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Abstract
The acoustic model in modern speech recognisers is trained
discriminatively, for example with the minimum Bayes risk.
This criterion is hard to compute exactly, so that it is normally
approximated by a criterion that uses fixed alignments of lat-
tice arcs. This approximation becomes particularly problematic
with new types of acoustic models that require flexible align-
ments. It would be best to annotate lattices with the risk mea-
sure of interest, the exact word error. However, the algorithm
for this uses finite-state automaton determinisation, which has
exponential complexity and runs out of memory for large lat-
tices. This paper introduces a novel method for determinis-
ing and minimising finite-state automata incrementally. Since
it uses less memory, it can be applied to larger lattices.
Index Terms: speech recognition, discriminative training, min-
imum Bayes risk

1. Introduction
Many operations in speech recognition can be elegantly de-
scribed in terms of finite-state automata [1, 2, 3, 4]. How-
ever, optimisation algorithms do not always create the desired
results. This paper focuses on determinisation, which has expo-
nential space complexity. Even when the output automaton fits
in memory, the intermediate representation may not. This paper
therefore proposes an algorithm to incrementally determinise
and minimise an acyclic automaton. It uses less memory by
keeping intermediate automata minimised at all times.

The use case that this paper will consider is that of annotat-
ing lattices with the exact word (or phone) error. This problem
comes up in training acoustic models. A commonly-used cri-
terion is the minimum Bayes risk criterion [5] (MBR), which
aims to minimise the expected word (or phone, or state) error.
This involves a marginalisation over all word sequences, ap-
proximated with a lattice, of the weighted error for the word se-
quence. However, the algorithm for computing the word error
for all word sequences in a lattice [6, 7] uses determinisation
and in practice often runs out of memory. An approximation
is therefore used that uses a fixed alignment of the words in
the reference and the hypothesis lattice [5]. This may limit the
applicability of the criterion used to the criterion purported to
minimise. Also, as new models for speech recognition are be-
coming more complex and features richer, the fixed time align-
ments could restrict performance. For example, recent work
has focussed on the need to re-align lattices every few iterations
of training for HMMs with neural networks [8] and structured
SVMs [9] or, for log-linear models, to use dense lattices to rep-
resent many alignments [10, 4]. This paper will therefore use
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Figure 1: Example reference and hypothesis automata.

the novel determinisation algorithm to compute the exact word
or phone error for all the paths in a lattice.

The word error between two sequences is defined as the
minimum edit distance between the two. The word error rate
used to assess speech recognisers is the word error divided by
the length of the reference. The well-known algorithm for com-
puting the minimum edit distance finds for the lowest-cost path
in a two-dimensional state space. It can be expressed in terms
of finite-state automata, as a shortest-distance calculation in a
graph whose states are in the Cartesian product of the automata
representing the two sequences. This algorithm can be gener-
alised in two ways. One way is to find the combination of paths
in the two automata that minimises the edit distance [6].

This paper will focus on the second way to generalise the
minimum edit distance algorithm: finding the error not for one
sequence, but for a whole lattice. Instead of a shortest-distance
algorithm, this requires determinisation. An example is given
in figure 1: the reference sequence is “a c” and the hypothesis
lattice has four sequences. The word error for three of those se-
quence is 1 (“a a c”, “a c c”, “b a c”), and for the other sequence
it is 2 (“b c c”). The automaton in figure 1c assigns the error to
those four sequences. In this example, the topology of the au-
tomaton must be changed, so that each of the symbol sequences
has a different path. This illustrates that in general, determinisa-
tion can lead to an exponential number of transitions. The stan-
dard determinisation algorithm shows exponential behaviour on
normal lattices used for training speech recognisers.

This paper is organised as follows. Section 2 will discuss
the minimum edit distance problem in terms of finite-state au-
tomata. Section 3 will introduce a semiring whose members are
acyclic automata that are always determinised and minimised,
and thus take as little memory as possible. By using them as the
weights of another automaton, a general algorithm will then be
introduced for determinising and minimising acyclic automata.

2. The minimum edit distance
The edit distance measures the similarity between two se-
quences of symbols as the number of operations required to
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Figure 2: The edit distance automaton for “a c” to “a c c”. The
shortest distance in this automaton is the edit distance.

transform one string into another. The Levenshtein distance,
used to evaluate speech recognisers, counts deletions, inser-
tions, and substitutions. The optimal sequence of operations
is found as the best path through both sequences at once. There
is a standard dynamic programming algorithm for solving this
(see e.g. [11]). To generalise it, the problem and algorithm will
here be expressed in terms of finite-state automata [6].

Figure 2 shows an example automaton for determining the
edit distance between “a c” (along the vertical axis) and “a c c”
(along the horizontal axis). The states are in a product space of
the states in figures 1a and 1b. Each transition stands for an edit
operation. A vertical transition moves in the reference but not in
the hypothesis: a deletion. The label is e.g. “a:ε/1”, with “a” in
the reference, no symbol (“ε”) in the hypothesis, and a cost of 1
for the deletion. The opposite, an insertion, is represented by
a horizontal transition, with e.g. “ε:a/1”. Diagonal transitions
indicate a substitution (e.g. “c:a/1”), with a cost of 1 or a correct
symbol (e.g. “a:a/0”), with a cost of 0. This automaton can be
produced with a 3-way composition of the two input automata
and a special transducer [6, 7], or with an ad hoc algorithm.

The lowest-cost path in this automaton corresponds to the
minimum edit distance [6]. Weights on finite-state automata,
here the cost of edit operations, must be in a semiring [12],
which defines operations ⊕ and ⊗. ⊕ combines weights of
competing paths, so the lowest cost should be selected: x⊕y ,
min(x, y). ⊕ combines weights of consecutive paths, so costs
should add up: x ⊗ y , x + y. Using this semiring, the cost
(sometimes “tropical”) semiring, a shortest-distance algorithm
finds the minimum edit distance between two sequences.

One generalisation of this algorithm, which this paper will
not focus on, is to make the hypothesis a lattice (as in figure 1b),
but run the same shortest-distance algorithm. This results in the
minimum edit distance between the reference and the one best
path in a hypothesis lattice: the oracle error.

3. Incremental determinisation and
minimisation

To find the minimum edit distance for all paths in a lattice, the
edit distance automaton in figure 2 must be determinised [6, 7].
The standard algorithm for determinisation of weighted finite-
state automaton [13] uses a powerset construction: each state in
the resulting automaton is a set of states in the original automa-
ton with a weight for each of them. Each transition represents
all transitions with the same symbol out of each of these states.
The destination state is instantiated as the set of the original des-
tination states and weights. The weights are normalised so that
states are more likely to be re-used: if the state representing the
exact same set of states and weights has been seen before, it is
mapped to the same state in the resulting automaton.

The problem with applying this general algorithm for the
edit distance problem is memory use. Because all states in the

original automaton are inserted into at least one state in the re-
sulting automaton, the amount of memory required is at least the
size of the automaton in figure 2. In theory, it would be possi-
ble to use the knowledge that the resulting automaton is acyclic
to reduce this, but in general this is a hard problem, requiring
garbage collection that can deal with cycles as well as problem-
specific reference counting to determine whether a state in the
resulting automaton may yet be revisited.

An option that may seem attractive is to prune the edit dis-
tance automaton. It is true that many paths turn out to be redun-
dant. However, a pruning algorithm that removes paths with
high cost will prune not only redundant paths, but also legiti-
mate paths in the lattice where the recogniser was badly wrong.
That is not a good idea for discriminative training. Therefore,
this paper aims to annotate lattices with the exact error.

Instead of optimising standard determinisation to acyclic
automata, this paper uses a simpler approach: the weights are
replaced by equivalent weights in a different semiring. This
semiring is the space of determinised and minimised acyclic
automata. A standard shortest-distance algorithm then recreates
the original automaton in determinised and minimised form.

3.1. The automaton semiring

Minimisation of weighted automata [14, 15, 16] works by nor-
malising the weights (also known as “weight pushing”), and
then merging states with the same suffix, the same labels and
weights following. Assuming that there are no arcs with empty
symbol sequences, there is only one possible topology for one
suffix, and the state with this suffix can be shared. An important
insight since many values in the automaton semiring will be in
memory at once, they can all share the same states, so they are
jointly minimised. Each automaton is also kept determinised.
This means that each state has at most one outgoing transition
with a given symbol, and therefore that for each symbol se-
quence there is only one path. Since deterministic automata
have only one start state, and most automata will have a start
weight, it will be indicated on an unconnected arrow: /1 a

is an automaton that assigns 1 to the symbol sequence “a” (as
usual, a weight /0 is not written). The rest of this paper will use
the cost semiring and operations specific to this. However, this
is trivial to generalise to any weakly left divisible semiring [12].

Like the cost semiring, the automaton semiring must have
operations ⊗ and ⊕, and identities 1 and 0 defined. Since the
sum over all paths of the automaton semiring should recreate its
host automaton, the operations are defined as follows. The oper-
ation⊕ is used to combine the weights of two competing paths.
It is therefore defined as the union of its arguments, which as-
signs any sequence the minimum value (the ⊕-sum) of what its
arguments assign to that sequence. For example,

/1 a ⊕ /2 b =
/1

b/1

a

. (1a)

The left argument assigns 1 to “a”, and the right one 2 to “b”.
The result assigns those weights to both. To keep the automaton
normalised, its weights have been pushed to the front.

The operation ⊗, which combines consecutive arcs along a
path, concatenates two automata. This means that the concate-
nation of each string of the left-hand automaton with each string
of the right-hand automaton is assigned the sum (the⊗-product)
of the weights of the two automata. For example,

/1 a ⊗ /2 b = /3 a b . (1b)



The resulting automaton assigns a weight of 3 to “a b”. To keep
the automaton normalised, the weights are pushed to the front.

The values 0 and 1 must be defined so that adding 0 does
nothing, and multiplying by 1 does nothing. They are therefore
defined as 1 , /0 = and 0 , /∞ .

3.1.1. Implementation

The data structures used to implement the automata and the op-
erations on them are best expressed mathematically. An au-
tomaton a = (s, q) consists of an initial weight s, which
can be extracted with s(a), and a state q, which can be ex-
tracted with q(a). A state q = (f, T ) is defined by a final
weight f and a set of outgoing transitions T . Each transition
t = (k, a) consists of a symbol k, which can be extracted with
k(t), and an automaton a attached to it, which can be extracted
with a(t). For example, the automaton /0 = (weights
of 0 are normally not shown explicitly) that only assigns 0 to
empty sequences has start and final weight 0 and can be written
af = (0, (0, ∅)). The automaton /2 b can be expressed as
(2, (∞, {(b, af )})). ∞ is the final weight of the first state.

The following will discuss the operations UNION(al, ar),
for implementing ⊕, and CONCATENATE(al, ar), for ⊗, but
first building blocks NORMALISE(a) and DENORMALISE(a).

Since the states should be re-used as much as possible, they
should be stored normalised. The standard normalisation used
in minimisation algorithms is to push weights from all paths
forward [15, 16]. The function NORMALISE(a) ensures that the
outer level of weights from state q(a) is normalised. In the cost
semiring, the smallest of the final weight f and the weights s′

of the automata following the state is made 0 by subtracting the
residual c from all weights, and adding it to start weight s. For
readability, the following definition expands the argument:

NORMALISE((s, (f, T ))) ,
(
s+ c, (f − c, T−c)

)
, (2a)

where T−c , {(k, (s′ − c, q)) | (k, (s′, q)) ∈ T };

c , min({f} ∪ {s′ | (k, (s′, q)) ∈ T });

NORMALISE(0) , 0. (2b)

The resulting automaton assigns the same weights to the same
sequences as the original automaton does.

The operation DENORMALISE(a) performs the opposite
operation. By adding s to f and all s′, it produces an automaton
a′ = (0, q′) with the start weight 0, that is equivalent to a.

Since the automata are acyclic, the operations UNION
and CONCATENATE can be implemented recursively.
UNION((sl, ql), (sr, qr)) returns an automaton that assigns to
each symbol sequence the minimum of the weights that the two
arguments assign. Without loss of generality, the initial weights
of the automata can be assumed 0, and the states unnormalised.
Otherwise, DENORMALISE can be used. Then,

UNION((0, (f l, T l)), (0, (fr, Tr)))

= NORMALISE((0, (min(f l, fr), T ′))), (3a)

where the new transition set T ′ contains all the symbols k from
the left- and right-hand arguments, with merged automata ak. It
is defined T ′ , {(k, ak) | k ∈ T l ∪ Tr}, where

ak ,


UNION(a(t), a(u)) if ∃t ∈ T l, ∃u ∈ Tr

s.t. k(t) = k(u) = k;
a(t), if ∃t ∈ T l s.t. k(t) = k;
a(u), if ∃u ∈ Tr s.t. k(u) = k.

(3b)
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Figure 3: The edit distance automaton from figure 2 with labels
in the automaton semiring.

The CONCATENATE(al, ar) operation returns an automa-
ton that assigns to the concatenation of each string of the left-
hand automaton with each string of the right-hand automaton
the sum of the weights of the two automata, like in (1b).

The strategy for finding this automaton is to treat two parts
of the left automaton separately: the final weight and the out-
going arcs. The left automaton assigns empty sequences cost
sl + f l (which may be∞), which is added to the cost that the
right automaton assigns to sequences. The outgoing arcs of the
left automaton are traversed recursively. The results of the two
parts are then combined by calling UNION. Expanding the ar-
guments, CONCATENATE(al, ar) can be written as

CONCATENATE((sl, (f l, T l)), (sr, qr))

= NORMALISE
(
UNION

(
(sl + f l + sr, qr), (sl, (0, T ′))

))
,

(4)
where T ′ , {(k,CONCATENATE(a, ar)) | (k, a) ∈ T l}.

The expressions in (3) and (4) are recursive, and in an
eagerly-evaluated language (like C++) they will take time in the
order of the number of paths of the input automata. However,
the fact that these functions do not have any side effects can be
exploited by applying memoisation, which stores the result of a
function the first time it is called, and afterwards returning the
stored value. It is useful to store the arguments normalised, by
subtracting the smaller of the start weights. Using memoisation
lowers the time complexity of UNION and CONCATENATE to
the order of the number of states in the automata.

Another opportunity for optimisation is when either the left
or the right argument is returned exactly. By memoising weight
thresholds for when this happens, UNION can be made to run
faster, but using no less memory.

3.2. Determinisation and minimisation

The complete algorithm for determinisation and minimisation
works as follows. An automaton is constructed with values in
the automaton semiring as its labels, representing the symbols
and weights of interest. Then, a shortest-distance algorithm is
applied. Since the semiring has been described as modelling
the suffixes of states, not the prefixes, the shortest-distance al-
gorithm should work backwards from the final state.

Figure 3 illustrates the normal weighted automaton in fig-
ure 2 can be converted into one with weights in the automaton
semiring. Since the interest here is in the symbols in the hypoth-
esis lattice, the “output” symbols are used, with their weights.
For example, a label “a:c/1” is converted into /1 c . /1 ,
which assigns a weight only to the empty sequence, is produced
for a label without a symbol, like “a:ε/1”.

The shortest-distance algorithm in progress is illustrated in
figure 4. For simplicity, the example has only one path in the
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Figure 4: A shortest-distance algorithm on the automaton in
figure 3. The resulting determinised and minimised automaton
is forming as the accumulated weights of the algorithm.

hypothesis lattice, so the resulting automaton also has one path.
The states from the automaton whose transitions have been pro-
cessed have been removed from the graph. For the states on
the frontier, the automaton-valued shortest distances to the fi-
nal state have been computed. They are drawn as red automata
starting from the states on the frontier. For example, from state
“B,1” the automaton semiring has cost 1 for “c c”. Once the
algorithm has completed, the shortest distance to “A,0” will as-
sign a cost of 1 to “a c c”, which is the correct result.

In general, this algorithm finds a determinised and minimal
equivalent automaton for any acyclic automaton. The advantage
compared to the standard determinisation algorithm is that by
computing the output incrementally, peak memory use is lower.

4. Results
To test the new algorithm for error-marking lattices, a realistic
training set with long utterances was chosen. The training set
was 34 hours of randomly selected shows from the ’96 release
of the Hub4 broadcast news, LDC97S44 [17]. The hypothesis
lattices (sometimes called “denominator lattices” in a reference
to the CML training criterion) are produced for minimum phone
error training in the standard setup at the Department of Engi-
neering at Cambridge, which is similar to [18].

Two algorithms are compared, both exact. Both find the
phone error, which is usually used for training speech recognis-
ers, for all paths in the hypothesis lattice. The cost metric uses
monophone identities, which is realistic but in preliminary ex-
periments increased time and space required compared to using
the triphones the lattices contain. The standard algorithm is im-
plemented in C++ using the OpenFst toolkit [19]. It uses lazy
composition to create the automaton in figure 2, but uses stan-
dard determinisation, which instantiates all states anyway. The
implementation of the incremental algorithm uses the author’s
Flipsta C++ library for finite-state automata [20], open-sourced
under the permissive Apache License [21], which allows more
lazy operations. The algorithm lazily constructs an automaton
like in figure 2, and transforms it on the fly to one like in fig-
ure 3. It provides a single-source shortest-distance algorithm
that exploits the acyclicity by releasing memory for computed
distances as soon as they are not needed any more.

Both algorithms were run constrained to 8 gigabytes of
memory, and fail if they try to use more. A separate process was
run for each utterance, measuring memory use with GNU time.
Figure 5a shows peak memory use for the two algorithms; each
dot represents an utterance (drawn alternating between the two
algorithms). The horizontal axis has the number of words in the
utterance. The number of states in the edit distance automaton
increases roughly quadratically with this, but the output roughly
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Figure 5: Standard and incremental error-marking algorithms.

linearly. The curves in the graph indicate the result of linear re-
gression (in the log-space the diagram is drawn in) on the expo-
nent of the square of the utterance length, fitted on lengths such
that 99 % of the processes completed. It is clear that the stan-
dard algorithm uses much more space than the novel incremen-
tal algorithm. Since the vertical axis is logarithmic, at 32 words,
where the incremental algorithm needs around 8 gigabytes, the
curve for the standard algorithm suggests it would require an
infeasible 8.5 petabytes of RAM.

Figure 5b illustrates the range of practical use of the two
algorithms, by displaying the percentage of utterances that can
be error-marked within 8 GB (the story would be similar for any
other amount of memory available in real computers). The stan-
dard algorithm error-marks 99 % of utterances of up to 11 words
and then quickly becomes unable to finish the computation. The
incremental algorithm, however, can deal with much longer sen-
tences: it error-marks 99 % of utterances of up to 21 words.

This improvement makes it much more feasible to error-
mark lattices. For some corpora, a 20-word limit may be suffi-
cient, or automatic segmentation can be used. It must be noted
that here no pruning is used, and no admissible heuristic can be
found. Pruning based on the error is hazardous because it may
strip away legitimate high-error paths, which should be retained
for training. It may, however, be possible to prune conserva-
tively based on lattice arc timings.

5. Conclusion
This paper has introduced a novel method for determinising
and minimising acyclic automata that uses less memory. It has
been used to mark lattices with the exact word or phone error.
This increases the length of the utterances that can be processed
within memory twofold. This makes it much more feasible to
use a training criterion based on the exact error in practice.
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