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1. introduction

1 Introduction

�is is the second progress report for epsrc Project ep/i006583/1 (Generative Kernels
and Score Spaces for Classi�cation of Speech) within the Global Uncertainties Pro-
gramme.

�e aim of this project is to signi�cantly improve the performance of automatic
speech recognition systems across a wide-range of environments, speakers and speak-
ing styles. �e performance of state-of-the-art speech recognition systems is o�en ac-
ceptable under fairly controlled conditions and where the levels of background noise
are low. However for many realistic situations there can be high levels of background
noise, for example in-car navigation, or widely ranging channel conditions and speak-
ing styles, such as observed on YouTube-style data. �is fragility of speech recognition
systems is one of the primary reasons that speech recognition systems are not more
widely deployed and used. It limits the possible domains in which speech can be reli-
ably used, and increases the cost of developing applications as systems must be tuned
to limit the impact of this fragility. �is includes collecting domain-speci�c data and
signi�cant tuning of the application itself.

�e vast majority of research for speech recognition has concentrated on improv-
ing the performance of systems based on hidden Markov models (hmms). hmms are
an example of a generative model and are currently used in state-of-the-art speech re-
cognition systems. A wide number of approaches have been developed to improve the
performance of these systems under changes of speaker and noise. Despite these ap-
proaches, systems are not su�ciently robust to allow speech recognition systems to
achieve the level of impact that the naturalness of the interface should allow.

One of themajor problemswith applying traditional classi�ers, such as support vec-
tor machines, to speech recognition is that data sequences of variable length must be
classi�ed.�is project combines the current generativemodels developed in the speech
recognition community with discriminative classi�ers used both in speech processing
and in machine learning. Figure 1 gives a schematic overview of the approach that this
project takes. �e shaded part of the diagram indicates the generative model of a state-
of-the-art speech recogniser. In this project, the generative models are used to de�ne
a score-space. �ese scores then form features for the discriminative classi�ers. �is
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Figure 1 Flow diagram of the project plan. �e shaded region encompasses the
components of a state-of-the-art speech recogniser.
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2. features

approach has a number of advantages. It is possible to use current state-of-the-art ad-
aptation and robustness approaches to compensate the acoustic models for particular
speakers and noise conditions. As well as enabling any advances in these approaches to
be incorporated into the scheme, it is not necessary to develop approaches that adapt
the discriminative classi�ers to speakers, style and noise. Using generative models also
allows the dynamic aspects of speech data to be handled without having to alter the
discriminative classi�er. �e �nal advantage is the nature of the score-space obtained
from the generative model. Generative models such as hmms have underlying con-
ditional independence assumptions that, whilst enabling them to e�ciently represent
data sequences, do not accurately represent the dependencies in data sequences such
as speech. �e score-space associated with a generative model does not have the same
conditional independence assumptions as the original generative model. �is allows
more accurate modelling of the dependencies in the speech data.

�is report will report on improvements in the two non-standard components in
�gure 1: score-space computation, and classi�ers. It will also report on some work
related to the project. Section 2 will discuss score-space computation. It presents a
method to compute scores from generative models for all segmentations in amortised
constant time (published as van Dalen et al. 2013). Section 3 will discuss two forms of
speech recognition with large-margin classi�ers. �e �rst is from work related to the
project (published as Zhang and Gales 2013), about kernelised log-linear models. �e
second was performed within the project (submitted as Yang et al. 2013), and applies
the in�nite svm.

2 Features

�is work uses log-linear models and svms for classi�cation (see section 3 on page 10).
�is requires use of joint features: the features depend not only on the observations, but
also on the labels. �is work performs speech recognition. Recognising continuous
speech means �nding a sequence of symbols, e.g., words, of unknown length. To make
inference feasible, this work aims not just to �nd the optimal word sequence, but to
jointly optimise the word sequence and the segmentation of the audio into words. In an
hmm speech recogniser, this joint optimisation by inferring sequences of hmm states
that imply combinations of segmentations and word sequences. However, this relies
on independence assumptions which do not model the data well. In this work, the
segmentation therefore needs to be considered explicitly. �e feature function will be
calledφ(O,w, s). Here,O is the observation sequence.w and s have the same length,
and are the word and segment sequence, respectively. �e function returns a �xed-
length feature vector.

�e next subsection, 2.1, will discuss the form of the feature vector used in this
work, which derives from word-level hidden Markov models. Section 2.2 will then
discuss how to extract these features e�ciently.

2.1 Generative score-spaces

Since a class is a sequencew, the number of classes grows exponentially with the length
ofw. It is infeasible to consider all those classes as completely separate when decoding,
and only a small fraction will be seen in training. �erefore, the commonality must be
exploited by introducing structure into the classes. Since the feature function relates
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2. features

the observation and the class, this structure must be expressed in the feature function.
�is work focuses on acoustic modelling, and assumes that a language model P(w) is
given, and produces one element of the feature vector.1 �e acoustic model part of the
feature vector is additive over segments of audio:

φ(O,w, s) ,

[∑|w|
i=1φ

′(Osi , wi)
P(w)

]
, (1)

whereOsi represents the audio in segment si. φ ′(Osi , wi) is a function that extracts
a feature from the combination of one segment of audio and oneword.�is feature vec-
tor contains zeroes except for the portion of the vector designated for the hypothesised
word:

φ ′(Oτ...t, w) ,

 δ(w = 1)φ ′′(Oτ...t, 1)
...

δ(w = V)φ ′′(Oτ...t, V)

 . (2)

Here, δ(w = v) is the Kronecker delta, which switches on the word-independent fea-
ture for words 1 toV , the number of words in the vocabulary. φ ′′(Oτ...t, v) returns the
feature vector for the word v. �is report uses generative score-spaces, which means
that the feature vectors are derived from the log-likelihoods of generative models. In
speech recognition, the standard generative model is the hidden Markov model. De-
note the likelihood for word v with l(Oτ...t;λv), with parameter λv.

�is report will use three types of generative score-spaces for log-linear models.
First, the log-likelihood score-space, which contains only the log-likelihoods of words:

φ ′′(Oτ...t, v) , log l(Oτ...t;λv) . (3a)

�e second type is the �rst-order derivative score-space, which appends the likelihood
with respect to the parameters to the log-likelihood:

φ ′′(Oτ...t, v) ,

[
log l(Oτ...t;λv)
∇λ log l(Oτ...t;λv)

]
. (3b)

Note that the second element, the partial derivative, is vector-valued. Higher-order
derivative score-spaces are also possible. �e second-order derivative score-space is
de�ned as

φ ′′(Oτ...t, v) ,

 log l(Oτ...t;λv)
∇λ log l(Oτ...t;λv)
∇T
λ∇λ log l(Oτ...t;λv)

 , (3c)

where∇T
λ∇λ is assumed to produce a vector.

�e large-margin trained models will include for each class the features for all gen-
erative models. Log-likelihood score-spaces then use instead of (3a)

φ ′′(Oτ...t, v) ,

 log l(Oτ...t;λ1)
...

log l(Oτ...t;λV)

 . (4a)

1Last year’s report (van Dalen et al. 2012b) looked into using more dimensions for language modelling
but did not improve performance.
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2.2. computing scores with higher-order expectation semirings

Note that this φ ′′ does not actually depend on v, because log-likelihoods for all words
are used. When this φ ′′ is used in φ ′ in (2), the e�ect is therefore that the same vec-
tor φ ′′ is placed in a word-dependent position in φ ′.

�e �rst-order derivative score-space for large-margin, svm-based, models is

φ ′′(Oτ...t, v) ,


log l(Oτ...t;λ1)
∇λ log l(Oτ...t;λ1)

...
log l(Oτ...t;λV)
∇λ log l(Oτ...t;λV)

 . (4b)

A problem with segmental features is that the segmentation, say, into words, of the
adio must be considered explicitly. If all segmentations are to be considered, features
for all segments must be known. �e next section will therefore discuss how to extract
features in generative score-spaces for all segments e�ciently.

2.2 Computing scores with higher-order expectation semirings

Decoding with an explicitly segmental model requires two steps: extracting segmental
features, and �nding the joint optimal word sequence and segmentation. Keeping the
language model �xed, the latter task can be performed in Θ(T2) time, where T is the
length of the utterance (Sarawagi and Cohen 2004; Ragni and Gales 2012). �e com-
plexity of the former task depends on the nature of the features, but computing features
for theΘ(T2) segments must take at leastΘ(T2) time. �is is therefore the bottleneck
for performance. Previous work (Ragni and Gales 2012) has shown how to extract gen-
erative scores that include nth-order derivatives in Θ(T2+n) time. �is section will
introduce a method to extract derivatives of any order for all segments inΘ(T2) time,
that is, amortised constant time. �is method was published as van Dalen et al. (2013).

Since the derivatives in the generative score-space depend on all frames in a seg-
ment, a direct implementation would re-compute them completely for every hypothes-
ised segment.�is was the approach adopted in Layton (2006), using an algorithmwith
nested passes of forward–backward that was run separately for each hypothesised seg-
mentation. Van Dalen et al. (2013) introduced a method that incrementally computes
scores for all segmentations that share a common start time with only a forward pass. It
augments the output and transition probabilities with their derivatives. As long as the
hmms have only few states, which for word hmms is the case, this algorithm requires a
modest amount of extra storage. When scores are required for all possible segments,
they can be computed in amortised constant time.

�is section will discuss how to extract the features in (3) from a word hmm and a
sequence of observations. �e following will �rst recall how thehmm likelihood can be
computed for a given segment of observations. �en, it will explain how to extend this
to compute the likelihood for a range of segments at the same time, with themethod in-
troduced in Ragni andGales (2012). A�er that, it will discuss how �rst- or higher-order
derivatives can be found with the same time complexity (but with a greater constant
factor).
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Figure 2 Weighted �nite-state transducer T representing a trellis.

Fig. 2 contains a �nite-state automaton representing a trellis.2 Time goes from le�
to right and discretehmm symbols from top to bottom. Each successful combination of
anhmm symbol sequence (e.g. “ei ei t”) and an observation sequence (e.g. (o1,o2,o3))
corresponds to a path from a bold circle to a double circle. �e corresponding likeli-
hood is given by the product of the weight (a�er the slash) along the edge. �e like-
lihood for the whole hmm for, e.g., observations o1,o2,o3, is given by the summed
likelihood over all paths from (0s,0) to (.03s,2). In general,

l(Oτ:t;λv) ,
∑

π:p[π]=(τ,start)
∧n[π]=(t,end)

∏

e∈π
σ[e;λv] , (5)

where π is a path with start state p[π] and end staten[π], and e ∈ π are the edges along
the path. σ[e;λv] is the weight on arc e.

It is well-known how to compute (5) e�ciently: with either the forward or the
backward algorithm. Both are “single-source shortest-distance” algorithms (as they
are called in the literature about �nite-state automata, e.g., Mohri (2002)) that exploit
the trellis structure. Both compute the sum of the paths from node s1 to node s2:3

forwd(s1, s2,λv) , backwd(s1, s2,λv) ,
∑

π:p[π]=s1
∧n[π]=s2

∏

e∈π
σ[e;λv] . (6)

�e forward algorithm computes forward weights from one start node to many end
nodes incrementally. Similarly, the backward algorithm computes backward weights
from one end node to many start nodes. (6) can be rewritten recursively, where p[e]

2Since the trellis is represented as a Mealy machine, it combines contributions from the hmm output
distributions and transition matrices. �is will be useful in section 2.3. �is trellis automaton can be pro-
duced by composing an automaton representing the output probabilities for consecutive observations with
one that produces all possible hmm state sequences o1 . . .oT . See van Dalen et al. (2012a) for more details,
or Ho�meister et al. (2012) for a more general discussion.

3Note that these de�nitions of the forward and backward algorithms are di�erent from the ones some-
times given, for hmms, where the emission probabilities are on states. Here, weights are only on edges, so
that the two algorithms are symmetrical.
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2.3. computing derivatives with the expectation semiring

denotes the source node of an edge, and n[e] the destination:

forwd(s1, s2,λv) =
∑

s ′,e:p[e]=s ′

∧n[e]=s2

forwd(s1, s ′,λv)× σ[e;λv] ; (7a)

backwd(s1, s2,λv) =
∑

s ′,e:p[e]=s1
∧n[e]=s ′

σ[e;λv]× backwd(s ′, s2,λv); (7b)

forwd(s, s,λv) = backwd(s, s,λv) , 1. (7c)

�ese can be computed e�ciently with dynamic programming. �e forward weights
for one time in a trellis like Fig. 2 depend only on those of the previous time. �e
algorithm therefore progresses time instance by time instance. For a �xed hmm, the
forward algorithm takes linear time in the length of the observation segment.

However, the objective in this section is to consider all possible segmentations.
�erefore, the likelihood for all segments Oτ:t must be computed. In an utterance
O = (o1, . . . ,oT ), with T observations, there are Θ(T2) possible segments. �e seg-
ments have an average length of Θ(T). Applying the forward algorithm separately for
all possible segments would therefore takeΘ(T3) time.

Instead, it can be noted that the forward algorithm from time τ to end time T gener-
ates likelihoods for segments starting at timeτ and ending at all times t = τ . . . T (Ragni
and Gales 2012). By applying the forward algorithm for each time step τ = 1 . . . T − 1,
likelihoods for all Θ(T2) segments can be found in Θ(T2) time. Per segment, this
therefore takes amortised constant time.

2.3 Computing derivatives with the expectation semiring

In addition to the log-likelihood, which the method discussed above �nds e�ciently,
(3) contains its derivative with respect to the parameters λv. �is section will �rst
explain why applying the same strategy as above speeds up the standard method for
computing the derivatives merely by a constant factor. It will then introduce a di�erent
strategy, attaching derivatives to all weights, to improve the time complexity. For sim-
plicity, this section will �nd the derivative of the likelihood, not of the log-likelihood.
�e latter is straightforward to compute by dividing the former by the likelihood.

�e weight σ[e;λv] on each arc in Fig. 2 is a product of a transition weight and an
hmm output probability. Computing its derivative∇λσ[e;λv] is therefore straightfor-
ward. �e standard way of computing the derivative of the likelihood of an hmm is by
using unnormalised arc posteriors γτ:t(e):

∇λl(Oτ:t;λv) =
∑

e

γτ:t(e)
∇λσ[e;λv]
σ[e;λv]

, (8a)

where γτ:t(e) is the fraction of the total weight through edge e:

γτ:t(e) ,
∑

π:p[π]=(τ,start)
∧n[π]=(t,end)∧e∈π

∏

e ′∈π
σ[e ′;λv] . (8b)

It is clear from (8b) that γτ:t(e) depends on the weights on edges before and a�er e, so
that the derivative, in (8a), relaxes theMarkov property (see Layton 2006, for more de-
tail). (8b) is normally computed with the forward–backward algorithm. �is combines
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the weight from the start node (τ, start) up to the source of e, p[e], and the backward
weight from the end node (t, end) to the destination of e, n[e]:

γτ:t(e) = forwd((τ, start), p[e] ,λv)× σ[e;λv]
× backwd(n[e] , (t, end),λv). (8c)

�e computation of all required forward weights can be done e�ciently as de-
scribed above, as can the computation of all backward weights. However, for each
segment τ : t, γτ:t(e) derives from di�erent forward and backward passes and must
be recomputed. �e average time to compute (8a) for one segment is therefore Θ(T).
Finding the derivatives for all segments in this way then takes Θ(T3) time. Extending
this strategy to second-order derivatives, posteriors for pairs of arcsmust be computed,
and the algorithmwill takeΘ(T4) time, et cetera (Ragni andGales 2012). TakingΘ(T3)
time or more to �nd features becomes prohibitive for speech recognition.

�e following will view hmm derivatives in a di�erent way. It is possible to append
derivatives to all initial weights, and then propagate them throughout the computation
of the likelihood. Any weight l is replaced with

σ ,〈l,∇λl〉 . (9)

�is starts from the arcs weights in Fig. 2. Original weights l[e;λ] on arc e, dependent
on parameters λ, are replaced with

σ[e;λ] ,〈l[e;λ] ,∇λl[e;λ]〉 . (10)

Now the forward algorithm must be extended so that the weight in each end state be-
comes a tuple of the likelihood and its derivative:

forwd((τ, start), (t, end),λv) =〈l(Oτ:t;λv) ,∇λl(Oτ:t;λv)〉 . (11)

�en, �nding the �rst-order score in (3) with the derivative of the log-likelihood the
values in (11) is straightforward.

�is can be done by generalising the operations on weights so that they maintain
the invariant that the second element is the derivative of the �rst element, as in (9).
�is is called “automatic di�erentiation” using dual numbers (Pearlmutter and Siskind
2007). Given values for weights l1 and l2, the derivatives of their sum and product can
be found with

∇λ(l1 + l2) = ∇λl1 +∇λl2; (12a)
∇λ(l1 · l2) = l1 · ∇λl2 + l2 · ∇λl1. (12b)

�e trellis in Fig. 2 is a weighted �nite-state automaton. Requirements on the types
of weights that can be used in weights automata are well-established (Mohri 2009). For
many algorithms, including the forward algorithm, the requirement is that the weights
are in a semiring. Semirings de�ne operations⊕ and⊗, which generalise+ and× on
scalars, and identities 0 and 1, which generalise 0 and 1. An important property for
a, b, c to be in a semiring is that multiplication must distribute over addition, that is,
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c). �is makes it possible to rewrite (6) to (7).
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It turns out that the tuple in (9) is in the expectation semiring (Eisner 2002), so that
it can be used in weighted �nite-state automata. Denoting the weights with〈l,∇λl〉, it
follows from (12) that the semiring operations must be de�ned as

〈l1,∇λl1〉 ⊕〈l2,∇λl2〉 ,〈l1 + l2,∇λl1 +∇λl2〉 ; (13a)
〈l1,∇λl1〉 ⊗〈l2,∇λl2〉 ,〈l1 · l2, l1 · ∇λl2 + l2 · ∇λl1〉 , (13b)

and the additive and multiplicative identities are de�ned as

0 ,〈0, 0〉 ; 1 ,〈1, 0〉 . (13c)

�is de�nition ensures that both operations ⊕ and ⊗ propagate tuples with as the
second element the derivative of the �rst element. It is also possible to extend this to
higher-order derivatives to �nd higher-order generative scores (Li and Eisner 2009).

�e expectation semiring can be used to accumulate any statistic that is additive
along the edges of a path and is weighted by the original weight along the path (Eis-
ner 2001; Heigold et al. 2008). It was proposed for the expectation step of expect-
ation–maximisation in probabilistic transducers. In theory, training a speech recog-
niser would be possible with just a forward pass and the expectation semiring. How-
ever, this would entail keeping statistics for all speech recogniser parameters relevant
to the utterance for all states in the hmm, which requires much memory, and the oper-
ations in (13) become expensive. By using the forward–backward algorithm, the order
of the semiring can be one lower than using just the forward algorithm (Eisner 2001;
Heigold et al. 2008). Since in normal speech recogniser training the start and end times
are known, the sensible trade-o� is to use the forward–backward algorithm.

However, for computing generative scores, this trade-o�works out di�erently. Firstly,
the scores for all start and end times are required. Secondly, the generative model for
one segment has a small and �xed number of parameters, so memory use is not an
issue.

2.4 Implementation

�e likelihoods, and their derivatives, have a large dynamic range. It is usual for like-
lihoods in sequential probabilistic models to be represented by their logarithms. �is
is possible because the likelihoods are always non-negative. �e additional statistics,
on the other hand, can be positive or negative. It is possible to separately store the
logarithm of the absolute value and the sign (Li and Eisner 2009).

However, in this work the statistics are derivatives∇λl of the weight. �eir values
are known to be in the order of the weight l itself. If the derivatives are divided by the
weights, therefore, they can be represented directly as �oating-point numbers without
risk of over�ow or under�ow. �e operations ⊕ and ⊗ must be performed in terms
of normalised derivatives as well. Assume two values in this normalised expectation
semiring:

σ1 ,

〈
log l1,

∇λl1
l1

〉
; σ2 ,

〈
log l2,

∇λl2
l2

〉
. (14)

How to perform addition andmultiplication in the log-domain, for the �rst elements, is
well-known. �e second element of σ1⊗σ2 can be expressed in terms of the elements
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3. classifiers

of σ1 and σ2 as

∇λ(l1l2)
l1l2

=
l2∇λl1 + l1∇λl2

l1l2
=
∇λl1
l1

+
∇λl2
l2

. (15a)

�e second element of σ1 ⊕ σ2 is

∇λ(l1 + l2)
l1 + l2

=
l1

l1 + l2

(
∇λl1
l1

)
+

l2

l1 + l2

(
∇λl2
l2

)
. (15b)

In the log-domain, a slightly more numerically stable way to compute l1/(l1 + l2)
is 1/(1+ l2/l1). �e result of this can be converted to the normal domain and be used
to scale∇λl1/l1, and similar for∇λl2/l2.�en, (15b) can be computed.�e resulting
weights are tuples of the log-likelihood (not the likelihood) and its derivative, so they
can be used directly as the scores in (3).

Decoding (but not parameter estimation) can be sped up by a constant factor. �e
trick is to apply the dot product of the score with the parameters in (19) within the
semiring. Denote the part of the parameter vector that applies to the derivative (in
general, the highest-order derivative) with α∇. Instead of the tuple as in (14), with the
normalised derivative, the tuple becomes

σ ,

〈
log l,

αT
∇∇λl
l

〉
. (16)

Notice that the last element of the tuple now is a scalar value, which makes the op-
erations ⊕ and ⊗ (which are similar to (15) and straightforward to derive) a constant
factor faster.

3 Classi�ers

Most current speech recognition systems are based on hiddenMarkovmodels (hmms).
�ese are generative models, which can be used for classifying data using Bayes’ rule.
�e restriction on the form of classi�er this yields can be li�ed by extracting features
from the audio with a generative model, and applying any of a number of known clas-
si�ers.

Section 2 has shown how to generate generative score-spaces from hmm-like mod-
els to model the acoustics. �is section will discuss how to use these in two large-
margin classi�ers that allow non-linear decision boundaries in this space. Section 3.2
will report on speech recognition with kernelised structured svms. Section 3.3 will dis-
cuss a di�erent strategy to produce non-linear decision boundaries, using a Bayesian
non-parametric mixture of svms.

3.1 Log-linear models

Discriminative models (Gales et al. 2012) are probabilistic models that can operate on
a wide range of features derived from the same segment of audio. Unlike a generat-
ive model, a discriminative model for speech recognition directly yields the posterior
probability of the word sequencew given the observation sequenceO. Here, each of

10



3.1. log-linear models

the elementswi ofw is equal to one element vj from the vocabulary v. To enable com-
pact discriminative models to be trained, the input sequence must be segmented into,
e.g., words. Let s = {si}

|w|
i=1 denote a segmentation. �is paper will use a log-linear

model:

P(w, s|O;α) ,
1

Z(O,α)
exp

(
αTφ(O,w, s)

)
. (17)

Here, Z(O,α) is the normalisation constant. φ(O,w, s) is the feature function that
returns a feature vector characterising the whole observation sequence. α is the para-
meter vector.

For simplicity, this work will assume there is no language model. �e distribution
then factorises over the segments of the audio, i.e. the feature function is a sum of
features for each segment:

φ(O,w, s) ,
∑

i

φ(Osi , wi), (18)

whereOsi indicates the observations in segment si.
For decoding, it is in theory possible tomarginalise out the segmentation. However,

this is infeasible, so instead the segmentation and word sequence that maximise the
posterior in (17) will be found:

argmax
w,s

P(w, s|O;α) = argmax
w,s

1

Z(O,α)
exp

(
αTφ(O,w, s)

)
= argmax

w,s

(
αTφ(O,w, s)

)
= argmax

w,s

∑

i

αTφ(Osi , wi). (19)

�is maximisation can be performed exactly (as in section 2.2), or by constraining the
hypotheses to those found in a lattice, which will be done in the rest of this work. From
here on, to simplify notation, the segmentation s will therefore be dropped.

3.1.1 Training criteria

�ere are a number of ways in which a log-linear model can be trained. �e training
criterion used on standard hmms, the likelihood of observations and transcription, is
unavailable since the probability of the observations is not modelled. However, it is
possible to optimise the likelihood of the correct word sequencew(r)

ref given the obser-
vations, the “conditional likelihood”. �is is possible for hmms as well, when it is o�en
called “maximummutual information”. �e criterion can be written, summing over all
utterances r,

α∗ = argmax
α

∑

r

logP
(
w

(r)
ref

∣∣∣O(r);α
)

= argmax
α

∑

r

[
log
(
exp

(
αTφ(O(r),w

(r)
ref )
))

− log
(
Z(O(r),α)

)]
= argmax

α

∑

r

[
αTφ(O(r),w

(r)
ref ) − log

(∑
w

exp
(
αTφ(O(r),w)

))]
. (20)

�is criterion can be maximised with a form of expectation–maximisation.

11



3. classifiers

Another criterion that is frequently used for speech recognition is minimumBayes’
risk (mbr). �is uses a loss functionL(wref ,w) between the reference word sequence

α∗ = argmin
α

∑

r

∑

w

L(wref ,w)P
(
w
∣∣O(r);α

)
. (21)

�is will be used for the experiments in section 4.1.
A third training criterion, which will be used in the next two sections, is the max-

imum margin criterion. �is aims to improve the margin between the reference tran-
scription and the most competing sequencew:

α∗ = argmin
α

∑

r

[
max

w6=w(r)
ref

L
(
w

(r)
ref ,w

)
− log

(
P
(
w

(r)
ref

∣∣O(r);α
)

P
(
w
∣∣O(r);α

) )]
+

. (22)

Here, [·]+ is the hinge-loss function, and the margin is de�ned with a loss function and
the log-posterior ratio (Zhang et al. 2010).

�is criterion is the same as for structured svms, as is decoding as per (19). Known
algorithms for structured svms can therefore be applied. A Gaussian prior, logp(α) =
logN (µα, CI) ∝ 1

2C
‖α− µα‖22, is usually introduced into the training criterion

(Zhang et al. 2010). Substituting (17) into (22) and cancelling out the normalisation
term yields the following convex optimisation:

argmin
α,ξ

1

2
‖α− µα‖22 +

C

R
ξ

s.t. ∀ competing hypotheses
{
w(1), . . . ,w(R)

}
:

αT
∑

r

[
φ(O(r),w

(r)
ref ) − φ(O

(r),w(r))
]
≥
∑

r

L
(
w

(r)
ref ,w

(r)
)
− ξ, (23)

where ξ ≥ 0 is the “slack variable”, introduced to replace the hinge loss. (23) can be
solved using the cutting-place algorithm (Joachims et al. 2009).

3.2 Kernelised log-linear models

So far, large-margin training of log-linear models has assumed the feature, or primal,
space. However, it is normal to use svms on a kernelised (or “dual”) space, which allows
non-linear boundaries in the original space. �is involves using training data points
explicitly in classi�cation. �is is not trivial to do with joint feature spaces, because the
inclusion of an in�nite number of di�erent classes makes the number of data points es-
sentially in�nite. �is section will summarise the approach used in work related to the
project (Zhang and Gales 2013) to kernelise large-margin log-linear models for speech
recognition.

A good way of training the parameters α in feature space of a structured svm
for speech recognition is to alternate between optimising the parameters and �nding
the new competing hypotheses (Zhang and Gales 2012). �e competing hypotheses
form the constraints for a quadratic programming problem that can be solved with
the cutting-plane algorithm. At every iteration, new constraints are added to the con-
straint set.�ere are twoways of doing this (Joachims et al. 2009).�e obviousmethod
is to add the current most competing hypothesis for each word at each iteration (the

12



3.2. kernelised log-linear models

n-slack algorithm). �e alternative is to add a constraint which is a sum over all ut-
terances (the 1-slack algorithm). Both algorithms converge to a minimum of the same
function. �ough the n-slack algorithm would take fewer iterations, it generates so
many constraints that even for moderate-sized tasks, it exhausts a modern computer’s
memory (Zhang and Gales 2012). �e 1-slack algorithm is therefore used.

�e kernel trick rewrites (23) so that the feature function φ(·) is not evaluated ex-
cept through the dot product φ(·)Tφ(·) of the feature functions applied to two obser-
vations. �e dot product can then be replaced by a kernel function k(·, ·) that relates
two observations. Since the feature function here is a joint feature function, taking as
parameters not only the observation but also the assigned class, the kernel function
must take classes also. �e straightforward linear kernel can then be de�ned as

k
(
(O(r),w(r)), (O(r ′),w(r ′))

)
, φ(O(r),w(r))Tφ(O(r ′),w(r ′)). (24)

Normally, the results of the kernel function applied to each pair of training data points
are used as entries of theGrammatrixG. However, since the number of possible classes
is in�nite, the Gram matrix would have in�nite size. Instead, the 1-slack algorithm
is used, and at each iteration the Gram matrix is extended by one row and column,
representing the sum over the competing hypotheses for each utterance. �e criterion,
formulated in terms of a vector of parameters αdual instead of α, becomes

max
αdual

m ≥0

[
M∑

m=1

αdual
m Lm −

1

2

M∑

m=1

M∑

m ′=1

αdualTGαdual

]
, (25a)

s.t.
M∑

m=1

αdual
m = C, (25b)

where Lm is the average loss at iterationm

Lm ,
1

R

R∑

r=1

L(w(r)
ref ,w

(r)
m ), (25c)

where w(r)
m is the competing word sequence for the mth iteration. G is the Gram

matrix, with elements

gmm ′ ,
1

R2

[
R∑

r=1

(
φ(O(r),w

(r)
ref ) − φ(O

(r),w(r)
m )
)]T

[
R∑

r=1

(
φ(O(r),w

(r)
ref ) − φ(O

(r),w
(r)
m ′)

)]
. (25d)

gmm ′ can be entirely expressed in terms of the kernel function:

gmm ′ =
1

R2

R∑

r=1

R∑

r ′=1

[
k
(
(O(r),w

(r)
ref ), (O

(r ′),w
(r ′)
ref )

)
− k
(
(O(r),w

(r)
ref ), (O

(r ′),w
(r ′)
m ′ )

)
− k
(
(O(r),w(r)

m ), (O(r ′),w
(r ′)
ref )

)
+ k
(
(O(r),w(r)

m ), (O(r ′),w
(r ′)
m ′ )

)]
.

(25e)
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3. classifiers

�is relates every training utterance to every training utterance, which, depending on
the formofk, can be slow. Section 3.2.1 will therefore discuss a sensible form thatmakes
training faster.

Training follows the 1-slack algorithm, in three steps. First, solve the dual quad-
ratic program based on the current Gram matrixG. At iterationm, this will return a
m-dimensional parameter vectorαdual. Second, use thisαdual to �nd the closest com-
peting hypothesisw(r)

m+1 for each utterance r in parallel.�ese hypotheses will be used
to compute the losses and the evaluate the kernel function. �ird, compute the kernel
values and update the Gram matrix.

Decoding an utterance o with a kernelised log-linear model uses the dual version
of (19) which sums over all training utterances and all competing hypotheses:

w∗ = argmax
w

∑

m,r

αdual
m

[
k
(
(O,w), (O(r),w

(r)
ref )
)
− k
(
(O,w), (O(r),w(r)

m )
)]
.

(26)

�is can be seen as appending an additional row and column to the Gram matrix and
optimising forw∗ (unlike (25a), which optimises for αdual

m ). Without any further re-
quirements on the form of the kernels, this maximisation would involve explicitly eval-
uating k(·, ·) for all possible w, which is infeasible. It is therefore important to con-
strain the form of the kernel, which will be discussed in the next section.

3.2.1 Form of kernel

�e general form of the kernel in (24) relates two utterances and corresponding tran-
scriptions.�is makes training and decoding slow. In standardhmm systems, the inde-
pendence assumptions between the acoustics of words in the sequence make training
and decoding feasible. In log-linear models using the feature space, a similar e�ect (at
least for decoding) can be achieved by constraining the acoustic feature, in (1), to be
a sum over segments. For the dual form, to make words independent, and since ker-
nels must be symmetric, the kernel must be additive over the words in both sequences.
Assume that word sequencew(r) for observationO(r) can be associated determinist-
ically with segmentation s(r), the kernel function must be of the form

k
(
(O(r),w(r)), (O(r ′),w(r ′))

)
=∣∣w(r)

∣∣
∑

i=1

∣∣w(r ′)
∣∣

∑

i ′=1

δ
(
w

(r)
i = w

(r ′)
i ′

)
k
w

(r)
i

(
O

(r)

s
(r)
i

,O
(r ′)

s
(r ′)
i ′

)
, (27)

where kw is a sequence kernel, potentially speci�c to the word, relating the two audio
segments. �is restriction means that for any hypothesised word in an utterance, only
the kernel between it and all occurrences of the same word in the training data have
to be considered. �is is feasible (if slower than decoding with a standard hmm) and
detailed in Zhang and Gales (2012).

Di�erent word kernels kw can be chosen, which is where the strength of kernel-
ising log-linear models lies. Extracting two feature vectors using φ ′′w(·) as in (4), the
equivalent of the model in primal space results from a linear kernel,

klinear,w(O
(1),O(2)) , φ ′′w(O

(1))Tφ ′′w(O
(2)). (28a)
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3.3. infinite support vector machines
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Figure 3�e graphical model for a mixture of experts.

A common generalisation of this is the dth-order polynomial kernel:

kpoly,w(O
(1),O(2)) ,

(
φ ′′w(O

(1))Tφ ′′w(O
(2)) + b

)d
. (28b)

Another well-known kernel is the radial basis function kernel with covariance σ2:

krbf,w(O
(1),O(2)) , exp

(
−
1

2σ2

∥∥φ ′′w(O(1)) − φ ′′w(O
(2))
∥∥2
2

)
. (28c)

3.3 In�nite support vector machines

Kernelising support vectormachines is oneway of using linear classi�ers tomodel non-
linear decision boundaries; using a mixture of svm experts is another. �is allows the
classi�cation of experts that have been trained on di�erent parts of the feature space to
be interpolated depending on the position in space of the observation. �e following
will �rst discuss the mixture of experts, for which the number of experts needs to be
pre-speci�ed. It will then discuss the Bayesian non-parametric variant, which integ-
rates out over all possible mixtures and partitions of the training data.

3.3.1 �e mixture of experts

An alternative way of modelling non-linearities in the input is using a mixture of ex-
perts. �is model �rst decides on the weighting between experts given the region of
input space, and then interpolates between the classi�cation of these experts.

Figure 3 shows the graphicalmodel for a Bayesianmixture of expects. In themiddle
of the graph there are the component priors as a vector π. Unusually, the plate at the
bottom considers allN observations separately. (�is will be exploited in section 3.3.2
to deal with an in�nite number of experts.) Each observation is assigned a compon-
ent zn. �e observation φn depends on the component, and the parameters θzn of
that component. �e feature is assumed generated by a mixture of Gaussians. �is is
o�en unrealistic. However, this is not a problem, since the model will not be used to
generate data, and the observation is always given.�is part of themodel is o�en called
the gating network: all it does is assign data to experts.

�e right-hand part of the graphical model is the expert model. Each component
has one expert. �e experts are discriminative: they directly model the class given the
observation. �e classwn that the observation is assigned to depends on the compon-
ent and the observation, and on the parameter αzn of the expert.
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Figure 4�e graphical model for an in�nite mixture of experts.

If the parameters θ,α are given, classi�cation in this model works as follows:

P(w|φ,θ,α) =
∑

k

P(z = k|φ,θ)P(w|φ,α, z = k) . (29)

3.3.2 �e in�nite mixture of experts

�e mixture-of-experts model is parametric: the number of experts Kmust be �xed in
advance. In order to circumvent this requirement, a Bayesian non-parametric version
of the mixture of experts will be used here. �e Dirichlet process mixture of experts
(Rasmussen et al. 2001) instead uses an in�nite number of components. In theory, it
therefore considers all possible partitions of the training data and associated compon-
ents. However, it is impossible to deal with an in�nite number of components.

�e trick, common in Bayesian non-parametrics, is that the posterior distribution
of the components given the data is approximated with a Monte Carlo scheme, in this
work, Gibbs sampling. For any one sample, the number of components assigned any
observation is then at most the number of observations. To allow inference, all com-
ponents that have not been assigned to any observationmust bemarginalised out. Each
sample acquired from the in�nitemixture of experts then has exactly the form of a nor-
mal mixture of experts in �gure 3.

�e graphical model is given in �gure 4. �e number of components K is set to∞.
�e distributions for the mixture of experts must be chosen so that it is practical to
represent a �nite subset of the in�nite number of experts. �ey are therefore (again as
usual in Bayesian nonparametrics) chosen

π ∼ Dirichlet(η) ; (30)
zn ∼ Categorical[π] . (31)

By making the vector of priors of experts, π, in�nite-dimensional, the mixture model
is given by a Dirichlet process (Rasmussen 1999).

Instead of performing inference over the in�nite-dimensional vector π when K→
∞, it is marginalised out. �e distribution of the assignment of the observations to
experts is then given by the Chinese restaurant process (Aldous 1985; Pitman 2002).
(In the metaphor, the experts are tables; the observations customers who sit at a table
as they enter the restaurant.) Because the components are exchangeable, it is possible
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3.3. infinite support vector machines

to just consider the ones that have at least one observation assigned to them. Only
for those components z are the parameters θz and αz kept in memory. Since Gibbs
sampling is used, at any time it is only necessary to re-draw the assignment of one
observation to an expert. Because of the nature of the Dirichlet process, the posterior
distribution of the assignment of one observation given all other ones is split between
the existing components and the new ones:

P
(
zn = k

∣∣z\n, η) ∝
{
Nk, if k is an existing expert;
η, if k is a new expert.

(32)

During Gibbs sampling, of course, for sampling the assignment of one observation
to an expert, the complete posterior of zn is used. �is uses the component priors,
in (32), but also the current parameters of the components and the experts. Because
of this, observations are more likely to move to an expert that classi�es them correctly
than to an expert that does not. During the training process, this creates an interaction
between components’ positions and experts’ performance that is a great strength of this
model.

�e procedure for Gibbs sampling is as follows. �e parametersΘ = {θ,α} and
component assignments z are sampled iteratively. While the value of one variable, e.g.
z, is sampled, all other variables, e.g. θ,α remain the same. Because of the exchange-
ability of z = {z1, . . . , zN}, the posterior distribution of zn given the value of its neigh-
bours, according to which it is sampled, is

P
(
zn
∣∣z\n, φn,θk, wn,αk) ∝ P(zn∣∣z\n)p(φn|θzn)P(wn|φn,αzn) , (33)

where the �rst term P
(
zn
∣∣z\n) is given according to (32). When k is a represented

component, zn can be directly sampled from equation (33). When k is an unrepres-
ented component, however, the term p(φn|θzn) is given by

∫
p(φn|θ)G1(θ)dθ; and

P(wn|φn,αzn), is given by
∫
P(wn|φn,α) , G2(α)dα.

In order to sample all zn in parallel, an approximation is made here. All unrep-
resented components are treated as one, so if an observation φn is allocated to the
unrepresented component, then always zn = K+ 1, where K is the current number of
representative components.

A�er obtaining the assignments of observations to components, �rst the number
of represented components is updated. �en the parameters of the components θ are
sampled, a�er which the parameters of each expert α are updated.

Classi�cation with this Bayesian model in theory would use all components of the
mixture model weighted by their posterior from the training data:

P(w|φ,D) =
∫
P(w|φ,Θ)p(Θ|D)dΘ, (34a)

whereΘ = {θk,αk}k=1...K are all the parameters of themixture of experts. However,
since the number of components is in�nite, (34a) cannot be computed. Instead, the
samples acquired with Gibbs sampling are used. Denote withΘ(l) the lth draw from
the posterior. As usual in Gibbs sampling, the draws are taken su�ciently far apart that
independence between them can be assumed:

Θ(l) ∼ p
(
Θ|D

)
. (34b)
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4. experiments

Each of these draws contains a �nite number K(l) of active components. Classi�cation
then uses all components from all samples:

P(w|φ,D) ' 1

L

L∑

l=1

P
(
w
∣∣φ,Θ(l)

)
=
1

L

L∑

l=1

K(l)∑

k=1

P
(
z = k

∣∣φ,θ(l)
)
P
(
w
∣∣φ,α(l)

k

)
. (34c)

�is form of classi�cation is equivalent to classi�cation with a mixture of experts con-
sisting of all experts from all draws.

3.3.3 In�nite support vector machines

If the experts are multi-class support vector machines, then the resulting model is an
in�nite support vector machine (in�nite svm) (Zhu et al. 2011). A multi-class svm is
a special case of a structured svm, discussed in section 3.1.1, where the classes have no
structure. Unlike standard svms, however, there are more than two classes, so that the
large-margin criterion in (23) is required.

To use the in�nite svm, however, svms must be interpreted as probabilistic models.
�is is necessary both for classi�cation (in (34c)), because the experts’ distributions
must be summed, but also for Gibbs sampling. �e interpretation as log-linear models
was given in section 3.1.1, and this will be used here. When the assignment to an expert
for an observation is sampled, therefore, the distribution of the class given its parents
is

P(w|φ, z, α) ∝ exp
(
αT
zΦ(φ,w)

)
, (35)

whereαz is the parameter vector for expert z, andΦ(φ,w), gives a vector like the one
in (2) which contains zeros except for the dimensions indicated by w, where it has a
copy of φ.

Instead of sampling the parameters of experts within Gibbs sampling, the standard
multi-class svm training procedure is run. A potential problem in training the svm
experts is that of over�tting. �is problem is much larger than for standard svms, since
within the model here, at any iteration, the number of observations assigned to an ex-
pert can legitimately be very small. Without any regularisation, the svm could therefore
produce a parameter setting that does not generalise. Here, a prior (as introduced in
section 3.1.1) is used. �e mean of the prior is set not to zero (as is o�en the implicit
setting), but to the parameters of an svm trained on the whole data set. �e regularisa-
tion constant, which implies the covariance of the prior, will be empirically set using
the development set.

4 Experiments

�emethods in this reportwere tested in a log-linearmodel on a small, noise-corrupted
corpus: aurora 2. �is makes it possible to test the interaction with noise compensa-
tion methods. �e task uses a small vocabulary and no language model, which makes
experiments without such optimisations as pruning possible. aurora 2 (Hirsch and
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4.1. optimising segmentations

Test set
snr A B C Average
(dB) hmm l l,∇l hmm l l,∇l hmm l l,∇l hmm l l,∇l
20 1.69 1.43 1.01 1.46 1.20 0.80 1.57 1.42 0.96 1.57 1.46 1.03
15 2.36 1.95 1.28 2.37 1.82 1.34 2.47 2.18 1.72 2.38 1.99 1.32
10 4.39 3.62 2.62 4.12 3.22 2.53 4.49 3.82 2.80 4.30 3.63 2.65
05 11.20 8.94 7.48 10.05 7.89 6.74 10.69 8.76 7.86 10.64 9.01 7.52
00 29.54 23.25 21.57 27.54 22.18 20.84 28.41 23.96 23.31 28.51 23.81 22.14
00–20 9.84 7.84 6.79 9.11 7.26 6.45 9.53 8.03 7.33 9.48 7.98 6.93

Table 1wers for decoding with the expectation semiring.

Pearce 2000) is a standard digit string recognition task. �e generative model has
whole-word hmms with 16 states and 3 components per state. �e number of hmm
parameters is 46 732. �e hmms are compensated with unsupervised vector Taylor
series (vts) compensation as in Gales and Flego (2010). �e hmm parameters to derive
features for the discriminative model are trained on clean data.

With features consisting of just word log-likelihoods, the discriminative model has
13 parameters, corresponding to the log-likelihoods of the 13 words (11 digits plus “sil”
and “sp”). In �rst-order score-spaces the derivatives of the log-likelihood are computed
as in section 2.3 and appended (like in Gales and Flego (2010) the data are whitened
separately for each Gaussian before computing the derivative).

�e discriminative models are trained on multi-style training data.

4.1 Optimising segmentations

�e feature extraction process in section 2.2was used to decodewith a discriminatively-
trained log-linearmodel, �nding the optimal segmentation.�e discriminativemodels
were initialised to use just the likelihoods from the generative model. �ey were then
trained with a minimum Bayes risk criterion as in Ragni and Gales (2011b). �is used a
large lattice with many, but not all, segmentations for the numerator and denominator.
Test set A was used as the validation set to stop training.

Only derivatives of the compensated means are used, since including variances led
to rapid over-�tting. �e number of parameters was 21 554. Second-order score-spaces
resulted in generalisation problems because of the small training set, and initial exper-
iments did not yield improvements over �rst-order score-spaces.

Word error rates for the experiments are in table 1. Apart from numerical di�er-
ences, they are the same as in Ragni and Gales (2012). However, there the derivatives
were recomputed for every segment, whereas in this paper they are found with the ex-
pectation semiring as in section 2.3, which even with the unoptimised implementation
is much faster.

With just likelihood features (“l”), the log-linear model is closely related to the
hmm. �e di�erence is merely that within words, all paths are taken into account,
and that there are word-speci�c discriminatively-trained parameters, e�ectively scal-
ing factors. �is yields consistent improvements of 10–15% on test sets A and B, with
greater improvements at lower signal-to-noise ratios. Adding derivative features (“l,∇l”)
introduces longer-range dependencies that break the Markov assumption. �is im-
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4. experiments

Test set
Model Criterion Kernel A B C Average
hmm-vts ml — 9.8 9.1 9.5 9.5
Multi-class svm large-margin linear 8.3 8.1 8.6 8.3

Log-linear model
conditional ml linear 8.1 7.7 8.3 8.1
large-margin linear 7.9 7.3 8.0 7.7
large-margin polynomial 7.6 7.1 7.9 7.5

Table 2Word error rates for vts-compensated hmms, multi-class svms, and log-
linear models trained using conditional maximum likelihood and large-margin
criteria, with linear and second-order polynoial kernels.

proves recognition consistently. Where discrimination relies most on modelling the
speech accurately, at higher signal-to-noise ratios, this helps most, with 18–33% relat-
ive improvement at 10–20 dB.

Using the optimal segmentation instead of the hmm segmentation accounts for
around 5% of the improvement. Features for large-vocabulary systems will be extrac-
ted per phone, like in Ragni andGales (2011a), so that the segmentation is likely to have
greater impact on performance.

4.2 Kernelised structured svm

Section 3.2 discussed kernelised log-linear models trained with a large-margin cri-
terion. �is section reports on experiments with that.

Test set A was used as the development set for tuning parameters for all systems,
such as C in (25a). To evaluate the performance of log-linear models, large margin
training and kernels, several con�gurations were compared. �e baseline system was
an hmm with vts compensation. �ese compensated hmms were also used to derive:
the noise-robust log-likelihood features; the word-level segmentation for the multi-
class svms; and the training and decoding lattices for the log-linear models. �e per-
formance of vts-compensated hmms, multi-class svms, and log-linear models with
di�erent training criteria and kernels are shown in table 2.

Examining the results in table 2 shows that the large-margin log-linear model with
a second-order polynomial kernel achieved the best results among all the systems.
For multi-class svms, the observation sequence is �rst segmented into words based
on hmms and individual words classi�ed independently. �e di�erence in perform-
ance between the log-linear model and multi-class svm systems shows the impact of
sentence-level modelling. �e overall gain from using kernelised log-=linear models
over thevts-compensatedhmm systemwas over 22%.�e gain fromusing polynomial
kernels over linear kernels was 3%. Note that without kernelisation, it is impractical to
apply large-margin log-linear models with a polynomial kernel, since it requires com-
puting and keeping all the high-dimensional joint features explicitly. However, in the
dual space only the Gram matrix is required.
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4.3. infinite svms
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Figure 5Word error rates for di�erent settings of the regularisation constant.

Test set
Model Features Dimensions A B C Average
hmm — — 9.84 9.11 9.53 9.48
svm log-likelihood 12 8.29 7.90 8.61 8.20
isvm 8.25 7.87 8.53 8.15
svm derivatives 558 8.28 7.85 8.63 8.18
isvm 8.05 7.81 8.44 8.04

Table 3Word error rates for the in�nite svm on aurora 2.

4.3 In�nite svms

Section 3.3 has discussed how in�nite support vector machines can be used for speech
recognition. �is section discusses the experimental results.

�e segmentation according to the besthmm hypothesis is used, and every segment
is re-classi�ed using an in�nite svm. �is is sometimes called acoustic code-breaking.
In the experiments here, log-likelihood feature vectors and derivative feature vectors
are used. To keep training with derivative feature vectors feasible, only the �rst element
of the derivative with respect to eachmean is used in this paper.�e number of samples
(in the form of a mixture of experts) from the in�nite mixture model is 10.

In our experiments, all the experts (svms) of the isvm share the same C, which is
turned on test set A. Figure 5 illustrates the word error rate of the isvm on di�erent
feature spaces with various values of C. Since the parameter of each expert is given a
Gaussian prior with mean µα, which is obtained from the multi-class svm, the isvm
only achieves the baseline performance of the multi=class svm whenC is small. By in-
troducing the non-zero mean µα, the isvm can at least achieve the performance of the
multi-class svm, and the optimised con�guration can be obtained by gradually increas-
ing C. Without the prior on the parameters, the isvm would have poor performance,
since not all experts are assigned su�cient data.
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5. conclusion

�e experimental results are listed in table 3 on the preceding page. All the dis-
criminative models outperform the vts-compensated hmm baseline system. On the
log-likelihood feature space and derivative feature space, the isvm achieves better per-
formance than the multi-class svm. �is gain is obtained by the fact that the isvm
explores the distribution of the training data and infers the number of experts, then
applies di�erent experts focussed on di�erence regions of the feature space to make an
ensemble decision, rather than applying a single classi�er on the whole feature space.

5 Conclusion

�is report has documented progress in two key areas within the epsrc Project ep/
i006583/1, Generative Kernels and Score Spaces for Classi�cation of Speech. �e areas
are score-space generation and classi�ers.

Section 2 proposed a method to computing generative scores for many segmenta-
tions at once. �is is vital for making speech recognition with generative score-spaces
e�cient (the standard Viterbi algorithm cannot be used). �e method uses the for-
ward algorithm for an generative model for one word. However, it replaces the for-
ward probabilities with values in the expectation semiring, which allows derivatives of
the probabilities to be propagated.

Section 3 discussed two methods for using large-margin classi�ers to give nonlin-
ear decision boundaries in this feature space. �e �rst was by kernelising structured
support vector machines; the second by using mixtures of svms, the isvm.

For the coming year there are two main strands of work that will be performed.
�e �rst is to consider all segmentations for training log-linear models, by estending
the minimum Bayes’ risk training algorithm. �e second is to combine mixtures of
experts with structured classi�ers, i.e. extending the isvm to word sequences.
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École d’Été de Probabilités de Saint-Flour xiii, Springer, Berlin/Heidelberg, Lecture
Notes in Mathematics, vol. 1117, pp. 1–198.

Jason Eisner (2001). “Expectation Semirings: Flexible em for Finite-State Transducers.”
In Proceedings of the esslli Workshop on Finite-State Methods in Natural Language
Processing (fsmnlp).

Jason Eisner (2002). “Parameter Estimation for Probabilistic Finite-State Transducers.”
In Proceedings of the Annual Meeting on Association for Computational Linguistics.
pp. 1–8.

M. J. F. Gales and F. Flego (2010). “Discriminative classi�ers with adaptive kernels for
noise robust speech recognition.” Computer Speech and Language 24 (4), pp. 648–
662.

M. J. F. Gales, S. Watanabe, and E. Fosler-Lussier (2012). “Structured Discriminative
Models For Speech Recognition: An Overview.” ieee Signal Processing Magazine
29 (6), pp. 70–81.

Georg Heigold,�omas Deselaers, Ralf Schlüter, andHermannNey (2008). “Modi�ed
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