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o significantly advance state-of-the-art in speech technology

o more natural, approaching human levels of reliability, adaptability and
conversational richness

o ran from 2011 to 2016 - interesting times ...
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What is Deep Learning?

From Wikipedia:

Deep learning is a branch of machine learning based on a set of
algorithms that attempt to model high-level abstractions in data
by using multiple processing layers, with complex structures or
otherwise, composed of multiple non-linear transformations.
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What is Deep Learning?

From Wikipedia:

Deep learning is a branch of machine learning based on a set of
algorithms that attempt to model high-level abstractions in data
by using multiple processing layers, with complex structures or
otherwise, composed of multiple non-linear transformations.

For NST:
Deep learning allows both speech synthesis and speech
recognition to use the same underlying, highly flexible, building
blocks and adaptation techniques (and improved performance).
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The Rise of Deep Learning (June 2016)
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Overview

Basic Building Blocks

o neural network architectures
o activation functions

Sequence-to-Sequence Modelling
o generative models

o discriminative models

o encoder-decoder models

Speech Processing Applications
o language modelling

o speech recognition

o speech synthesis

Adaptation for Deep Learning
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What | am Not Discussing

History of development

Optimisation
o essential aspect of all systems (major issue)
Only work from NST

o though (of course) the talk is biased
o B indicates papers/contributions from NST in area

Experimental Results
o see NST publications and other papers (references at end)
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Basic Building
Blocks

8 of 67



Natural
! Speech
Deep Neural Networks [19] Technology

xtl_,D--->D_>|yt

e General mapping process from input x; to output y,

ye = F(xt)

o deep refers to number of hidden layers

e Depending on nature of outputs (y,) vary activation function
o softmax often for classification
o tanh or sigmoid common for hidden layers
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Neural Network Layer/Node
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Activation Functions

0.4 4
02l / | Activation functions:
] o step function (green)

YRR ] o sigmoid function (red)
ol | o tanh function (blue)

s 4 s =2 1 o 1 2 3 4 s
 softmax, usual output layer (sum-to-one/positive) for classification
bi(xe) = exp (Wl x¢ + b;)
i(Xt) =
Zj‘lzl exp (W}Xt + bj)
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e Alternative activation function: Rectified Linear Units

Activation Functions - ReLUs B 35, 54

yi = max(0, z;)
e Related activation function noisy RelU:

yi =max(0,z +¢€); €~ N(0,0°)

o efficient, no exponential /division, rapid convergence in training
e Possible to train the activation function parameters

o e.g. gradient of slopes for ReLUs
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Activation Functions - Residual Networks g! Technology

N

x— W —00 — W — + —y
ReLLU

e Modify layer to model the residual

Yy = F(x¢) + x¢

o allows deeper networks to be built
o deep residual learning

e Links to highway connections
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Pooling/Max-Out Functions B 27, 43

e Possible to pool the output of a set of node

o reduces the number of weights to connect layers together

Q —>(P()
O zl

o—J ™~

e A range of functions have been examined
o maxout ¢(y1,y2, y3) = max(y1, y2, y3)
o soft-maxout ¢(y1,y2,y3) = Iog(Z?=1 exp(yi))
© p-norm ¢(y1,y2,y3) = (Z?:l |)’i|)1/p

e Has also been applied for unsupervised adaptation
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Convolutional Neural Networks |26, 1
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n frames

k frequencies

filter 1

filter n

pooling layer
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" . .
/I°°,';,‘g§r?§" e Predict a mixture of experts

o multiple components M

o }",(,,C)(xt): prior prediction
t
slg|—>| ool |— |3 (ogvarances o F4Y(x,): mean prediction

\ o F$(x,): variance prediction

e Optimise using maximum likelihood
component
priors

M
p(yelxe) = > FL(xe)N (e FI (xe), F (xe))

m=1

e Form of output influences output activation function used
16 of 67
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e [ntroduce recurrent units

Recurrent Neural Networks [3s, 37]

hy = f (Wix;+Wphe_1 + by)

f = ff (Wyht + Wxxt =+ by)
/ o h; history vector at time t
e Two history weight matrices

% glerraey o Wi forward

o WA recursion
* Uses (general) approximation (no optional i/o link)
P(yelx1e) = p(yelxe, x1:e-1) = p(yelxe, he—1) = p(y.|he)

o network has (causal) memory encoded in history vector (h;)
17 of 67
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RNN Variants [40, 10]

RNN (+i/o link)  Bi-Directional RNN  Variational RNN

e Bi-directional: use complete observation sequence - non-causal
e Variational: introduce a latent variable sequence z;.7

pUelxi) ~ [ plyelxe, ze, he1)p(zilhe1)dze
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Network Gating

e A flexible extension to activation function is gating
o standard form is (o() sigmoid activation function)

i= G'(fot + thtfl + b)

o vector acts a a probabilistic gate on network values

e Gating can be applied at various levels

o features: impact of input/output features on nodes
o time: memory of the network
o layer: influence of a layer's activation function
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Long-Short Term Memory Networks |20, 16]£ ! Technology
X h_; X h_,
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Long-Short Term Memory Networks

e The operations can be written as (peephole config):
o Forget gate (i¢), Input gate (i), Output gate (i,)

= U(Wixt + W;htfl + fonctfl + bf)

is
ii = U(fot-'_wiht—l +WI:~ILlCt_]_ + bl)
iO = O'(Wixt +W£ht_1 +W’2Ct+bo)

o

Memory Cell, history vector and gates are related by

C: = if ®ci_1+ ii ® fm(Wixt + W]C:ht—l -+ bc)
ht = io ® fh(Ct)

o

@ is element-by-element multiplication
memory cell weight matrices (W%, W?, W2) diagonal
can allow explicit analysis of individual cell elements

[¢]

[e]
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Highway Connections [s1]

* Gate the output of the node (example from LSTM)
o combine with output from previous layer (x;)
ih = a'(Wlflxt + Wiht—l + bh)
ht = ihG(iOth(Ct))‘l‘(l—ih)@xt
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Sequence-to-Sequence
Modelling
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* Sequence-to-sequence modelling central to speech/language:
o speech synthesis:

Sequence-to-Sequence Modelling

word sequence (discrete) — waveform (continuous)
o speech recognition:

waveform (continuous) — word sequence (discrete)
© machine translation:

word sequence (discrete) — word sequence (discrete)

e The sequence lengths on either side can differ
o waveform sampled at 10ms/5ms frame-rate

o word sequences (are words ...)

e Description focuses on ASR with RNNs (other models possible)
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S2S: Generative Models s, 6]

e Consider two sequences L < T:

o input: x1.7 = {X1,X2,...,XT}

o output: y1; = {y1,¥2.--- ¥}
 Consider generative model (ASR language)

p(yl:L7 Xl:T) = p(yl;L)P(XlzT’yl;L)

= plyr) D>, pP(xuTlerT)P(dr7ly1L)
¢1:T€¢yu

o p(yq..): prior (“language”) model
o p(x1.7|¢1.7): (conditional) “acoustic” model
o P(¢q.7|y1..): alignment model - handles variable length
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Prior Model Approximations [21, 3, 33]

e Markovian: N-gram and Feed-Forward neural network

L L

p(y1.L) = H p(yily1i-1) = H p(Yilyic1s- > Yins1)
i=1 i=1

e Non-Markovian: Recurrent neural network

L
p(yi) ~ [Ipyilyi 1, hi2)
i=1

L ~
~ []p(yilhi-1)
i=1

o depends on complete unobserved word history
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e Important sequence model is the hidden Markov model (HMM)
o an example of a dynamic Bayesian network (DBN)

Hidden Markov Models |2, 13

e discrete latent variables

o ¢¢ describes discrete state-space
o conditional independence assumptions

. (I)t ) i — P(¢elor.e—1,¥1.) = P(de|pe—1)
p(xt|x1:t717 d)lzt) = P(Xt|¢t)

e The likelihood of the data is

-
p(x1:7ly1.L) = Z (H (x¢|pe) P(De|Pr— 1))

¢1:Te¢y1:l_ =1
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e Fully Markovian: HMM, simplest form of approximation

Acoustic Model Approximations

;
p(x1.7|p1.7) ~ [ p(x¢l9;)
=1

e State Markovian:

T

.
p(x1.7l¢1.7) ~ [ p(Xeldr, x1:0-1) = [] p(xelby, he-1)

e Feature Markovian:

T T
p(x1.7|p1.7) = [[ p(xeldr.e) = [ p(x:lhe)
=1

t=1
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Markovian Approximations and Inference £! Technology

o1

- - - > -
t TN 1+ t o

X%
0y 4 4e
0.} -

I

t+1]

Markovian (HMM) State Markovian Feature Markovian

HtT:1 p(xt|p;) HtT:1 p(xt|@s, he—1) HtT:1 P(Xt|i7t)

e Inference costs significantly different:
o state Markovian: all past history observed - deterministic
o feature Markovian: past history unobserved - depends on path
29 of 67
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e Deep learning can be used to estimate distributions - MDNN

o more often trained as a discriminative model
o need to convert to a “likelihood”

“Likelihoods” 1g]

* Most common form (for RNN acoustic model):

P(o:|x¢, h_1)

t t,ht,
p(X |¢ 1) X P(¢t)

o P(¢,|xt, h:_1): modelled by a standard RNN
o P(¢,): state/phone prior probability

Why use a generative sequence-to-sequence model?

30 of 67
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S2S: Discriminative Models 5]

e Directly compute posterior of sequence

1
piyilxir) = Y. parddr ) P(¢r7x1T)

¢1;r€¢yu

o state Markovian RNNs used to model history/alignment

-
P(¢q.71x1:7) =~ H P(¢|x1:t)
t=1

Q

T T
H P(¢:|xt, hi—1) = H P(¢.|h;)
t=1 t=1

¢ Expression does not have alignment/language models
31 of 67
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Connectionist Temporal Classification [15] £! Technology

e CTC: discriminative model, no explicit alignment model
o introduces a blank output symbol (€)

e Consider word: CAT

o Pronunciation: /C/ /A/ /T/
e Observe 7 frames

o possible state transitions

o example path:

/C/ € [A] /A/ € [T/ e

/C/
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Extension to Non-Markovian

o0 oo
00 44 04
B 2 e 220 [ 23 (2 o 0.

MEMM [25] CTC Non-Markovian

e Interesting to consider state dependencies (right)

T T
P(¢1.7|x1.7) ~ H P(o¢|x1:t, P1.0-1) = H P(¢t‘i‘7t)
t=1 t=1
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Link of “Pain” - Non-Markovian

O
* e Exact inference intractable
\ iit o complete history dependence
0 o see RNNLM ASR decoding
— ;
1 Edh
’ /Time
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Discriminative Models and “Priors” [1g] E! Technology

* No language models in (this form of) discriminative model
o in CTC the word history “captured” in state (frame) history
o no explicit dependence on state (word) history

e Treat as a product of experts (log-linear model): for CTC

P(y1.Llx1:7) = ﬁexp o | 108 <Z¢11Te¢yu P(¢1:T|X1:T))
T log (p(y1.1))

o o trainable parameter (related to LM scale)
o p(y;..) standard “prior” (language) model

e Normalisation term not required in decoding
o « often empirically tuned
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S2S: Encoder-Decoder Style Models

e Directly model relationship

L
p(y1.Llx1T) = H pP(Yily1i—1,X1:T)

1%

i=1

L ~
H p(yilyi-1, hi-2, )
i=1

o looks like an RNN LM with additional dependence on ¢

c = ¢(xu.T)

o c is a fixed length vector - like a sequence kernel
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RNN Encoder-Decoder Model B 14, 3]

oe @f

* Simplest form is to use hidden unit from acoustic RNN/LSTM

c=¢(xu.T)=hr

o dependence on context is global via ¢ - possibly limiting
37 of 67
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Attention-Based Models B o, 7, 32

Decoder

Attention | .. % ......
S m% W L))

Encoder
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Attention-Based Models B

e Introduce attention layer to system
o introduce dependence on locality i

L

L
P(y1clxwT) = HP(Yi|y/'—17 hi—2, ci) = HP(J/i|hi—1)
i=1 i=1

-
exp(ei‘r) T
ci = E airhr; qir = ————"—, ey =1°(hi_3,h;)
T ) )
=1 Zk:l EXp(e,-k)

o ejr how well position i — 1 in input matches position 7 in output
o h, is representation (RNN) for the input at position 7

e Attention can “wander” with large input size (T)
o use a pyramidal network to reduce frame-rate for attention
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S2S: Structured Discriminative Models B [1,21,! Technology

e General form of structured discriminative model

1
p(yl;[_’XI:T) = Z(X]_;T) Z exp (an(XltT? ¢1:T7y1:L))
¢1:Te¢yl:L

o f(x1.7,¢1.7,¥1.1) extracts features from observations/states/words
o need to map variable length sequence to a fixed length (again)
o latent variables, state sequence ¢;., “aid” attention

e Integrate with deep learning to model segment features:

o RNN to map segments to a fixed length vector
o segment posterior outputs from multiple systems (joint decoding)
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Speech Processing

Applications
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LM: Neural Network Language Models 3, 3?! Technology

e Neural networks extensively used for language modelling
o recurrent neural networks - complete word history

L L

L
P(wir) = [[ Plwilwri-1) =~ [ ] Plwilwi-1, i2) = ] P(wilhi-1)

i=1 i=1 i=1

o 1-of-K (“one-hot") coding for it" word, w;, y;
o additional out-of-shortlist symbol may be added
o softmax activation function on output layer

e |ssues that need to be addressed

1. training: how to efficiently train on billions of words?
2. decoding: how to handle dependence on complete history?
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e Standard training criterion for word sequence wi.; = wi,...,w;

LM: Cross-Entropy Training Criteria

:——Zlog< (wilhi_ 1))

o GPU training makes this reasonable BUT

o Compute cost for softmax normalisation term Z(h;_;)

- 1 o
P(wilhi—1) = m exp (W;(w,-)hf—1>

o required as unobserved sequence (contrast acoustic model)
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e Variance Regularisation: eliminate normalisation from decoding

LM: Alternative Training Criteria B g

L2t - 2
For = EZ Z (Iog -1)) — Iog(Z))

o log(Z) average (log) history normalisation
o all normalisation terms tend to be the same

e Noise Contrastive Estimation: efficient decoding and training

1 L k

Face = =7 2 | log(P(yi = Tlwi, hi1) + > _log(P(yi = Fly, hi-1)
i=1 Jj=1

o @j; are competing samples for w; - often sample from uni-gram LM
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LM: ASR Decoding with RNNLMs

L
N[
—8 S
- W, Wi
h_, -
, Time
.. delay

e ASR decoding with RNNLM has a link of “pain”

o history vector depends on “unobserved” word sequence
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<s> there is a cat </s>

<s> there is a cat </s>
o 00—~
\ / / here
here hat
mat
Lattice Prefix Tree

e Consider word-lattice on the left

o expands to prefix tree (right) if complete history taken into account
o significant increase in number of paths

46 of 67
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LM: N-Gram History Approximation B 2] £! Technology

<s> there is a cat </s> rnn hist: <s> there is a

ac=—10.0 ac=-9.0 ac=-14.0
1m=-3.0 Im=-2.3 Im=-1.5
<S> nn hist: <s>_ <s> there _ <s> there is_ <

ac=-13.0
Im=-3.4
rnn hist: <s>

<s> here

Prefix Tree N-Gram Approximation

o Use exact RNN LM value but

o merge paths based on N-gram history
o can also use history vector distance merging
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e Cross-Entropy using fixed alignment standard criterion (RNN)

-
Z ( (b |xt, he_ 1))

t=1

ASR: Sequence Training [24]

o criterion based on frame-by-frame classification

e Sequence training integrates sequence modelling into training

R
Fave = Y3 P@]x{r)£(@,w(7)

r=1 @

o MBR described (various loss functions) - also CML used
o may be applied to generative and discriminative models
48 of 67
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ASR: Sequence Training and CTC 3]

e Sequence-training is discriminative, so is CTC ...

o let's ignote the blank symbol
o consider MMI as the training criterion

Zlog< PwO]x{)))

o lattice-free training uses some of the CTC-style approaches

e CTC has local (every frame) normalistion

o discriminatively-trained generative models use global normalisation
e CTC has no "language-model”

© use phone level language model P(ph;|ph;) (a 4-gram used)

49 of 67
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ASR: Joint Decoding (Stacked Hybrid) B [5?5 Technology

Tandem
HMM-GMM
_ Il Language Independent
Pitch —— Log-Likelihoods L b
PLP —> |
Bottleneck [l speaker Dependent
Eoﬂleneek
Layer
pul
c
@ —— Score
S
Stacked Hybrid
Bottleneck
PLP—
Pitch ——— Log-Posteriors

e DNN acoustic models and Tandem systems

o uses bottleneck features and stacking

o fusion: based on log-linear models - structured SVM
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TTS: Deep Learning for Synthesis |53, 2s] £! Technology

t t+1|

- N2
b ~h, -4 b= bk
0. 0. 0, 0.

RNN/LSTM Output Recurrent Non-Markovian

e For statistical speech synthesis model

p(x1:7|y1.) = Z p(x1:7|b1.7)P(d1.71y1.0) = P(X1:T|€?’1:T)
¢1;T€¢y“
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TTS: Bottleneck Features B [ag]

— Natural speech
= FE-DNN
= MTE-BN-DNN

* Can also include bottleneck features (similar to ASR)

o FE-DNN: standard feed-forward NN

o MTE-BN-DNN: feed-forward NN with MTE and BN features
e Subjectively better as well

52 of 67
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e Smoothing is an important issue for generating trajectories in TTS

o predict experts for static and dynamics parameters (MLPG)
o use recursion on the output layer

TTS: Minimum Trajectory Error B a7]

e When using experts can minimise trajectory error (MTE)

R
Fage = Y& —x{Tyra0 — x{0)

o 6§f)T is the sequence of static/delta (means)

o R is the mapping matrix from static/deltas to trajectory
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e Make the system non-Markovian

X x’”\ e 1-of-K coding for samples
\ o sample-level synthesis
o 8-bit = 256 output
- o softmax output activation
0,

* Recurrent units (shown):

o 240ms=3840 samples
+1 o insufficient history memory

e Replace recurrent units by a sparse Markovian history
o extensive use of dilation to limit model parameters

e Search not an issue - simply sampling!
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TTS: CNN and RNN History Modelling [51,£¢! Technology

e Markovian history modelling limimted by parameter growth
o network parameters grows linearly with the length of history

¢ Non-Markovan (recurrent) approaches address parameter issue
o but hard to train, and long-term representation (often) poor

. Output
'~ Dilation=8

Hidden Layer
- Dilation =4

Hidden Layer
(- Dilation =2

Hidden Layer
Dilation = 1

Input

e CNN with dilation an alternative balance
o exponential expansion of history, limited parameeter growth
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Neural Network
Adaptation
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@ Auxiliary information

Network adaptation
@ Feature transformation

5
¥

e Similar approaches used for TTS/ASR/LMs - broad classes
o auxiliary information: i-vectors, gender information, emotion ]
o network adaptation: weight adaptation, activation function adaptation
o feature transformation: linear transformation of the features

Neural Network Adaptation

e Possible to combine multiple approaches together
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@ Auxiliary information

Auxiliary Information B (34, 30, 22, 23, g]

¢ Include information about speaker/topic/environment to network

o often vector representation used - iVectors, LDA topic spaces
o possible to adapt to speaker without hypothesis (e.g. iVectors)

e Applied to language modelling, speaker and noise adaptation
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Network Parameter Adaptation

Network adaptation

Y

Xt

e Seen a range of network adaptation approaches for ASR

o use “well-trained” network parameters as a prior
o updates all the parameters, weights, of the system

e |s it possible to reduce number of parameters to be adapted?
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Structuring Networks for Adaptation B s E ! Technology

Hidden Layers

Basis 1 5
—
o
X, . 3 Y
. 2
Basis K S

e Structure network as a series of bases
o interpolation layer is speaker dependent

K
hs) — Z /\f)h(k/)
k=1

o few parameters per speaker - very rapid adaptation
o interpolation estimation convex optimisation problem
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Activation Function Adaptation B 42, 54, 3] £! Technology

e Consider a layer of a network with 1000 x 1000 connections

o weights: 1,000,000 parameters to adjust
o activation functions: 2,000 functions (output and input)

e Take the example of a sigmoid activation function

ol

¢f(a(iS)7 ag5)7 a(S)) =
° 1+ exp (a(is)w'fxt + ozl(,s))

o of): scaling of the input
S,s): scaling of the output
(). offset on the activation
o train these (or subset) parameters to be speaker specific
e Exact form of parameter adaptation depends on activation function

61 of 67
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e Consider a speaker-specific linear transform of the weight matrix

Factored Weight Adaptation B 30

w® — AGw

o act on a low-dimensional compression layer

e Compact transform central to aspects like covariance modelling:
P
wE =w + 3 A AOw
i=1
o number of parameters is P - independent of weight matrix size
o AU low-rank, limits number of parameters

o can make a function of auxiliary information (e.g. iVectors)
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Feature Transformation (TTS) B (11, 45

@ Feature transformation

e Train the network to predict experts for normalised features, y,,
o transform normalised experts to target speaker experts

e ASR constrained to use global transform
o TTS can make use of regression class trees (CSMAPLR)
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e Many other applications of deep learning under NST

NST and Deep Learning B

e Speech Recognition

audio data segmentation

beamforming and channel combination
network initialisation and regularisation
acoustic feature dependency modelling
paraphrastic language models

O O O O O

e Speech Synthesis

O post-processing
o influence/limitations of LSTM parameters on synthesis
o robust duration modelling
o unit selection
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e Most research still uses a two-stage approach to training:
1. feature extraction: convert waveform to parametric form
2. modelling: given parameters train model
e Limitations in the feature extraction stage cannot be overcome ...
o integrate feature extraction into process
o attempt to directly model/synthesise waveform (WaveNet)
e Both are interesting, active, areas of research

o links with “integrated end-to-end” systems: waveform-in words-out
o feasible as quantity of data increases

Is Deep Learning the Solution?

e BUT

o networks are difficult to optimise - tuning required
© hard to interpret networks to get insights
o sometimes difficult to learn from previous tasks ...
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Network Interpretation B 4]

Standard /ay/ Stimulated /ay/

e Deep learning usually highly distributed - hard to interpret
o awkward to adapt/understand/regularise

o modify training - add stimulation regularisation (improves ASR!)
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Thank-you!
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