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ABSTRACT

Using generative models, for example hidden Markov models
(HMM), to derive features for a discriminative classifier has a
number of advantages including the ability to make the features
robust to speaker and noise changes. An interesting attribute of the
derived features is that they may not have the same conditional inde-
pendence assumptions as the underlying generative models,which
are typically first-order Markovian. For efficiency these features
are derived given a particular segmentation. This paper describes
a general algorithm for obtaining the optimal segmentationwith
combined generative and discriminative models. Previous results,
where the features were constrained to have first-order Markovian
dependencies, are extended to allow derivative features tobe used
which are non-Markovian in nature. As an example, inferencewith
zero and first-order HMM score-spaces is considered. Experimental
results are presented on a noise-corrupted continuous digit string
recognition task: AURORA 2.

Index Terms— Structured discriminative model, generative
score-space, inference

1. INTRODUCTION

Currently most automatic speech recognition (ASR) systemsare
based on generative hidden Markov models (HMM). The likeli-
hoods from these are usually combined with then-gram language
model probabilities using Bayes’ rule to yield the sentenceposterior.
Though successful it is widely known that the underlying models
are not correct. This has lead to interest in discriminativemodels
which directly model the posterior/decision boundaries given a set
of features extracted from the observation sequence. Depending on
how the structure of sentences is modelled many proposed discrimi-
native models can be divided intoflat andstructured. Flat models [1]
assume no specific structure which allows to model sentence-wide
phenomena. Unfortunately the space of possible sentences is large
which makes using these models in ASR complicated. Structured
models [2, 1, 3] on the other hand assume partitioning of sentences
into basic structural units such as words or phones which is believed
to be more appropriate for ASR.

Several options exist to extract features at different structural
levels. These includeevent detectors[1] andgenerative score-spaces
[2]. Event detectors make use of classifiers and detectors topro-
vide parallel feature (event) streams. The feature streamssimulta-
neously operating at word, phone and subphone levels allow both
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short and long-spanning dependencies to be incorporated. In order
to derive features from the detected events there are operations such
as existence, expectation and string edit distance available. Gener-
ative score-spaces derive features from generative modelsand pro-
vide systematic approaches to define acoustic features in the form
of zero and higher-order derivatives of log-likelihood. The features
may inherit or break the underlying model conditional independence
assumptions, model complex within and across-state dependencies
spanning multiple frames. As the generative models are usedto ex-
tract features they can be adapted to noise and speaker conditions
using model-based techniques. One issue with these features is that
they are derived from segmented observation sequences and thus are
sensitive to particular segmentation. In previous work with genera-
tive score-spaces [3] the segmentation for training was obtained from
generative models. However, using the same approach for inference
is expected to yield suboptimal performance when the discrimina-
tive model trained is sufficiently different from the HMMs used to
produce segmentations.

Previous work in this area examined the use of optimal segmen-
tation with a specific type of features [4]. This paper extends that
work describing a general inference algorithm suitable forzero and
first-order generative score-spaces in particular. This paper shows
that for a class of generative models efficient inference with zero
and first-order score-spaces is possible even though first-order score-
spaces require non-Markovian statistics to be estimated. The rest of
this paper is organised as follows. Section 2 describes structured dis-
criminative models and features derived by generative score-spaces.
The inference algorithm is presented in Section 3. An example ap-
plication of the algorithm to ASR is given in Section 4. Finally,
Section 5 gives conclusions drawn from this work.

2. STRUCTURED DISCRIMINATIVE MODELS

Given observation sequenceO the discriminative model considered
in this work models the posterior probability of sentenceW using
log-linear form

P (W|O; α) =
exp(αTφ(O, W, θ))

P

W′ exp(αTφ(O,W′, θ′))
(1)

whereα are model parameters,θ segments observations into struc-
tural units andφ(O,W,θ) is a joint feature vector.

2.1. Structure

For efficiency the dot-product of model parameters with joint feature
vector orsentence scorecan be decomposed as a sum of dot-products



at various levels such as word, phone, etc. This paper examines
models defined on a single level such as the word level

α
T
φ(O,W, θ) =

LX

i=1

α
T
φ(Ot(wi,θ), wi) (2)

wherewi is a word,L is the number of words inW andt(wi, θ)
indexes observations assigned towi by θ.

The structure of the model considered can be compactly repre-
sented using lattices. Figure 1 shows a typical lattice usedfor mod-
elling denominator terms in equation (1). Compared to the lattices
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Fig. 1. Sentence structure modelling using lattices

used in discriminative HMM training, each word arc in Figure1 is
augmented by asetof acoustic features shown as the column vec-
tor. Note that using HMM log-likelihoods as the basic word-level
acoustic features and setting the corresponding discriminative model
parameters to one and the rest to zero allows to retrieve the perfor-
mance of the standard HMM classifier. In this work language model
was not used though approaches exist to incorporate it [1, 2].

2.2. Features

Generative score-spaces derive features from generative models.
The simplest example, zero-order base (b) score-space, is given by

φ
0
b(Ot(wi,θ)|wi) =

ˆ
log

`
p(Ot(wi,θ)|wi)

´˜
(3)

When the structured discriminative models are based onφ0
b features

the parameters trained could be interpreted as class-specific acous-
tic deweighting constants. The main issue with these features is that
they inherit conditional independence assumptions of the underly-
ing generative models. This means thatφ0

b admits onlyMarkovian
statisticsin the features extracted. The first-order score-spaces allow
to address this by incorporatingnon-Markovian statisticsin the form
of derivatives of the log-likelihood. For example, the first-order base
score-space has features

φ
1
b(Ot(wi,θ)|wi) =

»
log

`
p(Ot(wi,θ)|wi)

´

∇λ log
`
p(Ot(wi,θ)|wi)

´

–

(4)

whereλ are generative model parameters. Consider the derivatives
with respect to HMM mean vectors

∇
µjk

log
`
p(Ot(wi,θ)|wi)

´
=

tX

t′=τ

P (θjk

t′
|Ot(wi,θ))Σ

−1
jk (ot′−µjk) (5)

where t(wi, θ) is assumed to index observations from timeτ to
time t. Since these derivatives are functions of component pos-
teriorsP (θjk

t′
|Ot(wi,θ)), which depend on the whole subsequence

Ot(wi,θ), the HMM conditional independence assumptions are no
longer present in the features extracted. One advantage of using

generative score-spaces in ASR is that model-based adaptation and
compensation approaches can be applied to compensate generative
model parameters and thus the features derived to target speaker and
noise conditions [5]. By compensating the features it is possible to
train speaker and noise independent discriminative classifiers.

Given the features in equation (3) or (4) the joint word-level fea-
ture vector to be used in equation (2) is constructed as follows

φ(Ot(wi,θ), wi) =

2

6
4

δ(wi, ω1)φ(Ot(wi,θ)|ω1)
...

δ(wi, ωW )φ(Ot(wi,θ)|ωW )

3

7
5 (6)

where W is the number of word classes and the use of delta-
functions ensures that only one class is active on each word arc.

2.3. Parameter estimation

The standard criterion to use with log-linear models is a conditional
maximum likelihood. For tasks such as ASR another popular cri-
terion is a minimum Bayes’ risk (MBR). In this work the variant
maximisingaccuracy(a) of transcriptions [3] will be used

Fa

mbr(α) =
RX

r=1

X

W

P (W|O(r); α)A(W,W
(r)
ref

) (7)

whereW(r)
ref

is a reference transcription and accuracyA(W, W
(r)
ref

)
is defined on the word level. The gradient with respect to parameters
of structural units has the following general form

∇αF
a

mbr(α) =
RX

r=1

X

a∈L
(r)
den

C(a)P (a|O(r))φ(O
(r)

t(a)
, ω) (8)

wherea is an arc with class labelω, L(r)
den

is a lattice encoding possi-
ble transcriptions including the reference,P (a|O(r)) andC(a) are
arc posterior probabilities and contributions to the average correct-
ness computed using variants of lattice-based forward-backward al-
gorithms [6]. In this work regularised MBR training is performed by
adding a fixed-mean Gaussian prior to the objective function.

3. INFERENCE

It has been assumed so far that segmentationθ for each sentenceW
is known both in training and decoding. Since score-space features
are derived from the segmented observation sequences the choice of
segmentation is important. The simplest option to obtain itis to use
generative model alignment

θλ = arg max
θ

{P (W)P (θ|W)p(O|θ, W)} (9)

which maximises the sentence likelihood. An alternative approach
is to useoptimal alignment

θα = arg max
θ

n

α
T
φ(O,W, θ)

o

(10)

which maximises the sentence score and is more directly linked with
the objective function. When the discriminative model is initialised
with sparse parameters as described in Section 2.1 the alignment
produced by the generative model coincides with the optimal. In
general, as the discriminative parameters change so does the opti-
mal alignment,θα 6= θλ . This means that each estimation step in
training or the best path search in decoding should be preceded by
inferring optimal alignments for all possible sentences.



3.1. General inference algorithm

Theinference problemwith the discriminative model in equation (1)
can be formulated by

{Wα , θα} = arg max
{W,θ}

{αT
φ(O, W, θ)} (11)

which subsumes equation (10) as a special case. In this work the
sentence score is decomposed as a sum of word-level scores which
yields an efficient, polynomial time, algorithm. For a modelm let
ρ
(m)
t denotes the best score at timet. Then arecursionis given by

ρ
(m)
t = max

m′,τ−1

n

ρ
(m′)
τ−1 + cm′,m +α

T
φ(Oτ :t, ωm)

o

(12)

wherecm′,m is a cost on transiting fromm′ to m, τ ∈ [1, t] and
maximisation is over all possible segmentationsθτ :t and preced-
ing modelsm′. By running the algorithm from time1 to time T

the optimal sentence and segmentation can be obtained by tracing
back the model and time index maximisingρ

(M)
T . Note that equa-

tion (12) is an extension of Viterbi algorithm from frames tose-
quences and is identical to the one used with semi-Markov condi-
tional random fields [7]. If complexity of computing the dot products
αTφ(Oτ :t, ωm) was constant the inference algorithm in the worst
case would have hadquadraticcomplexityO(W 2T 2), whereT and
W are the number of frames and models. Since language model is
not used in this workcm′,m = 0 which allows to perform maximi-
sation overm′ independently from that overτ − 1. This reduces
worst case complexity toO(WT 2). The next two sections examine
inference with zero and first-order generative score-spaces.

3.2. Zero-order score-spaces

For zero-order score-spaces (3) the recursion involves computing

α
T
φ(Oτ :t, ωm) = α

(ωm) log (p(Oτ :t|ωm)) (13)

Equations (12) and (13) suggest that each time new segmentation
θτ :t is considered the likelihood has to be re-computed. For gen-
eral generative models this computation is expected to be expensive.
However, some models, for example HMMs, can use efficient recur-
sions in the form of forward and backward probabilities. Unfortu-
nately, the use ofutterance-levelforward/backward passes over the
lattice is not sufficient as it would only yield asubsetof likelihoods

8

>>>>>><

>>>>>>:

p(O1:1|ωm),
...

p(O1:T−1|ωm),
p(O1:T |ωm),

| {z }

forward pass

p(OT :T |ωm)
...

p(O2:T |ωm)
p(O1:T |ωm)
| {z }

backward pass

9

>>>>>>=

>>>>>>;

(14)

In order to compute thefull setof likelihoods for each classωm, in
general,T segment-levelforward or backward passes must be per-
formed to provide equation (12) with all possible dot-products. In
this work the backward pass was integrated into the recursion. For
eachρ

(m)
t it was run from timet to time1 to yield t likelihoods re-

quired. Since the complexity of the backward algorithm is linear in
timeT the total complexity remainsquadratic.

In addition to HMMs, examples of generative models allow-
ing efficient inference are factor-analysed and uncoupled factorial
HMMs, buried Markov models. Models not in this category are tra-
jectory HMMs, switching linear dynamic systems, i.e., generative
models without state and observation Markov assumptions.

3.3. First-order score-spaces

With first-order score-spaces (4) the dot-product requiredis

α
T
φ(Oτ :t, ωm)= (15)

α
(ωm) log(p(Oτ :t|ωm))+α

(ωm)T∇λ log(p(Oτ :t|ωm))

For general generative models efficient inference is not possible
since log-likelihood and its derivatives may require segmented
statistics to be estimated. However, when the generative model is
constrained to be Markovian, such as in the previous section, effi-
cient inference is possible even though the derivatives would require
non-Markovian statistics to be used. This is the case considered in
this paper. The derivative term in equation (15) for these generative
models has the following form

α
(ωm)T∇λ log(p(Oτ :t|ωm))=

τX

t′=t

N−1X

j=2

KX

k=1

P (θjk

t′
|Oτ :t)w

(ωm)
jkt′

(16)

wherew
(ωm)

jkt′
is adiscriminative component scoredefined by

w
(ωm)
jkt′

= α
(ωm)
jk

T

∇λ log(p(ot′ |θ
jk)) (17)

One issue with equation (16) is that it depends on the segment-level
posterior probabilities

P (θjk

t′
|Oτ :t) =

f
jk

τ :t′
· bj

t′:t

p(Oτ :t|ωm)
t
′ ∈ [τ, t] (18)

where the numerator term is a product of segment-level forward
f

jk

τ :t′ = p(Oτ :t′ , θ
jk

t′
) and backwardbj

t′:t = p(Ot′+1:t|θ
j

t′
) prob-

abilities. If recursion is implemented directly the worst case com-
plexity of inference becomescubic in T .

In addition to havingcubicworst time complexity the direct in-
ference is inefficient in re-computing forward and backwardprob-
abilities in equation (18) onceτ or t has changed. In order to re-
duce the amount of computations required the followingtwo-pass
strategywas used. During thefirst passall possible segment-level
forward probabilities{f jk

τ :t} are computed and cached. These are
obtained by starting from each time1, . . . , T . This also yields the
segment-level likelihood for any subsequence

p(Oτ :t|ω) =

N−1X

i=2

aiNf
i
τ :t (19)

where{aij} are transition probabilities andf i
τ :t can be derived from

f ik
τ :t. Thesecond passis integrated into recursion similar to the in-

ference in Section 3.2 but is more complicated. During this pass all
possible segment-level backward probabilities{bj

τ :t} are computed.
Since the corresponding segment-level likelihoods and forward
probabilities at each timet′ ∈ [τ, t] are already known (see the first
pass) they can be combined to yield the posterior in equation(18) for
anyb

j

t′:t. By accumulating the product of posterior with the compo-
nent score yields the term in equation (16). Since the log-likelihood
is known the first term on the right side of equation (15) can bealso
added. Therefore by reaching timeτ the complete dot-product is
accumulated. Note that since the set of forward probabilities{f j

τ :t}
for each starting timeτ is different accumulation over timet′ in
equation (16) has to be treatedindependently.

Note that significantly more efficient inference is possibleus-
ing first-order expectation semirings[8]. These allow to obtain all
possible dot-products (16) in a single backward pass from time t to
1. Then similarly to zero-order case inference with first-order score-
spaces can be performed inquadratic time.



4. EXPERIMENTS

This section describes an application of the algorithms in Section 3
to HMM score-spaces. Both zero and first-order HMM score-spaces
are considered which requires inference in the first-order Markovian
and non-Markovian feature spaces. For simplicity a small vocabu-
lary task was considered where utterances are sufficiently short so
that quadratic and cubic complexities are easy to handle. Addition-
ally optimal inference was only performed during decoding.

AURORA 2 is a noise-corrupted connected digit string recogni-
tion task. The number of classes is 11 plus silence and short pause,
no language model was used. The generative model of digits is
a whole-word HMM with 16 states and 3 components/state. The
number of HMM parameters is 46,732. For each utterance model-
based vector Taylor series (VTS) compensation was applied using
the approach described in [5]. Three HMM setups were considered:
clean-trained (VTS), VTS-adaptively trained (VAT) and discrimina-
tively VTS-adaptively trained (DVAT) [9] systems. The discrimina-
tive model is based onφ0

b andφ
1µ
b

score-spaces whereµ denotes
that derivatives with respect to mean vectors were only used.1 The
number of discriminative model parameters is 13 and 21,554 respec-
tively. The maximum word accuracy criterion was used to train dis-
criminative models on multi-style data using suboptimal alignments.
Test set A was used as the validation set to stop training.

The first experiment investigated inference with zero-order
score-spaces,φ0

b , where only first-order Markovian statistics is
used. Table 1 shows evaluation results. The first line of eachblock

HMM SDM θ
Test set

Avg
A B C

VTS
– – 9.8 9.1 9.5 9.5

φ0
b

θλ 8.1 7.4 8.2 7.8
θα 7.8 7.3 8.0 7.6

VAT
– – 8.9 8.3 8.8 8.6

φ0
b

θλ 7.6 7.3 7.9 7.5
θα 7.1 6.8 7.5 7.1

DVAT
– – 6.7 6.6 7.0 6.7

φ0
b

θλ 6.7 6.5 7.0 6.7
θα 6.6 6.5 6.9 6.6

Table 1. Inference results with zero-order generative score-spaces

shows HMM word error rate (WER) performance. As expected the
use of adaptive (VAT) and discriminative adaptive (DVAT) training
improves the performance. The second line in each block shows
the performance of structured discriminative models (SDM)when
suboptimal alignments were used in decoding. In all configurations
considered the SDMs perform at least as good as the HMMs though
the number of additional parameters is just 13. Looking at the first
(VTS) block small 3% relative improvement can be observed from
using optimalθα rather than suboptimalθλ HMM alignments. This
observation is consistent with [4] where similar gains werereported
with another zero-order score-space having 10 times more param-
eters. Slightly larger 5% relative improvement can be observed in
the second (VAT) block which is believed to be due to significantly
more data available for training HMMs. When the DVAT HMM
setup was considered the use of optimal alignment yielded small
1-2% relative improvement. However, in this case the SDM gives
improvement on test set B only.

1Addition of covariance derivatives, which doubles the number of param-
eters, has lead to small improvements on top ofφ

1µ
b

in the VTS setup.

In the second experiment more complex first-order score-spaces,
φ

1µ
b

, with non-Markovian statistics were used. Table 2 shows eval-
uation results. The SDM based onφ

1µ
b

outperforms the HMM and

HMM SDM θ
Test set

Avg
A B C

VTS

φ
1µ
b

θλ 7.0 6.6 7.6 7.0
θα 6.8 6.4 7.3 6.7

VAT
θλ 6.6 6.5 7.0 6.6
θα 6.2 6.1 6.8 6.3

DVAT
θλ 6.1 6.2 6.7 6.3
θα 6.1 6.1 6.6 6.2

Table 2. Inference results with first-order generative score-spaces

zero-order score-space in each setup considered (Table 1).The re-
sults in Table 2 show that similar 4-5% relative improvementcan be
observed from inference in the VTS and VAT HMM setup. The use
of DVAT HMM as the base generative model again reduces the gain
from the optimal alignment to 1-2% relative.

5. CONCLUSIONS

This paper has examined inference with generative score-spaces
which derive features from generative models (HMMs). When these
are used by structured discriminative models the derived features
are dependent on the segmentation which is typically obtained from
the HMMs. The use of optimal segmentation for general generative
models is complicated. This paper has described the inference algo-
rithm suitable for zero and first order score-spaces based ona class
of generative models. These generative models are requiredto be
first-order Markovian though derivative features are non-Markovian
in nature. An efficient recursion has been presented for the zero and
first-order score-spaces. An example application was performed in
a noise-corrupted small vocabulary task where 1-5% relative gains
over suboptimal segmentation were observed.
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