
Explicitly Generating Complementary Systems for Large Vocabulary
Continuous Speech Recognition

C. Breslin and M.J.F. Gales

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ, UK�

cb404,mjfg � @eng.cam.ac.uk
Abstract

Large Vocabulary Continuous Speech Recognition (LVCSR) sys-
tems often use a multi-pass recognition framework where the final
output is obtained from a combination of multiple models. Previ-
ous systems within this framework have normally built a number
of independently trained models, before performing multiple ex-
periments to determine the optimal combination. For two models
to give improvements upon combination, it is clear that they must
be complementary, i.e. they must make different errors. While
independently trained models often do give improvements when
they are combined, it is not guaranteed that they will be comple-
mentary. This paper presents a new algorithm, Minimum Bayes
Risk Leveraging (MBRL), for explicitly generating systems that
are complementary to each other. This algorithm is based on
Minimum Bayes Risk training, but within a boosting-like itera-
tive framework. Experimental results are reported on a Broadcast
News Mandarin task. These experiments show small but consis-
tent gains when combining complementary systems using confu-
sion network combination.

1. Introduction
Large Vocabulary Continuous Speech Recognition systems, such
as those developed at Cambridge University for Broadcast News
transcription [1, 2], typically use a multi-pass recognition frame-
work, where a number of independently trained models are com-
bined in the final stage. The system combination is performed us-
ing schemes such as ROVER [3] and CNC [4]. Howver, the mod-
els that are combined are normally not guaranteed to be comple-
mentary, and often the gains achieved from combination are small.
Complementary system generation has been well documented in
the context of machine learning [5] and there are many existing
algorithms for generating complementary systems. Due to the in-
creased complexity of the task however, most need some modifi-
cations before they are applicable to ASR. Complementary system
generation for ASR has received growing attention in recent years.
The most common approach for creating diverse speech recogni-
tion systems is simply to use a number of different acoustic mod-
elling techniques to build several independent models. The models
might use different frontends, segmentations, or phone sets. In-
dependently trained systems often give gains when combined to-
gether, but there is no guarantee that this will be the case. The
major drawback of this approach is that it’s not possible to predict

C. Breslin is funded jointly by the EPSRC and Toshiba Research Ltd.
This work made use of equipment kindly supplied by IBM under a SUR
award

which systems have complementary errors without actually per-
forming the combination. Hence, a number of experiments, such
as those in [2, 6], must be performed to select the optimal com-
bination. This is time-consuming, and becomes increasingly im-
practical as the training set size and number of alternative systems
increases.

An alternative way of creating diversity is to introduce ran-
domness at some point in the training algorithm. In [7] random-
ness was added into the state clustering decision tree algorithm.
Again, it is not guaranteed that the resulting systems will in fact
be complementary, and only small gains in performance were ob-
tained from combining multiple random systems.

Boosting is a machine learning technique that is specifically
designed for generating a series of complementary systems; Ad-
aBoost [8] is the most popular boosting algorithm. It maintains a
distribution over the training set, giving increased weight to poorly
modelled training examples. Training is performed with respect
to this distribution, and so that as it progresses, the distribution
evolves so later classifiers focus on the ‘difficult’ examples. The
resulting classifiers are then combined together with a weighted
voting scheme, with weights predicted by the boosting algorithm.
AdaBoost is only suitable for classification tasks involving a fi-
nite number of classes. For continuous speech recognition there
can be an infinite number of classes, and so several approxima-
tions are needed before boosting is suitable for ASR. Boosting-like
(or leveraging) algorithms for continuous speech recognition have
previously been applied at the frame [9] or utterance level [10].

For training an ensemble of systems for ASR, it would be
preferable to use a training algorithm that is explicitly tuned to
the final combination scheme; this is the approach adopted in this
paper. The combination scheme used is CNC [4], and the approach
described, Minimum Bayes Risk Leveraging (MBRL), is based on
modifying the Bayes loss function to reflect the errors in combi-
nation. This algorithm is described in detail in the next section,
followed by preliminary results on a Broadcast News Mandarin
system, before conclusions are drawn.

2. Minimum Bayes Risk Leveraging
Minimum Bayes Risk Leveraging (MBRL) is an approach to train-
ing complementary systems based on Minimum Bayes Risk train-
ing, but with a modified loss function to reflect the fact that mul-
tiple systems will be combined together. The standard expression
for Minimum Bayes Risk (MBR) training [11] is

�������
	��
�����
��������� �����! " �$# �%�'&(�����
)+*�,�
(1)

where
*�

is the correct hypothesis for data
" � , - is the set of all

possible hypotheses and
�

is the current model. This objective
function is a generalisation of many existing discriminative crite-
ria, such as Minimum Phone Error (MPE) and Maximum Mutual
Information (MMI) [12]. In common with many discriminative
criteria, there is no simple closed-form update approach to min-
imising this expression, so a range of approaximations have been
developed; see for example [11, 12].

MBRL uses the same general form of objective function, but
also considers a number of previous classifiers when computing
the expected loss. There are two ways to introduce the dependency
on previous models,

�/.1032341414 �5.16�7 � 2
, into the objective function.

One option is to use the posterior probability of a word dependent
on all previous systems. This yields�8���%��	9�
�����
�����$��� �����: " �$# � . � 2 4;414 � .16<7 � 2)=�%�'&(�����
)+*�>�

(2)
Unfortunately this form of combination is computationally expen-
sive. Alternatively, the dependency can be introduced via a modi-
fied loss function, which gives�8���%�?	 �
 �����
�����$� � �����! " ��# ����*&(���@�:)+*�A � . � 2 414;4 � .16<7 � 2 �

(3)
Having determined the form of the objective function, it

is necessary to evaluate precisely how the previous models,� .1032)B4C4B4B)3� .;DE7 � 2
, should alter the value of the modified loss

function. The loss function reflects whether the training data is
well modelled or not by the previous systems. If earlier systems
correctly classified a word, then it should be allocated minimal
loss. As CNC [4] is used for system combination, it should also
be used to determine the effect of the previous systems on this
loss. Thus, the loss function is calculated at a word level; this is
in keeping with the original motivation for MBR training, which
was to have training criterion which reflects word error rate as the
assessment criterion. To calculate the loss function, confusion net-
works are generated from the training data using the existing mod-
els. These confusion networks are then combined together using
CNC (the individual system word posteriors are simply averaged
in CNC), and aligned with the reference transcription. This yields
the posterior probability for each of the hypothesis words given all
the existing models.

HALLOWEEN !NULL TODAY

TODAY (0.1)

!NULL (0.9)

REF:

:
(1)

TODAY (1.0)
M :

(0)

M

HELLO (0.6)

HALLOWEEN (0.4) !NULL (0.4)

HALLOWEEN (0.7) !NULL (0.5)

HELLO (0.3)

EVEN (0.6)

EVEN (0.2)

EVER (0.3)

Figure 1: Complementary Systems Example.

Figure 1 shows an example of confusion networks from two
complementary systems aligned with a reference transcription.

Each word is marked with a posterior probability. Consider train-
ing

� . � 2
so that it is complementary to

� .1032
. With respect to�5.F032

, the word TODAY is well modelled, while the words HAL-
LOWEEN, HELLO and EVEN are poorly modelled. By assigning
a high value of loss to the incorrectly modelled words, and a low
value to the correctly modelled words,

�5. � 2
can focus on the mis-

takes made by
�5.F032

.
Two simple methods of using this posterior, � �HGJIK L #�M � ,to alter the loss function may then be used. First, the posterior

for each word may be used directly in the loss function calcula-
tion. Thus the modified loss function for building the M?NPO model,*&Q�HGRIS) *G #�M � , becomes

*&(�HG I)T*G #�M ��	VU � �HG I L #�M ��G IXW	Y*GZ
otherwise

(4)

The problem with this approach is that the posteriors produced by
ASR systems are not normally reliable. To reduce the effects of
this, a simple threshold approach may be used. Thus

*&(�HGRIK) *G #�M �?	 U5[� �HG\IK L #�M �:]_^:)<G\I W	 *GZ
otherwise

(5)

This threshold-based approach may be viewed as form of training
data pruning; words that are well modelled by earlier systems are
not used to train latter systems. This form of thresholding has some
similarities to active training [13], but with the view to building
multiple systems, instead of one single best system. The threshold
form of modified loss function is used in this paper.

Initialise:
From an initial model,

�5.1032
generate a set of training

data confusion networks

For: s= 1:S
Combine confusion networks from

� .1032 41414 � .F6<7 � 2
with

the reference transcription
Train a model

�
to give

� .16`2
by minimising

a cost function based on:����� .16`2 �?	a ������ a �����$� � ���@�+ " �$# �/.16`2b��*&(���@�:)+*�A �5.F032�414;4 �/.16`2=�
The model

�
may differ from previous models by having,

for example, a different frontend, covariance model,
decision tree, topology etc.
Generate training data confusion networks for the
new system

� .16`2
Output:
The final hypothesis is based on CNC using models� .F032 414;4 � .;Dc2

Figure 2: Minimum Bayes Risk Leveraging Algorithm

The Minimum Bayes Risk Leveraging algorithm is given in
figure 2. In comparison to standard discriminative training which
trains a single best system, the aim of this algorithm is to train

a number of systems which may perform poorly individually, but
which perform well in combination. Similarities can also be drawn
between this algorithm and boosting; both algorithms aim to train
an ensemble of classifiers which perform well when combined.
The loss function in MBRL has the same purpose as the distri-
bution over the training data in boosting. In contrast to boosting
however, the form of system combination is left open and no clas-
sifier weights are calculated as part of the algorithm. Also, there is
no need to alter the training algorithm or resample the training set
to take account of the weighting on the training data; this is done
implicitly by the MBRL objective function.

Previous work on weighting training data at a smaller granu-
larity than the utterance level (e.g. [9]) has relied on force-aligning
the data in order to determine which frames correspond to a partic-
ular word or phone. Force-aligning is not guaranteed to be accu-
rate, and can lead to errors at the word or phone boundaries. This
problem is avoided here by mapping word losses to states rather
than to frames. Furthermore, [9] uses a confidence measure based
on word posteriors to determine a weighting over the training data.
Word posteriors are not always well correlated with correctness.
The alternative proposed here, aligning confusion networks with
the reference transcription, is fast and it provides an easy way to
determine word correctness.

Under certain conditions, maximum likelihood (ML) training
is optimal. ML-MBRL is a maximum likelihood form of MBRL.
It optimises the standard ML objective function, but the state oc-
cupation counts are weighted by a loss function. As the state occu-
pation counts are weighted, and the loss function calculated at the
word level, the effect on the update formulae is minimal. For ex-
ample, if state d belongs to reference word

*G
, the modified mean

update is given by

e:f 	 ahgN ���ji �HG I)T*Gk � .1032 41414 � .16`2 �bl f �Pm3�'n Na gN ��� i �HG\IK) *Gk � .F032 414;4 � .16`2 �bl f �Pm3� (6)

where
l f �Pm3� is the occupation count for state d at time

m
. The vari-

ance and prior updates are affected in a similar manner. Again,
there are many forms for this loss function, but the threshold func-
tion is used for this work.

3. Experimental Results
Experiments were performed on a Broadcast News Mandarin task.
The baseline systems were trained using 148 hours of data; 28
hours of Hub-4 data released by the Linguistic Data Consortium
(LDC) with accurate transcriptions, and 140 hours of TDT4 data
with only closed-caption references provided. Light supervision
techniques were used on the latter portion. The feature vector con-
sists of 13 PLP features with 1st, 2nd and 3rd derivatives appended.
An HLDA transform is used to map this vector to 39 dimensions,
and then pitch and its derivatives are added. Thus, the final fea-
ture vector has 42 dimensions. Results are given on two test sets:
dev04f consists of 0.5 hours of CCTV data from shows broad-
cast in November 2003, and eval04 includes 1 hour of data from
CCTV, RFA and NTDTV broadcast in April 2004. This system is
fully described in [1]. In contrast to [1], these experiments use an
ML trained baseline with no speaker adaptation.

Two baseline systems, G0 and H0, were built. H0 was built
using the standard HLDA frontend described above, while G0 used
a Gaussianised frontend [1]. Both systems have on average 16
components per state, and approximately 6000 unique states, after
decision-tree based state clustering. From these starting systems,
standard ML training using all of the training data was performed

0 10 20 30 40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

Figure 3: Training set word posteriors, G0

0 10 20 30 40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

Figure 4: Training set word posteriors, G1c

to give two further systems, G1 and H1. Also, two complementary
systems, G1c and H1c were built using ML-MBRL. Both of these
systems were built to be complementary to G0 using a threshold of^\	ho<pjqr�=s [� in the loss function (equation 5). This corresponded
to 32% of the training data words. In addition, the state boundaries
were fixed during training as initial experiments showed that these
could drift significantly when using ML-MBRL training.

Figure 3 shows the distribution of training set word posteriors
obtained using G0; the threshold of

oCptqu�=s [� , corresponding to
32% of words is also marked. Approximately 20% of words have
zero posterior probability with respect to G0. Figure 4 shows how
these word posteriors change after carrying out ML-MBRL train-
ing. This graph shows the distribution of word posteriors obtained
using G1c, for both portions of training data (i.e. the 32% used
for training and the remaining 68%). It can be seen that the algo-
rithm has increased the posterior probability of many previously
badly recognised words, but has also had the effect of decreasing
the posteriors for previously well recognised words.

Table 1 shows the confusion network decoding results for the
individual baseline and complementary models. Performing fur-
ther iterations of ML training has very little effect on the error rate;
for example G0 and G1 both have an error rate of 14.3% on the
dev04f set. However, performing ML-MBRL training degrades
the individual system results; the error rate for G1c is 14.7%. This
effect is seen for both complementary models, on both test sets.

The results from confusion network combination are also
given in table 1. Combining two independent models does give
improvements in error rate, as has been seen in previous work.
For example, G0 and H1 have individual error rates of 14.3% and
14.4% on dev04f, and their combination decreases the error rate
to 13.8%. However, combining two complementary models can
give greater improvements. For example, G0 and H1c have indi-

Model System CER (%)
dev04f eval04

G0 GAUSS 14.3 22.9
H0 HLDA 14.4 23.2
G1 GAUSS 14.3 22.8
G1c 14.7 23.0
H1 HLDA 14.4 23.2
H1c 14.6 23.2
G0 + G1 CNC 14.1 22.6
G0 + G1c 14.0 22.4
G0 + H1 CNC 13.8 22.3
G0 + H1c 13.4 22.0

Table 1: Individual System and CNC Results (CER %)

Model dev04f eval04
CNC IDEAL CNC IDEAL

G0 + G1 14.1 14.0 22.6 22.5
G0 + G1c 14.0 13.3 22.4 21.9

Table 2: IDEAL and CNC combination Results (CER %)

vidual error rates of 14.3% and 14.7%, but their combination gives
an error rate of 13.4%. This is a gain of 0.4% absolute over the
independent system combination, despite the fact that the individ-
ual error rate for H1c is 0.3% worse than for H1. As expected
due to their similarity, the gains got from combining two GAUSS
systems is small, while larger gains are seen from combining an
HLDA and a GAUSS system.

It is interesting to consider the potential gains that can be
achieved using system combination, and hence an ideal combi-
nation scheme was also implemented. This scheme first aligns
the reference transcription with the confusion networks in order to
determine whether either, or both, of the systems are correct. If
the first system selects the correct word, then the second system
is ignored and only the first system is used. If the first system
is incorrect, then the combination with the second system is per-
formed. This form of combination mirrors the threshold scheme
used in training. Table 2 compares the results of this ideal scheme
with standard CNC for the combination of G0, G1 and G1c. For
the combination of G0 and G1, standard confusion network com-
bination gives error rates of 14.1% and 22.6% on dev04f and
eval04 respectively, compared to the ideal scheme results of
14.0% and 22.5%. That is, confusion network combination is an
almost optimal combination scheme for combining these systems.
In contrast, for combination with the complementary system, the
results from CNC are significantly worse than for the ideal scheme.
CNC results using G0 and G1c are 14.0% and 22.4% on the two
test sets, but the ideal combination results are 13.3% and 21.9%.
Hence, a more sophisticated combination scheme might be more
suitable for combining these complementary systems.

4. Conclusions
This paper has presented a new algorithm, Minimum Bayes Risk
Leveraging, for explicitly building systems that are complemen-
tary to each other. This algorithm differs from previous boosting-
like algorithms as it is based on Minimum Bayes Risk training,

and relies on confusion network combination in training to accu-
rately determine a weighting on the training data. It also differs
from discriminative training and active learning in its aim to build
an ensemble of classifiers, rather than one single best model.

It was found that building systems to be complementary to
another degraded the error rate of the individual systems when
compared to standard training. However, combining complemen-
tary systems led to improvements over combining independently
trained systems. This is in contrast to previous work with CNC,
which has found that optimal combination is obtained when the
systems being combined have similar error rates. However, the re-
sults of an ideal combination scheme indicate that standard CNC
is not an optimal method of combination for complementary sys-
tems, and that an alternative form of combination is needed to fully
take advantage of the complementary nature of these models.

5. References
[1] Sinha, R., Gales, M.J.F., Kim, D.Y., Liu, X.A., Sim, K.C. and

Woodland, P.C. “The CU-HTK Mandarin Broadcast News
Transcription System”, ICASSP 2006.

[2] Gales, M.J.F., Kim, D.Y., Woodland, P.C., Chan, H.Y. Mrva,
D., Sinha, R. and Tranter, S.E., “Progress in the CU-HTK
Broadcast News Transcription System”, IEEE Trans. Speech
and Audio Processing, to appear.

[3] Fiscus, J.G. “A Post-processing System to Yield Reduced
Word Error Rates: Recogniser Output Voting Error Reduc-
tion (ROVER)”, Proc. IEEE ASRU Workshop, pages 347-
352, 1997.

[4] Evermann, G. and Woodland, P.C. “Posterior Probability De-
coding, Confidence Estimation and System Combination”,
Proc. of the NIST Speech Transcription Workshop, 2000.

[5] Dietterich, T.G. “Ensemble Methods in Machine Learning”,
Lecture Notes in Computer Science, vol 1857, pp 1-15, 2000.

[6] Liu, X., Gales, M.J.F, Sim, K.C. and Yu, K. “Investiga-
tion of Acoustic Modeling Techniques for LVCSR Systems”,
ICASSP 2005.

[7] Siohan, R., Ramabhadran, B. and Kingsbury, B. “Construct-
ing Ensembles of ASR Systems using Randomised Decision
Trees”, ICASSP 2005.

[8] Freund, Y. and Schapire, R.E. “A Decision-Theoretic Gen-
eralisation of Online Learning and an Application to Boost-
ing”, Journal of Computer and System Sciences, 55(1):119-
139, 1997.

[9] Zhang, R. and Rudnicky, A.I. “A frame level boosting train-
ing scheme for acoustic modelling”, ICSLP, 2004.

[10] Meyer, C. “Utterance Level Boosting of HMM Speech
Recognisers”, ICASSP, 2002.

[11] Doumpiotis, V. and Byrne, W. “Lattice Segmentation and
Minimum Bayes Risk Discriminative Training for Large Vo-
cabulary Continuous Speech Regognition”, Speech Commu-
nication, (2):142-160, 2005.

[12] Povey, D. “Discriminative Training for Large Vocabulary
Continuous Speech Recognition”, PhD Thesis, University of
Cambridge, 2004.

[13] Arslan, L.M. and Hansen, J.H.L. “Selective Training for Hid-
den Markov Models with Applications to Speech Classifi-
cation”, IEEE Trans. Speech and Audio Processing, Vol. 7
(1):46-54, 1999.

