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ABSTRACT

short and long-spanning dependencies to be incorporatedrder
to derive features from the detected events there are apesatuch

Using generative models, for example hidden Markov models,g eyistence, expectation and string edit distance atailabener-

(HMM), to derive features for a discriminative classifiersha
number of advantages including the ability to make the festu
robust to speaker and noise changes. An interesting dtrdfithe
derived features is that they may not have the same conditinde-
pendence assumptions as the underlying generative maegish
are typically first-order Markovian. For efficiency thesatiges
are derived given a particular segmentation. This papecrites
a general algorithm for obtaining the optimal segmentatioth
combined generative and discriminative models. Previessits,
where the features were constrained to have first-order dwak
dependencies, are extended to allow derivative featurés tosed
which are non-Markovian in nature. As an example, inferemite
zero and first-order HMM score-spaces is considered. Exygetial
results are presented on a noise-corrupted continuous gigig
recognition task: AURORA 2.

Index Terms— Structured discriminative model, generative

score-space, inference

1. INTRODUCTION

Currently most automatic speech recognition (ASR) systanes

based on generative hidden Markov models (HMM). The likeli-

hoods from these are usually combined with thgram language
model probabilities using Bayes’ rule to yield the sentepasterior.
Though successful it is widely known that the underlying eled
are not correct. This has lead to interest in discriminathedels

ative score-spaces derive features from generative madelgro-
vide systematic approaches to define acoustic featuresifotim
of zero and higher-order derivatives of log-likelihood. eTieatures
may inherit or break the underlying model conditional inelegence
assumptions, model complex within and across-state depeiebs
spanning multiple frames. As the generative models are tasex-
tract features they can be adapted to noise and speakettioondi
using model-based techniques. One issue with these fedtutteat
they are derived from segmented observation sequencebadre
sensitive to particular segmentation. In previous workwvgénera-
tive score-spaces [3] the segmentation for training waainét from
generative models. However, using the same approach freine
is expected to yield suboptimal performance when the disoa-
tive model trained is sufficiently different from the HMMsagsto
produce segmentations.

Previous work in this area examined the use of optimal segmen

tation with a specific type of features [4]. This paper extetitht
work describing a general inference algorithm suitablezfmo and
first-order generative score-spaces in particular. Thpepahows
that for a class of generative models efficient inferencé wéro
and first-order score-spaces is possible even though filst-ecore-
spaces require non-Markovian statistics to be estimatbd.rést of
this paper is organised as follows. Section 2 describeststed dis-
criminative models and features derived by generativeesspaces.
The inference algorithm is presented in Section 3. An exarapt
plication of the algorithm to ASR is given in Section 4. Figal

which directly model the posterior/decision boundaries given a Se?eotlon 5 gives conclusions drawn from this work.

of features extracted from the observation sequence. Diapgon
how the structure of sentences is modelled many proposedrdis
native models can be divided infiat andstructured Flat models [1]
assume no specific structure which allows to model sentese-
phenomena. Unfortunately the space of possible sentesdagye

2. STRUCTURED DISCRIMINATIVE MODELS

Given observation sequen€ethe discriminative model considered
in this work models the posterior probability of sented& using

which makes using these models in ASR complicated. Stredtur |og-linear form

models [2, 1, 3] on the other hand assume partitioning ofeseeis
into basic structural units such as words or phones whichlisved
to be more appropriate for ASR.

Several options exist to extract features at differentcstmal
levels. These includevent detectoril] andgenerative score-spaces
[2]. Event detectors make use of classifiers and detectopsato
vide parallel feature (event) streams. The feature stresimslta-
neously operating at word, phone and subphone levels alitv b
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wherea are model parameter@,segments observations into struc-
tural units andp(O, W ,0) is a joint feature vector.

2.1. Structure

For efficiency the dot-product of model parameters withtjééature

vector orsentence scorean be decomposed as a sum of dot-products



at various levels such as word, phone, etc. This paper examin generative score-spaces in ASR is that model-based aitbapsaid

models defined on a single level such as the word level

L
a'$p(0,W,0) =" a'¢(0yu,.0), wi)

i=1
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wherew; is a word, L is the number of words iW andt(w;, 0)
indexes observations assignecddpby 6.

The structure of the model considered can be compactly +epre

sented using lattices. Figure 1 shows a typical lattice @isethod-
elling denominator terms in equation (1). Compared to tktecks

t
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Fig. 1. Sentence structure modelling using lattices

used in discriminative HMM training, each word arc in Figdrés

augmented by aetof acoustic features shown as the column vec-,parew )

tor. Note that using HMM log-likelihoods as the basic woeddl
acoustic features and setting the corresponding discaitmaamodel
parameters to one and the rest to zero allows to retrieveetferp
mance of the standard HMM classifier. In this work languageeho
was not used though approaches exist to incorporate it [1, 2]

2.2. Features

Generative score-spaces derive features from generatbgelm
The simplest example, zero-order balsggcore-space, is given by

B5(Ot(ws,0)[wi) = [log (P(Op(w; 6y |wi))] (3

When the structured discriminative models are basegibfeatures
the parameters trained could be interpreted as classfispeobus-

tic deweighting constant§ he main issue with these features is that

they inherit conditional independence assumptions of tidetly-
ing generative models. This means thgt admits onlyMarkovian
statisticsin the features extracted. The first-order score-spaces al
to address this by incorporatimgpn-Markovian statistics the form
of derivatives of the log-likelihood. For example, the fiostler base
score-space has features

10g (p(Oy(w,,0)|wi)) )

1 N\ —
o (Orws.o i) = {Vx log (p(Oy(w,,0)|wi))

where are generative model parameters. Consider the derivative

with respect to HMM mean vectors

t
Vu}gg(p(ouwi,a)lwi)) =Y P01 |O¢(w,.0))554 (0 —pjx) (5)

t'=1

where ¢t(w;, @) is assumed to index observations from timeo
time ¢.

compensation approaches can be applied to compensatetener
model parameters and thus the features derived to targatespand
noise conditions [5]. By compensating the features it issjide to
train speaker and noise independent discriminative ¢lessi

Given the features in equation (3) or (4) the joint word-ldea-
ture vector to be used in equation (2) is constructed asasllo

I(wi, w1) B (O, ,0)lw1)

(z)(ot(wi,e)ywi) = (6)

S(wi, ww ) A(O¢(w,; 0)lww)

where W is the number of word classes and the use of delta-
functions ensures that only one class is active on each word a

2.3. Parameter estimation

The standard criterion to use with log-linear models is ad@gmal
maximum likelihood. For tasks such as ASR another popular cr
terion is a minimum Bayes’ risk (MBR). In this work the vartan
maximisingaccuracy(a) of transcriptions [3] will be used

R
Fae(@) =33 P(W[O ;) AW, WT)) ()

r=1 W

. .. (r)
1ot IS @ reference transcription and accuratyW, W,.; )

is defined on the word level. The gradient with respect torpatars
of structural units has the following general form

R
VaFa(@) =Y > C(a)P(al0")¢(0f),w) (8

r=1 aEL(T)

den

wherea is an arc with class label, Lf{e,)l is a lattice encoding possi-
ble transcriptions including the referende(a|O"”) andC(a) are
arc posterior probabilities and contributions to the agereorrect-
ness computed using variants of lattice-based forwarévbaa al-
gorithms [6]. In this work regularised MBR training is penfieed by
adding a fixed-mean Gaussian prior to the objective function

3. INFERENCE

It has been assumed so far that segmentdatifor each sentencev

| is known both in training and decoding. Since score-spaatifes

are derived from the segmented observation sequencesdive cti
segmentation is important. The simplest option to obtais b use
generative model alignment

6 = arg max {P(W)P(0|W)p(0]6, W)} ©)
which maximises the sentence likelihood. An alternativprapch
ig to useoptimal alignment

B = arg max {aT¢(o,W, 0)} (10)
which maximises the sentence score and is more directlgdinkith
the objective function. When the discriminative model igiatised
with sparse parameters as described in Section 2.1 themadign
produced by the generative model coincides with the optintal

Since these derivatives are functions of component posgeneral, as the discriminative parameters change so deespth

teriorsP(&{ﬂOt(wi,g)), which depend on the whole subsequencemal alignmentf. # 6. This means that each estimation step in
Oy (w;,6), the HMM conditional independence assumptions are ndraining or the best path search in decoding should be peecbyl
longer present in the features extracted. One advantagsimg u inferring optimal alignments for all possible sentences.



3.1. General inference algorithm

Theinference problemwith the discriminative model in equation (1)
can be formulated by

{Wa,0,) = af%vrg?x{aTd)(O, W,0)} (11)

which subsumes equation (10) as a special case.

3.3. First-order score-spaces
With first-order score-spaces (4) the dot-product reqused
' ¢(Orit, wm) = (15)
o™ 10g(p(Or-tlewm)) +0 "V Alog (p(Or.t|em))

In this werk t For general generative models efficient inference is nosiptes

sentence score is decomposed as a sum of word-level scoigs whsince log-likelihood and its derivatives may require segtee

yields an efficient, polynomial time, algorithm. For a modellet
p§m> denotes the best score at timélhen arecursionis given by
(m) _ (m’) T

P; 7m1;17?)7(1{p771 + e m T lf)(oq—;t,wm)} (12)
wherec,,./ ., is a cost on transiting frorm’ to m, 7 € [1,¢] and
maximisation is over all possible segmentatighs: and preced-
ing modelsm’. By running the algorithm from time to time T'
the optimal sentence and segmentation can be obtained diggra
back the model and time index maximisipéf”). Note that equa-
tion (12) is an extension of Viterbi algorithm from frames ge-

guences and is identical to the one used with semi-Markodieon
tional random fields [7]. If complexity of computing the dabpucts

statistics to be estimated. However, when the generativéehis
constrained to be Markovian, such as in the previous sectiffin
cient inference is possible even though the derivativedavaguire
non-Markovian statistics to be used. This is the case cersitdin
this paper. The derivative term in equation (15) for theseegative
models has the following form

T N—-1 K
w T, Wim
a( m) VAlOg( O-. t|wm Z Z Z |O‘r t ](kt’) (16)
t'=t j=2 k=1
wherew;;’:}) is adiscriminative component scodefined by
wii) = afi Valoa(p(ov 07) an

a9 (0, .+, w,) was constant the inference algorithm in the worstOne issue with equation (16) is that it depends on the segleesit

case would have hagliadraticcomplexityO (W 2T?), whereTl” and

posterior probabilities

W are the number of frames and models. Since language model is

not used in this work:,,, ., = 0 which allows to perform maximi-
sation overm’ independently from that over — 1. This reduces
worst case complexity t&(TWT?2). The next two sections examine
inference with zero and first-order generative score-gpace

3.2. Zero-order score-spaces

For zero-order score-spaces (3) the recursion involvepating

a’$(Ort,wm) = '™ log (p(Or.tlwm)) (13)

fT ¢
p(O Ttlwm)

where the numerator term is a product of segment-level fatwa
2%, = p(Or.p,07f) and backward,,, = p(Oy1./07,) prob-
abilities. If recursion is implemented directly the worstse com-
plexity of inference becomesubicin T'.

In addition to havingcubicworst time complexity the direct in-
ference is inefficient in re-computing forward and backwprdb-
abilities in equation (18) once or ¢t has changed. In order to re-
duce the amount of computations required the followiwg-pass

P(67F|0r) = t' € [r,1] (18)

Equations (12) and (13) suggest that each time new segritentat Strategywas used. DU“”Q thérst passall possible segment-level

0-.; is considered the likelihood has to be re-computed. For genforward probabilities{ f;

eral generative models this computation is expected to peresive.
However, some models, for example HMMs, can use efficientrrec
sions in the form of forward and backward probabilities. -

nately, the use ofitterance-leveforward/backward passes over the

lattice is not sufficient as it would only yieldsubsef likelihoods

p(O1:1|wm), p(O1:7|wm)
[)(()1;1"71|wm)7 p(02:T|Wm) (14)
p(O1.7|wm), P(O1.7|wm)

forward pass backward pass

In order to compute théull setof likelihoods for each class,,, in

k1 are computed and cached. These are
obtained by starting from each time. . This also yields the
segment-level likelihood for any subsequence

Z aLNth

where{a;; } are transition probabilities angf., can be derived from
fik . Thesecond pasis integrated into recursion similar to the in-
ference in Section 3.2 but is more complicated. During thisspall
possible segment-level backward probabilifigs, } are computed.
Since the corresponding segment-level likelihoods andvdcat
probabilities at each tim& € [r,¢] are already known (see the first
pass) they can be combined to yield the posterior in equéti®for
anybdl, ,. By accumulating the product of posterior with the compo-

(19)

Tt|w

general T’ segment-leveforward or backward passes must be per-nent score yields the term in equation (16). Since the kgitiood

formed to provide equation (12) with all possible dot-prcigu In
this work the backward pass was integrated into the reaqurdtor
eachp<m) it was run from timet to time 1 to yield ¢ likelihoods re-
quired. Since the complexity of the backward algorithmieér in
time T the total complexity remainguadratic

In addition to HMMs, examples of generative models allow-

ing efficient inference are factor-analysed and uncoupéedofial
HMMs, buried Markov models. Models not in this category aee t
jectory HMMs, switching linear dynamic systems, i.e., gatige
models without state and observation Markov assumptions.

is known the first term on the right side of equation (15) camalse
added. Therefore by reaching timethe complete dot-product is
accumulated. Note that since the set of forward probadsifti” , }
for each starting time- is different accumulation over tim# in
equation (16) has to be treatedlependently

Note that significantly more efficient inference is possitie
ing first-order expectation semirind8]. These allow to obtain all
possible dot-products (16) in a single backward pass frame tito
1. Then similarly to zero-order case inference with firstesrsicore-
spaces can be performeddoadratic time



4, EXPERIMENTS In the second experiment more complex first-order scoreespa
(z);“, with non-Markovian statistics were used. Table 2 shows$ eva
This section describes an application of the algorithmsdicti®n 3 uation results. The SDM based gi}* outperforms the HMM and

to HMM score-spaces. Both zero and first-order HMM scoresspa

are considered which requires inference in the first-ordardgvian HMM | sDM | e Test set AV
and non-Markovian feature spaces. For simplicity a smathbo- A B C g
lary task was considered where utterances are sufficiehdst so 0, | 70 66 76| 7.0
that quadratic and cubic complexities are easy to handlelitidd- VTS 0., |l 6.8 6.4 73| 6.7
ally optimal inference was only performed during decoding. L 0, 66 65 7.0 66
AURORA 2 is a noise-corrupted connected digit string recogn VAT b 0. || 62 6.1 68| 63
tion task. The number of classes is 11 plus silence and shosgp 0, |61 62 67| 63
no language model was used. The generative model of digits is DVAT 0. || 61 6.1 66| 6.2

a whole-word HMM with 16 states and 3 components/state. The
number of HMM parameters is 46,732. For each utterance model Taple 2. Inference results with first-order generative score-epac
based vector Taylor series (VTS) compensation was appbetyu
the approach described in [5]. Three HMM setups were coreitle
clean-trained (VTS), VTS-adaptively trained (VAT) andatisina-
tively VTS-adaptively trained (DVAT) [9] systems. The dignina-
tive model is based oY and ¢.* score-spaces wheye denotes
that derivatives with respect to mean vectors were only is€tle
number of discriminative model parameters is 13 and 21,65dac-
tively. The maximum word accuracy criterion was used tantdis-
criminative models on multi-style data using suboptimagrahents.
Test set A was used as the validation set to stop training.

The first experiment investigated inference with zero-orde
score-spacesgy, where only first-order Markovian statistics is
used. Table 1 shows evaluation results. The first line of &tk

zero-order score-space in each setup considered (TablEhg)re-
sults in Table 2 show that similar 4-5% relative improvemaant be
observed from inference in the VTS and VAT HMM setup. The use
of DVAT HMM as the base generative model again reduces the gai
from the optimal alignment to 1-2% relative.

5. CONCLUSIONS

This paper has examined inference with generative scareesp
which derive features from generative models (HMMs). Whese
are used by structured discriminative models the derivedufes
are dependent on the segmentation which is typically obthirom
the HMMs. The use of optimal segmentation for general gdivera

Test set

HMM | SDM | @ y = c Avg models is complicated. This paper has described the inferalgo-
rithm suitable for zero and first order score-spaces basedatess
- - 98 91 95 95 of generative models. These generative models are reqtairbd
VTS Y O | 81 74 82| 7.8 first-order Markovian though derivative features are nosridvian
" |6« || 78 73 80| 76 in nature. An efficient recursion has been presented forehe and
- - || 89 83 88| 86 first-order score-spaces. An example application was pagd in
VAT | 40 Ox || 76 73 79| 75 a noise-corrupted small vocabulary task where 1-5% relajains
" | 6a |71 68 75] 71 over suboptimal segmentation were observed.
- — 6.7 6.6 7.0f 6.7
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