
Deep Learning for Speech Processing
An NST Perspective

Mark Gales

University of
Cambridge

June 2016
September 2016

Natural Speech Technology (NST)

• EPSRC (UK Government) Programme Grant: collaboration

◦ significantly advance state-of-the-art in speech technology
◦ more natural, approaching human levels of reliability, adaptability and

conversational richness
◦ ran from 2011 to 2016 - interesting times ...

2 of 67

What is Deep Learning?

From Wikipedia:
Deep learning is a branch of machine learning based on a set of
algorithms that attempt to model high-level abstractions in data
by using multiple processing layers, with complex structures or
otherwise, composed of multiple non-linear transformations.

For NST:
Deep learning allows both speech synthesis and speech
recognition to use the same underlying, highly flexible, building
blocks and adaptation techniques (and improved performance).

3 of 67

What is Deep Learning?

From Wikipedia:
Deep learning is a branch of machine learning based on a set of
algorithms that attempt to model high-level abstractions in data
by using multiple processing layers, with complex structures or
otherwise, composed of multiple non-linear transformations.

For NST:
Deep learning allows both speech synthesis and speech
recognition to use the same underlying, highly flexible, building
blocks and adaptation techniques (and improved performance).

4 of 67

The Rise of Deep Learning (June 2016)

NST

5 of 67

Overview

• Basic Building Blocks
◦ neural network architectures
◦ activation functions

• Sequence-to-Sequence Modelling
◦ generative models
◦ discriminative models
◦ encoder-decoder models

• Speech Processing Applications
◦ language modelling
◦ speech recognition
◦ speech synthesis

• Adaptation for Deep Learning

6 of 67

What I am Not Discussing

• History of development
• Optimisation
◦ essential aspect of all systems (major issue)

• Only work from NST
◦ though (of course) the talk is biased
◦ indicates papers/contributions from NST in area

• Experimental Results
◦ see NST publications and other papers (references at end)

• My personal opinion of DNNs ...

7 of 67

Basic Building
Blocks

8 of 67

Deep Neural Networks [19]

y
txt

• General mapping process from input xt to output y t

y t = F(xt)

◦ deep refers to number of hidden layers
• Depending on nature of outputs (y t) vary activation function
◦ softmax often for classification
◦ tanh or sigmoid common for hidden layers

9 of 67

Neural Network Layer/Node

φ()wi

zi

10 of 67

Activation Functions

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

• Activation functions:
◦ step function (green)
◦ sigmoid function (red)
◦ tanh function (blue)

• softmax, usual output layer (sum-to-one/positive) for classification

φi(xt) = exp (wT
i xt + bi)∑J

j=1 exp
(
wT
j xt + bj

)
11 of 67

Activation Functions - ReLUs [35, 54]

• Alternative activation function: Rectified Linear Units

yi = max(0, zi)

• Related activation function noisy ReLU:

yi = max(0, zi + ε); ε ∼ N (0, σ2)

◦ efficient, no exponential/division, rapid convergence in training
• Possible to train the activation function parameters
◦ e.g. gradient of slopes for ReLUs

12 of 67

Activation Functions - Residual Networks [17]

φ()x y+

ReLU

W W

• Modify layer to model the residual

y t = F(xt) + xt

◦ allows deeper networks to be built
◦ deep residual learning

• Links to highway connections
13 of 67

Pooling/Max-Out Functions [27, 43]

• Possible to pool the output of a set of node
◦ reduces the number of weights to connect layers together

ϕ()

}
• A range of functions have been examined
◦ maxout φ(y1, y2, y3) = max(y1, y2, y3)
◦ soft-maxout φ(y1, y2, y3) = log(

∑3
i=1 exp(yi))

◦ p-norm φ(y1, y2, y3) = (
∑3

i=1 |yi |)1/p

• Has also been applied for unsupervised adaptation

14 of 67

Convolutional Neural Networks [26, 1]

n frames

k
 f
re

q
u
e
n
c
ie

s

pooling layer

filter 1

filter n

15 of 67

Mixture Density Neural Networks [4, 52]

component
means

component

component

(log) variances

priors

tx

• Predict a mixture of experts
◦ multiple components M
◦ F (c)

m (xt): prior prediction
◦ F (µ)

m (xt): mean prediction
◦ F (σ)

m (xt): variance prediction
• Optimise using maximum likelihood

p(y t |xt) =
M∑

m=1
F (c)
m (xt)N (y t ;F (µ)

m (xt),F (σ)
m (xt))

• Form of output influences output activation function used
16 of 67

Recurrent Neural Networks [38, 37]

t

t
x

t−1
h

t

Time

h

y

delay

• Introduce recurrent units

ht = fh (Wf
hxt + Wr

hht−1 + bh
)

y t = ff (Wyht + Wxxt + by
)

◦ ht history vector at time t
• Two history weight matrices
◦ Wf

h forward
◦ Wr

h recursion
• Uses (general) approximation (no optional i/o link)

p(y t |x1:t) = p(y t |xt , x1:t−1) ≈ p(y t |xt ,ht−1) ≈ p(y t |ht)

◦ network has (causal) memory encoded in history vector (ht)
17 of 67

RNN Variants [40, 10]

xt+1xt

ht t+1h

yt yt+1

t

ht

~

t+1h
~

ht t+1h

yt yt+1

xt+1x
t

ht t+1h

yt yt+1

z t z t+1

xt+1x

RNN (+i/o link) Bi-Directional RNN Variational RNN

• Bi-directional: use complete observation sequence - non-causal
• Variational: introduce a latent variable sequence z1:T

p(y t |x1:t) ≈
∫

p(y t |xt , zt ,ht−1)p(zt |ht−1)dzt
18 of 67

Network Gating

• A flexible extension to activation function is gating
◦ standard form is (σ() sigmoid activation function)

i = σ(Wfxt + Wrht−1 + b)

◦ vector acts a a probabilistic gate on network values

• Gating can be applied at various levels
◦ features: impact of input/output features on nodes
◦ time: memory of the network
◦ layer: influence of a layer’s activation function

19 of 67

Long-Short Term Memory Networks [20, 16]

t

xt

ht−1

ht

xt ht−1

ct f
h

f
m

xt ht−1

σ σ

σ

i

time delay

f

ii
io

ht−1
x

20 of 67

Long-Short Term Memory Networks

• The operations can be written as (peephole config):
◦ Forget gate (if), Input gate (ii), Output gate (io)

if = σ(Wf
fxt + Wr

fht−1 + Wm
fct−1 + bf)

ii = σ(Wf
ixt + Wr

iht−1 + Wm
ict−1 + bi)

io = σ(Wf
oxt + Wr

oht−1 + Wm
oct + bo)

◦ Memory Cell, history vector and gates are related by

ct = if � ct−1 + ii � fm(Wf
cxt + Wr

cht−1 + bc)
ht = io � fh(ct)

◦ � is element-by-element multiplication
◦ memory cell weight matrices (Wm

f,Wm
i,Wm

o) diagonal
◦ can allow explicit analysis of individual cell elements

21 of 67

Highway Connections [41]

ht

xt

if

ii
io

ht−1
xt

xt ht−1

ct f
h

f
m

xt ht−1

σ σ

σ

time delay

xt

ht−1

σ

+

ht−1
xt

ih

• Gate the output of the node (example from LSTM)
◦ combine with output from previous layer (xt)

ih = σ(Wf
hxt + Wr

hht−1 + bh)
ht = ih � (io � fh(ct)) + (1− ih)� xt

22 of 67

Sequence-to-Sequence
Modelling

23 of 67

Sequence-to-Sequence Modelling

• Sequence-to-sequence modelling central to speech/language:
◦ speech synthesis:

word sequence (discrete) → waveform (continuous)
◦ speech recognition:

waveform (continuous) → word sequence (discrete)
◦ machine translation:

word sequence (discrete) → word sequence (discrete)

• The sequence lengths on either side can differ
◦ waveform sampled at 10ms/5ms frame-rate
◦ word sequences (are words ...)

• Description focuses on ASR with RNNs (other models possible)

24 of 67

S2S: Generative Models [5, 6]

• Consider two sequences L ≤ T :
◦ input: x1:T = {x1, x2, . . . , xT}
◦ output: y1:L = {y1, y2, . . . , yL}

• Consider generative model (ASR language)

p(y1:L, x1:T) = p(y1:L)p(x1:T |y1:L)
= p(y1:L)

∑
φ1:T∈Φy 1:L

p(x1:T |φ1:T)P(φ1:T |y1:L)

◦ p(y1:L): prior (“language”) model
◦ p(x1:T |φ1:T): (conditional) “acoustic” model
◦ P(φ1:T |y1:L): alignment model - handles variable length

25 of 67

Prior Model Approximations [21, 3, 33]

• Markovian: N-gram and Feed-Forward neural network

p(y1:L) =
L∏

i=1
p(y i |y1:i−1) ≈

L∏
i=1

p(y i |y i−1, . . . , y i−N+1)

• Non-Markovian: Recurrent neural network

p(y1:L) ≈
L∏

i=1
p(y i |y i−1, h̃i−2)

≈
L∏

i=1
p(y i |h̃i−1)

i+1yi y

hi−1 ih
~ ~

◦ depends on complete unobserved word history
26 of 67

Hidden Markov Models [2, 13]

• Important sequence model is the hidden Markov model (HMM)
◦ an example of a dynamic Bayesian network (DBN)

t xt+1

t t+1φ φ

x

• discrete latent variables
◦ φt describes discrete state-space
◦ conditional independence assumptions

P(φt |φ1:t−1, y1:L) = P(φt |φt−1)
p(xt |x1:t−1,φ1:t) = p(xt |φt)

• The likelihood of the data is

p(x1:T |y1:L) =
∑

φ1:T∈Φy 1:L

(T∏
t=1

p(xt |φt)P(φt |φt−1)
)

27 of 67

Acoustic Model Approximations

• Fully Markovian: HMM, simplest form of approximation

p(x1:T |φ1:T) ≈
T∏
t=1

p(xt |φt)

• State Markovian:

p(x1:T |φ1:T) ≈
T∏
t=1

p(xt |φt , x1:t−1) ≈
T∏
t=1

p(xt |φt ,ht−1)

• Feature Markovian:

p(x1:T |φ1:T) ≈
T∏
t=1

p(xt |φ1:t) ≈
T∏
t=1

p(xt |h̃t)

28 of 67

Markovian Approximations and Inference

t xt+1

t t+1φ φ

x

φ φ

xt xt+1

ht−1 th

t t+1 φ φ

xt xt+1

th
~

ht+1

~

t t+1

Markovian (HMM) State Markovian Feature Markovian∏T
t=1 p(xt |φt)

∏T
t=1 p(xt |φt ,ht−1)

∏T
t=1 p(xt |h̃t)

• Inference costs significantly different:
◦ state Markovian: all past history observed - deterministic
◦ feature Markovian: past history unobserved - depends on path

29 of 67

“Likelihoods” [6]

• Deep learning can be used to estimate distributions - MDNN
◦ more often trained as a discriminative model
◦ need to convert to a “likelihood”

• Most common form (for RNN acoustic model):

p(xt |φt ,ht−1) ∝
P(φt |xt ,ht−1)

P(φt)

◦ P(φt |xt ,ht−1): modelled by a standard RNN
◦ P(φt): state/phone prior probability

Why use a generative sequence-to-sequence model?

30 of 67

S2S: Discriminative Models [5]

• Directly compute posterior of sequence

p(y1:L|x1:T) =
∑

φ1:T∈Φy 1:L

���
���

�:1
p(y1:L|φ1:T)P(φ1:T |x1:T)

◦ state Markovian RNNs used to model history/alignment

P(φ1:T |x1:T) ≈
T∏
t=1

P(φt |x1:t)

≈
T∏
t=1

P(φt |xt ,ht−1) ≈
T∏
t=1

P(φt |ht)

• Expression does not have alignment/language models
31 of 67

Connectionist Temporal Classification [15]

• CTC: discriminative model, no explicit alignment model
◦ introduces a blank output symbol (ε)

/C/

Time

ε

ε

ε

/T/

/A/

• Consider word: CAT

◦ Pronunciation: /C/ /A/ /T/

• Observe 7 frames
◦ possible state transitions

◦ example path:
/C/ ε /A/ /A/ ε /T/ ε

32 of 67

Extension to Non-Markovian

t xt+1

t t+1φ φ

x

t+1

tφ

ht+1

t+1φ

th

xt x

φ φ

xt xt+1

th
~

ht+1

~

t t+1

MEMM [25] CTC Non-Markovian

• Interesting to consider state dependencies (right)

P(φ1:T |x1:T) ≈
T∏
t=1

P(φt |x1:t ,φ1:t−1) ≈
T∏
t=1

P(φt |h̃t)

33 of 67

Link of “Pain” - Non-Markovian

t

t
x

t−1
h

φ

φ
t−1

~

~
th

delay
Time

• Exact inference intractable
◦ complete history dependence
◦ see RNNLM ASR decoding

34 of 67

Discriminative Models and “Priors” [18]

• No language models in (this form of) discriminative model
◦ in CTC the word history “captured” in state (frame) history
◦ no explicit dependence on state (word) history

• Treat as a product of experts (log-linear model): for CTC

p(y1:L|x1:T) = 1
Z (x1:T) exp

αT

 log
(∑

φ1:T∈Φy 1:L
P(φ1:T |x1:T)

)
log (p(y1:L))


◦ α trainable parameter (related to LM scale)
◦ p(y1:L) standard “prior” (language) model

• Normalisation term not required in decoding
◦ α often empirically tuned

35 of 67

S2S: Encoder-Decoder Style Models

• Directly model relationship

p(y1:L|x1:T) =
L∏

i=1
p(y i |y1:i−1, x1:T)

≈
L∏

i=1
p(y i |y i−1, h̃i−2, c)

◦ looks like an RNN LM with additional dependence on c

c = φ(x1:T)

◦ c is a fixed length vector - like a sequence kernel

36 of 67

RNN Encoder-Decoder Model [14, 32]

xt+1

th

xT

hTT−1h

xt

ht−1

i+1yi y

hi−1 ih
~ ~

Decoder

Encoder

• Simplest form is to use hidden unit from acoustic RNN/LSTM

c = φ(x1:T) = hT

◦ dependence on context is global via c - possibly limiting
37 of 67

Attention-Based Models [9, 7, 32]

Decoder

Attention ci+1ic

xt+1

th

xT

hTT−1h

xt

ht−1

Encoder

i+1yi y

hi−1 ih
~ ~

38 of 67

Attention-Based Models

• Introduce attention layer to system
◦ introduce dependence on locality i

p(y1:L|x1:T) ≈
L∏

i=1
p(y i |y i−1, h̃i−2, c i) ≈

L∏
i=1

p(y i |h̃i−1)

c i =
T∑
τ=1

αiτhτ ; αiτ = exp(eiτ)∑T
k=1 exp(eik)

, eiτ = f e (h̃i−2,hτ
)

◦ eiτ how well position i − 1 in input matches position τ in output
◦ hτ is representation (RNN) for the input at position τ

• Attention can “wander” with large input size (T)
◦ use a pyramidal network to reduce frame-rate for attention

39 of 67

S2S: Structured Discriminative Models [12, 31, 50]

• General form of structured discriminative model

p(y1:L|x1:T) = 1
Z (x1:T)

∑
φ1:T∈Φy 1:L

exp
(
αTf (x1:T ,φ1:T , y1:L)

)

◦ f (x1:T ,φ1:T , y1:L) extracts features from observations/states/words
◦ need to map variable length sequence to a fixed length (again)
◦ latent variables, state sequence φ1:T , “aid” attention

• Integrate with deep learning to model segment features:
◦ RNN to map segments to a fixed length vector
◦ segment posterior outputs from multiple systems (joint decoding)

40 of 67

Speech Processing
Applications

41 of 67

LM: Neural Network Language Models [3, 33]

• Neural networks extensively used for language modelling
◦ recurrent neural networks - complete word history

P(ω1:L) =
L∏

i=1
P(ωi |ω1:i−1) ≈

L∏
i=1

P(ωi |ωi−1, h̃i−2) ≈
L∏

i=1
P(ωi |h̃i−1)

• 1-of-K (“one-hot”) coding for ith word, ωi , y i
◦ additional out-of-shortlist symbol may be added
◦ softmax activation function on output layer

• Issues that need to be addressed
1. training: how to efficiently train on billions of words?
2. decoding: how to handle dependence on complete history?

42 of 67

LM: Cross-Entropy Training Criteria

• Standard training criterion for word sequence ω1:L = ω1, . . . , ωL

Fce = −1
L

L∑
i=1

log
(
P(ωi |h̃i−1)

)

◦ GPU training makes this reasonable BUT
• Compute cost for softmax normalisation term Z (h̃i−1)

P(ωi |h̃i−1) = 1
Z (h̃i−1)

exp
(
wT

f (ωi)h̃i−1
)

◦ required as unobserved sequence (contrast acoustic model)

43 of 67

LM: Alternative Training Criteria [8]

• Variance Regularisation: eliminate normalisation from decoding

Fvr = Fce + γ

2
1
L

L∑
i=1

(
log(Z (h̃i−1))− log(Z)

)2
◦ log(Z) average (log) history normalisation
◦ all normalisation terms tend to be the same

• Noise Contrastive Estimation: efficient decoding and training

Fnce = −1
L

L∑
i=1

log(P(yi = T|ωi , h̃i−1) +
k∑

j=1
log(P(yi = F|ω̂ij , h̃i−1)


◦ ω̂ij are competing samples for ωi - often sample from uni-gram LM

44 of 67

LM: ASR Decoding with RNNLMs

i−2
h

i−1

Time

h

w

delay

~

i

w
i−1

~

hi−1 ih
~ ~

i+1wi w

• ASR decoding with RNNLM has a link of “pain”
◦ history vector depends on “unobserved” word sequence

45 of 67

LM: ASR Decoding with RNNLMs

<s> there is a cat

here

mat

hat

</s>

cat

<s> is athere

aishere

</s>

mat

hat

cat

mat

hat

Lattice Prefix Tree

• Consider word-lattice on the left
◦ expands to prefix tree (right) if complete history taken into account
◦ significant increase in number of paths

46 of 67

LM: N-Gram History Approximation [29]

cat

<s> is athere

aishere

</s>

mat

hat

cat

mat

hat

hat

ishere

</s><s>

ac=−13.0

lm=−3.4

ac=−11.0

ac=−14.0

lm=−2.0

ac=−10.0

lm=−3.0

there is

ac=−9.0

lm=−2.3

<s> there
a

ac=−14.0

rnn hist: <s> <s> there is

lm=−1.5

rnn hist: <s>

<s> here

lm=−1.5

<s> here is

rnn hist: <s> there is a

cat

mat

Prefix Tree N-Gram Approximation

• Use exact RNN LM value but
◦ merge paths based on N-gram history
◦ can also use history vector distance merging

47 of 67

ASR: Sequence Training [24]

• Cross-Entropy using fixed alignment standard criterion (RNN)

Fce = −
T∑
t=1

log
(
P(φ̂t |xt ,ht−1)

)

◦ criterion based on frame-by-frame classification
• Sequence training integrates sequence modelling into training

Fmbr =
R∑
r=1

∑
ω̃

P(ω̃|x(r)
1:T)L(ω̃,ω(r))

◦ MBR described (various loss functions) - also CML used
◦ may be applied to generative and discriminative models

48 of 67

ASR: Sequence Training and CTC [36]

• Sequence-training is discriminative, so is CTC ...
◦ let’s ignote the blank symbol
◦ consider MMI as the training criterion

Fmmi =
R∑
r=1

log
(
P(ω(r)|x(r)

1:T)
)

◦ lattice-free training uses some of the CTC-style approaches

• CTC has local (every frame) normalistion
◦ discriminatively-trained generative models use global normalisation

• CTC has no “language-model”
◦ use phone level language model P(phi |phj) (a 4-gram used)

49 of 67

ASR: Joint Decoding (Stacked Hybrid) [50]

 FBank

Language Independent

Language Dependent

Speaker Dependent

Layer
Bottleneck

Bottleneck

 PLP

 Pitch

 PLP

 Pitch

Bottleneck

HMM−GMM

Tandem

Stacked Hybrid

F
u

s
io

n Pitch
Score

Log−Posteriors

Log−Likelihoods

• DNN acoustic models and Tandem systems
◦ uses bottleneck features and stacking
◦ fusion: based on log-linear models - structured SVM

50 of 67

TTS: Deep Learning for Synthesis [53, 28]

x

th ht+1

t xt+1

t t+1φ φ

th ht+1

t xt+1

t t+1φ φ

x

th ht+1

t xt+1

t t+1φ φ

x

RNN/LSTM Output Recurrent Non-Markovian

• For statistical speech synthesis model
p(x1:T |y1:L) =

∑
φ1:T∈Φy 1:L

p(x1:T |φ1:T)P(φ1:T |y1:L) ≈ p(x1:T |φ̂1:T)

51 of 67

TTS: Bottleneck Features [49]

0 50 100 150 200 250 300 350

−0.5

0

0.5

1

Frame

5t
h

M
C

C

Natural speech
FE−DNN
MTE−BN−DNN

Figure 1: Trajectories of the 5th Mel-Cepstral Coefficient (MCC) of reference natural speech and those predicted by baseline FE-DNN
and proposed MTE-BN-DNN systems.

ing dynamic constraints at the output acoustic level. However,
combining both gives the best overall performance: MTE-BN-
DNN achieves a 0.04 dB reduction in MCD compared to FE-
BN-DNN, with similar F0 RMSE performance.

Table 1: Objective results. MCD = Mel Cepstral Distortion.
Root mean squared error (RMSE) of F0 was computed in lin-
ear frequency. V/UV error means frame-level voiced/unvoiced
error.

MCD F0 V/UV error
(dB) RMSE (Hz) rate (%)

FE-DNN 4.19 9.13 4.24
MTE-DNN 4.12 8.93 4.28
FE-BN-DNN 4.03 8.91 3.97
MTE-BN-DNN 3.99 8.97 4.02

Fig. 4.2 illustrates the trajectories of the 5th MCC of natu-
ral speech and those predicted by the baseline FE-DNN and the
proposed MTE-BN-DNN systems. It is observed that both sys-
tems can predict reasonable trajectories. The proposed system
predicts a trajectory that is on average closer to the reference
natural speech. In general, the objective evaluation results con-
firm the effectiveness of minimum trajectory error as a training
criterion, suggesting that acoustic model accuracy can indeed
be improved with the proposed method.

4.3. Subjective evaluation

We then conducted a subjective evaluation to assess the nat-
uralness of the synthesised speech via preference tests. We
considered four pairs: FE-DNN vs MTE-DNN, FE-BN-DNN
vs MTE-BN-DNN, FE-BN-DNN vs MTE-DNN and MTE-BN-
DNN vs MTE-DNN. 27 paid native English speakers partici-
pated. Each listener was asked to listen 20 randomly selected
pairs. In each pair, the listener was asked to listen to pairs
of spoken utterances (each half of the pair was the same text
generated from differing systems), and then decide which one
sounded more natural.

The preference results are presented in Fig. 4.3. First, let us
examine the effectiveness of the proposed MTE training crite-
rion. It can be observed that MTE-DNN is significantly better
than FE-DNN. MTE-BN-DNN also achieves a slightly a higher

preference score than FE-BN-DNN, although the difference is
not significant.

0 50 100

MTE−DNN

FE−DNN

MTE−BN−DNN

FE−BN−DNN

MTE−BN−DNN

MTE−DNN

FE−BN−DNN

MTE−DNN

Figure 3: Preference test results for naturalness.

We can also compare the two ways of including temporal
constraints by comparing with MTE-DNN and FE-BN-DNN.
FE-BN-DNN is significantly better than MTE-DNN in terms of
naturalness. This indicates that stacking bottleneck feature at
the input level is more effective than considering only temporal
constraints at the output acoustic feature level.

Last, we assessed whether the integration of minimum tra-
jectory error criteria and stacked bottleneck features is effec-
tive. MTE-BN-DNN is significantly better than MTE-DNN that
does not have stacked bottleneck features, and has a slightly (but
not significantly) higher listener preference than FE-BN-DNN,
which does not use minimum trajectory error criteria. It appears
that the minimum trajectory error criterion and stacked bottle-
neck features approaches are complementary.

5. Conclusions
In this paper, we proposed a new training criterion for DNN-
based speech synthesis, which minimises the trajectory error
rather than frame-by-frame error. We integrated the training cri-
terion with our previously-proposed stacked bottleneck features
and obtained significantly improvement over a baseline DNN
system in terms of naturalness.

The samples used in the listening tests are vailable on-
line via: http://datashare.is.ed.ac.uk/handle/
10283/786.

Acknowledgement:This work was supported by EPSRC Pro-
gramme Grant EP/I031022/1 (Natural Speech Technology).

• Can also include bottleneck features (similar to ASR)
◦ FE-DNN: standard feed-forward NN
◦ MTE-BN-DNN: feed-forward NN with MTE and BN features

• Subjectively better as well
52 of 67

TTS: Minimum Trajectory Error [47]

• Smoothing is an important issue for generating trajectories in TTS
◦ predict experts for static and dynamics parameters (MLPG)
◦ use recursion on the output layer

• When using experts can minimise trajectory error (MTE)

Fmge =
R∑
r=1

(x̂(r)
1:T − x(r)

1:T)T(x̂(r)
1:T − x(r)

1:T)

=
R∑
r=1

(Rô(r)
1:T − x(r)

1:T)T(Rô(r)
1:T − x(r)

1:T)

◦ ô(r)
1:T is the sequence of static/delta (means)

◦ R is the mapping matrix from static/deltas to trajectory

53 of 67

TTS: Conditional Language Modelling [44]

t
x

t+1

th ht+1

t t+1φ φ

x
• Make the system non-Markovian
• 1-of-K coding for samples
◦ sample-level synthesis
◦ 8-bit = 256 output
◦ softmax output activation

• Recurrent units (shown):
◦ 240ms=3840 samples
◦ insufficient history memory

• Replace recurrent units by a sparse Markovian history
◦ extensive use of dilation to limit model parameters

• Search not an issue - simply sampling!

54 of 67

TTS: CNN and RNN History Modelling [51, 44]

• Markovian history modelling limimted by parameter growth
◦ network parameters grows linearly with the length of history

• Non-Markovan (recurrent) approaches address parameter issue
◦ but hard to train, and long-term representation (often) poor

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

• CNN with dilation an alternative balance
◦ exponential expansion of history, limited parameeter growth

55 of 67

Neural Network
Adaptation

56 of 67

Neural Network Adaptation

Auxiliary information

Network adaptation

Feature transformation

a

x

y
t

y
t

~
t

t

• Similar approaches used for TTS/ASR/LMs - broad classes
◦ auxiliary information: i-vectors, gender information, emotion]
◦ network adaptation: weight adaptation, activation function adaptation
◦ feature transformation: linear transformation of the features

• Possible to combine multiple approaches together
57 of 67

Auxiliary Information [34, 39, 22, 23, 8]

Feature transformation

a

Auxiliary information

Network adaptation

x

y
t

t

t

• Include information about speaker/topic/environment to network
◦ often vector representation used - iVectors, LDA topic spaces
◦ possible to adapt to speaker without hypothesis (e.g. iVectors)

• Applied to language modelling, speaker and noise adaptation
58 of 67

Network Parameter Adaptation

Feature transformation

Auxiliary information

Network adaptation

xt

y
t

• Seen a range of network adaptation approaches for ASR
◦ use “well-trained” network parameters as a prior
◦ updates all the parameters, weights, of the system

• Is it possible to reduce number of parameters to be adapted?
59 of 67

Structuring Networks for Adaptation [45]

Hidden Layers

In
te

rp
o

la
tio

n

Basis 1

Basis K

xt

y
t

• Structure network as a series of bases
◦ interpolation layer is speaker dependent

h(ls) =
K∑

k=1
λ

(s)
k h(l)

k

◦ few parameters per speaker - very rapid adaptation
◦ interpolation estimation convex optimisation problem

60 of 67

Activation Function Adaptation [42, 54, 43]

• Consider a layer of a network with 1000× 1000 connections
◦ weights: 1,000,000 parameters to adjust
◦ activation functions: 2,000 functions (output and input)

• Take the example of a sigmoid activation function

φi(α(s)
i , α(s)

o , α
(s)
b) = α

(s)
o

1 + exp
(
α

(s)
i wT

i xt + α
(s)
b

)
◦ α(s)

i : scaling of the input
◦ α(s)

o : scaling of the output
◦ α(s)

b : offset on the activation
◦ train these (or subset) parameters to be speaker specific

• Exact form of parameter adaptation depends on activation function
61 of 67

Factored Weight Adaptation [30]

• Consider a speaker-specific linear transform of the weight matrix

W(s) = A(s)W

◦ act on a low-dimensional compression layer
• Compact transform central to aspects like covariance modelling:

W(s) = W +
P∑
i=1

λ
(s)
i A(i)W

◦ number of parameters is P - independent of weight matrix size
◦ A(i) low-rank, limits number of parameters
◦ can make a function of auxiliary information (e.g. iVectors)

62 of 67

Feature Transformation (TTS) [11, 48]

Auxiliary information

Network adaptation

Feature transformation

y

y

t

t

~

xt

• Train the network to predict experts for normalised features, ỹ t ,
◦ transform normalised experts to target speaker experts

• ASR constrained to use global transform
◦ TTS can make use of regression class trees (CSMAPLR)

63 of 67

NST and Deep Learning

• Many other applications of deep learning under NST

• Speech Recognition
◦ audio data segmentation
◦ beamforming and channel combination
◦ network initialisation and regularisation
◦ acoustic feature dependency modelling
◦ paraphrastic language models

• Speech Synthesis
◦ post-processing
◦ influence/limitations of LSTM parameters on synthesis
◦ robust duration modelling
◦ unit selection

64 of 67

Is Deep Learning the Solution?

• Most research still uses a two-stage approach to training:
1. feature extraction: convert waveform to parametric form
2. modelling: given parameters train model

• Limitations in the feature extraction stage cannot be overcome ...
◦ integrate feature extraction into process
◦ attempt to directly model/synthesise waveform (WaveNet)

• Both are interesting, active, areas of research
◦ links with “integrated end-to-end” systems: waveform-in words-out
◦ feasible as quantity of data increases

• BUT
◦ networks are difficult to optimise - tuning required
◦ hard to interpret networks to get insights
◦ sometimes difficult to learn from previous tasks ...

65 of 67

Network Interpretation [46]

Standard /ay/ Stimulated /ay/

• Deep learning usually highly distributed - hard to interpret
◦ awkward to adapt/understand/regularise
◦ modify training - add stimulation regularisation (improves ASR!)

66 of 67

Thank-you!

67 of 67

[1] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn, “Applying convolutional neural networks concepts to
hybrid NN-HMM model for speech recognition,” in 2012 IEEE international conference on Acoustics, speech and
signal processing (ICASSP). IEEE, 2012, pp. 4277–4280.

[2] L. Baum and J. Eagon, “An Inequality with Applications to Statistical Estimation for Probabilistic Functions of
Markov Processes and to a Model for Ecology,” Bull Amer Math Soc, vol. 73, pp. 360–363, 1967.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language model,” journal of machine
learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[4] C. Bishop, “Mixture density networks,” in Tech. Rep. NCRG/94/004, Neural Computing Research Group, Aston
University, 1994.

[5] C. M. Bishop, Pattern Recognition and Machine Learning. Springer Verlag, 2006.

[6] H. Bourlard and N. Morgan, “Connectionist speech recognition: A hybrid approach,” 1994.

[7] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell,” CoRR, vol. abs/1508.01211, 2015.
[Online]. Available: http://arxiv.org/abs/1508.01211

[8] X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M. J. Gales, and P. C. Woodland, “Recurrent neural network
language model adaptation for multi-genre broadcast speech recognition,” in Proceedings of InterSpeech, 2015.

[9] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech recognition,”
CoRR, vol. abs/1506.07503, 2015. [Online]. Available: http://arxiv.org/abs/1506.07503

[10] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recurrent latent variable model for
sequential data,” CoRR, vol. abs/1506.02216, 2015. [Online]. Available: http://arxiv.org/abs/1506.02216

[11] S. Deena, M. Hasan, M. Doulaty, O. Saz, and T. Hain, “Combining feature and model-based adaptation of
RNNLMs for multi-genre broadcast speech recognition,” in Proceedings of the 17th Annual Conference of the
International Speech Communication Association (Interspeech), 2016.

[12] M. J. F. Gales, S. Watanabe, and E. Fosler-Lussier, “Structured discriminative models for speech recognition: An
overview,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 70–81, 2012.

67 of 67

http://arxiv.org/abs/1508.01211
http://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1506.02216

[13] M. Gales and S. Young, “The application of hidden Markov models in speech recognition,” Foundations and
Trends in Signal Processing, vol. 1, no. 3, 2007.

[14] A. Graves, “Sequence transduction with recurrent neural networks,” CoRR, vol. abs/1211.3711, 2012. [Online].
Available: http://arxiv.org/abs/1211.3711

[15] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks,” in Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 369–376.

[16] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in 2013
IEEE international conference on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–6649.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385,
2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[18] G. E. Hinton, “Products of experts,” in Proceedings of the Ninth International Conference on Artificial Neural
Networks (ICANN 99), 1999, pp. 1–6.

[19] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, et al., “Deep neural networks for acoustic modeling in speech recognition: The shared views of four
research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780,
Nov. 1997.

[21] F. Jelinek, Statistical methods for speech recognition, ser. Language, speech, and communication. Cambridge
(Mass.), London: MIT Press, 1997.

[22] P. Karanasou, M. Gales, and P. Woodland, “I-vector estimation using informative priors for adaptation of deep
neural networks,” in Proc. of Interspeech, 2015.

[23] P. Karanasou, Y. Wang, M. Gales, and P. Woodland, “Adaptation of deep neural network acoustic models using
factorised i-vectors,” in Proceedings of Interspeech’14, 2014.

[24] B. Kingsbury, “Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling,”
in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009, pp. 3761–3764.

67 of 67

http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1512.03385

[25] H.-K. Kuo and Y. Gao, “Maximum entropy direct models for speech recognition,” IEEE Transactions Audio
Speech and Language Processing, 2006.

[26] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The handbook of brain
theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation
applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[28] Z.-H. Ling, S.-Y. Kang, H. Zen, A. Senior, M. Schuster, X.-J. Qian, H. M. Meng, and L. Deng, “Deep learning for
acoustic modeling in parametric speech generation: A systematic review of existing techniques and future trends,”
IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 35–52, 2015.

[29] X. Liu, Y. Wang, X. Chen, M. Gales, and P. Woodland, “Efficient lattice rescoring using recurrent neural network
language models,” in IEEE ICASSP2014, IEEE ICASSP2014. IEEE ICASSP2014, 04/05/2014 2014.

[30] Y. Liu, P. Karanasou, and T. Hain, “An investigation into speaker informed dnn front-end for LVCSR,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), April
2015.

[31] L. Lu, L. Kong, C. Dyer, N. A. Smith, and S. Renals, “Segmental recurrent neural networks for end-to-end speech
recognition,” in Proc. INTERSPEECH, 2016.

[32] L. Lu, X. Zhang, K. Cho, and S. Renals, “A study of the recurrent neural network encoder-decoder for large
vocabulary speech recognition,” in Proc. INTERSPEECH, 2015.

[33] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent neural network based language
model.” in Interspeech, vol. 2, 2010, p. 3.

[34] T. Mikolov and G. Zweig, “Context dependent recurrent neural network language model.” in SLT, 2012, pp.
234–239.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proceedings of the
27th International Conference on Machine Learning (ICML-10), 2010, pp. 807–814.

[36] D. Povey, V. Peddinti, D. Galvez, P. Ghahrmani, V. Manohar, X. Na, Y. Wang, and S. Khudanpur, “Purely
sequence-trained neural networks for ASR based on lattice-free MMI,” Interspeech, 2016.

67 of 67

[37] T. Robinson and F. Fallside, “A recurrent error propagation network speech recognition system,” Computer
Speech & Language, vol. 5, no. 3, pp. 259–274, 1991.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1,” D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Eds.
Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal Representations by Error Propagation, pp. 318–362.

[39] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation of neural network acoustic models using
i-vectors.” in ASRU, 2013, pp. 55–59.

[40] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing,
vol. 45, no. 11, pp. 2673–2681, 1997.

[41] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” CoRR, vol. abs/1505.00387, 2015. [Online].
Available: http://arxiv.org/abs/1505.00387

[42] P. Swietojanski and S. Renals, “Learning hidden unit contributions for unsupervised speaker adaptation of neural
network acoustic models,” in Proc. IEEE Workshop on Spoken Language Technology, December 2014.

[43] ——, “Differentiable pooling for unsupervised acoustic model adaptation,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. PP, no. 99, pp. 1–1, 2016.

[44] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for raw auaio,” CoRR, 2016. [Online]. Available:
https://arxiv.org/pdf/1609.03499.pdf

[45] C. Wu and M. Gales, “Multi-basis adaptive neural network for rapid adaptation in speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, IEEE. IEEE, 2015.

[46] C. Wu, P. Karanasou, M. Gales, and K. C. Sim, “Stimulated deep neural network for speech recognition,” in
Proceedings interspeech, 2016.

[47] Z. Wu and S. King, “Minimum trajectory error training for deep neural networks, combined with stacked
bottleneck features,” in Proc. Interspeech, 2015, pp. 309–313.

[48] Z. Wu, P. Swietojanski, C. Veaux, S. Renals, and S. King, “A study of speaker adaptation for dnn-based speech
synthesis,” in Proceedings interspeech, 2015.

67 of 67

http://arxiv.org/abs/1505.00387
https://arxiv.org/pdf/1609.03499.pdf

[49] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neural networks employing multi-task learning and
stacked bottleneck features for speech synthesis,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2015.

[50] J. Yang, C. Zhang, A. Ragni, M. Gales, and P. Woodland, “System combiantion with log-linear models,” in Proc.
ICASSP’16, Shanghai, China, 2016.

[51] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” CoRR, vol. abs/1511.07122,
2015. [Online]. Available: http://arxiv.org/abs/1511.07122

[52] H. Zen and A. Senior, “Deep mixture density networks for acoustic modeling in statistical parametric speech
synthesis,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2014, pp. 3844–3848.

[53] H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech synthesis using deep neural networks,” in IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 2013, pp. 7962–7966.

[54] C. Zhang and P. Woodland, “DNN speaker adaptation using parameterised sigmoid and ReLU hidden activation
functions,” in Proc. ICASSP’16, 2016.

67 of 67

http://arxiv.org/abs/1511.07122

