
Product of Gaussians for Speech Recognition

M.J.F. Gales and S.S. Airey

Cambridge University Engineering Department, Trumpington Street,
Cambridge, CB2 1PZ, England

Abstract

Recently there has been interest in the use of classifiers based on the product of
experts (PoE) framework. PoEs offer an alternative to the standard mixture of
experts (MoE) framework. It may be viewed as examining the intersection of a series
of experts, rather than the union as in the MoE framework. This paper presents
a particular implementation of PoEs, the normalised product of Gaussians (PoG).
Here each expert is a Gaussian mixture model. In this work, the PoG model is
presented within a hidden Markov model framework. This allows the classification
of variable length data, such as speech data. Training and initialisation procedures
are described for this PoG system. The relationship of the PoG system with other
schemes, including covariance modeling schemes, is also discussed. In addition the
scheme is shown to be related to a standard speech recognition approach, multiple
stream systems. The PoG system performance is examined on an automatic speech
recognition task, Switchboard. The performance is compared to standard Gaussian
mixture systems and multiple stream systems.

1 Introduction

Mixture of Gaussians (MoG) are commonly used as the state representation
in hidden Markov model (HMM) based speech recognition. These Gaussian
mixture models are easy to train using expectation maximisation (EM) tech-
niques (4) and are able to approximate any distribution given a sufficient
number of components. However, only a limited number of parameters can
be effectively trained given a finite quantity of training data. This limitation
restricts the ability of MoG systems to model highly complex distributions.
A range of distributed representations have been developed to overcome this

Email addresses: mjfg@eng.cam.ac.uk (M.J.F. Gales), ssa26@eng.cam.ac.uk
(S.S. Airey).

URL: http://www-svr.eng.cam.ac.uk/~mjfg (M.J.F. Gales).

Preprint submitted to Elsevier Science 12 August 2004

problem. These distributed representations may be split into two basic forms.
The first assumes that the sources are asynchronous. The second assumes that
the sources are synchronous.

o o ot−1 t t+1

q q qt−1 t t+1

t+1qt−1 q t q(1)

(2)

(1)(1) (1)

(2) (2)

Fig. 1. 2-stream asynchronous distributed representation. Observed values are
shaded, unobserved values are unshaded. Circles are used to represent continuous
values, squares discrete values. The absence of an arrow indicates independence.

A dynamic Bayesian network (DBN) for an asynchronous representation is
shown in figure 1. In this representation, there are multiple sources that change
“state” at different time instances. The observations are assumed to be con-
ditionally independent given the states of the underlying sources. Factorial
HMMs (8; 6) are a standard example of an asynchronous distributed system.
In practice, this form has limited use because separate streams are seldomly
completely asynchronous. Some constraints between the streams are usually
imposed. Models of this form include loosely coupled HMMs (12) and the
mixed memory model (17).

o t−1

w

qt−1

wt−1
(1)

ot

w

q t

t

w

o t+1

w

t+1q

t+1w
(1)(1)

t

(2)
t−1

(2)
t+1
(2)

Fig. 2. 2-stream synchronous representation with mixture models

An alternative to the factorial HMM scheme is to use a single state process
and have a distributed form associated with the state distribution. A stan-
dard approach is to use a mixture model for each source. The mixture models
from each source change at the same time instance. Hence it is a synchronous
representation. The DBN for this representation is shown in figure 2. The

2

distributions for the two underlying streams are mixture models, the gener-
ative component at each time instance, t, is given by w

(s)
t for stream s. A

standard example of this form of representation is the multiple stream system
implemented in HTK (20).

Irrespective of whether the underlying processes are synchronous or asyn-
chronous, an important consideration is how the individual streams combine to
yield the observation, or observation sequence, distribution. A variety of com-
bination schemes have been proposed including discrete stream systems (21),
linear stream transformations (6), parallel model combination (7) and inde-
pendent streams (2). A brief overview of these schemes is given in (6). All
these schemes attempt to find the appropriate balance between the number of
model parameters and assumptions of stream independence.

The distributed representation investigated in this paper is the products of
experts (PoE) (10) framework using Gaussian mixture models (GMMs) as
the experts. The general PoE framework cannot be viewed as a distributed
representation. However, since the product of two Gaussian distributions is
itself Gaussian distributed, the special case of PoE that uses Gaussian experts
is a distributed representation. In the PoE framework, the likelihoods from
all the experts are multiplied together to form the system output. The PoE
system output can be thought of as an intersection of all the individual experts.
In contrast, the output from the standard mixture of experts (MoE) system,
of which the MoG is one example, is a union of all the individual experts.
For a MoE system, M, composed of S experts, the output likelihood may be
expressed as

p(ot|M) =
S∑

s=1

c(s)p(ot|M(s)) (1)

where c(s) is the prior for expertM(s). For this to be a valid PDF,
∑S

s=1c
(s) = 1.

The equivalent output likelihood for a PoE system may be expressed as

p(ot|M) =
1

Z

S∏

s=1

p(ot|M(s)) (2)

Z =
∫

Rd

S∏

s=1

p(o|M(s))do. (3)

where the integral is over the d-dimensional feature-space. Z is the normalisa-
tion term required to yield a valid PDF. The PoE framework may be applied
in both the synchronous and asynchronous systems.

Training MoE systems using the EM algorithm is usually straight-forward.
However, training PoEs is significantly more complicated, largely as a result

3

of the normalisation term. This complexity has motivated various approximate
training schemes for the PoE framework (10). PoEs have previously been ap-
plied to time varying signals (3). Discrete HMMs were used in an asynchronous
framework to classify character strings . This paper investigates modeling the
states of a HMM in a synchronous framework using PoE systems in which the
individual experts are Gaussian or MoG. Using this form of expert, the train-
ing is dramatically simplified compared to the general PoE case. In addition,
this form of model is, under certain restrictions, related to multiple stream
systems.

An interesting aspect of distributed representations of observations, including
the PoE framework described here, is the nature of the contributing stream
distributions. For statistical pattern processing an overriding constraint is that
the final non-distributed observation, or observation sequence, probability dis-
tribution be valid. It must satisfy the following constraints:

p(o|M) ≥ 0;
∫

Rd
p(o|M)do = 1. (4)

However, the individual streams do not necessarily have to satisfy these con-
straints. One such example is the extended maximum likelihood linear trans-
form covariance representation (13), where there are “negative” inverse vari-
ances. The effects of this relaxation of the constraints on the experts is inves-
tigated for the case of product of Gaussians and MoG.

This paper is organised as follows. The next section describes the general
product of Gaussians and related schemes. Section 3 discusses the product of
Gaussians as a distributed representation, examining the effects of relaxing the
constraint that the individual experts be valid probability distributions. The
training of the system is then described. In section 5, the relationship between
the product of Gaussian system and the multiple stream system is discussed.
Results on a large vocabulary speech recognition task are then described in
section 6.

2 Product of Gaussians Systems

This section details different forms of the product of Gaussians model. The
PoG pancake (PoGP) model, described in section section 2.2, has previously
been investigated in detail (19). The PoGP model is described within the
framework of covariance matrix modeling and is related to probabilistic PCA (18)
and factor analysis (16). In contrast, this paper concentrates on the attributes
of PoG systems within a mixture model and HMM framework. Two new forms
of representation are discussed. The first uses MoG as the experts. The second
form, and the one evaluated here, considers normalised versions of the product

4

of individual components from the MoG experts. These forms, in addition to
the PoGP model, are described below.

2.1 General Product of Gaussians

The product of two Gaussian likelihoods is itself Gaussian distributed when
appropriately normalised. For the product of S multivariate Gaussian distri-
butions, this may be written as

p(o|M) =
1

Z

S∏

s=1

N (o; µ(s),Σ(s))

=N (o; µ,Σ) (5)

where Z is the normalisation term. The mean and the covariance matrix of
the resulting distribution are

µ =Σ

(
S∑

s=1

Σ(s)−1µ(s)

)
(6)

Σ=

(
S∑

s=1

Σ(s)−1

)−1

(7)

In contrast to many PoE models, there is a simple expression for the normal-
isation term, Z. From equation 5, the normalisation term may be shown to
be

Z =
(2π)

d
2 |Σ| 12

∏S
s=1 (2π)

d
2 |Σ(s)| 12

exp

[
1

2

(
µ′Σ−1µ−

S∑

s=1

(µ(s)′Σ(s)−1µ(s))

)]
(8)

where d is the dimensionality of the feature vector. If the covariance matri-
ces are full then the product of Gaussians does not add additional modeling
power. However, in models that use constrained forms of the covariance ma-
trix, such as the PoGP described in the next section, then the simple product
of Gaussians allows more complex covariance matrix modeling.

2.2 Product of Gaussian Pancakes

Since the product of a set of Gaussians is itself a Gaussian distribution, if
single component GMMs are used for each expert, the PoE framework will
simply allow an alternative version of covariance modeling. One form of this

5

covariance model is the product of Gaussian pancake (GP). In this model for
GP s the probability contour is assumed to be equally stretched in directions
v

(s)
1 , . . . ,v

(s)
d−1 and contracted in direction w(s), such that v

(s)
1 , . . . ,v

(s)
d−1,w

(s)

form a d × d matrix of the normalised eigenvectors of the covariance matrix
Σ(s). The inverse covariance matrix of a particular d-dimensional Gaussian
pancake, s, is then

Σ(s)−1 =
d−1∑

i=1

λ
(s)
0 v

(s)
i v

(s)′
i + λ(s)w(s)w(s)′

= λ
(s)
0 I + a(s)a(s)′ (9)

where a(s) = w(s)
√

λ(s) − λ
(s)
0 and λ(s) and λ

(s)
0 are the inverse variances in the

directions of contraction and elongation respectively. If a series of S of these
pancakes are multiplied together then the final resultant inverse covariance
matrix, Σ−1, is given by

Σ−1 =
S∑

s=1

(
λ

(s)
0 I + a(s)a(s)′)

= λI + AA′ (10)

where λ =
∑S

s=1 λ
(s)
0 and A =

[
a(1) . . . a(S)

]
. This is closely related to factor

analysis (19), but each “factor” now relates to the inverse covariance matrix.
It is interesting that the form shown for PoGP in equation 10 is very similar
to the form of extended maximum likelihood linear transform (EMLLT) (13).
This relationship is examined in more detail in section 3.

2.3 Product of Mixtures of Gaussians

In HMM-based automatic speech recognition systems it is common to use
MoGs to model the state distribution. A PoE framework with Gaussian mix-
ture model experts may be used as an alternative state distribution model.
The product of mixtures of Gaussians (PoMoG) is a version of synchronous
distributed representation. The distribution is obtained by multiplying the
likelihoods from the individual streams, where each stream is represented by
a MoG expert. In this case, equation 2 may be expressed as

p(ot|M) =
1

Z

S∏

s=1




M(s)∑

m=1

c(s)
m N

(
ot; µ

(s)
m ,Σ(s)

m

)

 (11)

6

where M (s), c(s)
m , µ(s)

m , and Σ(s)
m denote the number of components in stream s,

the prior, mean and covariance matrix of component m of stream s. Since the
product of two or more Gaussians is itself Gaussian distributed, the product of
the mixture of Gaussians may be expressed as a mixture model in the product
space. Equation 11 may be rewritten as

p(ot|M) =
1

Z

M(1)∑

m1=1

. . .
M(S)∑

mS=1

S∏

s=1

c(s)
ms
N

(
ot; µ

(s)
ms

,Σ(s)
ms

)
(12)

=
1

Z

M(1)∑

m1=1

. . .
M(S)∑

mS=1

cmKmN (ot; µm,Σm)

=
1

Z

∑
m

cmKmN (ot; µm,Σm) (13)

where m =
[
m1 . . . mS

]′
determines a particular meta-component and ms

specifies the component from stream s. Km is an observation-independent
normalisation and can be expressed as

Km =
(2π)

d
2 |Σm| 12

∏S
s=1 (2π)

d
2 |Σ(s)

ms
| 12

exp

[
1

2

(
µ′

mΣ−1
m µm −

S∑

s=1

(µ(s)′
ms

Σ(s)−1
ms

µ(s)
ms

)

)]
.(14)

The summation in this form is over all meta-component combinations, where
a meta-component is the product of one component from each MoG expert.
The mean, covariance matrix and prior of each meta-component m may be
expressed as

µm =Σm

(
S∑

s=1

Σ(s)−1
ms

µ(s)
ms

)
(15)

Σm =

(
S∑

s=1

Σ(s)−1
ms

)−1

(16)

cm =
S∏

s=1

c(s)
ms

. (17)

In this form, the effective number of components, M , in the PoE model is the
number of possible combinations of components from each MoG,

M =
S∏

s=1

M (s) (18)

The normalisation term for PoMoG can be written as

7

Z =
∑
m

cmKm. (19)

In contrast to many other forms of PoE systems, the normalisation term has
a simple analytical form. This allows standard gradient descent optimisation
schemes to be used to find the model parameters.

2.4 Normalised Product of Gaussians

An alternative form of product of Gaussians (PoG) model normalises each
meta-component m rather than normalising at the product of MoG level.
This is the normalised PoG system examined in this paper. As PoG will be
used to model the state distributions for an HMM system, the likelihoods will
now be conditioned on the state of the model (the dependence on the model
parameters will be implicit). The likelihood for state qt may be written as

p(ot|qt) =
∑
m

cm
Km

S∏

s=1

N
(
ot; µ

(s)
ms

,Σ(s)
ms

)

=
∑
m

cmN (ot; µm,Σm) (20)

where Km is the normalisation term for the meta-component given in equa-
tion 13. By using this form of normalisation it possible to closely relate this
form of model to multiple stream systems, as detailed in 5.

3 PoGs as a Distributed Representation

In the previous section the product of Gaussians model and related schemes
were described. This section examines the product of GMM experts and de-
scribes the additional flexibility introduced if the standard PDF constraints on
the individual stream experts are relaxed. Three forms of constraints are con-
sidered. The first affects the component priors, the other two are constraints
of the covariance matrix.

3.1 Component Priors

For each of the experts to be a valid PDF the component priors for each expert
must satisfy

8

M(s)∑

m=1

c(s)
m = 1; c(s)

m ≥ 0 (21)

These are then combined together using equation 17 to yield cm. Strictly,
however, the priors are only required to be valid for the final distribution
in the product space. In this case, the constraints on component priors are
relaxed so now the constraint is

∑
m

cm = 1; cm ≥ 0. (22)

In itself, this relaxation of the constraints does not alter the expert prior
estimation. However, it is interesting to consider a model where the priors for
each meta-component are explicitly estimated from the training data rather
than obtained from a product of the expert priors. From equation 20, the
ML estimation of meta-component priors is a standard problem of estimating
component priors in a mixture model. However here meta-components, rather
than individual expert components, are considered.

For the case of the PoMoG system this is more interesting. In the PoMoG
system the normalisation term for each meta-component Km and Z must also
be taken in to account. From equation 13 the likelihood may be expressed as

p(ot|M) =
∑
m

(
wmKm∑
m wmKm

)
N (ot; µm,Σm) (23)

where wm is the “weight” for meta-component m to denote that it is no longer
required to be a valid prior. Now for the priors to satisfy 22

wmKm ≥ 0 (24)

with the additional constraint that at least one of the meta-component values
is greater than zero. Since wm can take any value, the effect of Km can be
“undone” by the appropriate value of wm. Thus, letting

cm =
wmKm∑
m wmKm

(25)

it is possible to directly estimate the meta-component prior, cm, with the
standard prior constraints. In this case, the PoMoG system is identical to the
PoG system. Product of HMMs may be treated in a similar fashion. This is
discussed in detail in (5).

Meta-component priors estimated directly as in equation 25 will be referred to
as ML meta-component priors. In contrast, meta-component priors calculated

9

from the product of expert priors as in equation 17 will be referred to as
product meta-component priors.

3.2 Covariance Matrices

For the covariance matrices to yield valid distributions for each expert, Σ(s)
ms

must be positive definite for all components of all experts. In a similar fashion
to the priors, this constraint may be relaxed so that only the final covariance
matrix Σm need be positive definite. The meta-component variance is found
from the individual experts using

Σm =

(
S∑

s=1

Λ(s)
ms

)−1

(26)

where Λ(s)
ms

is used, rather than the inverse covariance, to illustrate that the
individual covariance matrices need not be valid. There are two attributes of
the covariance that may be relaxed. First, the individual expert matrices need
not be of full rank. Second, the elements on the leading diagonal need not be
positive.

• Non-full rank matrices: each of the individual expert covariance matrices
are not required to be of full rank provided that the final covariance matrix
is of full rank. One extreme scheme that clearly illustrates this is the EMLLT
model (13). Here the inverse covariance matrix is formed by combining a
set of experts each of whose inverse covariance matrices are rank-1. This
method may be viewed as generating a set of experts by projecting into a
series of one-dimensional spaces.

Σ−1
m =AΛmA′

=
S∑

s=1

λ(s)
ms

a(s)a(s)′ (27)

where A is a d×S matrix, S ≥ d, and Λm is a diagonal, S×S, matrix with
the sth element on the leading diagonal being λ(s)

ms
. λ(s)

ms
may be interpreted as

the inverse variance in the sth projected dimension. The EMLLT scheme is
related to the PoGP model. This relationship becomes clear if an additional
expert of full rank is used as well. Let 1

p(ot|M(S+1)) = N (ot;0,
1

λ
I). (28)

1 A more general covariance matrix, Σ(w), may be used. Here an identity matrix is
used to illustrate the relationship with PoGP. For the EMLLT system ML-estimates
of each meta-components means is used rather the form determined by equation 15.

10

The product of all S + 1 experts yields a Gaussian with covariance matrix

Σ−1
m =

S∑

s=1

(
λ

(s)
0 I + λ(s)

ms
a(s)a(s)′) . (29)

where again λ =
∑S

s=1 λ
(s)
0 . The additional expert is used by the PoGP model

to ensure that all the individual experts are valid distributions, whereas the
EMLLT process would simply view it as additional rows of the transforma-
tion matrix.

Though the two schemes have a similar form, there are some fundamental
differences. The first is that EMLLT is designed for covariance matrix mod-
eling where the matrix A is shared over multiple components. In contrast,
PoGP assumes only a single Gaussian. For PoGP systems, a value of S > d
will simply yield a full-covariance matrix. For EMLLT, if the form used in
equation 27 is used then d ≤ S ≤ d

2
(d + 1).When the form of equation 29 is

used then S ≤ d
2
(d + 1).

• “Negative” variances: the leading diagonal of a valid covariance matrix
must be non-negative. However, this requirement may be relaxed for the
individual experts in a PoE framework. For the PoG system, the meta-
component covariance matrix is given by

Σm =

(
S∑

s=1

Λ(s)
ms

)−1

. (30)

Provided the elements on the leading diagonal are positive in the final meta-
component variance, Σm, the terms from the experts, Λ(s)

ms
, need not be

positive. Thus an unconstrained optimisation scheme may be used.
PoGs are not the only form of model in which negative variances can

occur. The EMLLT framework (13) also affords this flexibility, as does the
generalised linear Gaussian model framework (15; 14) when the size of the
state-space is greater than the observation space. In (13) it is shown that
having negative values of λ(s)

ms
, the “variance” of the state distribution in di-

mension s, yields improved training data likelihood and classification results
for the EMLLT model.

For the PoG scheme investigated in this paper, only the negative variance
element is relevant as the experts in all cases are of the same dimension as the
observation space and the matrices are constrained to be diagonal.

3.3 Likelihood Calculation

The computational cost of decoding is an important factor in deciding which
form of representation to use. For the standard PoE system decoding is rel-
atively cheap, as it is only necessary to compute the individual stream log-

11

likelihoods and then combine them. This is significantly less computationally
expensive than computing the likelihood directly from the meta-components
in the product space. In contrast, computing the log-likelihoods for the dis-
tributed representation is not so straightforward.

In the distributed representation, the calculation of the log contribution for
each stream may be split into two distinct parts. Since each expert is not
required to be a valid PDF, the contribution will be denoted as f(ot,m) and
the normalisation terms will be ignored for the time being:

f(ot,ms) = −1

2
(ot − µ(s)

ms
)′Λ(s)

ms
(ot − µ(s)

ms
). (31)

The only requirement to compute f(ot,ms) is the existence of Λ(s)
ms

, rather
than requiring the inverse of a covariance matrix to exist. It is then possible
to write the meta-component likelihood as

p(ot|m) =
1

(2π)
d
2 |Σm| 12

exp

(
S∑

s=1

f(ot,ms)

)
. (32)

The likelihood of a state generating the observation may then be expressed as

p(ot|M) =
∑
m

cmp(ot|m). (33)

For efficiency, the meta-component prior can be combined with the meta-
component normalisation term. The efficiency of this style of approach for
non-full-rank matrices is described in (13).

4 Training PoG Systems

The maximum likelihood (ML) PoG system training is more complicated than
that for a standard HMM or multiple stream system. To estimate the prod-
uct space means and variances, a generalised EM formulation is used. The
complete data set for the auxiliary function is based on the observations and
the posterior probability at time t of a meta-component m, given the cur-
rent model parameters and the all the observations, γ

(m)
t . A gradient descent

scheme is used to maximise the auxiliary function as there are no closed form
solutions to optimise the means and variances. For a PoG system the auxiliary
function may be written as

12

Q(M,M̂) =
T∑

t=1

∑
m

γ
(m)
t log (cm) +

T∑

t=1

∑
m

γ
(m)
t log (N (ot; µm,Σm)) (34)

=Q(c)(M,M̂) +Q(N)(M,M̂) (35)

Initially, only the update of the product space Gaussian distributions is con-
sidered. Expressing the auxiliary function in terms of the individual stream
distributions and using the fact that the individual experts have diagonal co-
variance matrices yields

Q(N)(M,M̂)

=
T∑

t=1

∑
m

d∑

i=1

γ
(m)
t

2


log




S∑

s=1

1

σ
(s)2
msi


− (otiµmi)

2




S∑

s=1

1

σ
(s)2
msi





 . (36)

There are no simple closed-form solutions to finding the model parameters,
so gradient descent schemes are used. Each dimension of the system may be
optimised separately so it is feasible to consider second-order techniques. For
systems of reasonable size the Hessian may be explicitly computed. For further
details of this training see (1). For the scheme implemented, statistics are
stored for each Gaussian component in the product space. It is then possible to
guarantee that the auxiliary function increases at each step. Two forms of the
optimisation may be used depending on whether a distributed representation
is being used.

• Unconstrained variances: the form in equation 36 may be directly used.
• Positive variances: rather than optimising σ

(s)2
msi , log(σ

(s)2
msi) may be used

instead. Now it is only necessary to ensure that log(σ
(s)2
msi) is real to guarantee

that σ
(s)2
msi is positive 2 .

Storing statistics for components in product space makes training systems
with large numbers of streams, or components per stream, impractical. Alter-
natively, it is possible to use more general gradient descent learning schemes
where it is necessary to only store updates with the individual stream compo-
nents. This will be investigated in future work.

In contrast to the means and variances, the ML-estimates of the priors have
simple closed form solutions. Again there are two choices depending on the
form of the representation.

• ML meta-component priors: here the auxiliary function Q(c)(M,M̂) is
optimised subject to the constraints that

2 For the implementation used in this work the positive variance estimates were
found to be highly sensitive to the precise initialisation used.

13

∑
m

cm = 1; cm ≥ 0. (37)

This yields the standard optimisation problem associated with estimating
the component priors for a mixture scheme. Thus

cm =

∑T
t=1 γ

(m)
t∑T

t=1

∑
m γ

(m)
t

(38)

where the summation in the denominator is over all meta-components of
the state.

• Product meta-component priors: the individual components must sat-
isfy

M(s)∑

m=1

c(s)
m = 1; c(s)

m ≥ 0 (39)

for all streams. The auxiliary function may then be expressed in terms of
the stream component priors using equation 17

Q(c)(M,M̂) =
T∑

t=1

∑
m

γ
(m)
t

S∑

s=1

log
(
c(s)
m

)
. (40)

Again this is closely related to standard ML estimates of the components.
The ML estimate of the prior for stream s is

c(s)
m =

∑T
t=1

∑
{m : ms=m} γ

(m)
t

∑T
t=1

∑
m γ

(m)
t

(41)

where the summation in the denominator is over all meta-components of
the state.

One issue in training a PoG system is how to appropriately initialise the
system. Various approaches are possible (10). For this work, the relationship
between the PoG system and the multiple stream system is used, as discussed
in the next section. A multiple stream system is built by partitioning the
feature vector. The trained multiple stream system is then converted into
a PoG system by “padding” the covariance matrix with high cross-stream
values 3 and zeroing the cross-stream means. This is similar to the subspace
initialisation in (10). This relationship is discussed in more detail in section 5.

3 In practice a constant times the inverse of the variance floor was used.

14

5 Multiple Stream Systems

One standard distributed representation, closely related to the scheme exam-
ined here, is multiple stream modeling (20). Here, the feature vector is assumed
to consist of independently modeled streams. Each of the stream subvector ob-
servations is generated independently from all the other streams. Observations
from these individual streams are then concatenated together to form the full
feature vector. For an S-stream system

ot =




o
(1)
t

...

o
(S)
t




(42)

where o
(s)
t is the observation sub-vector associated with stream s. Performance

for this form of model is degraded by the independent stream assumption, and
to date multiple stream systems have had very limited success when applied
to large vocabulary speech recognition tasks.

This section describes these multiple stream systems and relates them to the
PoG system described in the previous section. The form of multiple stream
system considered here is the synchronous independent stream model imple-
mented in HTK(20). This form of multiple stream model makes the assump-
tion that, given the state, the observations from each of the streams are inde-
pendent of one another. This may be expressed as

p(ot|qt) =
S∏

s=1




M(s)∑

m=1

c(s)
m N

(
o

(s)
t ; µ(s)

m ,Σ(s)
m

)

 . (43)

In a similar fashion to the PoG system, this may be expressed in the product
space given in equation 20. The meta-component means and variances are now

µm =




µ(1)
m1

...

µ(S)
mS




Σm =




Σ(1)
m1

. . . 0
...

. . .
...

0 . . . Σ(S)
mS




. (44)

The total number of effective full-dimensional Gaussians is then the number
of possible combinations of stream elements, which is the same as for the PoG
system. The prior for an effective full-dimensional component is given by the
product of the individual stream component priors, shown in equation 17.

15

The relationship between the PoG system and multiple stream systems is
best illustrated by an example. Consider a 2-stream PoG system where the
covariance matrices of component one of the two streams are given by

Σ
(1)
1 =



Σ(1) 0

0 σ2I


 , Σ

(2)
1 =




σ2I 0

0 Σ(2)


 . (45)

For the situation where σ2 = ∞, using equation 16 to compute the meta-
component variance yields

Σ[11]′ =



Σ(1) 0

0 Σ(2)


 . (46)

This may be considered as making some dimensions of the individual experts
non-informative. Thus when the “cross-stream” variances for a PoG system
are very large, a PoG system becomes the same as a multiple stream system.
Similarly, the mean of PoG will have the same form as the multiple stream
mean. Figure 3 shows the effect of varying the value of σ2, the cross-stream
variance, on the meta-component positions. The figure shows two MoG ex-
perts, for stream 1 the means are at [2 2]′ and [-2 -2]′ and for stream 2 at
[2 -2]′ and [-2 2]′. The “within-stream” variances are 1. The top left plot has
σ2 = 1000 and the resultant meta-components are the same as a multiple
stream system. As σ2 decreases the meta-components are no longer aligned
with the axis. For σ2 = 1 the components are rotated by almost 45 degrees
compared to the σ2 = 1000. The PoG system can be seen to be more pow-
erful than the multiple stream system, as there is no assumption about the
meta-components aligning with the “axis” of the two streams. However, there
is an increase in the number of model parameters, since each expert in a PoG
system models the complete feature vector.

In common with a PoG system, it is possible to use ML meta-component pri-
ors with a multiple stream system. Multiple stream systems with ML-meta-
component priors are related to subspace distributed clustering HMMs (SD-
CHMMs) (11). In SDCHMMs there is an atom table consisting of S streams
and M (s) components for stream s. All components of the system are formed
by combinations of elements from the atom table. Each component prior is
then calculated in an ML fashion. Using ML components for a multiple stream
system is equivalent to an SCDHMM system with distinct atom tables for each
state.

16

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
variance=1000

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
variance=10

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
variance=2

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
variance=1

Fig. 3. The circles show one standard deviation contours of each Product of Experts.
The products shift as cross-stream variance is reduced.

6 Results

The performance of the PoG and multiple stream systems were evaluated
on a standard large-vocabulary speaker-independent speech recognition task.
Hub5, or Switchboard. This is a telephone bandwidth spontaneous speech
recognition task. The acoustic training data is obtained from two corpora:
Switchboard-1 (Swb1) and Call Home English (CHE). The full training cor-
pus consists of an 265-hour training set, 4482 sides from Swb1 and 235 sides
from CHE. For the experiments performed in this paper a subset of this was
used. A total of 68 hours was chosen to include all the speakers from Swb1
as well as a subset of the available CHE sides. 862 Swb1 sides and 92 CHE
sides were used in this subset. This is the h5train00sub training set described
in (9). The speech waveforms were coded using perceptual linear prediction
cepstral coefficients derived from a Mel-scale filterbank (MF-PLP) covering
the frequency range from 125Hz to 3.8kHz. A total of 13 coefficients, includ-
ing c0, and their first and second order derivatives were used. Cepstral mean
subtraction and variance normalisation were performed for each conversation

17

side. Vocal tract length normalisation (VTLN) was applied in both train-
ing and test. A gender-independent cross-word-triphone diagonal-covariance
mixture-Gaussian tied-state HMM system was built.

All results are quoted on a three-hour subset of the 2001 development data,
referred to as dev01sub. This has been found to be a good predictor of sys-
tem performance. For all recognition experiments single pass decodes were
performed, rather than using lattices, to avoid cross system effects. A tri-
gram language model was used built using the language model training data
described in (9).

Number of Components

System 2 4 6 8 10 12

std 46.1 43.7 42.0 40.7 39.3 39.1

stm 46.0 43.8 43.1 42.4 42.1 42.0
Table 1
dev01sub Switchboard WER using MoG (std) and 3-stream multiple-stream (stm)
systems.

Table 1 shows a direct comparison of a standard MoG HMM system with a
3-stream multiple stream system, the streams were the static, first and sec-
ond derivative parameters. For small numbers of components there was little
performance difference between the two systems. However, as the number
of components was increased the performance difference became large. The
standard system significantly outperformed the multiple stream system with
a 12-component standard system yielding an error rate 2.9% absolute better
than the equivalent multiple stream system.

10 20 30 40 50 60
10

−3

10
−2

10
−1

Component

P
ri
o
r

10 20 30 40 50 60
10

−3

10
−2

10
−1

Component

P
ri
o
r

Fig. 4. Product meta-component priors (left) and ML meta-component priors (right)
for the 4-component 3-stream system

The difference in the two methods for estimating priors was then evaluated
for the multiple stream system. Figure 4 shows, on the left-hand-side, the

18

product meta-component priors and, on the right-hand-side, the ML meta-
component priors for a state of the 4-component multiple stream system. Using
ML meta-component priors increases the number of model parameters. In
this case the product prior system has nine free parameters per state for the
weights while the ML prior system has 63. The ML meta-component priors
show much greater variance than the product priors. This indicates that the
priors are not well modeled using the standard distributed representation. The
performance of the 4-component multiple stream system using the ML meta-
component priors was 43.5% error rate compared to 43.8% for the standard
multiple stream system. Iteratively training all the model parameters using
the ML priors further reduced the error rate to 43.0%. This indicates that
a source of degradation of performance of the multiple stream system is the
product form of the meta-component priors. Table 2 shows the average training

System Prior Var Log-Lik Error Rate

std — — -69.36 46.1

stm prd — -69.34 46.0

ml — -69.09 45.7

pog ml +ve -68.90 44.4

prd -ve -68.19 43.2

ml -ve -68.17 43.1
Table 2
dev01sub Switchboard performance using standard (std) and 3-stream systems
(stm) and PoG systems (pog), with two components per stream.

data log-likelihood per frame and the recognition performance for a PoG and
multiple stream systems using 2-component per stream systems. The priors
for the systems are estimated either according to a product of stream experts
as given in equation 17, prd, or using the ML priors estimated according
to equation 38, ml. Additionally, the variances for the PoG system are either
constrained to be positive, +ve, or allowed to be negative, -ve. Comparing the
product meta-component prior multiple stream system with the standard MoG
system, there is little difference between the two log-likelihoods. This may be
partly attributed to the limitation of the product form of the components
and to the small number of components in the underlying streams. The word
error rates of the two systems are approximately the same. Using ML meta-
component priors for the multiple stream system yields minor improvements
in log-likelihood and word error rate.

The three PoG systems all have higher log-likelihoods and lower word error
rates than the std and stm systems. This is not surprising since the perfor-
mance of the multiple stream systems indicates that the independent stream
assumption is poor for speech recognition with MF-PLP parameters. It also

19

illustrates that significant use is made of the cross-stream variances to better
model the data.

When the variances were constrained to be positive, the log-likelihoods de-
creased and the error rates increased. Using PoGs with positive variances for
each of the experts gave an error rate of 44.1%. When this restriction was re-
laxed to allow negative variances, the error rate was 43.1%, significantly lower
than when the variances were restricted to be positive. Thus the additional
flexibility of having “negative” variances is useful for pog systems. In con-
trast, the comparison of the ml over prd component priors for the PoG system
shows rather less impact on performance. However, this may be attributed to
the limited number of components per stream.

System Prior Var Log-Lik Error Rate

std — — -68.60 43.7

stm prd — -68.60 43.8

ml — -68.14 43.0

pog ml -ve -66.78 40.9
Table 3
dev01sub Switchboard performance using standard (std) and 3-stream systems
(stm) and PoG systems (pog), with four components per stream.

To further investigate more complex systems a set of 4-component per stream
systems were built. Table 3 shows the performance of these 4-component per
stream systems. As the number of components per stream increases, the advan-
tage of using ml priors increases (though note the number of model parameters
also slightly increases). This is shown in both an increase in log-likelihood and
decrease in error rate. Again the use of the pog yields lower error rate. How-
ever, the additional parameters required by the PoG system must be noted. If
the total number of model parameters is considered, rather than the compo-
nents per stream, the 4-component PoG system, with an error rate of 40.9%,
is equivalent to the 12 component MoG system, which had an error rate of
39.1%. The PoG system performance was significantly worse than the MoG
performance for approximately the same number of model parameters. How-
ever, comparing the average training data log-likelihoods of the two systems,
the PoG system is slightly higher, −66.8, compared to the MoG system, −67.1.
The 4-component PoG system better models the training data, though it is
not a better model for classification.

20

7 Conclusions

This paper has described a new form of distributed representation, the PoG
model, based on the PoE framework. Techniques for training and initialis-
ing this new model are presented. In addition, the relationship between this
model and a multiple stream model is described. This PoG model is compared
to standard MoG and multiple stream state-representations for HMM-based
speech recognition. A standard speech recognition task, Switchboard, was used
for the evaluation. As expected, the performance of the multiple stream sys-
tem became worse than that of the MoG system as the number of components
increased. Part of this degradation in performance was shown to be due to the
poor representation of the priors in the system. Additional experiments on
larger systems are required to further evaluate this effect. The performance of
the PoG system was better than that of MoG or multiple stream systems with
an equivalent number of components per stream. However, the PoG system
has more parameters for each component. The largest PoG system trained,
4-components per stream, had a performance significantly worse than that of
the best, 12-component, MoG system.

Future work will investigate building larger PoG systems to see whether as
the number components increase the performance exceeds the standard MoG
system. There are a number of issues that still need to be resolved for the
PoG system. As well as efficient training and initialisation schemes, there is
the need for efficient decoding schemes and techniques for selecting the number
of streams. Future work will also examine the product of MoG HMM systems
for speech recognition.

21

References

[1] S S Airey. Products of Gaussians. Master’s thesis, University of Cam-
bridge, 2002.

[2] H Bourlard and S Dupont. A new ASR approach based on independent
processing and combination of partial frequency bands. In Proceedings
ICSLP, pages 422–425, 1996.

[3] A D Brown and Hinton G E. Products of hidden Markov models. Tech-
nical Report GCNU TR 2000-08, Gatsby Computational Neuroscience
Unit, 2000.

[4] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, 39:1–38, 1977.

[5] M J F Gales and S S Airey. Product of Gaussians for Speech Recogni-
tion. Technical Report CUED/F-INFENG/TR458, Cambridge Univer-
sity, 2003. Available from: svr-www.eng.cam.ac.uk/˜mjfg.

[6] M J F Gales. Transformation streams and the HMM error model. Com-
puter Speech and Language, 16:225–243, 2002.

[7] M J F Gales and S J Young. Robust speech recognition using parallel
model combination. IEEE Transactions Speech and Audio Processing,
4:352–359, 1996.

[8] Z Ghahramani and M I Jordan. Factorial hidden Markov models. Ma-
chine Learning, 29:245–275, 1997.

[9] T Hain, P C Woodland, G Evermann, and D Povey. The CU-HTK March
2000 HUB5E transcription system. In Proceedings of the Speech Tran-
scription Workshop, 2000.

[10] G Hinton. Products of experts. In Proceeding of ICANN, 1999.
[11] B Mak and E Bocchieri. Subspace distribution clustering for continuous

observation density hidden Markov models. In Proceedings Eurospeech,
pages 107–110, 1997.

[12] H Nock and S Young. (2000). Loosely coupled HMMs for ASR. In
Proceedings ICSLP, 2000.

[13] P A Olsen and R A Gopinath. Modeling inverse covariance matrices by
basis expansion. In Proceedings ICASSP, 2002.

[14] A-V I Rosti and M J F Gales. Generalised linear Gaussian models. Tech-
nical Report CUED/F-INFENG/TR420, Cambridge University, 2001.
Available from: svr-www.eng.cam.ac.uk/˜mjfg.

[15] S Roweis and Z Ghahramani. A unifying review of linear Gaussian mod-
els. Neural Computation, 11:305–345, 1999.

[16] D B Rubin and D T Thayer. EM algorithms for ML factor analysis.
Psychometrika, 47:69–76, 1982.

[17] L K Saul and M I Jordan. Mixed memory Markov models. Machine
Learning, 37:75–87, 1999.

[18] M Tipping and C Bishop. Mixtures of probabilistic principal component
analyzers. Neural Computation, 11:435–474, 1999.

22

[19] C K I Williams, F V Agakov, and S N Felderhof. Products of Gaussians.
In Proceeding of NIPS, 2001.

[20] S J Young, J Jansen, J Odell, D Ollason, and P Woodland. The HTK
Book (for HTK Version 2.0). Cambridge University, 1996.

[21] G Zweig. Speech Recognition with Dynamic Bayesian Networks. PhD
thesis, ICSI, UC Berkeley, 1999.

23

