
EFFICIENT DECODING WITH GENERATIVE SCORE-SPACES
USING THE EXPECTATION SEMIRING

Rogier C. van Dalen, Anton Ragni, and Mark J. F. Gales

Department of Engineering
University of Cambridge

Cambridge, United Kingdom

ABSTRACT

State-of-the-art speech recognisers are usually based on hidden
Markov models (HMMs). They model a hidden symbol sequence
with a Markov process, with the observations independent given that
sequence. These assumptions yield efficient algorithms, but limit the
power of the model. An alternative model that allows a wide range
of features, including word- and phone-level features, is a log-linear
model. To handle, for example, word-level variable-length features,
the original feature vectors must be segmented into words. Thus,
decoding must find the optimal combination of segmentation of the
utterance into words and word sequence. Features must therefore
be extracted for each possible segment of audio. For many types of
features, this becomes slow. In this paper, long-span features are
derived from the likelihoods of word HMMs. Derivatives of the
log-likelihoods, which break the Markov assumption, are appended.
Previously, decoding with this model took cubic time in the length
of the sequence, and longer for higher-order derivatives. This paper
shows how to decode in quadratic time.

Index Terms— Speech recognition, log-linear models, weighted
finite-state transducers, expectation semiring.

1. INTRODUCTION

State-of-the-art speech recognisers are often based on hidden
Markov models, which use a Markov process to model a hidden
symbol sequence, and assume that the observations are condition-
ally independent given the symbol sequence. This restriction allows
for fast algorithms, like the Viterbi and forward algorithms, but it is
deemed to be one of the main impediments to improving recognition
performance [1]. Recently, there has been interest in discrimina-
tive log-linear models that can deal with a wide range of features
extracted from spans longer than one frame and of variable length
(e.g. [2, 3, 4, 5]). When using longer-span features to recognise
continuous speech, segmentations into, e.g., words must be found
explicitly. Existing approaches for structured models often derive
a segmentation from a conventional speech recogniser. However,
these segmentations are not optimal for the structured model, and
may limit the performance gains from moving to a more powerful
model. It is therefore desirable for the decoding process to find the
optimal combination of word sequence and segmentation.

Decoding with such a model requires two steps: extracting seg-
mental features, and finding the joint optimal word sequence and
segmentation. Keeping the language model fixed, the latter task can

This work was partly supported by EPSRC Project EP/I006583/1 (Gen-
erative Kernels and Score-Spaces for Classification of Speech) within the
Global Uncertainties Programme.

be performed in Θ(T 2) time, where T is the length of the utter-
ance [2, 6]. The complexity of the former task depends on the na-
ture of the features, but computing features for the Θ(T 2) segments
must take at least Θ(T 2) time. This is therefore the bottleneck for
performance. Previous work [6] has shown how to extract genera-
tive scores that include nth-order derivatives in Θ(T 2+n) time. This
paper will introduce a method to extract derivatives of any order for
all segments in Θ(T 2) time, that is, amortised constant time.

Generative score-spaces, which generalise Fisher score-spaces
[7], consist of log-likelihoods of generative models, and their deriva-
tives. In this paper, segmental features for speech recognition are
derived from likelihoods of word HMMs for audio segments. There
are two reasons for using these scores as features for a classifier.
With a zeroth-order generative score-space, which contains only the
log-likelihood itself, classification is closely related to that of the
original generative model. This allows state-of-the-art techniques
for speech recognition, such as methods for noise-robustness, to be
applied. Secondly, derivatives even of frame-level log-likelihoods
are functions of all frames in the segment. Thus, the independence
assumptions of the HMM are relaxed.

Since the derivatives in the generative score-space depend on
all frames in a segment, a direct implementation would re-compute
them completely for every hypothesised segment. This was the ap-
proach adopted in [3], using an algorithm with nested passes of
forward–backward that was run separately for each hypothesised
segmentation. This paper introduces a method that incrementally
computes scores for all segmentations that share a common start time
with only a forward pass. It augments the output and transition prob-
abilities with their derivatives. As long as the HMMs have only few
states, which for word HMMs is the case, this algorithm requires
a modest amount of extra storage. When scores are required for all
possible segments, they can be computed in amortised constant time.

2. LOG-LINEAR MODELS

Discriminative models [8] are probabilistic models that can operate
on a wide range of features derived from the same segment of au-
dio. Unlike a generative model, a discriminative model for speech
recognition directly yields the posterior probability of the word se-
quence w given the observation sequence O. Here, each of the el-
ements wi of w is equal to one element vj from the vocabulary v.
To enable compact discriminative models to be trained, the input se-
quence must be segmented into, e.g., words. Let s = {si}|w|

i=1 denote
a segmentation. This paper will use a log-linear model:

P (w, s|O;α) ,
1

Z(O,α)
exp

(
αTφ(O,w, s)

)
. (1)



Here, Z(O, s) is the normalisation constant. φ(O,w, s) is the fea-
ture function that returns a feature vector characterising the whole
observation sequence. α is the parameter vector.

For simplicity, this work will assume there is no language model.
The distribution then factorises over the segments of the audio, i.e.
the feature function is a sum of features for each segment:

φ(O,w, s) ,
∑
i

φ(Osi , wi), (2)

where Osi indicates the observations in segment si.
For decoding, it is in theory possible to marginalise out the seg-

mentation. However, this is infeasible, so instead the segmentation
and word sequence that maximise the posterior in (1) will be found:

arg max
w,s

P (w, s|O;α) = arg max
w,s

1

Z(O,α)
exp

(
αTφ(O,w, s)

)
= arg max

w,s

(
αTφ(O,w, s)

)
= arg max

w,s

∑
i

αTφ(Osi , wi). (3)

There are two aspects to performing this optimisation. First, the
features φ(Osi , wi) must be extracted for all possible words and
segments. Second, the best combination of word sequence and seg-
mentation must be found. The latter task takes Θ

(
T 2
)

time [6]. The
former task, of extracting Θ

(
|v| · T 2

)
features, forms the bottleneck

in performance. The rest of this paper will be concerned with how
to extract generative scores in amortised constant time per segment.

Generative scores use a joint feature space for all vocabulary
entries vj . The feature vector for one segment Oτ :t is partitioned
into features related to words, and the other dimensions are zero:

φ(Oτ :t, w) =

 δ(w = v1)φ1(Oτ :t)
...

δ(w = v|v|)φ|v|(Oτ :t)

 , (4a)

where δ(· = ·) equals 1 if its argument is true, and 0 otherwise. This
expression selects the feature vector φv(Oτ :t) for word v. In this
work, this feature consists of two parts. One is the log-likelihood
of the audio segment log l(Oτ :t;λv) given by a word HMM. The
second is its derivative with respect to the parameters of the HMM:

φv(Oτ :t) =

[
log l(Oτ :t;λv)
∇λ log l(Oτ :t;λv)

]
. (4b)

It is well-known how to extract the HMM likelihood for one seg-
ment Oτ :t, but in this paper it must be computed for all possible
segments. Also, the derivatives must be found.

3. FEATURE EXTRACTION

This section will discuss how to extract the features in (4b) from
a word HMM and a sequence of observations. The following will
first recall how the HMM likelihood can be computed for a given
segment of observations. Then, it will explain how to extend this
to compute the likelihood for a range of segments at the same time,
with the method introduced in [6]. After that, it will discuss how
first- or higher-order derivatives can be found with the same time
complexity (but with a greater constant factor).

Fig. 1 contains a finite-state automaton representing a trellis.1

1Since the trellis is represented as a Mealy machine, it combines contribu-
tions from the HMM output distributions and transition matrices. This will be
useful in section 3.1. This trellis automaton can be produced by composing
an automaton representing the output probabilities for consecutive observa-
tions with one that produces all possible HMM state sequences o1 . . .oT .
See [9] for more details, or [10] for a more general discussion.

0s,0 .01s,0
ei:o1/.96

.01s,1

ei:o1/.24

.02s,1
t:o2/.4

.02s,2

t:o2/.4

.03s,1
t:o3/.5

.03s,2

t:o3/.5

.02s,0
ei:o2/.56

ei:o2/.14

.03s,0
ei:o3/.72

ei:o3/.18

Fig. 1. Weighted finite-state transducer T representing a trellis.

Time goes from left to right and discrete HMM symbols from top to
bottom. Each successful combination of an HMM symbol sequence
(e.g. “ei ei t”) and an observation sequence (e.g. (o1,o2,o3)) cor-
responds to a path from a bold circle to a double circle. The corre-
sponding likelihood is given by the product of the weight (after the
slash) along the edge. The likelihood for the whole HMM for, e.g.,
observations o1,o2,o3, is given by the summed likelihood over all
paths from (0s,0) to (.03s,2). In general,

l(Oτ :t;λv) ,
∑

π:p[π]=(τ,start)
∧n[π]=(t,end)

∏
e∈π

σ[e;λv] , (5)

where π is a path with start state p[π] and end state n[π], and e ∈
π are the edges along the path. σ[e;λv] is the weight on arc e.

It is well-known how to compute (5) efficiently: with either
the forward or the backward algorithm. Both are “single-source
shortest-distance” algorithms (as they are called in the literature
about finite-state automata, e.g., [11]) that exploit the trellis struc-
ture. Both compute the sum of the paths from node s1 to node s2:2

forwd(s1, s2,λv) , backwd(s1, s2,λv) ,
∑

π:p[π]=s1
∧n[π]=s2

∏
e∈π

σ[e;λv] .

(6)

The forward algorithm computes forward weights from one start
node to many end nodes incrementally. Similarly, the backward al-
gorithm computes backward weights from one end node to many
start nodes. (6) can be rewritten recursively, where p[e] denotes the
source node of an edge, and n[e] the destination:

forwd(s1, s2,λv) =
∑

s′,e:p[e]=s′

∧n[e]=s2

forwd(s1, s
′,λv)× σ[e;λv] ;

(7a)

backwd(s1, s2,λv) =
∑

s′,e:p[e]=s1
∧n[e]=s′

σ[e;λv]× backwd(s′, s2,λv);

(7b)

forwd(s, s,λv) = backwd(s, s,λv) , 1. (7c)

These can be computed efficiently with dynamic programming. The
forward weights for one time in a trellis like Fig. 1 depend only on
those of the previous time. The algorithm therefore progresses time
instance by time instance. For a fixed HMM, the forward algorithm
takes linear time in the length of the observation segment.

2Note that these definitions of the forward and backward algorithms are
different from the ones sometimes given, for HMMs, where the emission
probabilities are on states. Here, weights are only on edges, so that the two
algorithms are symmetrical.



However, the objective in this paper is to consider all possible
segmentations. Therefore, the likelihood for all segments Oτ :t must
be computed. In an utterance O = (o1, . . . ,oT ), with T obser-
vations, there are Θ(T 2) possible segments. The segments have an
average length of Θ(T ). Applying the forward algorithm separately
for all possible segments would therefore take Θ(T 3) time.

Instead, it can be noted that the forward algorithm from time τ
to end time T generates likelihoods for segments starting at time τ
and ending at all times t = τ . . . T [6]. By applying the forward
algorithm for each time step τ = 1 . . . T − 1, likelihoods for all
Θ(T 2) segments can be found in Θ(T 2) time. Per segment, this
therefore takes amortised constant time.

3.1. Computing derivatives with the expectation semiring

In addition to the log-likelihood, which the method discussed above
finds efficiently, (4b) contains its derivative with respect to the pa-
rameters λv . This section will first explain why applying the same
strategy as above speeds up the standard method for computing the
derivatives merely by a constant factor. It will then introduce a dif-
ferent strategy, attaching derivatives to all weights, to improve the
time complexity. For simplicity, this section will find the derivative
of the likelihood, not of the log-likelihood. The latter is straightfor-
ward to compute by dividing the former by the likelihood.

The weight σ[e;λv] on each arc in Fig. 1 is a product of a transi-
tion weight and an HMM output probability. Computing its deriva-
tive ∇λσ[e;λv] is therefore straightforward. The standard way of
computing the derivative of the likelihood of an HMM is by using
unnormalised arc posteriors γτ :t(e):

∇λl(Oτ :t;λv) =
∑
e

γτ :t(e)
∇λσ[e;λv]

σ[e;λv]
, (8a)

where γτ :t(e) is the fraction of the total weight through edge e:

γτ :t(e) ,
∑

π:p[π]=(τ,start)
∧n[π]=(t,end)∧e∈π

∏
e′∈π

σ
[
e′;λv

]
. (8b)

It is clear from (8b) that γτ :t(e) depends on the weights on edges
before and after e, so that the derivative, in (8a), relaxes the Markov
property (see [3] for more detail). (8b) is normally computed with
the forward–backward algorithm. This combines the weight from
the start node (τ , start) up to the source of e, p[e], and the backward
weight from the end node (t, end) to the destination of e, n[e]:

γτ :t(e) = forwd((τ , start), p[e] ,λv)× σ[e;λv]

× backwd(n[e] , (t, end),λv). (8c)

The computation of all required forward weights can be done ef-
ficiently as described above, as can the computation of all backward
weights. However, for each segment τ : t, γτ :t(e) derives from dif-
ferent forward and backward passes and must be recomputed. The
average time to compute (8a) for one segment is therefore Θ(T ).
Finding the derivatives for all segments in this way then takes Θ(T 3)
time. Extending this strategy to second-order derivatives, posteri-
ors for pairs of arcs must be computed, and the algorithm will take
Θ(T 4) time, et cetera [6]. Taking Θ(T 3) time or more to find fea-
tures becomes prohibitive for speech recognition.

The following will view HMM derivatives in a different way.
It is possible to append derivatives to all initial weights, and then
propagate them throughout the computation of the likelihood. Any
weight l is replaced with

σ ,(l,∇λl) . (9)

This starts from the arcs weights in Fig. 1. Original weights l[e;λ]
on arc e, dependent on parameters λ, are replaced with

σ[e;λ] ,(l[e;λ] ,∇λl[e;λ]) . (10)

Now the forward algorithm must be extended so that the weight in
each end state becomes a tuple of the likelihood and its derivative:

forwd((τ , start), (t, end),λv) =(l(Oτ :t;λv) ,∇λl(Oτ :t;λv)) .
(11)

Then, finding the first-order score in (4b) with the derivative of the
log-likelihood the values in (11) is straightforward.

This can be done by generalising the operations on weights so
that they maintain the invariant that the second element is the deriva-
tive of the first element, as in (9). This is called “automatic differen-
tiation” using dual numbers [12]. Given values for weights l1 and l2,
the derivatives of their sum and product can be found with

∇λ(l1 + l2) = ∇λl1 +∇λl2; (12a)
∇λ(l1 · l2) = l1 · ∇λl2 + l2 · ∇λl1. (12b)

The trellis in Fig. 1 is a weighted finite-state automaton. Re-
quirements on the types of weights that can be used in weights au-
tomata are well-established [13]. For many algorithms, including
the forward algorithm, the requirement is that the weights are in
a semiring. Semirings define operations ⊕ and ⊗, which gener-
alise + and × on scalars, and identities 0 and 1, which generalise
0 and 1. An important property for a, b, c to be in a semiring is that
multiplication must distribute over addition, that is, a ⊗ (b ⊕ c) =
(a⊗ b)⊕ (a⊗ c). This makes it possible to rewrite (6) to (7).

It turns out that the tuple in (9) is in the expectation semi-
ring [14], so that it can be used in weighted finite-state automata.
Denoting the weights with (l,∇λl), it follows from (12) that the
semiring operations must be defined as

(l1,∇λl1)⊕(l2,∇λl2) ,(l1 + l2,∇λl1 +∇λl2) ; (13a)

(l1,∇λl1)⊗(l2,∇λl2) ,(l1 · l2, l1 · ∇λl2 + l2 · ∇λl1) , (13b)

and the additive and multiplicative identities are defined as

0 ,(0,0) ; 1 ,(1,0) . (13c)

This definition ensures that both operations ⊕ and ⊗ propagate tu-
ples with as the second element the derivative of the first element.
It is also possible to extend this to higher-order derivatives to find
higher-order generative scores [15].

The expectation semiring can be used to accumulate any statistic
that is additive along the edges of a path and is weighted by the orig-
inal weight along the path [16, 17]. It was proposed for the expec-
tation step of expectation–maximisation in probabilistic transducers.
In theory, training a speech recogniser would be possible with just
a forward pass and the expectation semiring. However, this would
entail keeping statistics for all speech recogniser parameters rele-
vant to the utterance for all states in the HMM, which requires much
memory, and the operations in (13) become expensive. By using the
forward–backward algorithm, the order of the semiring can be one
lower than using just the forward algorithm [16, 17]. Since in nor-
mal speech recogniser training the start and end times are known,
the sensible trade-off is to use the forward–backward algorithm.

However, for computing generative scores, this trade-off works
out differently. Firstly, the scores for all start and end times are re-
quired. Secondly, the generative model for one segment has a small
and fixed number of parameters, so memory use is not an issue.



3.2. Implementation

The likelihoods, and their derivatives, have a large dynamic range. It
is usual for likelihoods in sequential probabilistic models to be rep-
resented by their logarithms. This is possible because the likelihoods
are always non-negative. The additional statistics, on the other hand,
can be positive or negative. It is possible to separately store the log-
arithm of the absolute value and the sign [15].

However, in this paper the statistics are derivatives ∇λl of the
weight. Their values are known to be in the order of the weight l
itself. If the derivatives are divided by the weights, therefore, they
can be represented directly as floating-point numbers without risk of
overflow or underflow. The operations ⊕ and ⊗ must be performed
in terms of normalised derivatives as well. Assume two values in
this normalised expectation semiring:

σ1 ,

(
log l1,

∇λl1
l1

)
; σ2 ,

(
log l2,

∇λl2
l2

)
. (14)

How to perform addition and multiplication in the log-domain, for
the first elements, is well-known. The second element of σ1 ⊗ σ2

can be expressed in terms of the elements of σ1 and σ2 as

∇λ(l1l2)

l1l2
=
l2∇λl1 + l1∇λl2

l1l2
=
∇λl1
l1

+
∇λl2
l2

. (15a)

The second element of σ1 ⊕ σ2 is

∇λ(l1 + l2)

l1 + l2
=

l1
l1 + l2

(
∇λl1
l1

)
+

l2
l1 + l2

(
∇λl2
l2

)
. (15b)

In the log-domain, a slightly more numerically stable way to com-
pute l1/(l1+l2) is 1/(1+l2/l1). The result of this can be converted
to the normal domain and be used to scale ∇λl1/l1, and similar
for ∇λl2/l2. Then, (15b) can be computed. The resulting weights
are tuples of the log-likelihood (not the likelihood) and its derivative,
so they can be used directly as the scores in (4b).

Decoding (but not parameter estimation) can be sped up by a
constant factor. The trick is to apply the dot product of the score
with the parameters in (3) within the semiring. Denote the part of
the parameter vector that applies to the derivative (in general, the
highest-order derivative) with α∇. Instead of the tuple as in (14),
with the normalised derivative, the tuple becomes

σ ,

(
log l,

αT
∇∇λl

l

)
. (16)

Notice that the last element of the tuple now is a scalar value,
which makes the operations ⊕ and ⊗ (which are similar to (15) and
straightforward to derive) a constant factor faster.

4. EXPERIMENTS

The feature extraction process described in this paper was tested in
a log-linear model on a small, noise-corrupted corpus: AURORA 2.
This makes it possible to test the interaction with noise compensation
methods. The task uses a small vocabulary and no language model,
which makes experiments without such optimisations as pruning
possible. AURORA 2 [18] is a standard digit string recognition task.
The generative model has whole-word HMMs with 16 states and
3 components per state. The number of HMM parameters is 46 732.
The HMMs are compensated with unsupervised vector Taylor series
(VTS) compensation as in [5]. The HMM parameters to derive
features for the discriminative model are trained on clean data.

Test set
SNR A B C
(dB) HMM l l,∇l HMM l l,∇l HMM l l,∇l
20 1.69 1.43 1.01 1.46 1.20 0.80 1.57 1.42 0.96
15 2.36 1.95 1.28 2.37 1.82 1.34 2.47 2.18 1.72
10 4.39 3.62 2.62 4.12 3.22 2.53 4.49 3.82 2.80
05 11.20 8.94 7.48 10.05 7.89 6.74 10.69 8.76 7.86
00 29.54 23.25 21.57 27.54 22.18 20.84 28.41 23.96 23.31
00–20 9.84 7.84 6.79 9.11 7.26 6.45 9.53 8.03 7.33

Table 1. WERs for decoding with the expectation semiring.

With features consisting of just word log-likelihoods, the dis-
criminative model has 13 parameters, corresponding to the log-
likelihoods of the 13 words (11 digits plus “sil” and “sp”). In
first-order score-spaces the derivatives of the log-likelihood are
computed as in section 3.1 and appended (like in [5] the data are
whitened separately for each Gaussian before computing the deriva-
tive). Only derivatives of the compensated means are used, since in-
cluding variances led to rapid over-fitting. The number of parameters
was 21 554. Second-order score-spaces resulted in generalisation
problems because of the small training set, and initial experiments
did not yield improvements over first-order score-spaces.

The discriminative models were initialised to use just the like-
lihoods from the generative model. They were then trained with a
minimum Bayes risk criterion as in [19]. This used a large lattice
with many, but not all, segmentations for the numerator and denom-
inator. Test set A was used as the validation set to stop training.

Word error rates for the experiments are in Table 4. Apart from
numerical differences, they are the same as in [6]. However, there
the derivatives were recomputed for every segment, whereas in this
paper they are found with the expectation semiring as in section 3.1,
which even with the unoptimised implementation is much faster.

With just likelihood features (“l”), the log-linear model is
closely related to the HMM. The difference is merely that within
words, all paths are taken into account, and that there are word-
specific discriminatively-trained parameters, effectively scaling
factors. This yields consistent improvements of 10–15 % on test
sets A and B, with greater improvements at lower signal-to-noise
ratios. Adding derivative features (“l,∇l”) introduces longer-range
dependencies that break the Markov assumption. This improves
recognition consistently. Where discrimination relies most on mod-
elling the speech accurately, at higher signal-to-noise ratios, this
helps most, with 18–33 % relative improvement at 10–20 dB.

Using the optimal segmentation instead of the HMM segmenta-
tion accounts for around 5 % of the improvement. Features for large-
vocabulary systems will be extracted per phone, like in [20], so that
the segmentation is likely to have greater impact on performance.

5. CONCLUSION

This paper has introduced a general method for introducing longer-
range features from segments of sequence data originally modelled
with a Markov model. It uses the log-likelihood and appends the
derivatives with respect to the parameters. By formulating the
Markov model as a weighted finite-state automaton with weights in
the expectation semiring, the features can be extracted efficiently.
For speech recognition, with a decoding algorithm that finds the op-
timal segmentation into words, the features are found in amortised
constant time. On the standard noise-corrupted AURORA 2 task,
this leads to substantial improvements.



6. REFERENCES

[1] Dan Gillick, Larry Gillick, and Steven Wegmann, “Don’t mul-
tiply lightly: Quantifying problems with the acoustic model
assumptions in speech recognition,” in Proceedings of ASRU,
2011.

[2] Sunita Sarawagi and William W. Cohen, “Semi-markov con-
ditional random fields for information extraction,” in Proceed-
ings of NIPS, 2004.

[3] Martin Layton, Augmented Statistical Models for Classifying
Sequence Data, Ph.D. thesis, Cambridge University, 2006.

[4] Geoffrey Zweig and Patrick Nguyen, “A segmental CRF ap-
proach to large vocabulary continuous speech recognition,” in
Proceedings of ASRU, 2009.

[5] M. J. F. Gales and F. Flego, “Discriminative classifiers with
adaptive kernels for noise robust speech recognition,” Com-
puter Speech and Language, vol. 24, no. 4, pp. 648–662, 2010.

[6] A. Ragni and M. J. F. Gales, “Inference algorithms for gen-
erative score-spaces,” in Proceedings of ICASSP, 2012, pp.
4149–4152.

[7] Tommi Jaakkola and David Haussler, “Exploiting generative
models in discriminative classifiers,” in Proceedings of NIPS,
1998.

[8] M. J. F. Gales, S. Watanabe, and E. Fosler-Lussier, “Structured
discriminative models for speech recognition: An overview,”
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 70–81,
Nov 2012.

[9] R. C. van Dalen, A. Ragni, and M. J. F. Gales, “Efficient de-
coding with continuous rational kernels using the expectation
semiring,” Tech. Rep. CUED/F-INFENG/TR.674, Cambridge
University Engineering Department, Feb 2012.

[10] Björn Hoffmeister, Georg Heigold, Ralf Schlüter, and Her-
mann Ney, “WFST enabled solutions to ASR problems: Be-
yond HMM decoding,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 20, no. 2, pp. 551–564, Feb
2012.

[11] Mehryar Mohri, “Semiring frameworks and algorithms for
shortest-distance problems,” Journal of Automata, Languages
and Combinatorics, vol. 7, no. 3, pp. 321–350, 2002.

[12] Barak A. Pearlmutter and Jeffrey Mark Siskind, “Lazy multi-
variate higher-order forward-mode AD,” in Proceedings of the
annual symposium on Principles of programming languages,
2007, pp. 155–160.

[13] Mehryar Mohri, “Weighted automata algorithms,” in Hand-
book of Weighted Automata, Manfred Droste, Werner Kuich,
and Heiko Vogler, Eds., pp. 213–254. Springer, 2009.

[14] Jason Eisner, “Parameter estimation for probabilistic finite-
state transducers,” in Proceedings of the Annual Meeting on
Association for Computational Linguistics, 2002, pp. 1–8.

[15] Zhifei Li and Jason Eisner, “First- and second-order expecta-
tion semirings with applications to minimum-risk training on
translation forests,” in Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, 2009.

[16] Jason Eisner, “Expectation semirings: Flexible EM for finite-
state transducers,” in Proceedings of the ESSLLI Work-
shop on Finite-State Methods in Natural Language Processing
(FSMNLP), 2001.

[17] Georg Heigold, Thomas Deselaers, Ralf Schlüter, and Her-
mann Ney, “Modified MMI/MPE: A direct evaluation of the
margin in speech recognition,” in International Conference on
Machine Learning, Helsinki, Finland, July 2008, pp. 384–391.

[18] Hans-Günter Hirsch and David Pearce, “The AURORA exper-
imental framework for the performance evaluation of speech
recognition systems under noise conditions,” in Proceedings
of ASR, 2000, pp. 181–188.

[19] A. Ragni and M.J.F. Gales, “Structured discriminative models
for noise robust continuous speech recognition,” in Proceed-
ings of ICASSP, 2011.

[20] A. Ragni and M.J.F. Gales, “Derivative kernels for noise robust
ASR,” in Proceedings of ASRU, 2011.


