise nature of the parametric kernel is determin f
; orm
by the generative model used to represent the speaker. e ]
parametric kernel that has been successfully used for speak ov(07; 5\) S {v)‘ log p(O"; )\)‘ } (15)
verification is the GMM-supervector kernel [4]. In this kefn T A

the feature-space is formed from the concatenated megfifere] is the model parameter value at which the derivative is
of an utterance-dependent GMM. As there are typically n@lajuated. Equation 15 includes an optional term to noseali
enough observations per component to robustly estimate §iethe number of frame in O". This is important if the
parameters, MAP adaptation, using the UBM as a prior, ifiterances in the dataset vary greatly in duration. Devieat

used instead. Here kernels may also include higher-order derivative termshin t
5 v feature-space. This is not possible for parametric kernels
A =arg 1 O"; M) +1 A 12 , T
argmfx{ 0gp(0"; A) +log p(A)} (12) However, generally only first-order derivatives have been

wherep()) is based on the UBM parameters. In this case t{gund to contain useful discriminative information [18pr8e
property in equation 11 will not be satisfied. For a GMM thgerivative kernels, such as the log-likelihood ratio ke{t8],
ML or MAP estimate has no closed-form solution. Iterativ&/SO include a log-likelihood ratio term in the score-spades
approaches based on EM are commonly used. For compon%‘?ﬁroaCh is closely related to kernel combination as desuri

m the MAP-adapted mean at iteratiénis given by in se_ction . In _this paper, the form_s 01_‘ derivative kernel
considered contain only first-order derivatives.

Zthl %(qlf_l)(t)o;’ + T, (13) When using derivative kernels it is necessary to define the
ZTf ,y%cfl)(t) +r point around which the derivative kernel feature-spacd wil
=t be evaluated. Various points are possible. The point may be
wherefi,, is the UBM mean vector associated with componemased on the UBM parameters, which is similar to using the
m (which is also used as the initial parametgf$), 7% (t) =  Fisher kernel [3]. Another possibility is to use speakezesfic
P(m|o}; A"), the posterior probability of component at parameters associated with a speaker-dependent model. As a
time ¢ given observatioro} and A*), andr is the standard GMM is typically used, iterative approaches are used toinbta
MAP adaptation constant that controls the influence of thee speaker-specific parameters. To clearer specify tratita
prior on the final model. Ift iterations of mean-only MAP at which the derivative is evaluatethg p(O¥; A(*)), will be
adaptation are performed the feature-space for the GMMsed for the feature-space evaluated atiHeiteration. This
supervector kernel is approach resembles the log-likelihood ratio kernel.
The nature of derivative kernels is again determined by the
vk _ |, (BT (k)T . L
PA(O; X)) = [M N TY: (14)  generative model used to represent a speaker. Derivatites w

i =
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respect to the means of the GMM can be used [13]. Hesekernel that is invariant to translation is used, such as a
elements of the feature space have the form stationary kernel, this will have no effect. Note statignar
T kernels, such as the Kullback-Leibler Divergence kernél,[2
_ Z%(r]f) OS0! — k) (16) have the general fon_”rK(Oi,Oj). = F(¢(0;) — ¢(0;))
pary where F() is the function that defines the kernel.

Derivative k | Iso be defined usi it i Even if a stationary kernel is used, it is not sufficient to
erivative kemeis may also be defined using aternalig,q o that the two sets of features will be identical. Hqoat

forlms oftgen?ratlvedmgdet!. I tht.ethgeneratllli nlﬁ.delt C?T:;a'  contains a learning rate. Using an appropriate metrg, th
a linear transtorm, derivatives with respect to this tra kernels will not depend on the learning rate if the learning

may be used as features leading to derivative equivale L . ; .
of MLLR and CMLLR kernels. Transform-based derivativgé% is independent of the observation sequence since this

X ) . i dependency is removed by the metric (the metric used in
kernels are discussed further in [20]. Given ageneratlvdehoe uation 6 has this property but is not stationary). However
and assouated.su.bset of model parameters bOt.h a param«ﬁlﬁgc is not generally the case. To illustrate this considher t
kernel and derivative kerqel can be S|mply defmed. In 1Eaghuation where the parametric kernel is obtained usinghdn E
for each form of parametric kernel there is a directly redate8

V., log p(O”; )\)’
AR

derivative kernel. This can be used to motivate new kerrels ased ML-estimation of the mean. At iteratibr- 1 the mean
: arametric feature-space for componentcan be expressed
apply to the SV task.

as

C. Relationship between Parametric and Derivative Kernels s 1
It is interesting to briefly contrast derivative kernels twit £ ™) = p{h+ ﬁ {Tvum 10gp(0v;)\)‘ A }
2ot Ym () A®

parametric kernels. From equation 11, the derivative of the

: : 20
parametric kernel features at the ML-estimate of the mo (20)

parameters will be zero for the verification d&. In general dEM s thu; equivaler_1t to gradient ascent using the dereativ

this will not be the case for the derivative kern.el Instelael tfeatures with a learning rate that dgpends upon the totat com

features of the derivative kernel will be zero for thé enmaht ponent occupancy for.that observation sequence as we I!eas th
length of the observation sequence (when length normiairsat

data if the ML-estimate is used as the point to specify “l‘s“ being used). It is more common to use MAP adaptation to

derivative successively update models. When the MAP pyioequals
A = arg max{log p(O%; \)}, ¢V(oe;5\e) =0 (17) %), this update is equivalent to gradient ascent with the
A following learning rate.
In addition derivative kernels commonly use a length normal
i isi i Tz’m
sation term. This is not necessary for parametric kerndigyrev n = (21)
Y

there is an implicit normalisation for the lengths, for exden 1 ) )+

he normalisation term in ion 13. Acon n ighi . N -
the normalisation te equation 13. A consequence ofshis If both parametric and derivative features are to be useésl, it

that when a component is not observed ML-based parametlﬁ]c rtant that the features differ. Thi nb hievedawai

kernels are undefined, whereas derivative kernels tendrto ze portant that the features ditter. 1his can be achievergia
. T ngn-stationary kernel, such as the kernel in equation 8ueva

Both parametric and derivative kernels have been use? - . . .
e . ating the derivative terms at a different point to the paraime

successfully for speaker-verification. The respectiveuiea ) . . . :

. . features (effectively using a different number of iterat or

spaces can express different types of speaker-dlscrlrlnmalrpn lv using either EM uodates or MAP adaptation with a

information and thus may be complementary. It is useful OWF\)/ZMG ofg Combinatioﬁs of these ma malfe the features

establish under what conditions the two forms of kernel arr%Ore com I;r.nentar y

the same, as this yields information as to how to make the P Y-

features complementary to one another. The parametriekern

feature-space at thieth iteration of training can be expressed. Generative Model Structure

in the form of a gradient ascent update. For dynamic kernels that incorporate a generative model,
such as parametric or derivative kernels, an appropriata fo
of model must be selected. If a GMM is used, the number
of Gaussian components must be chosen. This is a trade-off
between improving the ability of the model to approximate
& distribution over the acoustic space and ensuring tteat t
model parameters can be robustly estimated with the alailab
¢)\(Ov;)\(k~+1)> _ [/\(k) + W)V(Ov;)\(k))} (19) data. A suitable model size is typically chosen by selecéing
value that reduces the error rate on some development tlatase
wheren, = T if duration normalisation is used, as in equatiods the trade-off is data-dependent this strategy may not be
15, otherwisen = 7. The two classes of dynamic kernel ar@ptimal.
thus related to each other. Compared to the derivative kernelf a suitable scheme for combining classifiers is available,
feature-space, the parametric kernel features includesna tthen other strategies may be used. Rather than selecting
A which introduces a translation of the feature space. 4f single form of model, a series of dynamic kernels can

function of a derivative feature-space evaluatec @t
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instead be defined, each based on different model structutbge standard SVM objective function. For a set of N utterance
The associated classifiers can then be combined. Althouf®,,...,Oxn} each with associated labg} € {—1,1}, the
this approach is more computationally expensive it has tvaptimal set of weights are those that maximise the margin.
advantages. Firstly, there is no need for prior knowledgaiab

the task in order to select a suitable model size. Secondly, 1 X5 N
rather than making a single trade-off, the combined classifi min Skl +CY 4 (23)
can make use of features extracted from a range of different 2 k=1 Bk i=1
model structures, potentially leading to gains. W.I.t. B, wi, b, &
K
[1I. MULTIPLE KERNEL LEARNING S.t. Yi (Z widr (O3 A) + b) >1-& Vi
k=1

In recent SV evaluations there has been a focus on com- X
bining multiple classifiers to improve overall performance S0V >0 Vk -1
In [7], gains were obtained by combining SVM classifiers & 20V, fi = ’ Zﬁk

based upon GMM-supervector kernels and MLLR kernels.

For SVM classifiers two general combination strategies aﬁ@eﬁguk aredtrclze prlmhal SVM dw?jlgsrl\t/sMaZ§OC|atledl(\/v ith kernel q
available, score-fusion and kernel combination. In séosten andb, £ an are the standar Ias, slack vector an

a combined score is obtained by taking a weighted |ine§§gularisation term. In this formulatig is subsumed into the

combination of the scores obtained from a set of individu {sfinitio_n of the pri_mal weightg and hen(_:e does_ not di_rectly
classifiers. Various criteria are available to train an appate appear in the marginal constraint. The primal weight vesor

score-weighting. For example an additional SVM may paiven by

k=1

trained using the individual classifier scores as inputufiesst N
Another criterion that is commonly used to optimise score wy = Zai%ﬂk(bk(oi;)‘) (24)
weights is logistic regression [8]. Both of these methods i=1

require an auxiliary dataset in order to train the score tisig There are a number of issues to address when applying this
An alternative approach to score-fusion is to to combirferm of MKL directly to speaker verification.
systems at the kernel level. Given a set &f kernels, a 1) Regularisation Term: In equation 23, ari;-norm con-
combined kernel function may be defined as the weighted sgtraint is applied to the kernel weights. A known consegaenc
of the individual kernels. The combined kernel has this formaf this is to introduce a tendency towards sparse solutib@j [
For a given set of kernels, there is no guarantee that thé leve

K of sparsity will be optimal. One solution is to incorporate
k(0;,0;) = Zﬁkkk(ol‘,oj‘) (22) a regularisation ternR into the objective function to allow
k=1 the user to control the level of sparsity. A suitable form of

Functionk;, (O;, 0;), associated with kernd, is defined by regularisation is

equation 6 for some functioth; (O; A) and (3, is the associ- K 1 K 1

ated kernel weight. The weights are generally constrained s R=¢ Z(ﬂk — E)Q =y <Z B — K) (25)

that 3, > 0 Vk and Y+, B = 1. Learning a suitable set of k=1 k=1

kernel weights{f3;, ..., Bk } is known as the Multiple Kernel que to thel;-norm constraint on the kernel weights. Since

Learning (MKL) problem [22]. This paper mainly focuses ofhe optimal solution is independent of any constant terms in

kernel-based combination schemes. the objective functionR = ¢ >"1_, 32 may be used instead.

This allows the same form of regularisation term irrespecti

A. Minimum-Equal Error Rate Criterion of K. Here ¢ is an empirically set constant. For positive

One approach to solving the MKL problem is to selec\falues ofyp the effect of this form of regularisation is to drive

kernel weights that reduce the cross-validation error aneso towa_rds a uniform set of weights. Whe,m_ Is negative the .
development dataset. This could be achieved by conduct'rﬁgut'on will tend to bg sparse and the objec_t!ve functiot wi

a grid search over all possible weightings and selecting tﬂ rf%rm kgrne(lj selt(ajcnon. A;:though an ad_dltlone}l p?qr]annete
weights that minimise the Equal Error Rate. In this worksthibas bee.n n:jtroh uce h’ note t atl_jn _approprlatehva uf} ay b
criterion is termedni nEER. Unfortunately this approach is e obtained through cross-validation even when the number

. . . S of kernels is large.
generally impractical for anything other than pairwiseriar .
combination. In cases where calculating thienEER kernel 2) Cross-Speaker Tying: In most SVM-based speaker ver-

weights is feasible this metric can provide an upper bound fgmatlon sys_tems,_ such as [7][23], a distinct set of SVM
the gains that can be achieved using other criteria to safectParameters is irained f_or each speaker. I-!owevgr, the_ amount
appropriate set of kernel weights. of enr.oIIment data available per speaker is typlcally Igdlt_
Learning a set of speaker-dependent kernel weights iniaddit

) . ) ) to the SVM parameters may lead to over-training. One way
B. Maximum-Margin Based Multiple Kernel Learning to obtain a more robust set of weights is to fleover all

An efficient approach to MKL was developed in [9] andenrolled speakers. This can be achieved by redefining the MKL
extended in [10]. Here the kernel weights are incorporatéal i objective function to sum over all speakers, while maintajn
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a separate set of marginal constraints for the enrolimetat d&. Relationship between kernel-combination and score-fusion

associated with each speaker. . L .
3) Dynamic Range Normalisation: The form of objective For SVM classifiers two general combination strategies are

function given in (23) is biased towards those kernels févailable, score-fusion and kernel combination. It isrieséing
which the average magnitude of the associated featurergect@ Priefly compare these two approaches. During scoretiusio
is greatest. Under a maximally non-committal kernel metrié"€ final score is determined by combining the scores ofaine
this corresponds to the kernels for which the associated;strom K individual c_Iassn‘lers. For the unwe|ghte_d case the final
space has the greatest dimensionality. It is therefore itapp SCOreS (O, s) assigned to test utteran€®” is given by

that the kernel function includes some form of dynamic range
normalisation. One option is Spherical Normalisation [13]
where each feature vector is mapped onto the surface of a unit
sphere. An alternative approach is to perform normaligadio

the kernel level. This may be achieved in a variety of ways,
for example by replacing;,(O;, O;) — +;kx(O;, O;) where ® ) _ _ _
M is the dimensionality of, (O; ). Alternatively, the score- Where w,” and b, are the weights and bias associated
space features of each kernel may simply be duplicated so¥4ith SVM classifierk and ¢,(O; A) defines the associated

kernels have the same dimensionality. This is the method udgature space. The parameters of fieindividual classifiers
in this work. are optimised independently. If all of the component cfassi

are SVMs then the combined optimisation can be expressed
as

K
S(0%,5) = > w$(0"; ) + by (29)
k=1

The maxMar gi n MKL criterion used in this work is defined
by the following objective function.

K N
. 1 s s
Sk K min z(an,pnnggg;) (30)
min Z (2 Z 7”“”(:)”2 +C pr) +¢ Z B k:é) ) = (s) (s)
=1

s=1 k=1 k=1 WL, w® D e e
(26) 1 K 01 K+ 81 K

) (s)T . (s) >1_ (9) .
Wit B b st i (WG (05 A) + 007 ) =1 - € vi vk

K
sty <Z w' i (0 \) + b(s)> >1-¢9 vivs
k=1 X whereg,(j) is the training error associated with classifier
(s) . _ An alternative approach to score-fusion is to to combine
&7 =0V Vs, b0k, Zﬂk =1 systems at the kernel level. Again considering the unweiht
case, a combined kernel function may be defined as the sum
Where the speaker ranges froml ... S and samples range of K individual kernels.
from1...N®) w;, = {wlgl)7 ... 7w](€S)}, b={pM ... bS5}
andg = {¢M), ... ¢6),
Equation 26 may be efficiently optimised by a similar K
approach to that used in [10]. First, an equivalent corsbchi k(mi,@;) =Y ki, ;) (31)
optimisation problem is defined. k=1

¢ >0 Vi vk

k=1

ming Y5 J(s,8)+ o> 32 27) \t/)vhere fur.]Ctioeﬂ‘;’“(m“ w]-),fassqc;\t(?gw)i\t)h kTehrn&I, is d(lal;ined
st >0 Vk K 5 _ 4 y equation 6 for some functios;(O; ). The primal form
P 2 2k B optimisation problem that corresponds to an SVM with this

where J(s, 8) is the optimal value of the objective functionkernel is given by

associated with an SVM with kernel (22) and fixed kernel
weights3 after training on data associated with speaker

K N
- 1 ()12 (s)
N N min - [lw;™|| +C’Z§» (32)
1 Z k 2 7
J(S,ﬁ) = maxz (073 —5 Z Ozi(ljyiyjK(Oi, Oj,,B) (28) 2 k=1 i=1
=1 hj=1 W.I.L. wgs), . ,wg),b(s), £
w.rt. o K
k=1
A projected-gradient scheme can then be used to optimise €9 >0 v
(27). At each iterationJ(s,3) can be estimated using a v
standard efficient SVM implementation such as [24]. An _ _ _ (s) ) )
expression for the derivatives df s, 3) evaluated aB follows By introducing new variablel’ andﬁj(‘k yo &y, for each

from the form in [10]. kernelk such thab®) = K ) and¢!” = 3K ¢ this
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optimisation can be expressed in a similar form to equatbn &EMM was constructed by MAP adapting the means of the
appropriate gender-dependent UBM. The UBM was chosen

K N
min Z 5||,wl(C )||§ + OZ@(k) (33) using th_e provided gender mformatlon. Two iterations of
1 =1 static prior MAP were used with set at 25. GMM training
(s) (s) 1(s) (8) w(s) (s) and adaptation was implemented using the HTK toolkit [28].
wW.r.t. wy . wy b b 6 €

An initial baseline classifier was formed by taking the log-
= (8)T (s) us (s) likelihood ratio between the target speaker model and the
X S . S > _ .S . !
st Yi Z (wk $1(Oss ) + by ) =1 kz_lglk‘ v UBM of the appropriate gender. 128 component models were
P> used for the baseline classifier. The speaker-dependerglsnod
(s) ; were also used as the generative models for a derivativekern
zgik >0 Vi . ! L .
P For this kernel the score-space defined in equation 15 was

k=1 =

ed, equivalent to a standard Fisher kernell [3]. This istec
first-order derivatives with respect to the GMM means only
Parametric kernels were also used. Here utterance-
) ) . . dependent GMMs were obtained by adapting the appropriate
since each example must satisfy a separate marginal CMStreBM means using two iterations of static-prior MAP. The

for each kernel. For kernel combination, individual terms . -y oo ot permit cross-gender trials so the gender of the

gssomated with each kerne] in the .constralnt may be Vm’latﬁtterance was known in all cases. For the parametric kernels
if on average the example lies outside the margin. One conse-

- o ; was set at 5. During preliminary experiments this yielded
guence of this is that kernel combination may generaliseem T gp y eXp y

effectively than score-fusion schemes when training ereoe Ograins compared to larger values. The discrepancy between th
IVely thar UsIo w ining optimal value ofr for the parametric and derivative kernels is
made by individual classifiers.

a consequence of the mismatch between training and test utte
ance duration present in the 2002 SRE data. Only the test data
is used to adapt the UBMs for the parametric kernel. Finally,
The performance of various dynamic kernels was evaluatst each utterance a parametric feature-vector was cansttu
on the 2002 NIST SRE one-speaker detection task' [2B}is by concatenating the GMM means to give the score-space
task consists of classifying individual channels of cosger defined in equation 14. This implementation of a parametric
tional speech recorded over a cellular telephone chantel. Tkernel is equivalent, under a maximally non-committal neetr
dataset consists of 330 target speakers (139 male and i®the standard GMM-supervector kernel [4].
female) each with a single utterance of enroliment data dbup During preliminary experiments, this setup optimised in-
120 seconds in duration. Test utterances are scored addinstlividual performance of both parametric and derivative- ker
potential speaker identities of the same gender, one offwikic nels. It was also designed to avoid the conditions given in
usually the true speaker. Each utterance was parametértsed section 11-C under which derivative and parametric feature
sequences of 31-dimensional observations using a bartuwidie identical. The setup used was not intended to be state-
of 0-3.8 Khz and a framerate of 10ms. Observations were coof-the-art, but to demonstrate the potential gains that by
prised of 15 static and 15 delta mel-PLP coefficients and thehieved by combining derivative and parametric SVM clas-
delta energy. Static energy coefficients were not includlecks  sifiers. For example, score-normalisation techniques ssch
previous works [26] have shown that they contain no speak@kNorm [29] and noise-robustness techniques such as NAP [4]
discriminant information. To introduce additional robus$s to or WCCN [30] were not used, however they are expected to
noise, Cepstral Mean Subtraction was performed followed pyovide additional gains in combination with the technigiue
Cepstral Feature Warping [27] using a three second windoevaluated here. Kernel-level normalisation, as descriimed
Systems were primarily evaluated using the EER metrigection 1ll, outperformed spherical normalisation and was
In the 2002 SRE the detection cost function (DCF) was alsged in these experiments to normalise the magnitude of the
used to evaluate systems. To aid comparison with other wddature vectors. When combining kernels of different score-
some minDCF scores are also quoted. The normalised D€face dimensionality, the features of the smaller kernelew
cost used in this paper takes the form duplicated until the dimensionality of all kernels was theng.
This was not found to affect individual kernel performance.
DCF = Puyiiss + 9.9 Praise Alarm (34) Including covariance terms into the feature space was also
minDCF is the minimum DCF score obtained a posteriori bgxamined, but did not lead to to gains for either parametric o
adjusting the decision threshold. derivative systems.18M*9"* [24] was used to train classifiers
Initially, gender-dependent UBMs were trained using Mifor each enrolled speaker.
for all SRE 2002 enrollment data. Each UBM consisted The SVM regularisation ternd’ was left at the § A79"t
of a diagonal covariance GMM with a range of Gaussiatefault. Imposter examples were obtained from the enreitme
components. For each enrolled speaker, a speaker-dependata associated with other speakers of the same gerifier

o . u
Kernel combination and score fusion are closely related aga
the optimisation functions 30 and 33 differ only in the con-
straints. The constraints for score-fusion are more ciistei

IV. EXPERIMENTAL RESULTS

1The 2002 SRE data was chosen as it is the most recent evaldatiaset 2The setup used did not conform to the NIST SRE protocol, since
to be made generally available through the LDC. Later dademet currently enrollment data was used for both UBM training and imposter iiade
only available to SRE participants. However the technigiissussed in this This was necessary due to the limited amount of developmentadatkable
paper may be easily applied to more recent tasks. to the authors.
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reduce classifier bias each true utterance was duplicatild ueriterion was evaluated. A line-search was performed ard th

the two training sets were equal. For each kernel, a diagokaknel weights selected that gave the lowest EER. Although

approximation to the maximally non-committal distance meinfeasible for larger number of kernels, this criterionnfer

ric shown in equation 6 was defined by normalising the globah upper bound on the gains obtainable using MKL. Next

variance of each feature calculated over all speakers. system combination was performed using tm@xMar gi n
criterion for MKL described in Section I3 was tied over

[ System [ EER (%) [ minDCF | all speakers. Table Il compares the performances obtained
GMV’V'"-'-R 1826120 8-‘3‘%8 using maxMar gi n for a range of values ofp against the
oy 955 | 03830 optimal ni nEER weighting. Wheny = 0 a sparse weighting
128 8.61 0.3521 is obtained that performs poorly compared to the baseline.
1256 g-gg 8-2‘7‘82 This indicates that the standard level of sparsity assediat
N s 568 53240 with MKL as defined in [10] is not appropriate for this task.
By increasingy gains are observed. The case when= co
TABLE | is equivalent to an equal-weighted combination. If a value f
COMPARISON OF EQUAI-WEIGHT KERNEL COMBINATION AGAINST ® |S Selected that mlnlmlses the EER, MKL |S guaranteed

DERIVATIVE (V), PARAMETRIC (\), AND BASELINE GMM-LLR SYSTEMS . . - .
) ) to not perform worse than equal-weight combination. Unlike

using theni nEER criterion this is feasible for large numbers
The performance of these initial systems is shown in Tablegf tli(rizggljs as in all cases only a single parameter must be
For 128-component models, derivative and parametric kerne ‘
performance was similar and both yielded significant gains

EER (%)

compared to the GMM-LLR classifier. This is consistent with SYstem |aual-Weight] ~ MKL

previous work such as [4] and [13] and demonstrates the 64+ A128 9.02 8.55

powerful generalisation ability of the SVM classifier. For A28+ X256 8.32 8.32
arametric kernels, optimal performance was obtainedgusin 2256 2512 8.52 8.5

P ’ .p P . 9 i A64+A128 +A256 +As512 8.42 8.22

256 components. This contrasts with [4] where further gains A28+ Vias 8.08 8.04

were obtained using larger models. This is believed to be [ AsatA128+A256+A5124+Vios 7.99 7.78

related to the limited amount of training data used for UBM TABLE Il

training compared to other work. _ COMPARISON OF EQUAL-WEIGHT COMBINATION AGAINST MAXMARGI N
Initially, pairwise combination of 128-component derivat MKL FOR VARIOUS COMBINATIONS OF KERNELS

and parametric kernels was examined. Equal weights were

used for each kernel. The error associated with this clessifi

was 8.08% representing a 5% relative gain compared to thelhe maxMar gi n MKL scheme was then applied to other
128-component parametric kerheAlthough different values combinations of kernels whenei nEER is not always pos-

of 7 were used to adapt the two forms of kernels, preliminagjble. For the optimisation problem defined in equation 26,
experiments where this constant was identical for bothédsrnthe value of the objective function increases monotonjcall
also showed similar gains for combination, indicating té With . This means that an appropriate regularisation factor
was not a significant factor affecting how complementary tHg@nnot be automatically selected by maximising the ohject

kernels were. function. Instead, for each combination was adjusted a
posteriori to reduce the EERResults are presented in Table
o &T:'lwiigzts EER (%) | minDCF M. Combinations of parametric kernels ba}sed upon difiere
5 o0 000 T 5 gengratlve model structures were examlned, using GMMS
0.008 |l 080 | 020 819 0.3651 ranging from 64 to 512 components. As discussed in section
0.064 0.55 | 0.45 8.11 0.3474 [I-D, using features extracted from a range of model stmestu
_% 050 | 0.50 808 | 0.3440 may improve performance. Combining kernels based on differ
m nEER || 0.62 | 0.38 8.04 0.3537 . i -
ent generative models also allows the user to avoid explicit
TABLE Il choosing an appropriate model structure. Although no gains
PERFORMANCE OFMAXMARGI N MKL COMBINATION AS ¢ VARIES were observed for equal-weight combination of 64 and 128
COMPARED TO OPTIMALM NEERWEIGHTING component models, combination of 128 and 256 component

models did yield small gains compared to the individual
_ ) ) ~ kernels. By comparison the performance of a 512-component
Experiments were performed to identify whether individsystem was 8.83% indicating that these gains were not simply

ually weighting each kernel could yield gains compared @ue to the increased complexity of the combined classifier.
equal combination. Initially, combination using rda nEER

4Selecting a value forp that optimises EER on the test set, rather than
3The results presented here differ from those previouslyorted in  development data, can introduce bias. However as only aesipalameter
[20] and [31]. Since publication a flaw was discovered in thalgation is tuned this bias is expected to be small. In preliminary erpants» was
methodology that caused the reported gains from kernel catibinto be optimised independently over different subsets of speakiére optimalp
severely optimistic. Updated versions of these papers asflable from was found to be independent of the subset chosen and the miBiEfrawas
mi.eng.cam.ac.uk/cl336 achieved over a wide range of.
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For maxMar gi n MKL all examined pairwise combinations MKL only ¢, a single parameter, was optimised on the test set.
gave gains. When all four parametric kernels were combin&tiis system is therefore likely be more robust to overtuning
a 0.22% reduction in EER was observed compared to equBksults for these experiments are given in Table IV. For
weight combination. Similar gains were observed in minDCpairwise combinationmi nEER performance was best under
resulting in 0.3428 for four-way combination. The best @aller kernel-combination indicating that this combination &gy is
performance for kernel-level combination was 7.78% (0B0&ble to generalise more effectively. This may be relatedhéo t
minDCF) achieved when all kernels were combined. Thimore relaxed marginal constraint associated with kernei-co
represented a gain of 0.26% compared to an equal weidiination. When all five kernels were combingdxMar gi n
combination and 35% relative gain compared to the GMMernel combination outperformddR score-fusion, despite the
LLR system. From the DET curve in Figure 1 it can béoptimal” logistic-regression scheme used.

seen that this system performed best over the majority of the

operating range. V. CONCLUSION

—— This paper has discussed combination of two general forms

w0 | Uiz ] of dynamic kernel to improve performance of an SVM-based

. speaker verification system. Many existing dynamic kernels

—= = n e = can be placed into one of these two classearametric
kernels, where the feature-space consists of parameters from

ol ] the utterance-dependent model, atedivative kernels, where

the derivatives of the utterance log-likelihood with respe

to parameters of a generative model are used. The two sets

of features produced have different properties and may be

complementary. However, under certain conditions, dseds

in Section 1I-C, the feature-spaces produced may be shown

to be identical. Many systems combine multiple classifiers t

20

Miss probability (in %)
@

05 |

0z 1 improve system performance. By avoiding these conditions a
o1y ] complementary set of kernels may be obtained.
0102 05 1 _2 5 10 20 40 One option for system combination is to combine classifiers

False Alarm probability (in %)

at the kernel level. This paper examined a number of refine-
Fig. 1. DET graph comparingraxMar gi n MKL combination against ments to a recently proposed maximum-margin based scheme
individual systems for learning a suitable kernel weighting. The scheme has a
known tendency towards sparse weightings, which may not
be optimal for speaker verification. A regularisation termsw

binati - EER (%) proposed allowing the user to tune the sparsity by adjusting

Combination  Criterion || ¢ 4 3 g Vljs);;‘?f ;;1’\2128 a single parameter. Tying of kernel weights over all speaker
Score Equal 513 =95 was also applied to increase the robustness of the parameter

ni nEER 8.08 - estimates.
LR 8.15 7.85 Various combinations of dynamic kernels were evaluated
Kernel rEanSEIR 2-83 7.99 using the NIST 2002 evaluation data. Both parametric and
maxMar gi n 8.04 778 deriva}tive kernels individually proyided gain.s comparedhe
baseline GMM system. By combining multiple kernels based
TABLE IV upon different generative model structures further gaiesew

COMPARISON OF KERNELLEVEL AND SCORE-LEVEL APPROACHES FOR

observed. The best performance achieved was 7.78% EER
CLASSIFIER COMBINATION

when all kernels were combined. This represented a gain of
0.21% compared to an equal-weight pairwise baseline. The
Finally, the kernel combination schemes were comparéus of this paper has been to specifically examine combi-
against standard score-fusion approaches. Several appmanation of parametric and derivative kernels and to provide a
were examined. Initially, combined scores were obtained B{gneral scheme for their combination, rather than present a
either equally weighting scoreequal ) or by selecting the State-of-the-art system. Incorporating score-normédiszand
score a-posteriori that resulted in the lowest EBRAEER). introducing further noise-robustness techniques is erpec
Logistic regressionl(R) was also applied as in [23]. In thet0 provide additional gains. Combination using more digers
absence of a suitable development dataset logistic régnes§orms of kemel, such as MLLR or CAT kernels, is also
was applied directly to the test scores using the corre@¥pected to yield gains.
label information. Like themi nEER criterion, this breaks
experimental protocol, however it does provide an uppentdou REFERENCES
on the gains that can be achieved using logistic regression. . . o
Unlike LR andmi nEER score-fusion, where a weight for each ! ¥ Yan and W. Campbell, Support vector machines for speateifica:
- ) ” J g ] tion and identification,” inProc. Neural Networks for Sgnal Processing
classifier was trained using the test data, faxMar gi n X, 2000.
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