
Department of Engineering

1

Monoids: e�cient segmental features for
speech recognition

R. C. van Dalen
rcv25@cam.ac.uk

M. J. F. Gales
mjfg@eng.cam.ac.uk

Technical Report cued/f-infeng/tr.687

August 2013

Abstract
Recently, there has been interest in speech recognition with log-linear mod-

els that use features for whole segments, for example, words. �e segmentation is
o�en taken from a conventional speech recogniser. However, this limits the per-
formance ofmoving to a newmodel. An alternative is to �nd the optimal segment-
ation. �is requires acoustic features for all possible segments, which a recently
proposed method extracts e�ciently. It shares computation between features for
segments with the same start time.�is is useful when all segments are considered,
but feature extraction still takes quadratic time in the length of the utterance. A
more realistic strategy for decoding would prune the hypothesis space. �is report
therefore proposes a new, more �exible class of features. When features for all seg-
ments are required, extracting them has the same time complexity, but when only
a limited number of segments are considered, they allow more re-use of compu-
tation. A speci�c subclass of features of interest derives from the total weight of
a hidden Markov model (hmm) or a similar �nite-state model. �is report shows
how to compute scores e�ciently for such a �nite-state model with weights in any
semiring.

mailto:rcv25@cam.ac.uk
mailto:mjfg@eng.cam.ac.uk

1. introduction

1 Introduction

State-of-the-art speech recognisers are usually based onhiddenMarkovmodels (hmms).
�ey model a hidden symbol sequence with a Markov process, with the observations
independent given that sequence. �ese assumptions yield e�cient algorithms, but
limit the power of the model.

Recently, there has been interest in discriminative log-linear models that can deal
with a wide range of features extracted from spans longer than one frame and of vari-
able length (e.g., Layton 2006; Zweig and Nguyen 2009; Gales and Flego 2010). When
using longer-span features to recognise continuous speech, segmentations into, e.g.,
wordsmust be found explicitly. Existing approaches for structuredmodels o�en derive
a segmentation from a conventional speech recogniser. However, these segmentations
are not optimal for the structured model, and may limit the performance gains from
moving to a more powerful model. It is therefore desirable for the decoding process to
�nd the optimal combination of word sequence and segmentation.

Ragni and Gales (2012); Van Dalen et al. (2013) have proposed an e�cient method
for extracting features for one word (or other unit of speech) from every possible con-
tiguous segment of audio. �e speci�c features are in generative score-spaces. �ese
contain log-likelihoods for word hmms (Ragni and Gales 2012) and their derivatives
(van Dalen et al. 2013). �e number of possible segments is quadratic in the length of
the audio. By re-using part of the computation, the time needed to extract the features
for all segments also becomes quadratic. If features for all segments are needed, feature
extraction therefore takes average constant time.

However, a realistic speech recogniser will not need features for all these segments,
because it will approximate its hypothesis space. One approximation scheme is to take
hypotheses from an existing decoder and to compute features only for segments around
ones contained in these hypotheses. It is therefore an interesting question what types
of features can be e�ciently computed for segments that can overlap in di�erent ways.
Of particular interest are segments that start and end around two times given by the
arc in a lattice.

�is report will discuss log-linear models to show where word-level features come
in (section 2). It will then re-analyse the method in van Dalen et al. (2013) to highlight
what makes it e�cient. Computing the feature for a word can be phrased in terms of
the primitive that pure functional programming languages use for iteration: the higher-
order function “fold” (section 3). �e method assumes a schedule that progressively
computes features for all segments that start at the same time. �is paper will then
introduce a related form of feature. Used with the same schedule, it is as time-e�cient,
but can also be used within di�erent types of schedules (section 4). �ese features are
in a monoid. �is makes it possible to combine two features for any two consecutive
segments into one value for the segment encompassing both.

2 Log-linear models

Discriminative models (Gales et al. 2012) are probabilistic models that can operate on
a wide range of features derived from the same segment of audio. Unlike a generat-
ive model, a discriminative model for speech recognition directly yields the posterior
probability of the word sequencew given the observation sequenceO. Here, each of

1

2. log-linear models

the elementswi ofw is equal to one element vj from the vocabulary v. To enable com-
pact discriminative models to be trained, the input sequence must be segmented into,
e.g., words. Let s = {si}

|w|
i=1 denote a segmentation. �is paper will use a log-linear

model:

P(w, s|O;α) ,
1

Z(O,α)
exp

(
αTφ(O,w, s)

)
. (1)

Here,Z(O,α) is the normalisation constant.φ(O,w, s) is the score function that re-
turns a score vector characterising the whole observation sequence. α is the parameter
vector.

For simplicity, this work will assume there is no language model. �e distribution
then factorises over the segments of the audio, i.e. the score function is a sum of scores
for each segment:

φ(O,w, s) ,
∑
i

φ(Osi , wi), (2)

whereOsi indicates the observations in segment si.
For decoding, it is in theory possible tomarginalise out the segmentation. However,

this is infeasible, so instead the segmentation and word sequence that maximise the
posterior in (1) will be found:

argmax
w,s

P(w, s|O;α) = argmax
w,s

1

Z(O,α)
exp

(
αTφ(O,w, s)

)
= argmax

w,s

(
αTφ(O,w, s)

)
= argmax

w,s

∑
i

αTφ(Osi , wi). (3)

�ere are two aspects to performing this optimisation. First, the score φ(Osi , wi)
must be extracted for all possible words and segments. Second, the best combination
of word sequence and segmentation must be found. Assuming the language model
constant, the latter task takes Θ

(
T2
)
time Ragni and Gales (2012). �e former task, of

extractingΘ
(
|v| · T2

)
scores, forms the bottleneck in performance.

�is report will consider the score for oneword (or sub-word unit). To highlight the
aspects that in�uence the e�ciency of computing these scores, φ will be decomposed
into two parts. First, a segmental feature is computed, and then it is converted into
a score. �e features are representations of segments of observations that allow them
to be re-used; the scores are (o�en trivially) derived from the features. �is report
therefore focuses on the structure of the features.

First, section 3 will re-analyse the method in Ragni and Gales (2012); van Dalen
et al. (2013) as computing a function of the form

φ(Oτ:t, wi) = h
(
g(g(. . . g(g(λ, oτ) , oτ+1) . . . , ot−1) , ot)

)
. (4a)

Here, h is the word score function, and g a function that extends a feature by one
observation o. To compute the feature for a segment, g is called recursively t−τ times.
λ, the feature for the empty segment, is the base case for the recursion. (�is will be
formulated in terms of higher-order function “fold”.) �is recursion limits re-use of
computation to segments that start at the same time τ.

2

3. uni-directional segmental features

In contrast, section 4 will introduce a less general but more generally applicable
type of feature. �e computation is of the form

φ(Oτ:t, wi) = h
(
f(oτ)� f(oτ+1)� . . .� f(ot)

)
, (4b)

where f extracts a feature for one observation, and the operation � combines two of
these features. � is required to be associative over the features, i.e., the result must
be the same whichever order the features are combined in. �is freedom allows many
di�erent pruning schemes.

3 Uni-directional segmental features

Ragni and Gales (2012); van Dalen et al. (2013) proposed a method for computing seg-
mental features in average constant time if features for all segments are needed. �is
sectionwill discuss thismethod at a high level. It will use a form that highlights its limit-
ations and allows section 4 to relate this to a more general form. Section 3.1 will explain
how this description maps to the speci�c instantiation in Ragni and Gales (2012); van
Dalen et al. (2013).

Assume that the observations ot ∈ O (for example, vectors with Mel-frequency
cepstral coe�cients) for an utterance of length T are available as [o1 . . . oT]. Segmental
features are to be extracted from each possible segment of consecutive observations.
Two functions will act on this: �rst a function g that extends a feature by one observa-
tion, and a function h that computes a score given such a feature.

�e features are in a feature space F . �e feature for the empty segment, which
contains 0 observations, is de�ned as λ ∈ F . Features can be extended in one direction.
�is is performed by the function

g : F ×O → F , (5)

which takes a feature for a segment, and the next observation, and returns the feature
for the segment extended with the observation.

�us, the feature extracted from the segment containing just observation o1 ex-
tends the feature for the empty segment with

f1 , g(λ, o1) . (6a)

To compute the feature for observations [o1, o2], the function is applied on this result
again:

f1:2 , g(g(λ, o1) , o2) . (6b)

As an example, assume an observation sequence consisting of four elementsO =
[o1, o2, o3, o4]. �e feature for the whole sequence is computed with four consecutive
applications of the function g:

f1:4 , g(g(g(g(λ, o1) , o2) , o3) , o4) = g(g(f1:2, o3) , o4) . (6c)

�e interesting aspect that is clear from (6c) is that computation can be shared
between segments. �e feature for sub-segments, like f1:2 in (6c), has already been
computed in (6b).

3

3. uni-directional segmental features

To exploit this when features for all segments are required, it is useful to write them
in terms of higher-order functions “fold” and “scan” (see section A.1). �e feature for
the whole sequence can be written as

f1:4 , fold(g, λ,[o1, o2, o3, o4]) . (7)

�e number of applications of the function g is equal to the length of the sequence.
It is possible to avoid duplication of computation by computing features for all seg-

ments starting at the same time at once. �is can be expressed with the higher-order
functional primitive “scan”. It performs the same computation as “fold” but returns all
intermediate results as a sequence:

scan(g, λ,[o1, o2, o3, o4]) =[λ, f1, f1:2, f1:3, f1:4] . (8)

�e number of applications of g is, just like in (7), equal to the number of elements of
the sequence. �is means that the average number of applications of g to compute a
feature vector for each segment starting at a given time is constant.

To compute features for all segments, the recursion is started at each possible start
time:

scan(g, λ,[o1, o2, o3, o4]) =[λ, f1, f1:2, f1:3, f1:4] ; (9a)
scan(g, λ,[o2, o3, o4]) =[λ, f2, f2:3, f2:4] ; (9b)

scan(g, λ,[o3, o4]) =[λ, f3, f3:4] ; (9c)
scan(g, λ,[o4]) =[λ, f4] ; (9d)

scan(g, λ,[]) =[λ] . (9e)

�is computes the features for all Θ
(
T2
)
segments in Θ

(
T2
)
time, which is average

constant time.
�e word score function,

h : F → S, (10)

takes a feature and returns a score in S that can be integrated in, for example, a log-
linear model. �is function is applied separately to each feature in (9).

3.1 Instantiation: generative score-spaces

�e original instantiation of the algorithm to extract segmental features (Ragni and
Gales 2012; van Dalen et al. 2013) computes features in a generative score-space. �ese
contain log-likelihoods of the data with respect to the parameters of a generativemodel
(an hmm, in this case) and their derivatives.

First consider the likelihoodof anhmm.�e following representshmms asweighted
�nite state automata (wfsas). A more traditional representation is possible, but re-
quires additional matrix multiplications. �e fsa representation also draws out the
symmetry of the model, which will become important in section 4.1. Composing the
weighted �nite state automata in �gure 1 on the facing page, one producing a weighted
symbol sequence, and another converting symbols into observations, produces the trel-
lis in �gure 2 on the next page. In this composed automaton, time proceeds from le�
to right; hmm states are laid out vertically. �e weights in the trellis are products of

4

3.1. instantiation: generative score-spaces

0

ei/.8

1ei/.2

t/.5

2
t/.5

(a) An automaton that generates sub-word symbols.

0s .01s
ei:o1/1.2

t:o1/1.3 .02s
ei:o2/.5

t:o2/.4 .03s
ei:o3/.9

t:o3/1 .04s
ei:o4/.8

t:o4/1.1

(b) An automaton that converts sub-word symbols into observations, weighted
by their output weights.

Figure 1�e two automata that are composed to yield the automaton in �gure 2.

0s,0 .01s,0ei:o1/.96

.01s,1

ei:o1/.24

.02s,1
t:o2/.2

.02s,2

t:o2/.2

.03s,1
t:o3/.5

.03s,2

t:o3/.5

.04s,1
t:o4/.55

.04s,2

t:o4/.55

.02s,0ei:o2/.4

ei:o2/.1

.03s,0ei:o3/.72

ei:o3/.18

.04s,0ei:o4/.64

ei:o4/.16

Figure 2 A trellis expressed as a weighted �nite state automaton. �e feature vec-
tor f1:2 contains the total weights from the state “0s,0” to each state at 0,02 s (high-
lighted).

transition weights in �gure 1a and the output weights in �gure 1b. �e likelihood for
a sequence of observations is the sum over all paths from the highlighted start state
“0s,0” to the �nal state (with double line) corresponding to the last observation in the
segment. �ere is one start state, and many �nal states, because the start time of the
segment is �xed, while the end time is �exible. (In section 4.1, both start and end times
will be �exible.) To compute the likelihoods e�ciently, the original method applies the
forward algorithm. �is algorithm takes a vector f of “forward weights” for all possible
states of a �nite-state automaton at time t− 1.

�e initial feature λ, for the empty segment, contains 1 for the start state and 0 for
all other states. For the three-state hmm in the example in �gure 2,

λ ,

 10
0

 . (11a)

Applying the function g on current weights f and new observation ot is implemented

5

4. monoid features

as one step of the forward algorithm. One step of the forward algorithm takes the
forward weights for time t − 1 (say, 0.01 s) and computes the weights for time t (say,
0.02 s). �e value of ot is necessary to compute the weights on the transitions for the
next step in the automaton. �e �rst evaluation of g generates the forward weights
at 0.01 s, and the second evaluation the weights at 0.02 s:

f1 = g(λ, o1) =

 0.960.24
0

 ; f1:2 = g(f1, o2) =

 0.3840.144
.048

 . (11b)

�e second result, f1:2, is indicated in the �gure. �is feature vector contains the sum
of the weights up to each of the highlighted states at time 0.02 s.

�e elements of f can be scalars, as in this example. In that case, the standard
forward algorithm for computing the likelihood of a segment is used. �is is exploited
by Ragni and Gales (2012) to e�ciently produce likelihoods for all segments of audio.

In van Dalen et al. (2013), the elements of f are in the expectation semiring. By
running the forward algorithm using generalised + and × operations, not only the
likelihoods but also their derivatives are produced.

�e word score function h takes a vector f and extracts the element that indicates
the weight in the �nal state (in the example, the third element of the vector). It then
converts it into a score, which is then used in the log-linear model.

4 Monoid features

�e previous section has discussed a general class of segmental features which can be
e�ciently computed if all features for all possible segments are required. �ough fea-
ture extraction is then feasible for small-vocabulary recognisers, for larger systems ad-
ditional approximations will be necessary. �is could be done by producing a set of
hypotheses with a faster recogniser and rescore them using segmental features. In that
scenario, segmental features are required for segments with start and end times around
those from the hypothesis set. �e feature extraction process in section 3 allows �ex-
ibility only around the end time of segments, not around start times.1

�is section will therefore propose a related class of features that are more �exible.
Section 4.1 will show how scores in likelihood score-spaces can be computed in this
framework. Section 4.2 will generalise this to hmm-like automata with weights in any
semiring.

�e requirement is made that features for two subsequent segments can be com-
bined into the feature for the joint segment. �e process of computing word scores
from segments of observations is therefore split up into three functions that act on
them consecutively.

First, the function f(ot) converts the observation into a segmental feature for the
segment [ot]. Second, the function � combines two of these features into a feature
representing the combined segment. �ird, the functionh computes a score for a word
(or phone) given a segmental feature f.

1If the backward algorithm is used instead of the forward algorithm, the start time is �exible, but the
end time �xed.

6

4. monoid features

�e �rst step is to convert a sequence of observations into a sequence of features.
�is works by applying the function

f : O → F . (12)

Applying f to each observation can be formulatedwith the higher-order function “map”
(see appendix A):

map(f,[o1, o2, o3, o4]) =[f1, f2, f3, f4] , (13)

where ft is a shorthand for f(ot). ft is a feature for the segment[ot], of length 1.
�e second, and most interesting, step is to combine two features for consecutive

segments with the function

� : F × F → F . (14)

�e feature for the segment [o1, o2, o3, o4] can then be computed as

f1 � f2 � f3 � f4. (15)

To speed up the computation, it is useful for features for shared sub-segments to be
reusable. �e features in section 3 are only shared between features for segments with
the same start time. For more �exible re-use to be possible, it is useful to allow the
computation in (15) to be performed in any order. To see why the freedomof evaluation
order is important, consider an example. If a segment is hypothesised to start at o1
or o2 and end at o3 or o4, and f2:3 has been computed, the necessary features can be
derived from it e�ciently:

f1:3 = f1 � f2:3; (16a)
f2:4 = f2:3 � f4; (16b)
f1:4 = (f1 � f2:3)� f4 = f1:3 � f4. (16c)

Here, f2:3 can be cached and re-used in (16a) and (16b), and f1:3 in (16c).
To ensure that the segmental feature is the same whatever order the sub-segments

are combined in,�must be associative. �at is, for any f, f ′, f ′′ ∈ F ,

(f� f ′)� f ′′ = f� (f ′ � f ′′). (17)

�is implies that the set F of features is amonoid with� as its operation.
In general, a segmental feature can be computed from the features for di�erent

sub-segments. One possible order of evaluation goes through the observations con-
secutively. �is is the same order as the one in section 3. It can be written

f1:4 = fold1(�, [f1, f2, f3, f4]) . (18)

In section 3, the same order of evaluationwas producedwith the “fold” function (which
requires an extra argument, the initial state). “fold1” computes a “skewed reduction”.
Since the� operation is associative, the “fold1” function can be generalised to a func-
tion de�ned as computing the same value as “fold1”, but with the evaluations of � in
any order. In this report, this function is called “reduce”:

f1:4 = reduce(�, [f1, f2, f3, f4]) . (19)

7

4. monoid features

0s,0

0s,1

0s,2

.01s,1
t:o1/.65

.01s,2

t:o1/.65

.02s,1
t:o2/.2

.02s,2

t:o2/.2

.03s,1
t:o3/.5

.03s,2

t:o3/.5

.04s,1
t:o4/.55

.04s,2

t:o4/.55

.01s,0ei:o1/.96

ei:o1/.24

.02s,0ei:o2/.4

ei:o2/.1

.03s,0ei:o3/.72

ei:o3/.18

.04s,0ei:o4/.64

ei:o4/.16

Figure 3A trellis like in �gure 2, but without a speci�c start state. �e feature f2:3
contains total weights between each pair of states at 0.01 s and at 0.03 s (high-
lighted).

If features for all segments are required, then expressions analogous to (9) can be used:

scan1(�,[f1, f2, f3, f4]) =[f1, f1:2, f1:3, f1:4] ; (20a)
scan1(�,[f2, f3, f4]) =[f2, f2:3, f2:4] ; (20b)

scan1(�,[f3, f4]) =[f3, f3:4] ; (20c)
scan1(�,[f4]) =[f4] . (20d)

�is still computes the feature values for all Θ
(
T2
)
segments in Θ

(
T2
)
time, which is

constant time on average.
�e third step is, as in section 3.1, to apply the word score function:

h : F → S. (21)

�is function takes a feature and returns a score in S that can be integrated in, for
example, a log-linear model. �is function is applied separately to each feature in (20).

4.1 Instance: likelihood score-spaces

Section 3.1 has described a method introduced by Ragni and Gales (2012); van Dalen
et al. (2013) for computing features in “generative score-spaces” derived from hmms.
�is section will sketch how this can be extended to monoid features, and how the
observations and the functions f,�, and h are then de�ned.

At �rst, assume that log-likelihood score-spaces are used.�is means that the word
scores are given by the log-likelihoods of hmms. �e following discussion will again
represent hmms as weighted �nite state automata (wfsas). �is draws out the sym-
metry of the model, which is important since the features must be extensible in two
directions. �e rows and columns of the matrix correspond to all states in a word (or
sub-word) hmm.

Figure 3 contains a trellis similar to the one in �gure 2 on page 5. However, this
one is not speci�c to a start time. Each feature f is a square matrix indicating the total

8

4.2. features from finite-state models

weight going from the state indicated by the row index at one time to the state indicated
by the column index at one other time. �e entries of matrix f(ot) correspond to the
weights on the transitions between two consecutive times. For example, the feature
f2 = f(o2) is derived from the weights between 0.01 s and 0.02 s:

f(o2) =

 0.4 0.1 0
0 0.2 0.2
0 0 0

 . (22a)

�e way to read this matrix is

To state
0 1 2

From state
0 0.4 0.1 0
1 0 0.2 0.2
2 0 0 0

. (22b)

In this particular example, the feature matrix is for one observation. In general,
this matrix gives the weights for combinations of start and end states for a speci�c
segment, starting at the start time and at the end time. �e trellis diagram in �gure 3
illustrates f2:3, which containsweights for each pair of states at 0.01 s and states at 0.03 s.
To derive the total weight between each of these pairs from f2 (in (22a)) and f3, the
connecting states, at 0.02 s, must be summed out. Expressed in terms of the elements
of the matrices,

(f2 � f3)ij =
∑
k

f2,ik · f3,kj. (23a)

In general, the monoid operation on two features is therefore a matrix multiplication:

f� f ′ , f · f ′. (23b)

Matrixmultiplication is associative, so this adheres to the requirement for being amon-
oid.

To compute the word score for any feature f, the element of the matrix in (22a)
representing the start and end state, in the example at position (0, 2), must be selected.
In general, word w will have a vector of wfsa start weights λ and a vector of end
weights ρ. For thewfsa in �gure 1a on page 5, they are

λ =

 10
0

 ; ρ =

 00
1

 . (24)

�e word score can then be computed as

h(f) , λT · f · ρ. (25)

4.2 Features from �nite-state models

So far, the entries of the matrices have been assumed to be just likelihoods. However, it
is possible to accumulate other types of features. One example was shown in section 3.1,

9

5. conclusion

where the score required not only likelihoods, but also their derivatives (vanDalen et al.
2013). Accumulating these worked with the forward algorithm, but the weights on the
�nite state automata were in the expectation semiring, instead of being just scalars.
�e expectation semiring, as does every other semiring, replaces normal addition and
multiplication by operations⊕ and⊗.

�emonoid features discussed so far have been amatrix with scalar entries derived
from an hmm. Now the entries can be generalised to be in the expectation semiring.
�emonoid operation between two features then is a generalisedmatrixmultiplication,
where the entries of the matrix are not just scalars as in (23a), but in a semiring:

(f� f ′)ij =
⊕
k

fik ⊗ f ′kj. (26)

�e function f(·), which computes a feature from one observation, produces a matrix
with entries in the expectation semiring. For generative score-spaces, the �rst element
of each of the values in the semiring is the same likelihood, and the second element the
partial derivatives with respect to the parameters of the generative model. However,
other types of entries are also possible.

It is well-known, and shown in Appendix B, that square matrices form a monoid
undermatrixmultiplication i� its elements are in a semiring.�erefore, any �nite-state
model with the same shape as an hmm—one state model generating symbols, and one
linear transducer from symbols to the observations—withweights in any semiring can
be used to extract features in a monoid.

�is opens up the possibility for many types of segmental features. �ere is no
requirement for the semiring to contain a likelihood or anything similar. Of particu-
lar interest are features based on neural networks. Features that, just the likelihood of
hmms, are additive over paths of the �nite state automaton can then be extracted in
average constant time if they are computed for all possible segments of audio. Addi-
tionally, monoid features for consecutive segments can be combined straightforwardly,
which allows �exibility when pruning is used during decoding.

5 Conclusion

�is report has discussed a general class of segmental features for speech recognition
that are e�cient to compute. �e new features are as e�cient as features used in Ragni
and Gales (2012); van Dalen et al. (2013) when features for all possible segments are
required. However, they are more �exible in re-using features for sub-segments. �is
is done by requiring that the features are in a monoid. Because monoids are associat-
ive, features for two consecutive segments can be combined to form a feature for the
union of the segments. �is will allow more �exibility in integrating this type of fea-
ture in speech recognisers that perform pruning to obtain good performance. A type
of features that is of particular interest for future work can be derived from hmm-like
�nite-state automata with weights in any semiring.

10

appendix a. higher-order functions

A Higher-order functions

Higher-order functions are functions that take other functions as parameters. In cal-
culus, higher-order functions are therefore known as “functionals”. �ey are important
primitives for functional programming languages (see, e.g., Bird andWadler 1988).�e
following discussion will use generally-used names for the primitives.

An important primitive is “map”, which applies a function f to each elements of a
sequence e = (e1, e2, . . .) separately:

map(f, (e1, e2, . . .)) , (f(e1), f(e2), . . .). (27)

A.1 Fold

Another primitive is the basis for iteration in functional programming. It is o�en called
“fold”. It applies a function recursively:

fold(f, s, [e1, e2, . . .]) , f(. . . f(f(s, e1), e2), . . .). (28)

In general, the twoparameters of f canhave di�erent types. For example, if f(s, e) ,
s+ 1, then fold(f, 0, [. . .]) will count the number of elements of the list. Whatever the
list’s element type, the �rst parameter to f will always be an integer. �e number of
applications of f is equal to the length of the sequence.

A related function is “scan”, which essentially applies function f in the same way as
fold but returns intermediate results in the form of a list:

scan(f, s, [e1, e2, . . .]) , [s, f(s, e1), f(f(s, e1), e2), . . .]. (29)

Since each element in the resulting list is the result of applying function f to the previ-
ously computed element and the next element in the source list, the number of applic-
ations of f is equal to the length of the sequence.

A.2 Reductions on monoids

A reduction is a function that collapses a list (or a more general structure) to a value
of the same type as the list elements (e.g., Hinze and Paterson 2006). Folds are more
general than reductions, since the resulting type of a fold is not necessarily the same
type as the list elements. �us, a speci�c type of reduction, a skewed reduction, can be
computed with the function “fold1”:

fold1(f, [e1, e2, e3, . . .]) , fold(f, e1, [e2, e3, . . .]) = f(. . . f(f(e1, e2), e3), . . .).
(30)

For example, if the function “max(x, y)” returns the greatest value of its parameters,
then fold1(max, [. . .]) returns the greatest value of the list. In this case, it does notmake
a di�erence in which order the values of the list are combined. �is is the case if the
elements is a monoid, so that the operation on elements is associative:

f(f(e1, e2), e3) = f(e1, f(e2, e3)). (31)

�is essentially implies that the elements are in a monoid.

11

appendix b. matrix elements in a semiring

�is work denotes with “reduce” a reduction on a list with elements in amonoid. A
straightforward implementation is to use “fold1”. Alternatively, it can exploit the asso-
ciativity, in (31), by re-ordering the function applications. For example, the reduction
can be computed in two halves:

reduce(f, (e1, e2, e3, e4)) , fold1(f, [e1, e2, e3, e4])
= f(f(f(e1, e2), e3), e4)

= f(f(e1, e2), f(e3, e4)). (32)

When reductions of overlapping segments of a list are required, this freedom to re-
order can o�en be exploited more easily than using folds.

B Matrix elements in a semiring

Section 4.2 generalises the type of elements in matrices that are used as features from
scalars. It is therefore important to check what requirements on the elements of the
matrices are to ensure that the features are in a monoid. Substituting (26) into (31), the
requirement of associativity, for three matrices f, f ′, f ′′,

((f� f ′)� f ′′)ij = (f� (f ′ � f ′′))ij. (33a)

Expanding the le�- and right-hand sides separately,

((f� f ′)� f ′′)ij =
⊕
l

(f� f ′)il ⊗ f ′′lj =
⊕
l

(⊕
k

fik ⊗ f ′kl
)
⊗ f ′′lj; (33b)

(f� (f ′ � f ′′))ij =
⊕
k

fik ⊗ (f ′ � f ′′)kj =
⊕
k

fik ⊗
(⊕

l

f ′kl ⊗ f ′′lj
)
. (33c)

�ese two expressions are equal if for the elements of f, f ′, and f ′′,⊕ distributes over⊗
(for (34a) and (34d)),⊕ is commutative (for (34b)), and⊗ is associative (for (34c)):⊕

k

fik ⊗
(⊕

l

f ′kl ⊗ f ′′lj
)

=
⊕
k

⊕
l

fik ⊗
(
f ′kl ⊗ f ′′lj

)
(34a)

=
⊕
l

⊕
k

fik ⊗
(
f ′kl ⊗ f ′′lj

)
(34b)

=
⊕
l

⊕
k

(
fik ⊗ f ′kl

)
⊗ f ′′lj (34c)

=
⊕
l

(⊕
k

fik ⊗ f ′kl
)
⊗ f ′′lj. (34d)

Monoids are normally taken to have an identity element as well. �e identity for
multiplication can be de�ned as a matrix with as diagonal entries the multiplicative
identity (“1”), and as the other entries the additive identity (“0”), whichmust annihilate
elements under multiplication.

�ese requirements on the elements are the ones required for semirings. Square
matrices with elements in a semiring are therefore in a monoid under generalised mat-
rix multiplication.

12

Bibliography

Richard Bird and Philip Wadler (1988). An introduction to functional programming.
Prentice Hall, Hertfordshire, uk.

M. J. F. Gales and F. Flego (2010). “Discriminative classi�ers with adaptive kernels for
noise robust speech recognition.” Computer Speech and Language 24 (4), pp. 648–
662.

M. J. F. Gales, S. Watanabe, and E. Fosler-Lussier (2012). “Structured Discriminative
Models For Speech Recognition: An Overview.” ieee Signal Processing Magazine
29 (6), pp. 70–81.

Ralf Hinze and Ross Paterson (2006). “Finger trees: a simple general-purpose data
structure.” Journal of Functional Programming 16 (2), pp. 197–217.

Martin Layton (2006). Augmented Statistical Models for Classifying Sequence Data.
Ph.D. thesis, Cambridge University.

A. Ragni andM. J. F. Gales (2012). “Inference Algorithms for Generative Score-Spaces.”
In Proceedings of icassp. pp. 4149–4152.

R. C. vanDalen, A. Ragni, andM. J. F.Gales (2013). “E�cientDecodingwithGenerative
Score-Spaces Using the Expectation Semiring.” In Proceedings of icassp.

Geo�rey Zweig and Patrick Nguyen (2009). “A Segmental crf Approach to Large
Vocabulary Continuous Speech Recognition.” In Proceedings of asru.

13

	Introduction
	Log-linear models
	Uni-directional segmental features
	Instantiation: generative score-spaces

	Monoid features
	Instance: likelihood score-spaces
	Features from finite-state models

	Conclusion
	Higher-order functions
	Fold
	Reductions on monoids

	Matrix elements in a semiring

